

Application Note

Signed Math on the Z8 MCU
The Z8 Flag Register and Signed Math Instructions
AN004300-Z8X1099 ©1999 ZILOG, INC. 1

Signed Math on the Z8 MCU

Table of Contents

Introduction . 3

The Application . 4

Schematic . 7

Sample Code . 8

Appendix A . 15

Appendix B . 16

References . 17

Information Integrity . 18

Document Disclaimer . 18

Acknowledgments

Project Lead Engineer

Steve Narum

System and Code Development:

Steve Narum
AN004300-Z8X1099 ©1999 ZILOG, INC. 2

Signed Math on the Z8 MCU

Introduction

The Z8 MCU’s architecture provides ease-of-use for signed math functions. The CPU’s flag
register and signed mathematical instructions allow a programmer to work easily with
signed values of nearly any length.

In other architectures, there is little or no provision for signed math, programmers must work
around this limitation. For example, numbers can be manipulated as unsigned values, with
the actual sign stored as a software flag. The flow of the program is then modified according
to the sign. This technique adds significant overhead in both execution speed and program
memory size. Often the application requires a more expensive processor that has more ROM
or hardware math-execution units.

The ability to recognize signed data makes the Z8 MCU valuable for many functions. In a
positioning motor control application, the difference between the current and requested po-
sitions requires both a magnitude and a sign to indicate the direction the motor should be
turning.
AN004300-Z8X1099 ©1999 ZILOG, INC. 3

Signed Math on the Z8 MCU

The Application

In this application note, a simple motor-control algorithm is demonstrated using one of the
lowest-cost ZiLOG chips—the Z86E02. This small processor has a bare minimum of OTP code
memory and only the basic set of peripherals. See the Application Note titled A DC Motor
Controller Using the ZiLOG Z86E06 MCU, for a discussion of motor control basics.

The motor control application uses a PWM output to drive the winding of a motor either
clockwise or counter-clockwise. The load’s absolute position is encoded by a rheostat or sim-
ilar device that provides a DC voltage output proportional to the position. This voltage is
read by an external analog-to-digital converter, and the Z8 uses a microwire interface to read
an 8-bit position value. An external microwire input allows the external system to request
an exact position for the motor. There are three limit switches that stop the motor if any are
closed.

For each cycle of the software, the present position of the motor is read from the ADC and
a positional error value is calculated. This error value requires at least nine bits to store the
signed value. The requested position and the actual position could be on either end of the
range, and require a magnitude of eight bits. The error could be in either direction from the
requested position (either positive or negative), and requires one sign bit. This situation caus-
es problems for many processors that cannot provide a simple way of executing signed math.
Some processors cannot execute signed math on more than eight bits (7 magnitude bits,
plus 1 sign bit). Others do not support signed math at all.

The Z8 processor allows a designer to store the error as a 16-bit signed number and apply
mathematical functions to it with ease. Addition and subtraction are provided in the ADD
and SUB instructions and are extended to multiple byte values by the ADC and SBC instruc-
tions. The sign bits are automatically handled by the Arithmetic Logic Unit (ALU). An example
from the software is shown below.

CLR ERR_HI
LD ERR_LO,POSR
SUB ERR_LO,POSA
SBC ERR_HI,#%00

Two 8-bit unsigned numbers, one from the ADC and the other input externally, are subtracted
into a 16-bit signed result. Nothing more is required. The Z8’s ALU automatically sets the
sign flag after the subtraction to the sign of the result. If necessary, a jump statement can
follow immediately to perform a different task, depending on the direction of the error. No
compare or test instruction is necessary.

Addition works equally well. Both addition and subtraction can be extended to more bytes
by adding more ADC or SBC instructions, one per byte.

Multiplication by successive addition is also a common function in software that deals with
positioning controls. The basic technique of multiplying two 8-bit unsigned values into an
unsigned 16-bit result is shown in Appendix A. The code segment below demonstrates how
this idea can be extended to multiplication of a signed 16-bit number (ERR_HI, ERR_LO) by
an unsigned 8-bit scalar RES_LO into a signed 24-bit result (RES_HI, RES_MD, RES_LO).
AN004300-Z8X1099 ©1999 ZILOG, INC. 4

http://www.zilog.com/pdfs/z8otp/dc_z86e06_mcu.pdf
http://www.zilog.com/pdfs/z8otp/dc_z86e06_mcu.pdf

Signed Math on the Z8 MCU

MULT_8x16s: LD PULSE_CNT,#%08
CLR RES_HI
CLR RES_MD
RRC RES_LO

MULT_LOOP: JR NC,MULT_SHIFT
ADD RES_MD,ERR_LO
ADC RES_HI,ERR_HI

MULT_SHIFT: SRA RES_HI
RRC RES_MD
RRC RES_LO
DJNZ PULSE_CNT,MULT_LOOP
RET

After exiting this multiplication loop, the flags reflect the resulting value’s sign. Subsequent-
ly, decisions can be made without requiring a redundant test.

