
Application Note

ZiLOG eZ8 CPU Performance
Benchmarking

AN012501-1202
ZiLOG Worldwide Headquarters • 532 Race Street • San Jose, CA 95126-3432
Telephone: 408.558.8500 • Fax: 408.558.8300 • www.zilog.com

Application Note
ZiLOG eZ8 CPU Performance Benchmarking
This publication is subject to replacement by a later edition. To determine whether a later edition
exists, or to request copies of publications, contact:

ZiLOG Worldwide Headquarters
532 Race Street
San Jose, CA 95126-3432
Telephone: 408.558.8500
Fax: 408.558.8300
www.zilog.com

ZiLOG and Z8Encore! are registered trademarks of ZiLOG Inc. in the United States and in other
countries. All other products and/or service names mentioned herein may be trademarks of the
companies with which they are associated.

Information Integrity
The information contained within this document has been verified according to the general
principles of electrical and mechanical engineering. Any applicable source code illustrated in the
document was either written by an authorized ZiLOG employee or licensed consultant. Permission
to use these codes in any form, besides the intended application, must be approved through a
license agreement between both parties. ZiLOG will not be responsible for any code(s) used
beyond the intended application. Contact the local ZiLOG Sales Office to obtain necessary license
agreements.

Document Disclaimer
© 2002 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices,
applications, or technology described is intended to suggest possible uses and may be
superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A
REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY
DESCRIBED IN THIS DOCUMENT. ZiLOG ALSO DOES NOT ASSUME LIABILITY FOR
INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Except
with the express written approval ZiLOG, use of information, devices, or technology as critical
components of life support systems is not authorized. No licenses or other rights are conveyed,
implicitly or otherwise, by this document under any intellectual property rights.
AN012501-1202

Application Note
ZiLOG eZ8 CPU Performance Benchmarking

AN012501-1202

1

Table of Contents
Introduction . 1
References . 1
Performance Benchmarks Overview . 1
Results Summary . 3
Benchmark Details 5

Benchmark#1 - Packing Binary Coded Data* . 6
Benchmark #2 – Loop Control* . 7
Benchmark #3 – Bit Test & Branch* . 8
Benchmark #4 – Shifting Out 8-Bit Data & Clock* . 9
Benchmark #5 – Software Timer . 11
Benchmark #6 – Five Byte Block Move* . 12
Benchmark #7 – Four Byte Binary Addition* . 13
Benchmark #8 – Four Byte Packed BCD Subtraction* 14
Benchmark #9 – Three Byte Table Search . 16
Benchmark #10 – Input / Output Manipulation . 18
Benchmark #11 – Switch Activated Two Second LED 20

Application Note
ZiLOG eZ8 CPU Performance Benchmarking

AN012501-1202

1

List of Tables
Table 1. Benchmarks Overview . 2
Table 2. Benchmark Results . 4

Application Note
ZiLOG eZ8 CPU Performance Benchmarking

1

Introduction
The eZ8 CPU is the central processor unit of ZiLOG’s new Z8 Encore family of
microcontrollers. It is designed to address continuing demand for faster and more
code-efficient microcontrollers. The eZ8 CPU supports a superset of the original
Z8®

�instruction set and provides an upgrade path that includes compatibility and
performance for Z8 based designs.

This document evaluates the eZ8 CPU instruction set performance against the
Motorola CPU08 using assembly routines that are commonly found in micro-con-
troller applications. On-chip peripheral features and their performance are not
considered here. The focus is to evaluate the CPU’s instruction set, programming
model efficiency, and execution speed. This document is a follow-up of the Appli-
cation Note “ZiLOG’s eZ8 CPU versus Motorola’s CPU08 – A Comparison Study”.

References
1. ZiLOG eZ8 CPU User Manual, UM0128

2. ZiLOG Z8 Encore! Microcontrollers with Flash and 10-bit A/D Product
Specifications, PS0176

3. ZiLOG eZ8 CPU versus Motorola’s CPU08 – A Comparison Study
Application Note AN0123

4. Motorola CPU08 Reference Manual, CPU08RM/AD, Rev. 3, 2/2001

5. Motorola MC68HC908AB32 Microcontroller Technical Data, Rev. 1.0

6. COP8 Instruction Set Performance Evaluation, National Semiconductor
Application Note 1042

7. A Comparison of 8-bit Microcontrollers, Microchip Application Note AN520

Performance Benchmarks Overview
We have used general-purpose commonly used operations and routines to com-
pare the performance of the CPUs. These are not made up to highlight any one
instruction set. The benchmarks are representative of typical micro-controller
applications and used in industry literature [6,7] to compare core performances. A
total of 11 benchmarks are used. These benchmarks exercise data movement,
arithmetic operations, I/O manipulation and time keeping capabilities of the CPU.

