
75'4 5�/#07#.

%*#26'4��
+06'447265
INTRODUCTION

The Z8PLUS core allows 15 different interrupts from a variety of sources:

� external inputs

� on-chip peripherals

� software

Interrupts can be masked by using the Interrupt Mask Register. All interrupts can be globally disabled by
setting the master Interrupt Enable, bit 7 in the Interrupt Mask Register, to 0, with a Disable Interrupt (DI)
instruction. Interrupts are globally enabled by setting bit 7 to 1 with an Enable Interrupt (EI) instruction.

There are four interrupt control registers: the Interrupt Request Registers (IREQ and IREQ2) and the Inter-
rupt Mask registers (IMASK and IMASK2). Figure 4-1 shows addresses and identifiers for the interrupt
control registers. Figure 4-2 is a block diagram showing the Interrupt Mask and Interrupt Priority logic.

Figure 4-1. Interrupt Control Register Addresses and Identifiers

Register HEX

 Interrupt Mask

 Interrupt Request

Identifier

0FBH

0FAH

IMASK

IREQ

 Interrupt Mask 2

 Interrupt Request 2

0F9H

0F8H

IMASK2

IREQ2
7/�������<�:���� � �

<�2.75�7UGT U�/CPWCN
+PVGTTWRVU =L/2*
The Z8PLUS MCU family supports both vectored and polled interrupt handling. Details on vectored and polled
interrupts can be found later in this chapter.

Figure 4-2. Interrupt Block Diagram

NOTE: See the selected Z8PLUS MCU’s product specification for the exact interrupt sources supported.

 0FBH

0FAH

IMASK

IREQ

0F9H

0F8H

IMASK2

IREQ2

Interrupt Mask

Interrupt Request

Interrupt Mask 2

Interrupt Request 2

Hex IdentifierRegister

Interrupt
Request

15

78IRQ7-IRQ14

IREQ2

Fixed Priority Logic

Vector Select

Global
Interrupt

Enable

IREQ

IMASK2 IMASK7

Interrupt Edge Select 0DEH PTBEDG

IRQ0-IRQ6

X

� � 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* +PVGTTWRVU
INTERRUPT SOURCES

Table 4-1 presents the interrupt types, sources, and vectors available in the Z8E001. Other processors from
the Z8PLUS family may define the interrupts differently.

External Interrupt Sources

External sources can be generated by a transition on the corresponding Port pin. The interrupt may detect a
rising edge, a falling edge, or both.

NOTES:

1. The interrupt sources and trigger conditions are device dependent. See the device product
specification to determine available sources (internal and external), triggering edge options, and
exact programming details.

2. Although interrupts are edge triggered, minimum interrupt request Low and High times must be
observed for proper operation. See the device product specification for exact timing requirements on
external interrupt requests (TWIL, TWIH).

Table 4-1. Z8E001 Interrupt Types, Sources, and Vectors

Name Sources
Vector

Location Comments
Fixed
Priority

IREQ0 Timer0 Time-out 2,3 Internal 1 (Highest)

IREQ1 PB4 High-to-Low
Transition

4,5 External (PB4), Edge Triggered 2

IREQ2 Timer1 Time-out 6,7 Internal 3

IREQ3 PB2 High-to-Low
Transition

8,9 External (PB2), Edge Triggered 4

IREQ4 PB4 Low-to-High
Transition

A,B External (PB4), Edge Triggered 5

IREQ5 Timer2 Time-out C,D Internal 6 (Lowest)

IREQ6 -
IREQ15

Reserved Reserved for future expansion
7/�������<�:���� � �

<�2.75�7UGT U�/CPWCN
+PVGTTWRVU =L/2*

asked
Internal Interrupt Sources

Internal interrupt sources and trigger conditions are device dependent. On-chip peripherals may set interrupt
under various conditions. Some peripherals always set their corresponding IREQ bit while others must be
specifically configured to do so.

See the device product specification to determine available sources, triggering edge options, and exact
programming details. For more details on the interrupt sources, refer to the chapters describing the timers,
comparators, I/O ports, and other peripherals.

INTERRUPT REQUEST (IREQ) REGISTER LOGIC AND TIMING

The Z8PLUS core responds to interrupts as it retires each instruction. If an unmasked interrupt is detected as
an instruction is being retired, the Z8PLUS core does not execute an instruction during the next instruction
cycle. The Z8PLUS MCU instead selects the highest priority outstanding interrupt to be serviced. The program
counter and flags register are pushed to the stack during the next instruction cycle. The appropriate IREQ bit
is cleared, the master enable is cleared and the MCU fetches the interrupt vector from program memory. It
then jumps to the user’s interrupt routine during the following cycle (See Figure 4-3).

Figure 4-3. Interrupt Service Sequence

NOTES:

1. There are no outstanding, unmasked interrupts.

2. Interrupt source sets an IREQ bit during this interval. This bit is highest priority, has an unm
IREQ, and is bit-sampled.

