

Application Note

DTMF Tone Generation
Using the Z86E04 MCU

AN003901-Z8X1199
ZILOG WORLDWIDE HEADQUARTERS ¥ 910 E. HAMILTON AVENUE ¥ CAMPBELL, CA 95008
TELEPHONE: 408.558.8500 ¥ FAX: 408.558.8300 ¥ WWW.ZILOG.COM

Application Note
DTMF Tone Generation Using the Z86E04 MCU

This publication is subject to replacement by a later edition. To determine whether a later edition
exists, or to request copies of publications, contact:

ZiLOG Worldwide Headquarters
910 E. Hamilton Avenue
Campbell, CA 95008
Telephone: 408.558.8500
Fax: 408.558.8300
www.ZiLOG.com

Windows is a registered trademark of Microsoft Corporation.

Information Integrity

The information contained within this document has been verified according to the general
principles of electrical and mechanical engineering. Any applicable source code illustrated in the
document was either written by an authorized ZiLOG employee or licensed consultant. Permission
to use these codes in any form, besides the intended application, must be approved through a
license agreement between both parties. ZiLOG will not be responsible for any code(s) used
beyond the intended application. Contact the local ZiLOG Sales Office to obtain necessary license
agreements.

Document Disclaimer

© 2000 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices,
applications, or technology described is intended to suggest possible uses and may be
superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A
REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY
DESCRIBED IN THIS DOCUMENT. ZiLOG ALSO DOES NOT ASSUME LIABILITY FOR
INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Except
with the express written approval ZiLOG, use of information, devices, or technology as critical
components of life support systems is not authorized. No licenses or other rights are conveyed,
implicitly or otherwise, by this document under any intellectual property rights.
AN003901-Z8X1199

Application Note
DTMF Tone Generation Using the Z86E04 MCU

AN003901-Z8X1199

iii

Table of Contents

General Overview . 1
Sine Wave Generation . 2
DTMF Tone Generation . 3
PWM Using the Z8 Timers 0 and 1 . 4

Summary . 5

Technical Support . 6
 Source Code . 6
Schematic . 16
Flowcharts . 17

 Test Procedure . 22
Equipment Used . 22
General Test Setup and Execution . 23
Test Results . 23

References . 23

Acknowledgements

Project Lead Engineer

Bob Bongiorno

Application and Support Engineer

Joe Rovito

System and Code Development

Bob Bongiorno

Application Note
DTMF Tone Generation Using the Z86E04 MCU

1

DTMF Tone Generation Using the Z86E04
MCU

Dual-Tone, Multi-Frequency (DTMF) tones are required to access telephone lines
for communications and data exchange. This application note describes a method
for generating DTMF tones using the Z86E04 microcontroller and a minimal
amount of support circuitry. Taking advantage of the Z8Õs efficient table-lookup
capabilities and its versatile timers, complex signals can be generated easily with-
out a hardware DAC.

General Overview
DTMF signals are a combination of two sine waves of different frequencies that
correspond to a row and column position on the standard telephone keypad. To
produce the twelve key tones of this keypad, seven sine-wave frequencies are
required. Three frequencies are associated with the column positions and four
with the row positions. Each key is associated with a corresponding pair of tones
that are produced when the key is selected. For example, assume the 0 key is
pressed. The row frequency would be 941 Hz while the column frequency would
be 1336 Hz. These two frequencies, or tones, are added together to produce the
signal understood at the receiving end to be the 0 key.

The standard telephone keypad and the corresponding DTMF tone assignments
are indicated in Table 1.

Additionally, column frequencies must be 3 dB higher in amplitude than the row
frequencies. Because the telephone line acts like a low-pass filter, due to distrib-
uted capacitance, the column frequencies are attenuated more so than the row

Table 1. DTMF Tone Assignments

Columns

1209 Hz 1336 Hz 1477 Hz

Rows

697 Hz 1 2 3

770 Hz 4 5 6

852 Hz 7 8 9

941 Hz ¥ 0 #
AN003901-Z8X1199

Application Note
DTMF Tone Generation Using the Z86E04 MCU

2

frequencies. The 3-db column-frequency boost is a compensation for this line
characteristic.

