
<�2.7575'4 5�/#07#.

%*#26'4��
+05647%6+10�5'6
FUNCTIONAL SUMMARY

Z8PLUS instructions can be divided into the following eight functional groups:

� Load

� Arithmetic

� Logical

� Program Control

� Bit Manipulation

� Block Transfer

� Rotate and Shift

� CPU Control

Table 3-1 through Table 3-8 show the instructions belonging to each group and the number of operands
required for each. The source operand is src, the destination operand is dst, and a condition code is cc.

When instructions are executed, registers defined as sources are read only. All General-Purpose Registers
function as:

� accumulators

� address pointers

� index registers

� stack areas

� scratch pad memory
7/�������<�:���� � �

<�2.75�7UGT U�/CPWCN
+PUVTWEVKQP�5GV =L/2*
Table 3-1. Load Instructions

Mnemonic Operands Instruction

CLR dst Clear

LD dst, src Load

LDC dst, src Load Constant

POP dst Pop

PUSH src Push

Table 3-2. Arithmetic Instructions

Mnemonic Operands Instruction

ADC dst, src Add with Carry

ADD dst, src Add

CP dst, src Compare

DA dst Decimal Adjust

DEC dst Decrement

DECW dst Decrement Word

INC dst Increment

INCW dst Increment Word

SBC dst, src Subtract with Carry

SUB dst, src Subtract

Table 3-3. Logical Instructions

Mnemonic Operands Instruction

AND dst, src Logical AND

COM dst Complement

OR dst, src Logical OR

XOR dst, src Logical Exclusive OR
� � 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* +PUVTWEVKQP�5GV
Table 3-4. Program Control Instructions

Mnemonic Operands Instruction

CALL dst Call Procedure

DJNZ dst, src Decrement and Jump Non-Zero

IRET Interrupt Return

JP cc, dst Jump

JR cc, dst Jump Relative

RET Return

Table 3-5. Bit Manipulation Instructions

Mnemonic Operands Instruction

TCM dst, src Test Complement
Under Mask

TM dst, src Test Under Mask

AND dst, src Bit Clear

OR dst, src Bit Set

XOR dst, src Bit Complement

Table 3-6. Block Transfer Instructions

Mnemonic Operands Instruction

LDCI dst, src Load Constant
Auto Increment
7/�������<�:���� � �

<�2.75�7UGT U�/CPWCN
+PUVTWEVKQP�5GV =L/2*
Table 3-7. Rotate and Shift Instructions

Mnemonic Operands Instruction

RL dst Rotate Left

RLC dst Rotate Left Through Carry

RR dst Rotate Right

RRC dst Rotate Right Through Carry

SRA dst Shift Right Arithmetic

SWAP dst Swap Nibbles

Table 3-8. CPU Control Instructions

Mnemonic Operands Instruction

CCF Complement Carry Flag

DI Disable Interrupts

EI Enable Interrupts

HALT Halt

NOP No Operation

RCF Reset Carry Flag

SCF Set Carry Flag

SRP src Set Register Pointer

STOP Stop

WDT Refresh WDT
� � 7/�������<�:����

<�2.75�7UGT U�/CPWCN
+PUVTWEVKQP�5GV =L/2*

itions

s. Four

g and
oftware.

wever,
 a value.

PROCESSOR FLAGS

The Flag Register (FCH) informs the user of the processor’sbcurrent status. The flags and their bit pos
in the Flag Register are shown in Figure 3-1.

The Flag Register contains eight bits of status information which are set or cleared by CPU operation
of the bits (C, V, Z and S) can be tested for use with conditional Jump instructions. Two flags (H and D) are
used for BCD arithmetic. The two remaining bits in the Flag Register are the watch-dog timer reset fla
the stop mode recovery flag. Both of these flag bits may be tested and must be explicitly cleared by s

As with bits in the other control registers, the Flag Register bits can be set or reset by instructions; ho
only those instructions that do not affect the flags as an outcome of the execution should be assigned

Figure 3-1. Flag Register

Flag Register (FCH: Read/Write) R252 Flags

Bit 7 6 5 4 3 2 1 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

Reset U U U U U U * *

R = Read W = Write X = Indeterminate U = Unchanged

Bit/Field
Bit

Position
R/W Value Description

Carry
Flag (C)

7 R/W The Carry Flag is set to 1 whenever the result of an arithmetic
operation generates a carry out of or a borrow into the high
order bit 7. Otherwise, the Carry Flag is cleared to 0.
Following Rotate and Shift instructions, the Carry Flag
contains the last value shifted out of the specified register.