Table 1 below provides an overview of the benchmarks. The benchmarks are
coded in assembly and are optimized for speed. This is so especially in the case
of the eZ8 CPU as it allows efficient unrolling of loops. Loop unrolling reduces
instruction cycle count at the price of a slightly bigger code size.
AN012501-1202

Application Note
ZiLOG eZ8 CPU Performance Benchmarking

2

Table 1. Benchmarks Overview

Routine Description

Packing BCD This benchmark takes two bytes in RAM or registers, each containing a BCD
digit in the lower nibble and create a packed BCD data byte, which is stored
back in the register or RAM location holding the low BCD digit.

Loop Control This benchmark is a simple loop control where a register containing a loop
count is decremented, tested for zero, and if not zero, then branched back to
the beginning of the loop.

Bit Test & Branch This benchmark tests a single bit in a register or a RAM location and makes a
conditional branch. We assume that the most significant bit is tested and a
branch is to be taken if the bit is set.

Shifting out 8-bit
data & clock

This benchmark generates data and clock under program control by toggling
two output pins.

Five Byte Block
Move

This benchmark moves only a block of five data bytes from a specific location
to a specific destination location.

Software Timer This benchmark implements a 10ms time delay loop subroutine.

Four Byte Binary
Addition

This benchmark adds two four byte binary numbers and replaces the first
operand with the result. This emulates an adding machine addition, where A +
B replaces A. The benchmark is programmed as a subroutine, with the carry
flag indicating an overflow.

Four Byte Packed
BCD Subtraction

This benchmark adds two eight digit (four bytes each) packed BCD numbers
and replaces the first operand with the result. This emulates an adding
machine addition, where A - B replaces A. The benchmark is programmed as
a subroutine, with the carry flag being used to indicate a positive or negative
result. The BCD decimal-adjust (da) instruction is used following the
subtraction to achieve the correct BCD result.

Three Byte Table
Search

This benchmark searches a 200-byte table resident in program memory for a
three-byte character string, which may be resident anywhere in the lookup
table (not necessarily on three byte boundaries). The status of the carry bit
indicates the success or failure of the search. The benchmark is programmed
as a subroutine.

Input / Output
Manipulation

This benchmark compares two 8-bit I/O ports, P1 and P2. If they are equal, a
nine is output as the least significant digit (lower nibble) of a third port P3. If
port P1 is greater than port P2, then port P2 is output on port P1. If port P1 is
less than port P2, then the most significant digit of Port P1 is copied to the
least significant digit of Port P3.
AN012501-1202

Application Note
ZiLOG eZ8 CPU Performance Benchmarking

3

Results Summary
Table 2 below summarizes the performance benchmarking results. For each
benchmark, the total instruction cycles, execution time and code size are pre-
sented. The execution time is the product of the total instruction cycles and
instruction cycle time. The CPU08 executes instructions at 8MHz bus frequency,
while the eZ8 CPU executes instructions at 20MHz.

Routine Description

Switch Activated
Two-Second Delay

This benchmark samples a switch input to activate a two-second output to
turn on an LED. This switch is debounced with a 10ms delay on both opening
and closing. Once activated, the switch turns on an LED output for two
seconds and turns it off, regardless of whether or not the switch is still
activated. Once the switch is turned off, the procedure is repeated. Both the
switch input and the LED output are low true.

Table 1. Benchmarks Overview (Continued)
AN012501-1202

Application Note
ZiLOG eZ8 CPU Performance Benchmarking

4

Table 2. Benchmark Results

Benchmarks
(Optimized for
speed)

ZiLOG eZ8 CPU
(Instruction Cycle
Time = 0.05�s)

Motorola CPU08
(Instruction Cycle
Time = 0.125�s)

eZ8 CPU
Execution
Speed Ratio1

eZ8 CPU
Code
Efficiency
Ratio2

Execution cycles/
Time and Code Size

Execution cycles/
Time and Code Size

Benchmarks
(optimized
for speed)

Packing Binary
Coded Decimal
(BCD)

5 cycles/0.25�s 12 cycles/1.5�s
6.0 0.57

4 bytes 7 bytes

Loop Control 3 cycles/0.15�s 3 cycles/0.375�s
2.5 1.0

2 bytes 2 bytes

Bit Test & Branch 3 cycles/0.15�s 5 cycles/0.625�s
4.17 1.0

3 bytes 3 bytes

Shifting out 8-bit
Data & Clock

169 cycles/8.45�s 205 cycles/25.625�s
3.03 1.12

28 bytes 25 bytes

10ms Software
Timer

- -
- 1.0

9 bytes 9 bytes

Five Byte Block
move

14 cycles/0.7�s 25 cycles/3.125�s
4.46 1.0

15 bytes 15 bytes

Four Byte Binary
Addition

16cycles/0.8�s 55 cycles/6.875�s
8.59 1.08

13 bytes 12 bytes

Four Byte
Packed BCD
Subtraction

101 cycles/5.05�s 151 cycles/18.875�s
3.73 1.17

41 bytes 35 bytes

Three Byte Table
Search

68 cycles/3.4�s 63 cycles/7.875�s
2.32 1.08

43 bytes 40 bytes

Input / Output
Manipulation

30/17/20 cycles
1.5/0.85/1.0�s

37/27/33 cycles
4.625/3.375/4.125�s 3.08/3.97/4.13 1.03

38 bytes 37 bytes

Switch Activated
Two Second LED

59 cycles/2.95�s 64 cycles/8�s
2.71 1.18

46 bytes 39 bytes
AN012501-1202

Application Note
ZiLOG eZ8 CPU Performance Benchmarking

5

In terms of execution time, the eZ8 CPU executes 3.36 times faster compared to
the CPU08 using 26% less CPU cycles overall. In terms of code efficiency, the
eZ8 CPU uses 8% more program space compared to the CPU08.

