
AN026602-0308 
Abstract
This Application Note demonstrates a method of 
implementing I2C Master functionality on Zilog’s 
Z8 Encore!® microcontrollers. The software 
implemented in this Application Note controls the 
two GPIO port pins connected to the serial data 
(SDA) and serial clock (SCL) lines of the I2C bus.

The source code file associated with 
this application note, AN0266-SC01 
is available for download at 
www.zilog.com.

Discussion
I2C is a byte-oriented, serial data transfer protocol 
that consists of two signals:

1. Serial clock (SCL) 

2. Serial data (SDA) 

The protocol uses a Master-Slave transfer conven-
tion where the Master is a device that initiates an 
I2C transfer, and the Slave is a responder. The pro-
tocol allows multiple Slaves to share a bus, and a 
particular Slave is addressed by a 7-bit address 
value that is sent as the first transfer byte. The 8th 
bit of the first transfer byte (address byte) describes 
the type of operation (Read/Write) that the Master 
device performs on the Slave device. 

SCL and SDA are open-drain outputs with external 
pull-up resistors. Consequently, when any device 
connected to the I2C bus can only pull a line Low.

The Slave device acts according to the instruc-
tion(s) sent by the Master addressing it. The Slave 
does not generate the clock, but uses the clock gen-
erated by the Master for all the data transfers. The 
Slave can be a receiver or a transmitter. As a 

receiver, the Slave acknowledges the address/data 
byte received. As a transmitter, the Slave receives 
an acknowledgement from the Master after the 
Master receives the data transmitted by the Slave. 
Data transfer occurs on the SDA line and is phase-
synchronized with the clock on the SCL line. The 
two unique conditions are: 

1. SDA changes the state when SCL is High: This 
instance of a state change is considered as a 
control signal. When the SDA changes the 
state from a High to a Low, it indicates a 
START or a RESTART condition. When the 
SDA changes from a Low to a High, it indi-
cates a STOP condition. 

2. SDA changes the state when SCL is Low: This 
instance of a state change is considered as data 
transfer condition (address or a data bit). The 
data is valid only when the SCL line is High. 
Therefore, data is read on the SDA line when 
the SCL line is High and not otherwise. 
Figure 1 displays the unique START and STOP 
conditions on the I2C bus.

Figure 1. START and STOP Conditions 
on the I2C Bus

Note:

SDA STOP

SCL

(START, RESTART)

Data Transfer
Application Note 
Software I2C Master and Slave Mode 
Support for Z8 Encore!® F0830/F083A
Copyright ©2008 by Zilog®, Inc. All rights reserved.
www.zilog.com 

http://www.zilog.com
http://www.ZiLOG.com


Software I2C Master and Slave Mode Support
for Z8 Encore!® F0830/F083A
Developing Software Emulation
The Z8 Encore!® F0830 and Z8 Encore! F083A 
microcontrollers do not have a hardware peripheral 
for I2C support, however the protocol is very easy 
to implement in the software. For more informa-
tion on software solution for I2C Slave support, 
refer to Using the Z8 Encore!® and Z8 Encore! 
XP® MCUs as I2C Slaves Application Note 
(AN0139). 

This application note uses the Slave 
support from AN0139 to add Master 
support for a full Master/Slave 

solution. For continuity with 
AN0139, port pin PC0 is used for the 
SDA and PC1 is used for SCL. 

PC0 and PC1 pins are configured for open-drain, 
so that they do not provide any source current. All 
the source current is provided by the external pull-
ups, which allow the Slave devices to hold the SCL 
Low for clock stretching. Switching the port from 
an input to output configuration is not required 
because the port input register, PxIN, always 
returns the state of the input pin. Once the Master 
has released the pin High, the Slave can pull the 
pin Low or leave it High without the Master having 
to switch the pin from output to input.

Figure 2. Z8 Encore!® with Slave Functionality

Hardware
The hardware required to implement the I2C bus is 
a pull-up resistor on the SCL and SDA lines.

Software
The Master emulation is serviced by the following 
seven API functions:

1. void InitI2C()
2. void Start()
3. void Stop()
4. void WriteByte (unsigned char data)
5. unsigned char ReadByte()

6. void PutAck(unsigned char)
7. unsigned char GetAck()

void InitI2C()
This function configures the I/O port for I2C opera-
tion. The selected port pins are configured as open-
drain outputs, with High drive enable.

void Start()
This function generates a START condition.

void Stop()
This function generates a STOP condition.