An instruction can set (I), reset(O), or complement the Carry
Flag.

The carry flag is not effected by RESET.

Zero
Flag (Z)

6 R/W For arithmetic and logical operations, the Zero Flag is set to 1 if
the result is 0. Otherwise, the Zero Flag is cleared to 0.

If the result of testing bits in a register is 00H, the Zero Flag is
set to 1. Otherwise the Zero Flag is cleared to 0.

If the result of a Rotate or Shift operation is 00H, the Zero
Flag is set to 1.

The Zero Flag is not effected by a RESET command.
� � 7/�������<�:����

<�2.75�7UGT U�/CPWCN
+PUVTWEVKQP�5GV =L/2*

nd

w

t

s

Sign Flag
(S)

5 R/W The Sign Flag stores the value of the most significant bit of a
result following an arithmetic, logical, rotate, or shift operation.

When performing arithmetic operations on signed numbers,
binary two’s-complement notation is used to represent a
process information. A positive number is identified by a 0 in
the most significant bit position (bit 7); therefore, the Sign Flag
is also 0.

A negative number is identified by a 1 in the most significant bit
position (bit 7); therefore, the Sign Flag is also 1.

The Sign Flag is not effected by RESET.

Overflow
(V)

4 R/W For signed arithmetic, rotate, and shift operations, the Overflo
Flag is set to 1 when the result is greater than the maximum
possible number (>127) or less than the minimum possible
number (<−128) that can be represented in two’s-complemen
form . The Overflow Flag is cleared to 0 if no overflow occurs.

Following logical operations the Overflow Flag is cleared to 0.

The Overflow Flag is not effected by RESET.

Decimal
Adjust
Flag (D)

3 R/W The Decimal Adjust Flag is used for BCD arithmetic. Since the
algorithm for correcting BCD operations is different for addition
and subtraction, this flag specifies what type of instruction wa
last executed so that the subsequent Decimal Adjust (DA) oper-
ation can function properly. Normally, the Decimal Adjust Flag
cannot be used as a test condition.

After a subtraction, the Decimal Adjust Flag is set to 1.
Following an addition it is cleared to 0.

The Decimal Adjust Flag is not effected by RESET.

Half-
Carry
Flag (H)

2 R/W The Half Carry Flag is set to 1 whenever an addition generates
a carry out of bit 3 (Overflow) or a subtraction generates a
“borrow into” bit 3. The Half Carry Flag is used by the Decimal
Adjust (DA) instruction to convert the binary result of a previous
addition or subtraction into the correct decimal (BCD) result. As
in the case of the Decimal Adjust Flag, the user does not
normally access this flag.

The Half Carry flag is not effected by RESET.
� � 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* +PUVTWEVKQP�5GV
CONDITION CODES

The C, Z, S, and V Flags control the operation of the conditional JUMP instructions. Sixteen frequently useful
functions of the flag settings are encoded in a 4-bit field called the condition code (cc), which forms bits
4-7 of the conditional instructions.

Flag Definitions, Flag Settings and Condition Codes are summarized in Table 3-9, Table 3-10, and
Table 3-11.

Watch-
Dog
Timer
(WDT)

1 R/W The Watch-Dog Timer reset flag is set by a watchdog timer
timeout. This permits software to determine if a timeout of the
watchdog timer has occurred.

The WDT flag is cleared by the RESET pin. The WDT and
SMR flags are the only flags effected by RESET. This behavior
permits software to determine if a RESET occurred, if a WDT
timeout occurred, or if a return from STOP mode occurred.