The Z8 performs signed division by two equally well, and requires only two bytes for the
SRA instruction. By chaining the SRA into RRC instructions on the lower bytes, longer values
can be divided easily. Following is an example from the code:

LD PULSE_CNT,#%04
DIV_LOOP: SRA RES_HI

RRC RES_MD
RRC RES_LO
DJNZ PULSE_CNT,DIV_LOOP

This code segment demonstrates a 24-bit signed value being divided by 16. When the ALU
sets the flags on the last RRC, the DJNZ instruction does not modify the flags. This condition
allows the programmer to use the flags in a jump instruction without testing first. Care must
be taken, however, since the flags are the result of the most recent operation. The Z flag,
for example, would indicate that the lowest byte is 0 after the division; it does not indicate
that the entire 24-bit value is 0.

Also, if rounding is necessary, the carry flag can be treated as a half bit. The last RRC in-
struction shifts a bit into the carry flag only if the prior value was odd. A simple construct
automatically rounds the result to the nearest integer value, as in the following example:

.

.

.
RRC RES_LO
DJNZ PULSE-CNT, DIV_LOOP

ROUND: ADC RES_LO,#0
ADC RES_MD,#0
ADC RES_HI,#0
AN004300-Z8X1099 ©1999 ZILOG, INC. 5

Signed Math on the Z8 MCU

Performing division on signed numbers by a number that is not a multiple of two is not as
straightforward. Unfortunately, the task is complex enough that it becomes simpler to
change the sign, perform an unsigned divide, then restore the sign. Appendix B describes
a 16 x 8 divider that can be extended to longer values if necessary.

Figure 1 is a schematic of the Z86E02 microwire-controlled motor controller. Following Fig-
ure 1 is a signed math demonstration code for the Z86E02 operating at 8 MHz.
AN004300-Z8X1099 ©1999 ZILOG, INC. 6

Signed Math on the Z8 MCU

Schematic

Figure 1. Z86E02 µWire-Based Motor Controller

1

Z86E02 µWire-Controlled Motor Controller
AN004300-Z8X1099 ©1999 ZILOG, INC. 7

Signed Math on the Z8 MCU

Sample Code

;
; Signed math demonstration code on the Z86E02 @ 8MHz
;

.INCLUDE MACROS.H ; Include some useful macros

; Macros include: WDT, SETBIT, CLRBIT, JNZ

MATH_GROUP .EQU %10
BIT_CNT .EQU R0 ; uWire bit counter
PULSE_CNT .EQU R1 ; PWM pulse & math counter
ERR_HI .EQU R2 ; Error high byte
ERR_LO .EQU R3 ; Error low byte
ERR_WORD .EQU RR2 ; Error as a word
OERR_HI .EQU R4 ; Old error high byte
OERR_LO .EQU R5 ; Old error low byte
RES_HIW .EQU RR6 ; Math result, high word
RES_HI .EQU R6 ; Math result, high byte
RES_MD .EQU R7 ; Math result, mid byte
RES_LO .EQU R8 ; Math result, low byte
ACCUM .EQU R9 ; Error accumulator
POSR .EQU R10 ; Requested position
POSA .EQU R11 ; Actual position
HI_TIME .EQU R12 ; PWM high time
LO_TIME .EQU R13 ; PWM low time
; (spare) .EQU R14
STATUS .EQU R15 ; Status flags register

; Bit masks for STATUS register

MOVING .EQU 00100000B ; Moving/stopped flag
PWM .EQU 01000000B ; PWM high/low state flag

; Port pin bit masks

WINDINGS .EQU 00000011B ; Motor winding outputs (P20,1)
SWITCHES .EQU 00011100B ; Limit switch inputs (P22,3,4)
AD_CLK .EQU 00100000B ; ADC clock (P25)
AD_DATA .EQU 01000000B ; ADC data (P26)
AD_CS .EQU 10000000B ; ADC chip select (P27)

