
Application Note

Using Z8 Encore! XP® MCU for RMS Calculation

AN021602-0508
Abstract
This application note discusses an algorithm for com-
puting the Root Mean Square (RMS) value of a sinu-
soidal AC input signal using the Z8 Encore! XP®

MCU. The RMS application uses the internal oscilla-
tor of the Z8 Encore! XP® MCU as the system clock.
The computed RMS value is displayed in a Hyper-
Terminal application.

The source code file associated with this application
n o t e , AN0216-SC01 , i s a va i l a b l e o n
www.zilog.com.

Z8 Encore! XP® 4K Series Flash
Microcontrollers
Zilog’s Z8 Encore! products are based on the new
eZ8 CPU and introduce Flash memory to Zilog’s
extensive line of 8-bit microcontrollers. Flash mem-
ory in-circuit programming capability allows for
faster development time and program changes in the
field. The high-performance register-to-register
based architecture of the eZ8 core maintains back-
ward compatibility with Zilog’s popular Z8 MCU.
Z8 Encore! MCUs combine a 20 MHz core with
Flash memory, linear-register SRAM, and an exten-
sive array of on-chip peripherals.

The Z8 Encore! XP® 4K Series of devices support
up to 4 KB of Flash program memory and 1 KB regis-
ter RAM. An on-chip temperature sensor allows tem-
perature measurement over a range of –40ºC to
+105 ºC. These devices include two enhanced 16-bit
timer blocks featuring PWM and Capture and Com-
pare capabilities. An on-chip Internal Precision
Oscillator (5 MHz/32 kHz) can be used as a trimma-
ble clock source requiring no external components.
The Z8 Encore! XP® devices include 128 bytes of
Non Volatile Data Storage (NVDS) memory where

individual bytes can be written or read. The full-
duplex UART, in addition to providing serial com-
munications and IrDA encoding and decoding capa-
bility, also supports multidrop address processing in
hardware.

The rich set of on-chip peripherals make the Z8
Encore! XP® MCUs suitable for a variety of applica-
tions including motor control, security systems,
home appliances, personal electronic devices, and
sensors.

Discussion
Measurement of voltage in an AC circuit can be com-
plicated as compared to voltage measurement in a
DC circuit. RMS is a common mathematical method
used to define the effective voltage of an AC signal.
In general, the RMS value is defined as the square
root of the sum of squares of a set of quantities
divided by the total number of quantities.

The RMS algorithm discussed in this application
note calculates the square root of the sum of squares
of the samples of a sinusoidal AC input signal
divided by the total number of samples. Accurate cal-
culation of the RMS value depends on the number of
samples involved in the calculation. For better accu-
racy, a greater number of samples must be considered
for calculating the RMS value of an input AC signal.
There is a trade-off between accuracy and time,
because the time required to calculate the RMS value
of an input signal increases with the increase in the
number of samples.

Theory of Operation
Figure 1 on page 2 illustrates the flow of the RMS
algorithm discussed in this application note. The
RMS value of a sinusoidal AC input signal is
Copyright ©2008 by Zilog®, Inc. All rights reserved.
www.zilog.com

http://www.ZiLOG.com

Using Z8 Encore! XP® MCU for RMS Calculation
obtained by computing the square root of the average
input signal over a period of the AC signal. The fol-
lowing equation is used to compute the RMS value:

RMS = Square Root((V1*V1 + V2*V2 + V3*V3 + ...
+ V(n-1)*V(n-1) + Vn*Vn)/n)

where

• n is the number of samples

• V1, V2, V3, ... ,Vn are the input samples

As described earlier, there is a trade-off between the
processing speed of the microcontroller and the out-
put accuracy, as the time required to compute the
RMS value increases with the increase in the number
of samples.

Description of Components
This section lists the external hardware components
used in the RMS application, and describes their
functionality in detail.

Step-Down Transformer
The RMS application uses a step-down transformer
to step-down the input AC voltage. The input to this

transformer is line AC, and the output of this trans-
former is the required step-down AC voltage.

Bridge Rectifier
The RMS application uses a bridge rectifier to con-
vert the sinusoidal AC input wave to a rectified full
wave. Figure 2 on page 2 illustrates the output of the
bridge rectifier.