Software must explicitly clear this flag after detecting the
timeout condition.

 Failure to clear this flag may result in undefined behavior.

Stop
Mode
Recovery
Flag
(SMR)

0 R/W The Stop Mode Recovery (SMR) flag is set upon the execution
of a STOP instruction. This permits software to determine if a
return from stop mode has occurred upon returning to active
status.

The SMR flag is cleared by the RESET pin. The WDT and SMR
flags are the only flags effected by RESET. This behavior
permits software to determine if a RESET occurred, if a WDT
timeout occurred, or if a return from STOP mode occurred.

Software must explicitly clear this flag after detecting the SMR
condition.

Failure to clear this flag may result in undefined behavior.

Table 3-9. Flag Definitions

Flag Description

C Carry Flag

Z Zero Flag

S Sign Flag

V Overflow Flag
7/�������<�:���� � �

<�2.75�7UGT U�/CPWCN
+PUVTWEVKQP�5GV =L/2*
Table 3-10. Flag Settings Definitions

Symbol Definition

0 Cleared to 0

1 Set to 1

* Set or cleared according to operation

– Unaffected

X Undefined

Table 3-11. Condition Codes

Binary HEX Mnemonic Definition Flag Settings

0000 0 F Always False –

1000 8 (blank) Always True –

0111 7 C Carry C = 1

1111 F NC No Carry C = 0

0110 6 Z Zero Z = 1

1110 E NZ Non-Zero Z = 0

1101 D PL Plus S = 0

0101 5 Ml Minus S = 1

0100 4 OV Overflow V = 1

1100 C NOV No Overflow V = 0
� � 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* +PUVTWEVKQP�5GV
0110 6 EQ Equal Z = 1

1110 E NE Not Equal Z = 0

1001 9 GE Greater Than or Equal (S XOR V) = 0

0001 1 LT Less Than (S XOR V) = 1

1010 A GT Greater Than (Z OR (S XOR V)) = 0

0010 2 LE Less Than or Equal (Z OR (S XOR V)) = 1

1111 F UGE Unsigned Greater Than or Equal C = 0

0111 7 ULT Unsigned Less Than C = 1

1011 B UGT Unsigned Greater Than (C = 0 AND Z = 0) = 1

0011 3 ULE Unsigned Less Than or Equal (C OR Z) = 1

Table 3-11. Condition Codes (Continued)

Binary HEX Mnemonic Definition Flag Settings
7/�������<�:���� � �

<�2.75�7UGT U�/CPWCN
+PUVTWEVKQP�5GV =L/2*
NOTATION AND BINARY ENCODING

The operands and status flags use a notational shorthand. Operands, condition codes, address modes, and their
notations are described in Table 3-12.

Table 3-12. Notational Shorthand

Notation Address Mode Operand Range*

cc Condition Code See Table 3-11, condition codes

r Working Register Rn n = 0 – 15

R Register
or
Working Register

Reg

Rn

Reg. represents a number in the range of
00H to FFH
n = 0 – 15

RR Indirect Register Pair
or
Working Register Pair

Reg

RRp

p = 0, 2, 4, 6, 8, 10, 12, or 14

Ir Indirect Working Register @Rn n = 0 –15

IR Indirect Register
or
Indirect Working Register

@Reg

@Rn

Reg. represents a number in the range of
00H to FFH
n = 0– 15

Irr Indirect Working Register
Pair

@RRp p = 0, 2, 4, 6, 8, 10, 12, or 14

IRR Indirect Register Pair
or
Working Register Pair

@Reg

@RRp

Reg. represents an even number in the
range 00H to FFH
p=0, 2, 4, 6, 8, 10, 12, or 14

X Indexed Reg (Rn) Reg. represents a number in the range of
00H to FFH
n = 0 – 15

DA Direct Address Addrs Addrs. represents a number in the range
of 0000H to FFFFH

RA Relative Address Addrs Addrs. represents a number in the range
of +127 to –128 which is an offset relative
to the address of the next instruction

IM Immediate #Data Data is a number between 00H to FFH

*See the device product specification to determine the exact register file range available. The register file size varies
by the device type.
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* +PUVTWEVKQP�5GV
Table 3-13, which follows, describes additional symbols used.

