
Copyright ©2008 by Zilog®, Inc. All rights reserved.
www.zilog.com

Application Note

Getting Started with ESPI Interface
Using the Z8 Encore! XP® F1680

AN027301-0308

Abstract
This application note demonstrates how to use the Enhanced Serial Peripheral Interface (ESPI) in Master and
Slave mode on Z8 Encore! XP F1680 microcontrollers. The software implementation provides several
functions that enable users to initialize, send and receive a byte, and send and receive a block of up to 256
bytes.

Note: The source code (AN0273-SC01) associated with this application note is available for download

from www.zilog.com.

Discussion

The Serial Peripheral Interface bus is a synchronous, serial communication link that operates in full duplex,
meaning that a device transmits and receives data simultaneously. The devices communicate as a
Master/Slave, where the Master initiates communication by selecting a Slave device with a hardware line and
also provides the synchronous clock used to shift data bits in and out of the Slave. The signals required for
communication are the Slave Select (SS), Master In Slave Out (MISO), Master Out Slave In (MOSI), and
Serial Clock (SCK). The advantages of SPI over other communication protocols is that the addressing is
performed in hardware with the SS line, making it faster to address a device, and that communication is full
duplex, allowing for faster transfers of data.

SPI communication begins with the Master asserting the SS line. Depending upon the device, the SS line
might be active high or active low. The Master must then wait at least one clock period before starting
communication. Much like the active polarity of the SS line, the waiting period after SS activation varies from
device to device. As an example, an analog-to-digital converter might require that the Master wait for a
conversion to be completed after its SS line has been asserted. Next, the Master will begin shifting data out of
the MOSI line, and it will shift data in on the MISO. Data is always transferred as full duplex, even when that
data is not meaningful. As an example, for a Master to receive 24 bits of data from a Slave device it must also
transmit 24 bits to the Slave device. See Figures 1 and 2 on page 2.

 Getting Started with ESPI Interface
Using the Z8 Encore! XP® F1680 Application Note

AN027301-0308 Page 2 of 8

Phase 0 Timing

Figure 1. Phase 0 Timing

Phase 1 Timing

Figure 2. Phase 1 Timing

 Getting Started with ESPI Interface
Using the Z8 Encore! XP® F1680 Application Note

AN027301-0308 Page 3 of 8

There is no standard for which clock edges are used for transmitting and receiving data, which leaves four
possible modes of operation, depending on clock polarity and clock phasing. See the following table.

SPI Modes

MODE SCK
Polarity

SCK
Phase

SCK Transmit
Edge

SCK Receive
Edge

SCK Idle
State

0 0 0 Falling Rising Low
1 0 1 Rising Falling Low
2 1 0 Rising Falling High
3 1 1 Falling Rising High

Using Mode 1 as an example, the Master would idle the bus with the SCK line low. When the Master pushes
the SCK line high, it will also place the most significant bit first on the MOSI line. At the same time, the Slave
will place the most significant first on the MISO line. Next, the Master pulls the SCK line and reads the stable
bit from the Slave on the MISO line. At the same time, the Slave reads a stable bit generated from the Master
on the MOSI line. Communication is terminated when the SS line is deactivated, so it must remain active
during the entire communication frame.

Testing the SPI Master/Slave

Sample Hardware
The Z8 Encore! XP F1680 microcontroller does have a hardware peripheral for SPI support. To test the
software provided with this application note, two Z8 Encore! XP F1680 28-Pin Development Kits are required.

Hardware Preparation
One development kit will be used as a Master device, and the second development kit will be used as a Slave
device. Along with a common ground, the SS, SCK, MOSI, and MISO lines will need to be jumpered together
between the two devices.

1. Run a wire from the Master’s J2-16 to the Slave’s J2-16. This will serve as ground.
2. Run a wire from the Master’s JP2-12 to the Slave’s JP2-12. This will serve as the SCK line.
3. Run a wire from the Master’s J2-11 to the Slave’s J2-11. This will serve as the MISO line.
4. Run a wire from the Master’s J2-13 to the Slave’s J2-13. This will serve as the SS line
5. Run a wire from the Master’s JP2-11 to the Slave’s JP2-11. This will serve as the MOSI line.