Benchmark Details
Presented in the following pages are the benchmark implementation with detailed
comments. The comments include for each instruction, the byte and instruction
cycle counts. For each benchmark, a score comprised of total bytes, total instruc-
tion cycles and execution speed is presented. The execution speed is the product
of the instruction cycle count and instruction cycle time.

Benchmarks
(Optimized for
speed)

ZiLOG eZ8 CPU
(Instruction Cycle
Time = 0.05�s)

Motorola CPU08
(Instruction Cycle
Time = 0.125�s)

eZ8 CPU
Execution
Speed Ratio1

eZ8 CPU
Code
Efficiency
Ratio2

TOTAL 505 cycles
25.25�s

680 cycles
85�s 3.36 1.08

242 bytes 224 bytes

1. The speed ratio is calculated as follows: (Time CPU08) / (Time eZ8 CPU). A number higher than 1 means eZ8
CPU is faster.

2. The code efficiency ratio is calculated as follows: (Code Size eZ8 CPU / Code Size CPU08). A number less than
1 means eZ8 CPU is more efficient.

Table 2. Benchmark Results (Continued)
AN012501-1202

Application Note
ZiLOG eZ8 CPU Performance Benchmarking

6

Benchmark#1 - Packing Binary Coded Data*
This benchmark takes two bytes in RAM or registers, each containing a BCD digit
in the lower nibble and create a packed BCD data byte, which is stored back in the
register or RAM location holding the low BCD digit.

*From Reference [7] on Page 1

eZ8 CPU

; REGHI and REGLO assumed to be in current register page

REGHI EQU %10
REGLOW EQU %11

PACK_BCD:
 swap REGHI ; 2/2 Swap BCD digit of REGHI to high nibble
 or REGHI, REGLO ; 2/3 Pack BCD digits in REGHI and REGLO

Score: 5 cycles / 4 bytes / 0.25�s

CPU08

; REGHI and REGLO assumed to be in page0

REGHI EQU $50
REGLOW EQU $51

PACK_BCD:
 lda REGHI ; 2/3 Load A with REGHI
 nsa ; 1/3 Swap BCD digit to high nibble
 ora REGLOW ; 2/3 Pack BCD digits
 sta REGHI ; 2/3 Store A in REGHI

Score: 12 cycles / 7 bytes / 1.5�s
AN012501-1202

Application Note
ZiLOG eZ8 CPU Performance Benchmarking

7

Benchmark #2 – Loop Control*
This benchmark is a simple loop control where a register containing a loop count
is decremented, tested for zero, and if not zero, then branched back to the begin-
ning of the loop.

*From Reference [7] on Page 1

eZ8 CPU

; Working Register R15 with loop count

LOOP_START:
 ��
 djnz R15, LOOP_START ; 2/3 Decrement R15 and branch to
 ; LOOP_START if R15 not zero

Score: 3 cycles / 2 bytes / 0.15�s

CPU08

; Index Register X with loop count

LOOP_START:
 �
 dbnzx LOOP_START ; 2/3 Decrement X and branch to
 ; LOOP_START if X not zero

Score: 3 cycles / 2 bytes / 0.375�s
AN012501-1202

Application Note
ZiLOG eZ8 CPU Performance Benchmarking

8

Benchmark #3 – Bit Test & Branch*
This benchmark tests a single bit in a register or a RAM location and makes a
conditional branch. We assume that the most significant bit is tested and a branch
is to be taken if the bit is set.

*From Reference [7] on Page 1

eZ8 CPU

; Working Register R15 with value to be tested

 �
 btjnz 7,R15,NEW_ADDRS ; 3/3 Test bit 7 of R15 and branch to
 ; NEW_ADDRS if set
 �
NEW_ADDRS:
 �

Score: 3 cycles / 3 bytes / 0.15�s

CPU08

; TREG assumed to be in page0

TREG EQU $50
 �
 brset 7,TREG,NEW_ADDRS ; 3/5 Test bit 7 of TREG and branch to
 ; NEW_ADDRS if set
 �
NEW_ADDRS:
 �

Score: 5 cycles / 3 bytes / 0.625�s
AN012501-1202

Application Note
ZiLOG eZ8 CPU Performance Benchmarking

9

Benchmark #4 – Shifting Out 8-Bit Data & Clock*
This benchmark generates data and clock under program control by toggling two
output pins.