Sine Wave Generation

This application note uses a table lookup method for sine wave generation. A sine
table is contained in program memory and is accessed by a pointer at a high
enough rate (referred to as the Sample rate) to produce a reasonably pure sine
wave at the required frequency. According to Nyquist, the Sample rate must be at
least twice that of the highest frequency generated. In this case, a sample fre-
quency of at least 2954 Hz is required. To improve accuracy and allow for a sim-
pler, less-costly low-pass filter, a sample rate of 8 kHz is chosen. This sample rate
is about five times higher in frequency but is easily achieved with an 8-MHz oscil-
lator frequency. This oscillator frequency is divided by eight, thereby supplying a
1-MHz reference clock to the counter and timers.

The sine table itself was chosen to contain 256 values and was located at an
upper byte boundary. This approach simplifies some calculations and makes the
concept more straightforward. Only the upper byte of the pointer is used to access
the next table value. The sine table itself was generated using a Basic program
that selected a wide dynamic range for the sine values. This program produces a
DTMF output level of sufficient amplitude for a host of applications.

There are two values that are required for each sine table access. One is the fre-
quency desired, based on the key selected, which is represented as Frequency
Increment or FINCR. The other is the previous table pointer value, which is repre-
sented as Increment or INCR. At each periodic interrupt of the sample rate,
FINCR is added to INCR to produce a new INCR. This new increment value is a
sixteen-bit value, but only the upper byte is used to point to the next sine value in
the table.

The formula for the Frequency Increment is as follows:

FINCR = (Tablestep x 256 x Frequency) ÷ Sample

Where FINCR is the 16-bit value, Tablestep is the number of values in the sine
table, Frequency is the desired frequency in hertz, and Sample is the sample
rate in samples per second.

For this application note, Tablestep = 256, Frequency is the desired frequency
for the DTMF tones, and Sample = 8000 .

The collection of FINCR values is the offset_table , arranged for each key as
a pair of frequencies.

The equation can be reduced to the relationship:

FINCR = 8.192 x Frequency
AN003901-Z8X1199

Application Note
DTMF Tone Generation Using the Z86E04 MCU

3

An intuitive way of thinking about sine wave generation is to think of the range of
possible frequencies available from a given table. This application note uses 256
locations that represent one cycle of a sine wave. Assume every table location is
to be accessed at the 8-kHz sample rate. (Access rate may be a better term than
Sample rate. Because the 256-byte table represents one full 360 degree cycle of
the sine wave, the frequency produced would be 8000 / 256 or 31.25 Hz. The sine
wave quality would be the highest attainable for this system. The value of FINCR
would be 256 or 0100h . (Remember that only the upper byte of INCR is used to
access the next sine table value.) Because the lower byte of FINCR is Ô00Õ, the
lower byte of INCR always contains 00 after every sum of the two registers.

What frequency is attained for FINCR equal to 0101h or 257? Solving for Fre-
quency , the above equation becomes:

Frequency = 0.1221 x FINCR
 = 0.1221 x 257
 = 31.3721 Hz

From this equation, each increment of the FINCR yields an increase in frequency
of 0.1221 Hz.

For the second case, assume INCR is 0000 to begin. Now the low byte of FINCR
contains 01 . FINCR and INCR are continuously summed. The lower byte of
INCR, again, does not effect the upper byte until the 256th sum. This most recent
sum caused a carry into the upper byte. Instead of taking one table step, the 256th
access takes two steps. The lower byte is 00 again so another 256 sums are
required to take the two-step access.The sequence is one step for 255 accesses,
then two steps for one access, continuously. Because there are 8000 samples per
second, the table skip occurs 31 times per second. The effect is to increase the
time through the table and therefore to increase the frequency by 0.1221 Hz.