MWXMIT .EQU 00000001B ; uWire transmit (P00)
MWCS .EQU 00000010B ; uWire chip select (P31)
MWREC .EQU 00000100B ; uWire receive (P32)
MWCLK .EQU 00001000B ; uWire clock (P33)
AN004300-Z8X1099 ©1999 ZILOG, INC. 8

Signed Math on the Z8 MCU

; P2M bit masks

NOMOVE .EQU 00011111B ; Disable both directions
MOVECW .EQU 00011110B ; Enable CW winding
MOVECCW .EQU 00011101B ; Enable CCW winding
DATAIN .EQU 01011111B ; Recv data on AD_DATA
DATAOUT .EQU 00011111B ; Send data on AD_DATA

; Constants

KP .EQU %30 ; Proportional gain constant
KI .EQU %02 ; Integral gain constant
KD .EQU %20 ; Differential gain constant

; Macro definitions

READ_POS .MACRO ; Get position from ADC
; Macro READ_POS uses the uWire interface to read

an
; position value from
; an external ADC. The returned value is an 8 bit
; unsigned, POSA.

LD BIT_CNT #%04 ; 3 header bits + start ADC
CLRBIT P2,AD_CS ; Enable uWire ADC
SETBIT P2,AD_DATA ; Send 3 1's (start, read, ch1)

STARTBITS: DJNZ BIT_CNT SENDBIT ; Check bit counter
LD P2M #DATAIN ; Make P26 input on last

SENDBIT: INC BIT_CNT ; Fix bit counter
SETBIT P2,AD_CLK ; Raise clock
NOP ; Wait
CLRBIT P2,AD_CLK ; Drop clock
DJNZ BIT_CNT STARTBITS ; Next bit

LD BIT_CNT #%08 ; Shift in 8 bits (MSB first)
GETBIT: RCF ; Assume zero

SETBIT P2,AD_CLK ; Raise clock
TM P2 #AD_DATA ; Test data input
JR Z RECV_ZERO
SCF ; Nope, it's a one

RECV_ZERO: CLRBIT P2,AD_CLK ; Drop clock
RLC POSA ; Rotate bit into place
DJNZ BIT_CNT GETBIT ; Next bit

SETBIT P2,AD_CS ; Deselect the ADC
LD P2M #DATAOUT ; P26 back to output
.ENDM
AN004300-Z8X1099 ©1999 ZILOG, INC. 9

Signed Math on the Z8 MCU

; Calculation macros

C_ERROR .MACRO ; Calculate positional error
CLR ERR_HI ; Stuff 8 bit unsigned into
LD ERR_LO POSR ; 16 bit signed
SUB ERR_LO POSA ; Find difference (POSR - POSA)
SBC ERR_HI #%00
.ENDM

C_PROP .MACRO ; Calc proportional part
LD RES_LO #KP ; Put gain in multiplier
CALL MULT_8x16s ; ERR is the multiplicand
CALL DIV_LIMIT ; Divide by 16 and limit to +/-100
LD HI_TIME RES_MD ; Stuff signed 24 bits
LD LO_TIME RES_LO ; into signed 16
.ENDM

C_INT .MACRO ; Calc integral part
OR ERR_LO ERR_LO ; (Possible values are FF02h to

00FFh)
JR Z ADDINT ; Don't change ACCUM if ERR = 0
OR ERR_HI ERR_HI ; Is ERR + or -?
JR MI MNS_1

PLS_1: CP ACCUM #100 ; ACCUM >= 100?
JR GE ADDINT
ADD ACCUM #KI ; No, ACCUM += KI
JR ADDINT

MNS_1: CP ACCUM #-100 ; ACCUM <= -100?
JR LE ADDINT
SUB ACCUM #KI ; No, ACCUM -= KI

ADDINT: ADD LO_TIME ACCUM ; Add ACCUM into the sum
ADC HI_TIME #%00
.ENDM

C_DIFF .MACRO ; Calc differential part
LD RES_HI ERR_HI ; Save ERR
LD RES_LO ERR_LO
SUB ERR_LO OERR_LO ; Subtract (ERR - OERR)
SBC ERR_HI OERR_HI
LD OERR_LO RES_LO ; Update OERR
LD OERR_HI RES_HI
LD RES_LO #KD ; Load multiplier
CALL MULT_8x16s ; Take deltaERR * KD
CALL DIV_LIMIT ; Divide by 16 and limit to +/-100
ADD RES_LO LO_TIME ; And add the sum into it
ADC RES_MD HI_TIME ; (RES used in SET_PWM)
.ENDM
AN004300-Z8X1099 ©1999 ZILOG, INC. 10

Signed Math on the Z8 MCU

SET_PWM .MACRO ; Set up PWM and enable windings
CALL LIMIT_100 ; Limit sum to +/-100
JR PL POS_SUM ; RES + or - ?