eZ8 CPU

; code optimized for speed
; Data is output on Port A, pin 0
; Clock is output on Port A, pin 1

XFER_DATA EQU %10 ; Temporary register, holds data to shift out

SHIFT_OUT:
 ld R15,#%08 ; 2/2 Load R15 with count
 ldx FD1H, #%FC ; 4/2+2 Configure Port A pins 0 & 1 as output

XMIT1:
 andx FD3H,#%FC ; 4/3 Toggle Port A Data & Clock output pins
 rrc XFER_DATA ; 2/2 Rotate next data bit into carry
 jr nc, XMIT2 ; 2/2+2 Jump to XMIT2 if carry not set
 orx FD3H,#%01 ; 4/3+1 If carry, set data bit (Port A, pin 0)
XMIT2:
 orx FD3H,#%00 ; 4/3 Set Clock bit (Port A, pin 1)
 djnz R15,XMIT1 ; 2/3+1 Decrement R15 and jump to XMIT1 if not
 ; zero
 andx FD3H,#%FC ; 4/3 Toggle Port A Data & Clock output pins

Score: 169 cycles / 28 bytes / 8.45�s
AN012501-1202

Application Note
ZiLOG eZ8 CPU Performance Benchmarking

10
*From Reference [7] on Page 1

CPU08

; code optimized for speed
; Data is output on Port A, pin 0
; Clock is output on Port A, pin 1

XFER_DATA EQU $50 ; Temporary Register, holds data to shift out
PORTA EQU $00 ; Port A
DDRA EQU $04 ; Port A Configuration Register

SHIFT_OUT:
 lda XFER_DATA ; 2/3 Load A with transfer data
 ldx #08 ; 2/2 Load X with count
 bset 0,DDRA ; 2/4 Configure Port A pin 0 as output
 bset 1,DDRA ; 2/4 Configure Port A pin 1 as output
XMIT1:
 bclr 0,PORTA ; 2/4 Clear clock bit
 bclr 1,PORTA ; 2/4 Clear data bit
 rola ; 1/1 Rotate A left through carry
 bcc XMIT2 ; 2/3 Branch to XMIT2 if carry clear
 bset 1,PORTA ; 2/4 Set data bit
XMIT2:
 bset 0,PORTA ; 2/4 Set clock bit
 dbnzx XMIT1 ; 2/3 Decrement X and Branch to XMIT1 if zero
 bclr 0,PORTA ; 2/4 Clear clock bit
 bclr 1,PORTA ; 2/4 Clear data bit

Score: 205 cycles / 25 bytes / 25.625�s
AN012501-1202

Application Note
ZiLOG eZ8 CPU Performance Benchmarking

11
Benchmark #5 – Software Timer*
This benchmark implements a 10ms time delay loop subroutine

*From Reference [7] on Page 1

eZ8 CPU

; code optimized for speed

TMRCNT_LOW EQU %9A ; 10ms decrement count low byte
TMRCNT_HIGH EQU %6F ; 10ms decrement count high byte

DELAY:
 ld R15, #TMRCNT_LOW ; 2/2 Initialize R15 with low byte
 ld R14, #TMRCNT_HIGH ; 2/2 Initialize R14 with high byte

LOOP:
 decw rr14 ; 2/5 Decrement Register Pair R14,R15
 jr nz, LOOP ; 2/2 Jump to Loop if not zero
 ret ; 1/4 Return from subroutine

Score: - / 9bytes / 9.9999ms

CPU08

; code optimized for speed

TMRCNT1 EQU $FF ; 10ms decrement count1 byte
TMRCNT2 EQU $68 ; 10ms decrement count2 byte

DELAY:
 lda #TMRCNT1 ; 2/2 Initialize A with count1
 ldx #TMRCNT2 ; 2/2 Initialize X with count2

LOOP:
 dbnza LOOP ; 2/3 Decrement A and branch if not zero
 dbnzx LOOP ; 2/3 Decrement X and branch if not zero
 rts ; 1/4 Return from subroutine

Score: - / 9bytes / 9.985ms
AN012501-1202

Application Note
ZiLOG eZ8 CPU Performance Benchmarking

12
Benchmark #6 – Five Byte Block Move*
This benchmark moves only a block of five data bytes from a specific source loca-
tion to a specific destination location.