Assignment of a value is indicated by the symbol ←, for example:

dst ← dst + src

indicates the source data is added to the destination data and the result is stored in the destination location.

The notation addr(n) is used to refer to bit ’n’ of a given location. The following example refers to bit 7 of
the destination operand.

dst (7)

Some instructions operate with several addressing modes. This situation is indicated by an op code number
written like x[]. The brackets are filled by a nibble indicating the addressing mode in use. For example,
ADD 0[] indicates that the ADD instruction works identically for more than one addressing mode.

Table 3-13. Additional Symbols

Symbol Definition

dst Destination Operand

src Source Operand

@ Indirect Address Prefix

SP Stack Pointer

PC Program Counter

FLAGS Flag Register (FCH)

RP Register Pointer (FDH)

IMR Interrupt Mask Register (FBH)

Immediate Operand Prefix

% Hexadecimal Number Prefix

H Hexadecimal Number Suffix

B Binary Number Suffix

OPC op code
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
+PUVTWEVKQP�5GV =L/2*

cify any
ed. If a
the 4-bit
ssembly

register

ncoded

de pair.
Assembly Language Syntax

For proper instruction execution, assembly language syntax requires that the destination and source be spec-
ified as dst, src (in that order). The following instruction descriptions show the format of the object code
produced by the assembler. This binary format should be followed by users who prefer manual program
coding or who intend to implement their own assembler. Other third party assemblers can differ. Please
consult the software user’s manual for detailed information.

Example: The contents of registers 43H and 08H are added, and the result is stored in 43H. The assembly
syntax and resulting object code are:

In general, whenever an instruction format requires an 8-bit register address, that address can spe
register location in the range 0 - 255. When using working registers (R0-R15), a 4-bit address is us
working register is used and an 8-bit address is required by the assembler, an E is pre-pended to
working register address. If, in the above example, the source register is a working register, the a
syntax and resulting object code are:

NOTES:

1. Note that the 4-bit address R8 was expanded to 8-bits by pre-pending EH. This expansion occurs any
time a 4-bit address isspecified for an instruction that takes 8-bit operands.

2. See the device product specification to determine the exact register file range available. The
file size varies by device type

Z8PLUS INSTRUCTION SUMMARY

The instructions marked with this symbol (†) have an identical set of addressing modes, which are e
for brevity. The upper nibble is described in Table 3-14, and the lower nibble is represented by []. The
second nibble’s value is described in Table 3-15, and is found beside the applicable addressing mo
For example, the op code of an ADC instruction using the addressing modes r (destination) and Ir (source)
is 13H.

ASM: ADD 43H, 08H (ADD dst, src)

OBJ: 04 08 43 (OPC src, dst)

ASM: ADD 43H, R8 (ADD dst, src)

OBJ: 04 E8 43 (OPC src, dst)
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* +PUVTWEVKQP�5GV
Table 3-14. Instruction Summary

Address
Mode

op code
Byte (Hex)

Flags Affected

Instruction and Operation dst src C Z S V D H

ADC dst, src
dst ← dst + src +C

† 1[] * * * * 0 *

ADD dst, src
dst ← dst + src

† 0[] * * * * 0 *

AND dst, src
dst ← dst AND src

† 5[] – * * 0 – –

CALL src
SP ← SP – 2
PC ← src

DA D6 – – – – – –

CALL src
SP ← SP – 2
PC ← @src

IRR D4 – – – – – –

CCF
C ←NOT C

EF * – – – – –

CLR dst
dst ← 0

R
IR

B0
B1

– – – – – –

COM dst
dst ← NOT dst

R
IR

60
61

– * * 0 – –

CP dst, src
dst − src

† A[] * * * * – –

DA dst
dst ← DA dst

R
IR

40
41

* * * – – –

DEC dst
dst ← dst – 1

R
IR

00
01

– * * * – –

DECW dst
dst ← dst – 1

RR
IR

80
81

– * * * – –
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
+PUVTWEVKQP�5GV =L/2*
Instruction and Operation
Address Mode op code