NEG_SUM: COM RES_LO ; Change sign
INC RES_LO
LD P2M #MOVECCW ; Enable CCW winding
JR CALC_PWM

POS_SUM: LD P2M #MOVECW ; Enable CW winding
CALC_PWM: LD HI_TIME RES_LO ; PWM high time = RES

LD LO_TIME #100
SUB LO_TIME RES_LO ; PWM low time = (100 - RES)
JR NZ CHECK_HI
INC LO_TIME ; If zero, add one

CHECK_HI: INC HI_TIME
DJNZ HI_TIME PWM_DONE ; Zero?
INC HI_TIME ; If zero, add one

PWM_DONE:
.ENDM

; Interrupt vector table

.ORG %00

JR Init ; Reset the part
; Sacrifice IRQ0 to cause a reset if PC wraps to 0000h
; .WORD Init ; IRQ0 (P32f)

.WORD Init ; IRQ1 (P33f)

.WORD MICROWIRE ; IRQ2 (P31f)

.WORD Init ; IRQ3 (P31r)

.WORD Init ; IRQ4 (T0)

.WORD T1_SERVICE ; IRQ5 (T1)

.ORG %0C

Init: WDT
LD SPL #%40 ; Stack at end of C02's RAM
LD SPH #%3F ; Use SPH as pointer to clear RAM
SRP #%F0

CLR_REGS: CLR @R14 ; Clear a register
DJNZ R14 CLR_REGS

LD P01M #%04 ; P0 is an output
LD P2M #NOMOVE ; P20-4 = in, P25-7 = out
LD P3M #%01 ; P3 = digital, P2 = push-pull

LD PRE1 #%06 ; T1 int clk, single shot, div by 1
CLR TMR ; Disable both timers
AN004300-Z8X1099 ©1999 ZILOG, INC. 11

Signed Math on the Z8 MCU

LD IPR #%01 ; IRQ5 > IRQ2
CLR IMR
EI
OR IMR #00100100B ; T1 and P31 only

SRP #MATH_GROUP

MAIN: WDT
TCM P2 #SWITCHES ; Limit switch closed?
JR NZ MAIN ; Wait until it's opened

STOPPED: OR POSR POSR ; Was stop requested?
JR Z MAIN ; Wait for new request

MOVIN: TM STATUS #MOVING ; Already moving?
JR NZ MAIN ; Wait until done

CALC_MOVE: DI ; No uWire IRQ during READ_POS
READ_POS ; Get current position from ADC
C_ERROR ; Calculate positional error
EI ; Recv OK while doing the math
C_PROP ; Calc proportional part
C_INT ; Calc integral part
C_DIFF ; Calc differential part
SET_PWM ; Set up PWM and enable windings

MOVE: SETBIT STATUS,MOVING ; Flag that we're moving
LD PULSE_CNT #100 ; (dec) 100 pulses per move
OR IRQ #%10 ; Force IRQ4
JP MAIN

; Math subroutines

MULT_8x16s: ; Multiply 8 bit unsigned by 16 bit
; signed.
; 24 bit signed result. 8 bit
; destroyed.

LD PULSE_CNT #%08 ; Loop 8 times
CLR RES_HI ; Start with clear sum
CLR RES_MD
RRC RES_LO ; Rotate 1st bit into C, save C

MULT_LOOP: JR NC MULT_SHIFT
ADD RES_MD ERR_LO ; Add in ERR * 256
ADC RES_HI ERR_HI

MULT_SHIFT: SRA RES_HI ; Divide result by 2
RRC RES_MD
RRC RES_LO
DJNZ PULSE_CNT MULT_LOOP
AN004300-Z8X1099 ©1999 ZILOG, INC. 12

Signed Math on the Z8 MCU

RET

DIV_LIMIT: ; Divide signed 24 bit by 16 and
; limit result to +/- 100.
; Returns a 16 bit signed with

RES_HI
; containing garbage.