3. PC and flags are pushed, IREQ bit cleared, IMASK (7) cleared, and vector fetched.

4. JUMP to interrupt vector.

5. This portion is the first instruction of user’s interrupt service routine.

Inst 2 Inst 3 Inst 4Inst 1Inst 0

XTAL
2

1 2 3 4 5
� � 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* +PVGTTWRVU
Interrupt Mask Register (IMASK) Initialization

The IMASK register individually or globally enables or disables the interrupts (see Figure 4-4). When bits 0
through bit 6 are set to 1, the corresponding interrupt requests are enabled. The IMASK2 register, bits 0
through 7, enable and disable IRQ7 through IRQ14, respectively. Bit 7 is the master enable bit and must be
set before any of the individual interrupt requests can be recognized. Resetting bit 7 disables all the interrupt
requests. Bit 7 is set and reset by the EI and DI instructions. It is automatically set to 0 during an interrupt
service routine and set to 1 following the execution of an Interrupt Return (IRET) instruction. The IMASK
registers are reset to 00H, disabling all interrupts.

NOTE:

1. It is not good programming practice to directly aqssign a value to the master enable bit. A value
change should always be accomplished by issuing the EI and DI instructions.

2. Care should be taken not to set or clear IMASK bits while the master enable is set.
7/�������<�:���� � �

<�2.75�7UGT U�/CPWCN
+PVGTTWRVU =L/2*
Figure 4-4. Interrupt Mask Register

Interrupt Mask Register–IMASK (FBH)

Bit 7 6 5 4 3 2 1 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

R = Read W = Write X = Indeterminate U = Undefined/Undetermined

Bit
Position

R/W Value Description

7 0
1

Disables Interrupts
Enables Interrupts

6 0
1

Disables IRQ5
Enables IRQ5

5 0
1

Disables IRQ5
Enables IRQ5

4 0
1

Disables IRQ4
Enables IRQ4

3 0
1

Disables IRQ3
Enables IRQ3

2 0
1

Disables IRQ2
Enables IRQ2

1 0
1

Disables IRQ1
Enables IRQ1

0 0
1

Disables IRQ0
Enables IRQ0
� � 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* +PVGTTWRVU
Figure 4-5. Interrupt Mask 2 Register

Interrupt Mask 2 Register–IMASK2 (F9H)

Bit 7 6 5 4 3 2 1 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

R = Read W = Write X = Indeterminate U = Undefined/Undetermined

Bit
Position

R/W Value Description

7 R/W 0
1

Disables IRQ14
Enables IRQ14

6 R/W 0
1

Disables IRQ13
Enables IRQ13

5 R/W 0
1

Disables IRQ12
Enables IRQ12

4 R/W 0
1

Disables IRQ11
Enables IRQ11

3 R/W 0
1

Disables IRQ10
Enables IRQ10

2 R/W 0
1

Disables IRQ9
Enables IRQ9

1 R/W 0
1

Disables IRQ8
Enables IRQ8

0 R/W 0
1

Disables IRQ7
Enables IRQ7
7/�������<�:���� � �

<�2.75�7UGT U�/CPWCN
+PVGTTWRVU =L/2*
Interrupt Request (IREQ) Register Initialization

IREQ (see Figure 4-6) is a register that stores the interrupt requests for both vectored and polled interrupts.
When an interrupt is issued, the corresponding bit position in the register is set to 1. Bit 0 to bit 5 are assigned
to interrupt requests IREQ0 to IREQ5, respectively.

Whenever RESET is executed, the IREQ resister is set to 00H.

Figure 4-6. Interrupt Request Register.

Interrupt Request Register–IREQ (FAH)

Bit 7 6 5 4 3 2 1 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

R = Read W = Write X = Indeterminate U = Undefined/Undetermined

Bit
Position

R/W Value Description

7 R/W 0 Reserved,must be 0

 6 R/W 0
1

IRQ6 reset
IRQ6 set

5 R/W 0
1

IRQ5 reset
IRQ5 set

4 R/W 0
1

IRQ4 reset
IRQ4 set

3 R/W 0
1

IRQ3 reset
IRQ3 set

2 R/W 0
1

IRQ2 reset
IRQ2 set

1 R/W 0
1

IRQ1 reset
IRQ1 set

0 R/W 0
1

IRQ0 reset
IRQ0 set
� � 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* +PVGTTWRVU
Figure 4-7. Interrupt Request Register 2

Interrupt Request Register 2–IREQ2 (F8H)