*From Reference [6] on Page 1

eZ8 CPU

; code optimized for speed
; Source (src) and Destination (dst) Locations in current register page

dst EQU %10
src EQU %20
5B_MOVE:
 ld dst,src ; 3/2+1 Move byte 0 from source to destination
 ld dst+1,src+1 ; 3/2+1 Move byte 1 from source to destination
 ld dst+2,src+2 ; 3/2+1 Move byte 2 from source to destination
 ld dst+3,src+3 ; 3/2+1 Move byte 3 from source to destination
 ld dst+4,src+4 ; 3/2 Move byte 4 from source to destination

Score: 14 cycles / 15 bytes / 0.7�s

CPU08

; code optimized for speed
; Source (src) and Destination (dst) Locations assumed to be in page0

dst EQU $50
src EQU $60
5B_MOVE:
 mov src,dst ; 3/5 Move byte 0 from source to destination
 mov src+1,dst+1 ; 3/5 Move byte 1 from source to destination
 mov src+2,dst+2 ; 3/5 Move byte 2 from source to destination
 mov src+3,dst+3 ; 3/5 Move byte 3 from source to destination
 mov src+4,dst+4 ; 3/5 Move byte 4 from source to destination

Score: 25 cycles / 15 bytes / 3.125�s
AN012501-1202

Application Note
ZiLOG eZ8 CPU Performance Benchmarking

13
Benchmark #7 – Four Byte Binary Addition*
This benchmark adds two four byte binary numbers and replaces the first operand
with the result. This emulates an adding machine addition, where A + B replaces
A. The benchmark is programmed as a subroutine, with the carry flag indicating
an overflow.

*From Reference [6] on Page 1

eZ8 CPU

; code optimized for speed
; Source (src) and Destination (dst) Locations in current register page

dst EQU %10
src EQU %20
4B_BADD:
 add dst+3,src+3 ; 3/3 Add src and dst, least significant byte first
 adc dst+2,src+2 ; 3/3 Add with carry 2nd byte
 adc dst+1,src+1 ; 3/3 Add with carry 3rd byte
 adc dst,src ; 3/3 Add with carry most significant byte
 ret ; 1/4 return from subroutine

Score: 16 cycles / 13 bytes / 0.8�s

CPU08

; code optimized for speed
; Source (src) and Destination (dst) Locations assumed to be in page0

dst EQU $50
src EQU $60
4B_BADD:
 ldx #04 ; 2/2 Load index register with count
 clc ; 1/1 Clear carry
LP1:
 lda dst-1,X ; 2/3 Load accumulator (A) with dst operand
 adc src-1,X ; 2/3 Add src operand to A
 sta dst-1,X ; 2/3 Store result in dst
 dbnzx LP1 ; 2/3 Decrement count and loop if not zero
 rts ; 1/4 Return from subroutine

Score: 55 cycles / 12 bytes / 6.875�s
AN012501-1202

Application Note
ZiLOG eZ8 CPU Performance Benchmarking

14
Benchmark #8 – Four Byte Packed BCD Subtraction*
This benchmark adds two eight digit (four bytes each) packed BCD numbers and
replaces the first operand with the result. This emulates an adding machine addi-
tion, where A - B replaces A. The benchmark is programmed as a subroutine, with
the carry flag being used to indicate a positive or negative result. The BCD deci-
mal-adjust (da) instruction is used following the subtraction to achieve the correct
BCD result.

eZ8 CPU

; code optimized for speed
; Source (src) and Destination (dst) Locations in current register page

dst EQU %10
src EQU %20
4B_BCDSUB:
 sub dst+3,src+3 ; 3/3 Subtract src from dst, low byte first
 da dst+3 ; 2/2+1 Decimal adjust the result
 sbc dst+2,src+2 ; 3/3 Subtract the 2nd byte
 da dst+2 ; 2/2+1 Decimal adjust the result
 sbc dst+1,src+1 ; 3/3 Subtract the 3rd byte
 da dst+1 ; 2/2+1 Decimal adjust the result
 sbc dst,src ; 3/3 Subtract the most significant byte
 da dst ; 2/2 Decimal adjust the result
 jr nc, DONE ; 2/2 Jump to DONE if carry not set
NEG:
 ld R12, #%04 ; 2/2 Load R12 with loop count
 ld R11, #dst+3 ; 2/2 Load R11 with dst low byte address
 rcf ; 1/2 Reset Carry Flag
LP1:
 clr R10 ; 2/2 Clear R10
 sbc R10,@R11 ; 2/4 Subtract next dst byte from 0
 da R10 ; 2/2 Decimal adjust the result
 ld @R11, R10 ; 2/3 Store the result in dst
 dec R11 ; 2/2 Decrement R11
 djnz R12, LP1 ; 2/3 Decrement R12 and jump to LP1 if not zero
 scf ; 1/2 Set carry flag
DONE:
 ret ; 1/4 Return from subroutine

Score: 101 cycles / 41 bytes / 5.05�s
AN012501-1202

Application Note
ZiLOG eZ8 CPU Performance Benchmarking

15
*From Reference [6] on Page 1

CPU08

; code optimized for speed
; Source (src) and Destination (dst) Locations assumed to be in page0
; In CPU 08, the BCD decimal adjust command (DAA) only works following
; addition, not subtraction. Consequently, the BCD subtraction must be
; implemented as an addition by adding the complement of the subtrahend
; (2nd operand) to the 1st operand. This complement is achieved by
; subtracting the subtrahend from a packed BCD 99 and then adding one
; to the result.