Software APIs
The software APIs required for using the Master and Slave driver are located in the spi.c file. Three functions
are available to drive the SPI hardware interface:

• SPI_Init
• SPI_SendReceive
• SPI_SendReceiveBlock

 Getting Started with ESPI Interface
Using the Z8 Encore! XP® F1680 Application Note

AN027301-0308 Page 4 of 8

Definitions
• DATASIZE

Determines the size of the input buffer. Because the Master determines how much data is exchanged
on a transfer, DATASIZE needs to be at least as large as the number of bytes exchanged by the
Master.

Globals
No global variable is defined in the SPI module. However, the main file contains one global, which is used for
the input buffer, DataIn[DATASIZE].

APIs
• void SPI_Init(unsigned short freq, char mode, char phase, char clkpol)

This function will initialize the SPI interface.
The parameter freq is used to set the baud rate (value from 0 to 0xFFFF, 0 = slowest baud rate, 0x0001
= fastest baud rate), the parameter mode is used to determine if the SPI interface is configured as
Master or as Slave (value = MASTER or SLAVE), the parameter phase is used to determine the phase
(value = TRUE or FALSE), and the parameter clkpol is used to determine the clock polarity (value =
TRUE or FALSE).

• char SPI_SendReceive(char data, char mode)
This function will transmit the byte in data and will return the byte received. The parameter mode is
used to determine if the SPI interface is configured as Master or as Slave (value = MASTER or
SLAVE).

• void SPI_SendReceiveBlock(char* p_out, char* p_in, unsigned char length, char mode)
This function will transmit length bytes (value from 0 to 0xFF, 0 = 256 bytes) pointed to by p_out and
will store length bytes received in the buffer pointed to by p_in. The parameter mode is used to
determine if the SPI interface is configured as Master or as Slave (value = MASTER or SLAVE).

Usage
In addition to calling the SPI_Init function, your software must include code to set the alternate function
register in order to route the SPI pins to the IO pins. This code can be:

 PCADDR = 0x02; // Select alternate function

 PCCTL = 0x36; // Enable SPI interface

To perform a data transfer in your application, use the SPI_SendReceive function for a single byte or
SPI_SendReceiveBlock with the parameter p_out pointing to the n data (n is passed in the parameter length) to
send and the parameter p_in pointing to the buffer where the data received will be stored.

Software Preparation

1. Build the Master Zilog Developer Studio (ZDS) project and flash the code into the Master
development board.
2. Build the Slave ZDS project and flash the code into the Slave development board.
3. Reset the Slave then the Master development boards by pressing SW1 or power cycling the boards.

 Getting Started with ESPI Interface
Using the Z8 Encore! XP® F1680 Application Note

AN027301-0308 Page 5 of 8

Testing the Hardware SPI Master/Slave

Sample Software

Master
The Master software will send the string “Hello ZiLOG!” to the Slave; then it will wait until the switch SW2 is
pressed. The Slave will respond with the same string to the Master and will light D3 if the string received is
correct. If this response is not received by the Master, then the Master will light LED D4 to signal that an error
has occurred. If no error occurs, the Master lights LED D2.

Then, with each press of switch SW2, the Master will increase the value of the byte sent to the Slave until the
value reaches 128, and then the Master will start over again sending a value of 1. If the response sent by the
slave is equal to 0xAA, the Master will light LED D2. If it is not, the Master will light LED D4.

At power-up, the Master will call SPI_Init to configure the SPI interface. Next, the Master calls IdlePorts() to
configure switch SW2 and LEDs D2, D4 for the correct direction and configure the alternate function register.
Next, the Master will send the string “Hello ZiLOG!” and verify that it is also received from the Slave. In this
case, it will light the LED D2. If the string received is not correct, it will light the LED D4.