Byte (Hex)
Flags Affected

dst src C Z S V D H

DI
IMR(7) ← 0

8F – – – – – –

DJNZ, dst, src r RA
dst ← dst – 1
if dst ≠ 0
then PC ← PC + src
Range: -128 ≤ src ≤ 127

RA rA
(r = 0 – F)

– – – – – –

EI
IMR(7) ← 1

9F – – – – – –

HALT 7F – – – – – –

INC dst
dst ← dst + 1 r

R
IR

rE
(r = 0 – F)

20
21

– * * * – –

INCW dst
dst ← dst + 1

RR
IR

A0
A1

– * * * – –

IRET
FLAGS←@SP;
SP ← SP + 1
PC ← @SP;
SP ← SP + 2;
IMR(7) ← 1

BF * * * * * *

JP cc, src
if cc is true,
then PC ← src

DA ccD
(cc = 0 – F)

– – – – – –

JP src
PC ← @src

IRR 30 – – – – – –

JR cc, src
if cc is true,
then PC ← PC + src
Range: -128 ≤ src ≤ 127

RA ccB
c = 0 – F

– – – – – –

Table 3-14. Instruction Summary (Continued)
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* +PUVTWEVKQP�5GV
Instruction and Operation
Address Mode op code

Byte (Hex)
Flags Affected

dst src C Z S V D H

LD dst, src
dst ← src

r
r
R

r
X
r
Ir
R
R
R
IR
IR

Im
R
r

X
r
Ir
r
R
IR
IM
IM
R

r C
r 8
r 9

(r = 0 – F)
C7
D7
E3
F3
E4
E5
E6
E7
F5

– – – – – –

LDC dst, src
dst ← src

r
lrr

Irr
r

C2
D2

– – – – – –

LDCI dst, src
@dst ← @src
dst ← dst + 1
src ←src + 1

Ir
lrr

Irr
r

C3
D3

– – – – – –

NOP FF – – – – – –

OR dst, src
dst ← dst OR src

† 4[] – * * 0 – –

POP dst
dst ← @SP
SP ← SP + 1

R
IR

50
51

– – – – – –

PUSH src
SP ← SP – 1
@SP ← src

R
IR

70
71

– – – – – –

RCF
C ← 0

CF 0 – – – – –

RET
PC ← @SP;
SP ← SP + 2

AF – – – – – –

RL dst R
IR

90
91

* * * * – –

Table 3-14. Instruction Summary (Continued)

C 7 0
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
+PUVTWEVKQP�5GV =L/2*
Instruction and Operation
Address Mode op code

Byte (Hex)
Flags Affected

dst src C Z S V D H

RLC dst R
IR

10
11

* * * * – –

RR dst R
IR

E0
E1

* * * * – –

RRC dst R
IR

C0
C1

* * * * – –

SBC dst, src
dst ← dst – src –
 C

† 3[] * * * * 1 *

SCF
C ← 1

DF 1 – – – – –

SRA dst R
IR

D0
D1

* * * 0 – –

SRP src
RP ← src

Im 31 – – – – – –

STOP 6F – – – – – –

SUB dst, src
dst ← dst – src

† 2[] * * * * 1 *

SWAP dst R
IR

F0
F1

– * * – – –

TCM dst, src
(NOT dst) AND src

† 6[] – * * 0 – –

TM dst, src
dst AND src

† 7[] – * * 0 – –

WDT 5F – – – – – –

XOR dst, src
dst ← dst XOR src

† 7[] – * * 0 – –

Table 3-14. Instruction Summary (Continued)

C 7 0

C 7 0

C 7 0

C
7 0

7 4 3 0
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* +PUVTWEVKQP�5GV
Figure 3-2, which follows, illustrates the Op Code map.