dst EQU $50
src EQU $60
4B_BCDSUB:
 ldx #04 ; 2/2 Load X with loop count
 clc ; 1/1 Clear carry
LP1:
 lda #$99 ; 2/2 Load A with BCD 99
 sbc src-1,X ; 2/3 Subtract src-1+X from A
 add #01 ; 2/2 Add 1 to result
 daa ; 1/2 Decimal adjust A
 add dst-1,X ; 2/3 Add dst-1+X to A
 daa ; 1/2 Decimal adjust A
 sta dst-1,X ; 2/3 Store result in dst-1+X
 dbnzx LP1 ; 2/3 Decrement X and branch to LP1 if not zero
 bpl DONE ; 2/3 Branch on plus to DONE
NEG:
 clc ; 1/1 Clear carry flag
 ldx #04 ; 2/2 Load X with loop count
LP2:
 lda #$99 ; 2/2 Load A with BCD 99
 sbc dst-1,X ; 2/3 Subtract dst-1+X from A
 add #01 ; 2/2 Add 1 to result
 daa ; 1/2 Decimal adjust A
 sta dst-1,X ; 2/3 Store result in dst-1+X
 dbnzx LP2 ; 2/3 Decrement X and branch to LP2 if not zero
 sec ; 1/1 Set Carry flag
DONE:
 rts ; 1/4 Return from subroutine

Score: 151 cycles / 35 bytes / 18.875�s
AN012501-1202

Application Note
ZiLOG eZ8 CPU Performance Benchmarking

16
Benchmark #9 – Three Byte Table Search*
This benchmark searches a 200-byte table (resident in program memory) for a
three-byte character string, which may be resident anywhere in the lookup table
(not necessarily on three byte boundaries). The status of the carry bit indicates the
success or failure of the search. The benchmark is programmed as a subroutine.

eZ8 CPU

; code optimized for speed
; CHAR1, CHAR2, CHAR3 are the three characters to be searched
; TBASE indicates Table Base in Program Memory

CHAR1 EQU %FA
CHAR2 EQU %FB
CHAR3 EQU %FC

SIZE EQU %C6 ; Table Size (2 less than 200)
TBASE EQU %01 ; Table Base – starts at 0100H in program memory

3B_TABSRCH:
 ld R15, #SIZE ; 2/2 Load R15 with table size
 clr R14 ; 2/2 Temp Register to hold Table Offset Pointer
 clr R11 ; 2/2 R10 & R11 function as register pair to
 ld R10, #TBASE ; 2/2 hold program memory Table Base Address
LP1:
 ldc R12, @RR10 ; 2/5 Load R12 with table byte from program memory
 cp R12, #CHAR1 ; 3/3 Compare R12 with CHAR1
 jr ne, FAIL ; 2/2 Jump to FAIL if not equal

 inc R11 ; 2/2 Increment R11
 ldc R12, @RR10 ; 2/5 Load R12 with table byte from program memory
 cp R12, #CHAR2 ; 3/3 Compare R12 with CHAR2
 jr ne, FAIL ; 2/2 Jump to FAIL if not equal

 inc R11 ; 2/2 Increment R11
 ldc R12, @RR10 ; 2/5 Load R12 with table byte from program memory
 cp R12, #CHAR3 ; 3/3 Compare R12 with CHAR1
 jr ne, FAIL ; 2/2 Jump to FAIL if not equal

 scf ; 1/2 Set carry flag to indicate match
 ret ; 1/4 Return from subroutine
FAIL:
 inc R14 ; 2/2 Increment R14
 ld R11, R14 ; 2/2 Load R11 with R14
 djnz R15, LP1 ; 2/3 Decrement R15 and Jump if not zero to LP1
 rcf ; 1/2 Reset carry flag
 ret ; 1/4 Return from subroutine

Score: 68 cycles / 43 bytes / 3.4�s
Assumption: First search iteration fails with first byte mismatch, second
search iteration successful.
AN012501-1202

Application Note
ZiLOG eZ8 CPU Performance Benchmarking

17
*From Reference [6] on Page 1

CPU08

; code optimized for speed
; CHAR1, CHAR2, CHAR3 are the three characters to be searched
; TBASE indicates Table Base in Program Memory

CHAR1 EQU $FA
CHAR2 EQU $FB
CHAR3 EQU $FC

SIZE EQU $10 ; Temp Register to hold Table Size
TPTR EQU $11 ; Temp Register to hold Table Offset Pointer