Note:

VCC

SCL

SDA

Z8 Encore!®

with Slave 
Functionality

PC1

PC0

Z8 Encore!®

with Master
Functionality

PC1

PC0
AN026602-0308  Page 2 of 11



Software I2C Master and Slave Mode Support
for Z8 Encore!® F0830/F083A
void WriteByte (unsigned char 
data)
A character is transmitted on the bus. There is no 
acknowledge (ACK) or negative acknowledge 
(NACK); this is handled by PutAck(unsigned 
char).

unsigned char ReadByte()
A character is returned from the bus. The Master 
receives a character from the bus by clocking 8 bits 
from a Slave device.

void PutAck(unsigned char)
If the argument is TRUE an acknowledge pulse, or 
ACK is generated. If the argument is FALSE, a 
NACK is generated.

unsigned char GetAck()
This function returns TRUE if the Slave acknowl-
edges the transfer otherwise FALSE.

These seven API functions are driven by several 
macros and constants defined in the header file 
I2Cmaster.h. See Appendix A—Flowcharts on 
page 6 for API functions. 

In the following code example, 
F0830 is a code definition used for 
conditional compiling and not a ref-
erence to the product itself.

#define F0830 FALSE//Set TRUE or 
FALSE. 

//Alter these definitions to move the 
I2C bus to other pins 

#define SDA 1 
#define SCL 2 
#define PORTOC PCOC 
#define PORTHDE PCHDE 
#define PORTDD PCDD 
#define PortIn PCIN 
#define PortOut PCOUT

The definition F0830 defines whether F0830 or 
F083A is used. The difference is that an Z8 
Encore! F0830 runs on a 5.5 MHz internal 
oscillator and the F083A runs on a 20 MHz internal 

oscillator. The 20 MHz clock speed needs longer 
clock delays because of the higher speed, so that 
this switch accommodates the speed difference.

The next constants define the pins that are used for 
SCL and SDA. The next definitions; SDA, SCL, 
and Port OC define the port that is used for the I2C 
interface. For simplicity, SDA and SCL must be on 
the same port, that is, Port A, Port B, or Port C.

Macros are used to set SDA and SCL High or Low. 
These macros use the previous port definitions to 
make it easy to change pin assignments. The Bit-
Stretch macro is an indefinite loop that waits for 
the Slave device to release the SCL line. The appli-
cation may require a trap for this condition.

Testing the I2C Master/Slave
Equipments Required
The equipments required for testing include:

• Z8 Encore! F083A 28-Pin Development Kit
• 4.7 K resistors

The Slave is measured by performing a write to the 
Slave while monitoring the SCL line with an oscil-
loscope and measuring the total write time. The 
total time for the write is 150 µs, 9 bits/150 µs = 60 
kbps. 

The Master is measured by performing a serial read 
to an external, 400 kHz EEPROM attached to the 
I2C bus. The time required to perform the serial 
read is measured using an oscilloscope to monitor 
the activity on the SCL line. Using the minimum 
delay in Clock() the complete serial read time for 
20 bytes is 923 µs. The number of bytes received is 
20 x 9 bits for a total transfer of 180 bits that is, 
180 bits/928 µs = 194 kbps.

Hardware Setup
Figure 3 on page 4 displays the hardware setup to 
test the I2C Master/Slave.

Note:
AN026602-0308  Page 3 of 11



Software I2C Master and Slave Mode Support
for Z8 Encore!® F0830/F083A
Figure 3. Test Setup for I2C Master/Slave

Procedure
Follow the steps below to test the I2C Master/
Slave:

1. Solder two 4.7 K resistors to the 3.3 V DC test 
pad on the Master’s development kit. The 
resistors are the required pull-ups for I2C pro-
tocol.

2. Solder a wire to the free end of one resistor and 
secure the other end of the wire to the Master’s 
pin J2 through J9. Wirewrap is preferred 
because it’s easy to work on these headers; this 
will be the SDA.

3. Solder a wire to the free end of the other resis-
tor and secure the other end of the wire to the 
Master’s pin J2 through J11; this will be the 
SCL.