Bit 7 6 5 4 3 2 1 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

R = Read W = Write X = Indeterminate U = Undefined/Undetermined

Bit
Position

R/W Value Description

7 R/W 0 IRQ14 reset
IRQ14 set

 6 R/W 0
1

IRQ13 reset
IRQ13 set

5 R/W 0
1

IRQ12 reset
IRQ12 set

4 R/W 0
1

IRQ11 reset
IRQ11 set

3 R/W 0
1

IRQ10 reset
IRQ10 set

2 R/W 0
1

IRQ9 reset
IRQ9 set

1 R/W 0
1

IRQ8 reset
IRQ8 set

0 R/W 0
1

IRQ7 reset
IRQ7 set
7/�������<�:���� � �

<�2.75�7UGT U�/CPWCN
+PVGTTWRVU =L/2*

d inter-
IREQ SOFTWARE INTERRUPT GENERATION

IREQ can be used to generate software interrupts by specifying IREQ as the destination of any instruction
referencing the Z8PLUS Standard Register File. These software interrupts (SWI) are controlled in the same
manner as hardware generated requests. In other words, the IMASK controls the enabling of each SWI.

To generate a SWI, the request bit in IREQ is set by the following statement:

OR IREQ,#NUMBER

The immediate data variable, NUMBER, has a 1 in the bit position corresponding to the required level of SWI.
For example, an SWI must be issued when an IREQ5 occurs. Bit 5 of NUMBER must have a value of 1.

OR IREQ, #00100000B

If the interrupt system is globally enabled, IREQ5 is enabled, and there are no higher priority requests
pending , control is transferred to the service routine pointed to by the IREQ5 vector.

NOTE: Note that software may modify the IREQ register at any time. Care should be taken when using
any instruction that modifies the IREQ register while interrupt sources are active. The software
writeback always takes precedence over the hardware. If a software writeback takes place on the
same cycle as an interrupt source tries to set an IREQ bit, the new interrupt is lost.

VECTORED PROCESSING

Each Z8PLUS interrupt level has its own vector. When an interrupt occurs, control passes to the service routine
pointed to by the interrupt’s vector location in program memory. The sequence of events for vectore
rupts is as follows:

� PUSH the PC Low Byte on the Stack

� PUSH the PC High Byte on the Stack

� PUSH the FLAGS on the Stack

� Disable Global Interrupts (bit 7 of IMASK)

� Fetch the High Byte of the Vector

� Fetch the Low Byte of the Vector

� Branch to the Service Routine specified by Vector

Figure 4-8 and Figure 4-9 show vectored interrupt operation.
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* +PVGTTWRVU
Figure 4-8. Stacks Before and After Interrupt

SP Old Top of Stack

PC LOW Byte

PC HIGH Byte

FLAGS

Stack Pointer and Stack

SP-3

Stack Pointer and Stack

Top of Stack

After an InterruptBefore an Interrupt
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
+PVGTTWRVU =L/2*
Figure 4-9. Interrupt Vector Table Location

Nesting of Vectored Interrupts

Nesting vectored interrupts allows higher priority requests to interrupt a lower priority request. To initiate
vectored interrupt nesting, perform the following steps during the interrupt service routine:

� PUSH the old IMASK on the stack.

� Load IMASK with a new mask to disable lower priority interrupts.

� Execute an EI instruction.

� Proceed with interrupt processing.

� Execute a DI instruction after processing is complete.

� Restore the IMASK to its original value by POPing the previous mask from the stack.

� Execute IRET.

Depending on the application, some simplification of the above procedure may be possible.

Vector Selected By Priority Logic

0020H

 Program Memory

Interrupt Service Routine

Interrupt Vector Table

0000H

FFFFH

Old PC Value
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* +PVGTTWRVU
POLLED PROCESSING

Polled interrupt processing is supported by masking off the IREQ to be polled. This process is accomplished
by setting the corresponding bits in the IMASK to 0.

To initiate polled processing, check the appropriate bits in the IREQ using the Test Under Mask (TM) instruc-
tion. If the bit is set to 1, call or branch to the service routine. The service routine services the request, resets
its Request Bit in the IREQ, and branches or returns back to the main program. An example of a polling
routine is as follows:

TM IREQ,#MASKA;Test for request

JR Z, NEXT;If no request go to NEXT

CALL SERVICE;If request is there,then
;service it

NEXT:
.
.
.

SERVICE:;Process Request
.
.
.

AND IREQ, #MASKB ;Clear Request Bit

RET;Return to next

In this example, if IREQ2 is being polled, MASKA is 00000100B and MASKB is 11111011B.

RESET CONDITIONS

The IMASK and IREQ registers initialize to 00H on RESET.
7/�������<�:���� � ��

	Chapter 4 Interrupts
	Introduction
	Interrupt SourCes
	External Interrupt Sources
	Internal Interrupt Sources

	Interrupt Request (IREQ) Register Logic and Timing
	Interrupt Mask Register (IMASK) Initialization
	Interrupt Request (IREQ) Register Initialization

	IREQ Software Interrupt Generation
	Vectored Processing
	Nesting of Vectored Interrupts

	Polled Processing
	Reset Conditions