Figure 1. RMS Algorithm Flow

VIN V1 V2 V3 V4 --- --- Vn-1 Vn

RMS Algorithm

RMS Value

Figure 2. Output of Bridge Rectifier

---------VMAX

Time

Voltage

10 msec
AN021602-0508 Page 2 of 13

Using Z8 Encore! XP® MCU for RMS Calculation
Potential Divider Network
A potential divider circuit is a network comprising of
two resistors, R1 and R2, connected in series. Figure
3 on page 3 illustrates a basic potential divider net-
work. R1 is a fixed resistance, and R2 is a variable
resistance. To fine-tune the output voltage and for
better output accuracy, R2 must be variable. If the
output voltage is not critical to the application, then
R2 can be a fixed resistance.

Developing the RMS Application
with the Z8 Encore! XP® MCU
This section discusses the hardware architecture and
software implementation of the RMS application in
detail.

Hardware Architecture
Figure 4 on page 3 illustrates a basic block diagram
for the RMS application. The application uses a step-
down transformer to step-down the line AC input of
0.0-110.0 volts. The output of the step-down trans-
former is a peak AC voltage of 0.0-6.0 volt. A pulse-
shaping block, comprising a bridge rectifier and a
potential divider network, converts the negative half-
cycle of the step-down output signal to positive. In
particular, the potential divider is used to fine-tune
the output.

The on-chip ADC peripheral of the Z8 Encore! XP®

MCU samples the output of the pulse-shaping block.
The Z8 Encore! XP® MCU uses these samples to
compute the RMS value of the input AC signal. The
computed RMS value of the applied AC voltage is
consequently displayed in a HyperTerminal applica-
tion.

Refer to the schematic provided in Schematic Dia-
gram on page 8 for a detailed connection diagram of
the external circuitry.

Figure 3. Potential Divider Circuit

Input

Output

R1

R2

AC

AC

Figure 4. Block Diagram Illustrating the RMS Application Hardware Setup

AC

Mains

Step-Down

Transformer

Bridge Rectifier

and

Potential Divider

Z8 Encore! XP

Development

Board

HyperTerminal

Displaying

RMS Value

Input (0 - 110 V)

AC RMS

(0.0 - 6.0 V)

AC Peak Voltage

(0.0 - 2.0 V)

AC Peak Voltage

Z8F042A

VREF(EXT) = 2.0 V
AN021602-0508 Page 3 of 13

Using Z8 Encore! XP® MCU for RMS Calculation
Software Implementation
The software program for the RMS application is
implemented in four modules: the data sampling
module, the data acquisition module, the RMS calcu-
lation module, and the RMS display module. Refer to
the source code, AN0216-SC01, available on
www.zilog.com

Data Sampling Module
In the application described in this document, the on-
chip ADC peripheral of the Z8 Encore! XP® MCU
samples the rectified AC input signal (i.e., the output
of the pulse-shaping block). The ADC operates in the
continuous mode of operation, and generates samples
at the rate of 450 us.

To synchronize the speed of the RMS calculation
algorithm with the ADC peripheral, the data acquisi-
tion module reads only 64 samples per cycle (i.e., the
module reads every 8th sample).

The next ADC sample to be read is specified using
the following define statement:

#define READ_SAMPLE_NO 8

The total number of ADC samples read per cycle is
specified using the following define statement:

#define N 63

The right shift value depends on the total number of
ADC samples N, and is specified using the following
define statement:

#define RSHIFT 6

The value of RSHIFT depends on the value of N
(size of buffer). For example, if

• N is 127, then RSHIFT is 7

• N is 63, then RSHIFT is 6

The ratio between N and RSHIFT is N:2RSHIFT.

Users can modify all of the above define statements
to suit application requirements.

Figure 8 on page 10 is a flowchart illustrating the
ADC Interrupt Service Routine (ISR).

Data Acquisition Module
The data acquisition module reads data from the
ADC High and Low registers, converts this data into
one byte, and alternately stores this byte in the even
and odd buffers. The buffer size varies in powers of 2
(12, 22, 42, 82, etc.), and depends on the number of
samples used for RMS calculation. The buffer size, in
powers of 2, facilitates the reduction of the process-
ing time required for mathematical operations (multi-
plication and division, specifically). The number of
samples considered in the application described in
this document is 82, or 64.

Figure 9 on page 11 is a flowchart illustrating the
read operation of the ADC samples.

RMS Calculation Module
The RMS calculation module reads the stored sam-
ples in the even and odd buffers, alternatively. The
RMS calculation module performs the following
operations on the ADC samples:

1. Squares the read sample.

2. Divides the squared value by the number of
samples (using right shift operation).

3. Adds the value obtained in step 2 to the previ-
ous sum.

Example: sum=sum+new sample

4. Repeats the above steps for all of the buffer
contents.

5. Computes the square root of the final value.

The total time required to calculate the RMS value is
less than 14 ms at a frequency of 5.5 MHz.
AN021602-0508 Page 4 of 13

Using Z8 Encore! XP® MCU for RMS Calculation
Figure 10 on page 12 is a flowchart illustrating the
RMS calculation algorithm.