Table 3-15. Lower Nibble Values

Address Mode
dst src

Lower
op code Nibble

r r [2]

r Ir [3]

R R [4]

R IR [5]

R IM [6]

IR IM [7]
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
+PUVTWEVKQP�5GV =L/2*
OP CODE MAP

Figure 3-2. Op Code Map

LOWER NIBBLE (HEX)

0 1 2 3 4 5 6 7 8 9 A B C D E F

U
P

P
E

R
 N

IB
B

L
E

 (
H

E
X

)

0
DEC
R1

DEC
IR1

ADD
r1, r2

ADD
r1, Ir2

ADD
R2, R1

ADD
IR2, R1

ADD
R1, IM

ADD
IR1, IM

LD
r1, R2

LD
r2, R1

DJNZ
r1, RA

JR
cc, RA

LD
r1, IM

JP
cc, DA

INC
r1

1
RLC
R1

RLC
IR1

ADC
r1, r2

ADC
r1, Ir2

ADC
R2, R1

ADC
IR2, R1

ADC
R1, IM

ADC
IR1, IM

2
INC
R1

INC
IR1

SUB
r1, r2

SUB
r1, Ir2

SUB
R2, R1

SUB
IR2, R1

SUB
R1, IM

SUB
IR1, IM

3 JP
IRR1

SRP
IM

SBC
r1, r2

SBC
r1, Ir2

SBC
R2, R1

SBC
IR2, R1

SBC
R1, IM

SBC
IR1, IM

4
DA
R1

DA
IR1

OR
r1, r2

OR
r1, Ir2

OR
R2, R1

OR
IR2, R1

OR
R1, IM

OR
IR1, IM

5
POP
R1

POP
IR1

AND
r1, r2

AND
r1, Ir2

AND
R2, R1

AND
IR2, R1

AND
R1, IM

AND
IR1, IM WDT

6
COM
R1

COM
IR1

TCM
r1, r2

TCM
r1, Ir2

TCM
R2, R1

TCM
IR2, R1

TCM
R1, IM

TCM
IR1, IM STOP

7
PUSH

R2
PUSH

IR2
TM

r1, r2
TM

r1, Ir2
TM

R2, R1
TM

IR2, R1
TM

R1, IM
TM

IR1, IM HALT

8
DECW
RR1

DECW
IR1 DI

9
RL
R1

RL
IR1 EI

A
INCW
RR1

INCW
IR1

CP
r1, r2

CP
r1, Ir2

CP
R2, R1

CP
IR2, R1

CP
R1, IM

CP
IR1, IM RET

B
CLR
R1

CLR
IR1

XOR
r1, r2

XOR
r1, Ir2

XOR
R2, R1

XOR
IR2, R1

XOR
R1, IM

XOR
IR1, IM IRET

C
RRC
R1

RRC
IR1

LDC
r1, Irr2

LDCI
Ir1, Irr2

LD
r1,x,R2 RCF

D
SRA
R1

SRA
IR1

LDC
Irr1, r2

LDCI
Irr1, Ir2

CALL*
IRR1

CALL
DA

LD
r2,x,R1 SCF

E
RR
R1

RR
IR1

LD
r1, IR2

LD
R2, R1

LD
IR2, R1

LD
R1, IM

LD
IR1, IM CCF

F
SWAP

R1
SWAP

IR1
LD

Ir1, r2
LD

R2, IR1 NOP

2 3 2 3 1

BYTES PER INSTRUCTION

Notes:

All Z8PLUS instructions execute in ten XTAL clock
cycles, (1 µS at 10 MHz).

Blank areas are reserved and execute as NOP.

* 2-byte instruction appears as a 3-byte instruction.

Legend:
R = 8-bit Addr
r = 4-bit Addr
R1 or r1 = Dst Addr
R2 or r2 = Src Addr

Sequence:
op code,
First Operand,
Second Operand

 CP

4

A

Lower op code Nibble

Mnemonic

Second Operand

Upper
op code

Nibble

First Operand

R2, R1
� �� 7/�������<�:����

	Chapter 3 Instruction Set
	Functional Summary
	Processor Flags
	Condition Codes
	Notation and Binary Encoding
	Assembly Language Syntax

	Z8Plus Instruction Summary
	Op Code Map