4. Connect a wire from the Master’s J2 through 
J9 to the Slave’s J2 through J9.

5. Connect a wire from the Master’s J2 through 
J11 to the Slave’s J2 through J11.

6. Connect a ground wire from the Master’s J2 
through J16 to the Slave’s J2 through J16.

7. Connect the power supply to each develop-
ment kit.

8. Build the Master ZDS II project and flash the 
code into the Master development board.

9. Build the Slave ZDS II project and flash the 
code into the Slave development board.

10. Reset the Slave and the Master development 
boards by pressing SW1 or power cycling the 
boards.

Slave and Master
Slave
The Slave software is derived from Using the Z8 
Encore!® and Z8 Encore! XP® MCUs as I2C 
Slaves Application Note (AN0139). As the Z8 
Encore!® F083A run at 20 MHz, the internal oscil-
lator can be used and is not necessary to switch the 
clock source of the Slave to the external resonator. 
Also, the address of the Slave is changed. The 
Slave address is located in the header file 
scl_interrupt_XP.h in the definition 
DEVICE_ADDRESS. The address has to be changed 
so that it does not have the same address as 
EEPROMs. The only other modification is to 
include an IF statement to toggle LED D3 when a 
packet is received. This is done in the Main loop of 
scl_interrupt_XP.c file. If a packet is 
received LED D3 on the Slave development board 
will toggle state as ON or OFF.

Master
The Master software sends a packet to the Slave 
when SW2 is pressed. If the Slave receives the 
AN026602-0308  Page 4 of 11



Software I2C Master and Slave Mode Support
for Z8 Encore!® F0830/F083A
packet, the Slave toggles the state of LED D3 on 
the Slave development board. If the packet is not 
received, then the Master will light its LED D3.

At power-up, the Master configures the SDA and 
SCL pins as open-drain outputs. That is, the Master 
does not pull the SDA and SCL High; instead they 
are pulled High by the pull-up resistor. This allows 
a Slave device to pull SDA and SCL Low. That is, 
the Master need not reconfigure the I/O pins from 
output to input for a slight improvement in code 
size speed. The LED pin is also enabled and is con-
figured for 13 mA drive.

The Main loop waits for 125 ms to help debounce 
the switch and then the switch is read. If the switch 
is closed, a packet transmission gets started. The 
packet transmission is a FOR loop with multiple 
retries. The Slave may not respond to a packet 
because of clock cycles being out of synchronous 
or the Slave not being ready. EEPROMs, for exam-
ple, do not return an ACK until after a write cycle 
is completed, which can be 10 ms or more, depend-
ing upon the part. Addressing the Slave until an 
acknowledge is received is called Acknowledge 
Polling and is a common method to determine 
when a write cycle is complete. Write cycle times 
are highly variable, and without the acknowledge 
polling you must wait for the maximum write cycle 
time. With polling, the Master continuously 
addresses the Slave and will receive a negative 
acknowledge (NACK), while the Salve is busy 
with a write cycle. When the Slave completes its 
write cycle, it returns an ACK to the Master signal-
ing that the Slave has completed its write cycle.

Addressing a Slave begins with a START condi-
tion, followed by the Slave’s device address, and 
then the test for the Slave’s acknowledge. If the 
Slave responds the next byte is sent, but if it does 
not acknowledge it is repeated until the maximum 
number of repeats and Flash the LED.

An additional portion of sample software includes 
EEPROM reading and writing to a 24C08 
EEPROM and is similar to the process as commu-
nicating with the Slave development board. 

EEPROM addressing is different from device to 
device, therefore, verify the data sheet for the 
EEPROM used in your design. Most EEPROMs 
include a Page Write, where multiple bytes can be 
written without readdressing the EEPROM and 
with only a single write cycle. This feature is chip 
specific. As a result, the sample software does not 
perform a Page Write.

A Sequential Read is a feature that allows a Master 
to read multiple bytes without addressing the Slave 
for each individual byte, and significantly 
increases the throughput of data transfers. The 
requirement of a Sequential Read is that the Master 
acknowledge each byte received, and not acknowl-
edge the final byte. The sample software includes a 
Sequential Read filling a small buffer.

Summary
This Application Note presents a method for 
implementing Master/Slave functionality on the 
Z8 Encore!® MCU using GPIO pins to emulate 
SCL and SDA lines. The software supports 
transactions on the I2C bus at data transfer rates of 
up to 60 kbps for the Slave and 194 kbps for the 
Master.