RMS Display Module
The RMS display module converts the calculated
RMS value to ASCII, and displays this value in the
HyperTerminal application.

Testing
This section lists the setup and equipment used to test
the RMS application. The test results obtained are
also listed in Table 1 on page 6.

Setup
A basic setup to test the RMS algorithm using the Z8
Encore! XP® MCU is illustrated in Figure 5 on page
5. The setup comprises of the input block, the Z8
E nc o r e ! X P ® 4 K S e r i e s D e ve l o p me n t K i t
(Z8F04A28100KIT), and the HyperTerminal applica-
tion. The input block consists of a step-down trans-
former, a bridge rectifier, and a potential divider
network.

Refer to the schematic provided in Schematic Dia-
gram on page 8 for a detailed connection diagram of
the input block.

Equipment Used
• Z8 Encore! XP® 4K Series Development Kit

(2 8 - p in) w i t h f u l l A N S I C C o m p i l e r
(Z8F04A28100KIT)

• Zilog Developer Studio II - Z8 Encore! (ZDS
II-IDE)

• A PC equipped with the HyperTerminal appli-
cation configured to the following settings:
– 38400 bps baud rate
– 8 data bits
– No parity
– One stop bit
– No flow control

Results
Table 1 on page 6 lists the readings of the input AC
(RMS) voltage, the output AC (RMS) voltage, and
the percentage error in the calculation of the RMS
value using the Z8 Encore! XP® MCU.

A variable transformer was used to vary the input AC
voltage, and the corresponding output was measured.
The percentage error in the computation of the RMS
value was found to be negligible. The performance
was as expected.

Figure 5. Test Setup for the RMS Application

Input

Block

ADC IN

RS-232

Z8 Encore!XP

Development

Board

Z8F042A

J2-1

CONSOLE

(P2)

COM2

HyperTerminal
AN021602-0508 Page 5 of 13

Using Z8 Encore! XP® MCU for RMS Calculation
.

The percentage error in the calcula-
tion of the RMS value can be further
minimized by using improved cir-
cuitry at the ADC end. The voltage
drop in the AC main must vary lin-
early with the input to the ADC for
zero percent error.

Summary
The Z8 Encore! XP® MCU features the UART and
the ADC ports for communication. The module-
based software implementation allows users to
directly use the code or modify the code with ease.
The software modules are modifiable, and are usable
with other microcontrollers of the Z8 Encore! family.

In the application described in this document, the
ADC peripheral of the Z8 Encore! XP® MCU oper-
ates in the continuous mode of operation, and pro-

duces a final RMS value based on 8-bit data at a
frequency of 5.5 MHz. The RMS algorithm is very
simple, and uses the Root Mean Square mathematical
method to calculate the voltage of a sinusoidal AC
input signal.

Table 1. Observation Table

Input AC (RMS)
in

Volts Output AC (RMS) in Volts Percentage Error (%)

120 120 0.0

115 115 0.0

110 110 0.0

105 105 0.9

100 100 0.0

95 95 0.0

90 90 0.0

85 84 1.1

80 79 1.2

75 74 1.3

70 69 1.4

65 64 1.5

60 59 1.6

55 54 1.8

Note:
AN021602-0508 Page 6 of 13

AN021602-0508

Using Z8 Encore! XP® MCU for RMS Calculation

Page 7 of 13

Appendix A—References
Further details about the Z8 Encore! products can be found in the references listed in Table 2.

Table 2. List of References

Topic Document Name

eZ8® CPU eZ8® CPU User Manual (UM0128)

Z8 Encore! XP® 4K Series
Microcontrollers

Z8 Encore! XP® 8K and 4K Series Product Specification (PS0228)

Z8 Encore! XP® F042A Series Development Kit User Manual
(UM0166)

ZDS II-IDE Zilog Developer Studio ll-Z8 Encore! User Manual (UM0130)

AN021602-0508

Using Z8 Encore! XP® MCU for RMS Calculation

Page 8 of 13

Appendix B—Schematic Diagram
Figure 6 illustrates a schematic diagram for the RMS application interface described in this application note.