TBASE EQU $0100

3B_TABSRCH:
 mov #$C6,SIZE ;3/4 Initialize SIZE to 198 (Table Size – 2)
 clrx ;1/1 Clear X
 stx TPTR ;2/3 Store X in TPTR
SRCH:
 lda TBASE,X ;3/4 Load A with first byte
 cmp #CHAR1 ;2/2 Compare A with CHAR1
 bne FAIL ;2/3 Branch to FAIL if not equal

 incx ;1/1 Increment X
 lda TBASE,X ;3/4 Load A with second byte
 cmp #CHAR2 ;2/2 Compare A with CHAR2
 bne FAIL ;2/3 Branch to FAIL if not equal

 incx ;1/1 Increment X
 lda TBASE,X ;3/4 Load A with third byte
 cmp #CHAR3 ;2/2 Compare A with CHAR3
 bne FAIL ;2/3 Branch to FAIL if not equal

 sec ;1/1 Set carry to indicate match
 rts ;1/4 Return from subroutine
FAIL:
 inc TPTR ;2/4 Increment TPTR
 ldx TPTR ;2/3 Load X with TPTR
 dbnz SIZE,SRCH ;3/5 Decrement SIZE & Branch if not zero
 clc ;1/1 Clear carry
 rts ;1/4 Return from subroutine

Score: 63 cycles / 40 bytes / 7.875�s
Assumption: First search iteration fails with first byte mismatch, second
search iteration successful.
AN012501-1202

Application Note
ZiLOG eZ8 CPU Performance Benchmarking

18
Benchmark #10 – Input / Output Manipulation*
This benchmark compares two 8-bit I/O ports P1 and P2. If they are equal, a nine
is output as the least significant digit (lower nibble) of a third port P3. If port P1 is
greater than port P2, then port P2 is output on port P1. If port P1 is less than port
P2, then the most significant digit of Port P1 is copied to the least significant digit
of Port P3.

eZ8 CPU

; code optimized for speed

PORTCMP:
 srp #%DF ; 2/2 Set Page as $F, Group as $D
 ld R1, #%FF ; 2/2 Configure Port A as input (P1)
 ld R5, #%FF ; 2/2 Configure Port B as input (P2)
 ld R9, #%0 ; 2/2 Configure Port C as output (P3)

 cp R6, R2 ; 2/3 Compare P2 and P1
 jr ge, POSITIVE ; 2/2 Jump to POSITIVE if P2 > P1
NEGATIVE:
 ld R1, #%0 ; 2/2+1 Configure P1 as output
 ld R3, R6 ; 3/2 Write P2 value to P1
 jr FINISH ; 2/2 Jump to FINISH
POSITIVE:
 jr zero, EQUAL ; 2/2 Jump to EQUAL if P2 = P1
 srp #%0 ; 2/2+1 Set RP as $0
 ldx R15, FD2H ; 3/2 Load R15 with P1
 swap R15 ; 2/2+1 Swap Upper and Lower Nibbles of R15
 and R15, #%0F ; 3/3 Retain only Lower Nibble of R15
 ldx FDBH, R15 ; 3/2 Output R15 to P3
 jr FINISH ; 2/2 Jump to Finish
EQUAL:
 ld R11, #%09 ; 2/2 Output digit 9 to P3
FINISH:
 ...

Score: 38 bytes
 P1 < P2: 30 cycles / 1.5�s
 P1 = P2: 17 cycles / 0.85�s
 P1 > P2: 20 cycles / 1.0�s
AN012501-1202

Application Note
ZiLOG eZ8 CPU Performance Benchmarking

19
*From Reference [6] on Page 1

CPU08

; code optimized for speed

PORTA EQU $00 ; Port P1
PORTB EQU $01 ; Port P2
PORTC EQU $02 ; Port P3
DDRA EQU $04 ; Port A configuration register
DDRB EQU $05 ; Port B configuration register
DDRC EQU $06 ; Port C configuration register

PORTCMP:
 cla ; 1/1 Clear A
 sta DDRA ; 2/3 Configure Port A as input (P1)
 sta DDRB ; 2/3 Configure Port B as input (P2)
 deca ; 1/1 Decrement A to all ones
 sta DDRC ; 2/3 Configure Port C as output (P3)

 lda PORTB ; 2/3 Load A with Port P2 data
 cmp PORTA ; 2/3 Compare Port P1 data with Port P2 data
 bpl POSITIVE ; 2/3 Branch to POSITIVE if P2 > P1
NEGATIVE:
 mov #$FF,DDRA ; 3/4 Configure Port A as output(P1)
 lda PORTB ; 2/3 Load A with Port P2 data
 sta PORTA ; 2/3 Output Port P2 data to Port P1
 bra FINISH ; 2/3 Branch to FINISH
POSITIVE:
 beq EQUAL ; 2/3 Branch to EQUAL if P2 = P1
 lda PORTA ; 2/3 Load A with Port P1 data
 and #$F0 ; 2/2 Extract high order nibble of Port P1
 nsa ; 1/3 Exchange upper and lower nibbles
 sta PORTC ; 2/3 Output result to Port P3
 bra FINISH ; 2/3 Branch to FINISH
EQUAL:
 mov #$09,PORTC ; 3/4 Output digit 9 to Port P3
FINISH:
 ...