LD PULSE_CNT #%04 ; Four shifts = div by 16
DIV_LOOP: SRA RES_HI ; Divide by 2

RRC RES_MD
RRC RES_LO
DJNZ PULSE_CNT DIV_LOOP

LIMIT_100: INCW RES_HIW ; See if upper word is FFh
JR Z RES_NEG
DECW RES_HIW ; See if upper word was 00h
JR Z RES_POS

LIMIT_LO: LD RES_LO #100 ; Limit to 100
CLR RES_MD
OR RES_HI RES_HI ; Should it be + or - ?
JR PL LIMIT_DONE
COM RES_MD
COM RES_LO ; Fix the sign
INC RES_LO

LIMIT_DONE: RET
RES_NEG: DECW RES_HIW ; Restore sign

OR RES_LO RES_LO ; See if LO byte is negative
JR PL LIMIT_LO ; If not, actual value is too nega-

tive
CP RES_LO #-100 ; If so, test magnitude
JR LT LIMIT_LO
JR LIMIT_EXIT ; It's OK, exit

RES_POS: CP RES_LO #100 ; Can use LO as unsigned, check mag
JR UGT LIMIT_LO ; It's OK, exit

LIMIT_EXIT: OR RES_HI RES_HI ; Fix the sign flag. CP goofs it
up.

RET

; Interrupt service routines

T1_SERVICE: ; Software PWM timer.
TM STATUS #PWM ; Which half are we on?
JR Z LO_PULSE

HI_PULSE: SETBIT P2,WINDINGS ; Make windings high
SETBIT STATUS,PWM ; Flag we're doing high
LD T1 HI_TIME ; Load timer
AND TMR #%0C ; And start
IRET
AN004300-Z8X1099 ©1999 ZILOG, INC. 13

Signed Math on the Z8 MCU

LO_PULSE: CLRBIT P2,WINDINGS ; Make windings low
CLRBIT STATUS,PWM ; Flag we're doing low
DJNZ PULSE_CNT FIRE_LOW ; Done?

END_MOVE: LD P2M #NOMOVE ; Stop motor
CLRBIT STATUS,MOVING ; Flag stopped
IRET

FIRE_LOW: LD T1 LO_TIME ; Load timer
AND TMR #%0C ; And start
IRET

MICROWIRE: ; Read microwire input. WDT
catches

; timeout
WDT ; Start with a fresh WDT count
LD BIT_CNT #%08 ; Get eight bits

WAIT_DN: TM P3 #MWCLK ; Wait for low uWire clock
JR NZ WAIT_DN
SETBIT P0,MWXMIT ; Assert ready

WAIT_UP: TM P3 #MWCLK ; Wait for high uWire clock
JR Z WAIT_UP
RCF ; Assume zero
TM P3 #MWREC ; Get data
JR Z NOT_ONE
SCF ; It's a one

NOT_ONE: RLC POSR ; Rotate it into position
DJNZ BIT_CNT WAIT_DN ; Last bit?
CLRBIT P0,MWXMIT ; Deassert uWire ready
INC POSR
DJNZ POSR NOT_ZERO ; See if POSR = 0
LD PULSE_CNT #%01 ; If so, stop the motor next T0

NOT_ZERO: IRET
AN004300-Z8X1099 ©1999 ZILOG, INC. 14

Signed Math on the Z8 MCU

Appendix A

The following module illustrates an efficient algorithm for the multiplication
of two unsigned 8-bit values, resulting in a 16-bit product. The algorithm
repetitively shifts the multiplicand right (using RRC), the result being a shift
of the low-order bit into the carry flag. If a 1 is shifted out, the multiplier is
added to the high-order byte of the partial product. As the high-order bits of
the multiplicand are vacated by the shift, the resulting partial-product bits
are rotated in. Thus, the multiplicand and the low byte of the product occupy
the same byte. As a result, there is a savings of register space, code, and
execution time.
; ARITH MODULE
; CONSTANT
; MULTIPLIER = R1
; PRODUCT_LO = R3
; PRODUCT_HI = R2
; COUNT = R0
; GLOBAL
; MULTIPLICATION PROCEDURE
; *******************************
; Purpose = To perform an 8-bit by 8-bit unsigned binary
; multiplication.
;
; Input = R1 = multiplier
; R3 = multiplicand
;
; Output = RR2 = product
; R0 = destroyed
; *******************************
ENTRY:

ld COUNT,#09H ;8 bits+1
clr PRODUCT_HI ;Init High result byte
rcf ;CARRY = 0

LOOP: rrc PRODUCT_HI
rrc PRODUCT_LO
jr NC,NEXT
add PRODUCT_HI,MULTIPLIER

NEXT: djnz COUNT,LOOP
ret
AN004300-Z8X1099 ©1999 ZILOG, INC. 15

Signed Math on the Z8 MCU

Appendix B

The following module illustrates an efficient algorithm for the division of a
16-bit unsigned value by an 8-bit unsigned value, resulting in an 8-bit
unsigned quotient. The algorithm repetitively shifts the dividend left (using
RLC). If the high-order bit shifted out is a 1, or if the resulting high-order
dividend byte is greater than or equal to the divisor, the divisor is subtracted
from the high byte of the dividend. As the low-order bits of the dividend are
vacated by the shift left, the resulting partial-quotient bits are rotated in.
Thus, the quotient and the low byte of the dividend occupy the same byte.
As a result, there is a savings of register space, code, and execution time.
; ARITH MODULE
; CONSTANT
; COUNT = R0
; DIVISOR = R1
; DIVIDEND_HI = R2
; DIVIDEND_LO = R3
; GLOBAL
; DIVIDE PROCEDURE
; *******************************
; Purpose = To perform a 16-bit by 8-bit unsigned binary division.
;
; Input = R1 = 8-bit divisor
; RR2 = 16-bit dividend
;
; Output = R3 = 8-bit quotient
; R2 = 8-bit remainder
; Carry flag = 1 if overflow
; = 0 if no overflow

ENTRY:

ld COUNT,#08H ;Loop counter
;Check if result fits in
;8 bits

cp DIVISOR,DIVIDEND_HI
jr UGT,LOOP ;CARRY = 0 FOR RLC)

;Won’t fit. Overflow
scf ;CARRY = 1
ret

LOOP: ;Result fits. Go ahead
;with division

rlc DIVIDEND_LO ;DIVIDEND * 2
rlc DIVIDEND_HI
jr c,SUBT
cp DIVISOR,DIVIDEND_HI
jr UGT,NEXT ;CARRY = 0

SUBT: sub DIVIDENT_HI,DIVISOR
scf ;To be shifted into result

NEXT: djnz COUNT,LOOP ;No flags affected
ret
AN004300-Z8X1099 ©1999 ZILOG, INC. 16

Signed Math on the Z8 MCU

References

1. Steven Frank, Intelligent Remote Positioner (Motor Control), Microchip Technology, Inc.
AN531, DS00531C, 1994.

2. ZiLOG, ZiLOG Z8 Microcontroller User’s Manual, UM95Z800103, 1995.

3. ZiLOG, The Z8 Application Note Handbook, DB96Z8X0100, 1996.

4. ZiLOG, A DC Motor Controller Using the ZiLOG Z86E06 MCU, AP96DZ80500, 1996.
AN004300-Z8X1099 ©1999 ZILOG, INC. 17

Signed Math on the Z8 MCU
Information Integrity

The information contained within this document has been verified according to the
general principles of electrical and mechanical engineering. Any applicable source
code illustrated in the document was either written by an authorized ZiLOG
employee or licensed consultant. Permission to use these codes in any form,
besides the intended application, must be approved through a license agreement
between both parties. ZiLOG will not be responsible for any code(s) used beyond
the intended application. Contact the local ZiLOG Sales Office to obtain necessary
license agreements.

Document Disclaimer

© 1999 by ZiLOG, Inc. All rights reserved. Information in this publication concerning
the devices, applications, or technology described is intended to suggest possible
uses and may be superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR
PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES.
OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZiLOG ALSO DOES NOT
ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN
ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED
HEREIN OR OTHERWISE. Except with the express written approval ZiLOG, use of
information, devices, or technology as critical components of life support systems is
not authorized. No licenses are conveyed, implicitly or otherwise, by this document
under any intellectual property rights.

ZiLOG, Inc.
910 East Hamilton Avenue, Suite 110
Campbell, CA 95008
Telephone (408) 558-8500
FAX (408) 558-8300
Internet: http://www.zilog.com
AN004300-Z8X1099 ©1999 ZILOG, INC. 18

http://www.zilog.com

	Signed Math on the Z8 MCU
	Table of Contents
	Introduction
	The Application
	Schematic
	Sample Code
	Appendix A
	Appendix B
	References
	Information Integrity
	Document Disclaimer