Figure 6. Schematic Illustrating RMS Application Interface

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

2 V Peak

GND

Title

Size Document Number Rev

Date: Sheet o f

schematic 1.0

RMS Voltage measurement (Input block scheatic)

A

1 1Tuesday, December 21, 2004

D3

D4 D2
R1

100k

T1

110 : 6V RMS

1 3

2 4

V1

110 AC

+-

~

~

D1

D1 to D4 1N5818

Using Z8 Encore! XP® MCU for RMS Calculation
Appendix C—Flowcharts
This appendix provides flowcharts for the RMS application described in this document. Figure 7 is a flowchart
for the main routine of the RMS algorithm in which the calculated RMS value is displayed in the HyperTermi-
nal application.

Figure 7. Main Routine

Start

Initialize

Internal Clock,

ADC, and UART

Are the

Even and Odd

Buffers Full?

Calculate RMS Value

and Store RMS Value into

the RMS Array

Is the

 RMS Array

 Full?

Calculate the Average

of the RMS Array

Display the Average RMS

Value in HyperTerminal

Yes

Yes

No

No

Read Input Sample
AN021602-0508 Page 9 of 13

Using Z8 Encore! XP® MCU for RMS Calculation
Figure 8 is flowchart illustrating the ADC interrupt service routine.

Figure 8. ADC Interrupt Service Routine

Start

Disable Interrupt

Is the Skipped

Sample the Correct

One?

Read ADC Data

and

Enable Interrupt

 End

Yes

No
AN021602-0508 Page 10 of 13

Using Z8 Encore! XP® MCU for RMS Calculation
Figure 9 is a flowchart to read the ADC samples.

Figure 9. Routine to Read ADC Samples

Start

 End

Yes

Yes

Yes

Yes

No

No

No

No

Read ADC High and Low Data

 and

Convert to 8-Bit Data

Is it the

Odd Empty Buffer?

Is it the

End of Odd Buffer?

Is it the

Even Empty Buffer?

Is it the

End of Even Buffer?

Write Data into Odd Buffer

Write Data into Even Buffer

Set Odd Buffer Full Flag

Set Even Buffer Flag

Reset Sample Counter

Set Even Buffer Full Flag

Set Odd Buffer Flag

Reset Sample Counter
AN021602-0508 Page 11 of 13

Using Z8 Encore! XP® MCU for RMS Calculation
Figure 10 illustrates the RMS calculation algorithm in which the RMS mathematical method is applied to the
input data stored in either the odd or the even buffer.

Figure 10. RMS Calculation Algorithm

Start

Yes

Yes Yes

No

NoNo

Is it Odd Buffer?

Is it End of

 Even Buffer?

Is it End of

Odd Buffer?

Set Even Buffer Empty Flag Set Odd Buffer Empty Flag

Read Input Data (VODD)

VSQR=V*V

VDIV=VSQR/N

VAvg=VAvg+V2

Read Input Data (VEVEN)

VSQR=V*V

VDIV=VSQR/N

VAvg=VAvg+V2

Compute the Square Root of VAvg

Return RMS Value
AN021602-0508 Page 12 of 13

AN021602-0508
13

Using Z8 Encore! XP® MCU for RMS Calculation

of 13Page 13

DO NOT USE IN LIFE SUPPORT

LIFE SUPPORT POLICY
ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)
support or sustain life and whose failure to perform when properly used in accordance with instructions for
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A
critical component is any component in a life support device or system whose failure to perform can be
reasonably expected to cause the failure of the life support device or system or to affect its safety or
effectiveness.

Document Disclaimer
©2008 by Zilog, Inc. All rights reserved. Information in this publication concerning the devices,
applications, or technology described is intended to suggest possible uses and may be superseded. ZILOG,
INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY
OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT.
ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY
INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR
TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this
document has been verified according to the general principles of electrical and mechanical engineering.

Z8, Z8 Encore!, and Z8 Encore! XP are registered trademarks of Zilog, Inc. All other product or service
names are the property of their respective owners.

Warning:

	Abstract
	Z8 Encore! XP® 4K Series Flash Microcontrollers
	Discussion
	Theory of Operation
	Description of Components
	Step-Down Transformer
	Bridge Rectifier
	Potential Divider Network

	Developing the RMS Application with the Z8 Encore! XP® MCU
	Hardware Architecture
	Software Implementation
	Data Sampling Module
	Data Acquisition Module
	RMS Calculation Module
	RMS Display Module

	Testing
	Setup
	Equipment Used
	Results

	Summary
	Appendix A— References
	Appendix B— Schematic Diagram
	Appendix C— Flowcharts
	DO NOT USE IN LIFE SUPPORT
	LIFE SUPPORT POLICY
	As used herein
	Document Disclaimer