Score: 37 bytes
 P1 < P2: 37 cycles / 4.625�s
 P1 = P2: 27 cycles / 3.375�s
 P1 > P2: 33 cycles / 4.125�s
AN012501-1202

Application Note
ZiLOG eZ8 CPU Performance Benchmarking

20
Benchmark #11 – Switch Activated Two Second LED*
This benchmark samples a switch input to activate a two-second output for turning
on an LED. The switch is debounced with a 10ms delay on both opening and clo-
sure. Once activated, the switch turns on an LED output for two seconds and
turns it off, regardless of whether the switch is still activated. Once the switch is
turned off, the procedure is repeated. Both the switch input and LED output are
low true.

eZ8 CPU

; code optimized for speed
TLO EQU $6F ; 10ms Delay count low byte
THI EQU $9A ; 10ms Delay count high byte

LED2:
 srp #%DF ; 2/2 Set Page as $F, Group as $D
 ld R5, #%F0 ; 2/2+1 Configure Port B : Upper nibble as
 ; output and lower nibble as input

WAIT1:
 btjnz 0,R6,WAIT1 ; 3/3 Wait for input switch (Port B, Pin 0) ON
 call DLY10 ; 3/3+1 Call 10ms delay subroutine
 andx FD7H,#%7F ; 4/3 Turn on LED (Port B, Pin 7)
 ld R0, #200 ; 2/2+1 Initialize R0 to obtain 2 second delay
SEC5:
 call DLY10 ; 3/3 Call 10ms delay subroutine
 djnz R0, SEC5 ; 2/3 Decrement and loop if not zero
 srp #%DF ; 2/2 Set Page as $F, Group as $D
 bset 7,R7 ; 2/2+1 Turn off LED
WAIT2:
 brclr 0,R6,WAIT2 ; 3/5 Wait for input switch OFF
 call DLY10 ; 3/3 Debounce 10ms
 srp #%DF ; 2/2 Set Page as $F, Group as $D
 bra WSWON ; 2/3 Repeat procedure

DLY10:
 srp #%0 ; 2/2 Set Page and WRG as 0
 ld R15,#TLO ; 2/2 Initialize R15 with low byte
 ld R14,#THI ; 2/2 Initialize R14 with high byte
LOOP:
 decw rr14 ; 2/5 Decrement Register Pair R14,R15
 jr nz, LOOP ; 2/2 Jump to Loop if not zero
 ret ; 1/4 Return from subroutine

Score: 59 cycles / 46 bytes / 2.95�s
Note: Cycles summed up ignoring wait loops
AN012501-1202

Application Note
ZiLOG eZ8 CPU Performance Benchmarking

21
*From Reference [6] on Page 1

CPU08

; code optimized for speed

PORTB EQU $01 ; Port B memory address
DDRB EQU $05 ; Port B configuration register
TLO EQU $FF ; 10ms Delay count1 byte
THI EQU $68 ; 10ms Delay count2 byte

LED2:
 lda #$F0 ; 2/2 Load A with Port B config and data
 sta PORTB ; 2/3 Output 0 on Port B upper nibble
 sta DDRB ; 2/3 Configure Port B : Upper nibble as
 ; output and lower nibble as input
WSWON:
 brset 0,PORTB,WSWON ; 3/5 Wait for input switch ON(low true)
SWON:
 jsr DLY10 ; 2/4 Debounce 10ms
 bclr 7,PORTB ; 2/4 Turn on LED (low true)
 lda #200 ; 2/2 Initialize A
SEC5:
 jsr DLY10 ; 2/4 Call 10ms subroutine 200 times
 ; to get 2s LED on time
 dbnza ; 2/3 Decrement A & loop if not zero
 bset 7,PORTB ; 2/4 Turn off LED
WSWOFF:
 brclr 0,PORTB,WSWOFF ; 3/5 Wait for input switch OFF
 jsr DLY10 ; 2/4 Debounce 10ms
 bra WSWON ; 2/3 Repeat procedure

DLY10:
 psha ; 1/2 Save A
 lda #TLO ; 2/2 Set up outer loop count
 ldx #THI ; 2/2 Set up inner loop count
LOOP:
 dbnzx ; 2/3 Decrement X & loop if not zero
 dbnza ; 2/3 Decrement A & loop if not zero
 popa ; 1/2 Restore A
 rts ; 1/4 Return from subroutine

Score: 64 cycles / 39bytes / 8�s
Note: Cycles summed up ignoring wait loops
AN012501-1202

	Introduction
	References
	Performance Benchmarks Overview
	Results Summary
	Benchmark Details
	Benchmark#1 - Packing Binary Coded Data*
	Benchmark #2 - Loop Control*
	Benchmark #3 - Bit Test & Branch*
	Benchmark #4 - Shifting Out 8-Bit Data & Clock*
	Benchmark #5 - Software Timer*
	Benchmark #6 - Five Byte Block Move*
	Benchmark #7 - Four Byte Binary Addition*
	Benchmark #8 - Four Byte Packed BCD Subtraction*
	Benchmark #9 - Three Byte Table Search*
	Benchmark #10 - Input / Output Manipulation*
	Benchmark #11 - Switch Activated Two Second LED*