The Main Loop waits 62.5 mS to help debounce the switch, and then the switch is read. If the switch is closed,
a byte is increased for use by the Slave’s PWM. Next, the Master starts the exchange by calling
SPI_SendReceive. After SPI_SendReceive completes, the Master compares the data received to verify that the
Slave responded 0xAA. If the Slave responded, then LED D4 is turned off, and LED D2 is turned on. If the
Slave did not respond, then LED D2 is turned off, and LED D4 is turned on.

Slave
At power-up, the Slave will call SPI_Init to configure the SPI interface. Next, the Slave will call IdlePorts to
initialize the PWM on LED D3 and configure the alternate register. Next, the Slave will call
SPI_SendReceiveBlock to send the string “Hello ZiLOG!” and will turn on LED D3 if the same string is
received from the Master.

In the Main loop, the Slave will wait for an exchange from the Master and perform a PWM on LED D3 based
upon the value received by the Master. The Slave always responds to the Master with the value 0xAA.

 Getting Started with ESPI Interface
Using the Z8 Encore! XP® F1680 Application Note

AN027301-0308 Page 6 of 8

Testing the Hardware SPI Master/Software SPI Slave
Testing the Software SPI Master/Hardware SPI Slave

It is possible to connect the F1680 development board to the F083A development board in order to have
hardware SPI communicating with software SPI.

Hardware Preparation
One development kit will be used as a Master device, and the second development kit will be used as a Slave
device. Along with a common ground, the SS, SCK, MOSI, and MISO lines will need to be jumpered together
between the two devices.

1. Run a wire from the F1680’s J2-16 to the F083A’s J2-16. This will serve as ground.
2. Run a wire from the F1680’s JP2-12 to the F083A’s J2-9. This will serve as the SCK line.
3. Run a wire from the F1680’s J2-11 to the F083A’s J2-11. This will serve as the MISO line.
4. Run a wire from the F1680’s J2-13 to the F083A’s J2-13. This will serve as the SS line
5. Run a wire from the F1680’s JP2-11 to the F083A’s J2-15. This will serve as the MOSI line.

Software Preparation

The source code (AN0267-SC01) available from www.zilog.com will be used for the software SPI.

1. Build the Master ZDS project and flash the code into the Master development board.
2. Build the Slave ZDS project and flash the code into the Slave development board.
3. Reset the Slave then the Master development boards by pressing SW1 or power cycling the boards.

 Getting Started with ESPI Interface
Using the Z8 Encore! XP® F1680 Application Note

AN027301-0308 Page 7 of 8

Summary

This application note demonstrates how to use the hardware Serial Peripheral Interface Master and Slave
functionality on Z8 Encore! XP F1680 microcontrollers.

Appendix A—References

Topic Document Name
Z8 Encore! XP F1680 Series Product Specification (PS0250) Z8 Encore!® MCU
Z8 Encore! MCU User Manual (UM0128)

ZDS II Zilog Developer Studio II—Z8 Encore! User Manual (UM0130)
SPI Master Z8 Encore! XP F64xx Series Product Specification (PS0199)
Development Kit Z8 Encore! XP F1680 Series Development Kit User Manual (UM0203)
SPI Protocol http://www.embedded.com/story/OEG20020124S0116

 Getting Started with ESPI Interface
Using the Z8 Encore! XP® F1680 Application Note

AN027301-0308 Page 8 of 8

Warning: DO NOT USE IN LIFE SUPPORT

LIFE SUPPORT POLICY
ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE
PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)
support or sustain life and whose failure to perform when properly used in accordance with instructions for use
provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical
component is any component in a life support device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

Document Disclaimer
©2008 by Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications,
or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES
NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO
DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN
ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR
OTHERWISE. The information contained within this document has been verified according to the general
principles of electrical and mechanical engineering.

Z8, Z8 Encore!, and Z8 Encore! XP are registered trademarks of Zilog, Inc. All other product or service names
are the property of their respective owners.