References
The documents associated with Z8 Encore! MCU 
and Z8 Encore! XP®available on www.zilog.com 
are provided below:

• Z8 Encore!® F083A Series Product Specifica-
tion (PS0263)

• eZ8 CPU Core User Manual (UM0128)
• Zilog Developer Studio II—Z8 Encore!® User 

Manual (UM0130)
• Using the Z8 Encore!® and Z8 Encore! XP® 

MCUs as I2C Slaves Application Note 
(AN0139)

• Z8 Encore!® F083A Series Development Kit 
User Manual (UM0206)
AN026602-0308  Page 5 of 11

http://www.zilog.com

http://www.zilog.com
http://www.zilog.com
http://www.zilog.com

http://www.zilog.com
http://www.zilog.com


Software I2C Master and Slave Mode Support
for Z8 Encore!® F0830/F083A
Appendix A—Flowcharts
This Appendix displays the flowcharts of the API functions (Figure 4 through Figure 10).

Figure 4. InitI2c() Function

Figure 5. Start() Function

START

SCL and SDA Open Drain

SCL and SDA High Drive

SCL and SDA Outputs

STOP

START

STOP

Bus Idle

SDL Low

Clock

Bus IdleSCL Low

Clock

Bus IdleClock
AN026602-0308  Page 6 of 11



Software I2C Master and Slave Mode Support
for Z8 Encore!® F0830/F083A
Figure 6. Stop() Function

Figure 7. PutAck() Function

START

STOP

SDA Low

Clock

SCL High

Bus IdleClock

SDA High

START

STOP

Clock

Clock

SCL High

Bus IdleSCL Low

BitStretch

Acknowledge?

Bus IdleSDA Low Bus IdleSDA High

TRUE FALSE

Clock
AN026602-0308  Page 7 of 11



Software I2C Master and Slave Mode Support
for Z8 Encore!® F0830/F083A
Figure 8. GetAck() Function

START

STOP

Clock

SCL Low

Bus IdleSCL Low

BitStretch

Clock

ACK=TRUE

SDA High?
FALSE

TRUE

ACK=FALSE
AN026602-0308  Page 8 of 11



Software I2C Master and Slave Mode Support
for Z8 Encore!® F0830/F083A
Figure 9. WriteByte() Function

START

STOP

Clock

Clock

SCL Low

Bus IdleSCL Low

BitStretch

Data and bit

Bus IdleSDA High Bus IdleSDA Low

TRUE FALSE

Clock

For bit=0x80 to bit=0

SDA High

Clock

bit>>1
AN026602-0308  Page 9 of 11



Software I2C Master and Slave Mode Support
for Z8 Encore!® F0830/F083A
Figure 10. ReadByte() Function

START

STOP

Clock

SCL High

Bus IdleSCL Low

BitStretch

Clock

Data=0

SDA High?
FALSE

TRUE

Data  = bit

For bit=0x80 to bit !=0
AN026602-0308  Page 10 of 11



AN026602-0308  Page 11 of 11
11

Software I2C Master and Slave Mode Support
for Z8 Encore!® F0830/F083A

DO NOT USE IN LIFE SUPPORT

LIFE SUPPORT POLICY
ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION. 

As used herein
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)
support or sustain life and whose failure to perform when properly used in accordance with instructions for
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A
critical component is any component in a life support device or system whose failure to perform can be
reasonably expected to cause the failure of the life support device or system or to affect its safety or
effectiveness.

Document Disclaimer
©2008 by Zilog, Inc. All rights reserved. Information in this publication concerning the devices,
applications, or technology described is intended to suggest possible uses and may be superseded. ZILOG,
INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY
OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT.
ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY
INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR
TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this
document has been verified according to the general principles of electrical and mechanical engineering.  

Z8, Z8 Encore!, and Z8 Encore! XP are registered trademarks of Zilog, Inc. All other product or service
names are the property of their respective owners. 

Warning:


	Software I2C Master and Slave Mode Support for Z8 Encore!® F0830/F083A
	Abstract
	Discussion
	Developing Software Emulation
	Hardware
	Software
	void InitI2C()
	void Start()
	void Stop()
	void WriteByte (unsigned char data)
	unsigned char ReadByte()
	void PutAck(unsigned char)
	unsigned char GetAck()

	Testing the I2C Master/Slave
	Equipments Required
	Hardware Setup
	Procedure

	Slave and Master
	Slave
	Master


	Summary
	References
	Appendix A-Flowcharts