Now consider what the highest frequency sine wave would be. According to
Nyquist, there must be one point in less than a half-cycle of the sine wave, to
describe it in terms of frequency. Assume the first point is accessed at the start of
the table. Two additional points are required at just under one- half table intervals.
Then, the next point completes the cycle and starts the beginning of the next
cycle, just past the start of the table, and so on. Thus the highest frequency sine
wave would be about 8000/2 or 4000 hz. The value of FINCR would be 32,768 or
8000h . As the synthesized sine wave goes from the lowest frequency to the high-
est, purity of the sine wave is compromised for speed, as the number of points
describing the waveform is reduced.

DTMF Tone Generation

DTMF tones are specific pairs of sine waves, produced simultaneously, that rep-
resent the key positions of a common telephone keypad. Adding the individual
AN003901-Z8X1199

Application Note
DTMF Tone Generation Using the Z86E04 MCU

4

sine waves together produces the DTMF. In this case, the generation of each sine
wave is related to a timer value, one for the column and one for the row frequency.
Before the column sine value is added to the row sine value, the column value is
doubled by shifting left one time. This new value provides the 3 dB edge over the
row frequencies. The range of values in the sine table becomes more meaningful
because, for the worst case, the sine value may be three times larger before using
this value for the 8-bit counter.

PWM Using the Z8 Timers 0 and 1

The DTMF tones are produced by utilizing both Timer 0 and Timer 1 in this appli-
cation. Timer 0 to sets the rate or frequency of the output, which, in this case, is 8
kH. Timer 0 raises the DTMF output each time its polled interrupt request is set.
This same event loads and restarts Timer 1 in a ÒOne-ShotÓ mode, with vectored
interrupt processing. When T1 interrupts, the Interrupt Service Routine (ISR)
pulls the DTMF output back down. The value loaded into T1Õs counter is the most
recently calculated sine value. The effect is that T1 controls the ÒOn-TimeÓ of the
signal based on the sine value for each sample period. The duty cycle is based on
the length of time T1 requires to count down before its interrupt occurs and pulls
the line down for the balance of the T0 time-out. Thus, T0 remains a constant
while T1 is re-loaded at the T0 Sample rate.

For simplification, consider the critical points along the sine wave as related to the
PWM value. At 0 and 180 degrees, the PWM duty cycle is at 50%. At 90 degrees,
the maximum amplitude, the duty cycle is 100%. At 270 degrees, the minimum
amplitude, the duty cycle is 0%. To provide some margin for interrupt latency and
register load times, the duty cycle minimum and maximum values are somewhat
offset from 0 and 100%.

A simple RC network converts digital PWM output to a varying DC signal. This
Low-Pass filter was chosen because its corner frequency is the lowest column fre-
quency, or 1209 Hz. At this point, the column frequencies are at least 3 dB below
the row frequencies. Telephone specifications require a 3 dB increase for the col-
umns over the rows. By doubling the column sine value, the column receives a 6
dB increase, producing a net increase over the rows of the required 3 dB. The fil-
ter, as stated above, is a simple passive filter and may not meet the requirements
of some systems. Because the filter is non-buffered, take care when driving exter-
nal circuits. A high-impedance buffer may be required to isolate the filter from the
load. If buffering is required, perhaps a dual or quad op amp is appropriate,
because an active filter and buffer amplifier could be used to improve the filter
characteristics as well as the output drive capability.
AN003901-Z8X1199

Application Note
DTMF Tone Generation Using the Z86E04 MCU

5

Summary
Many MCU applications require signal generation in the analog domain.This
application note focuses on DTMF and sine wave generation, but other signal
types are possible. The table method is not restrictive to sine waves. Triangle
waves, ramps, pulse trains, and combinations can be synthesized with this
approach.

This particular design, as implemented, features several unused inputs that can
be utilized for table selection. Selecting from multiple offset tables to generate all
sine waves or other frequency DTMF tones becomes a simple matter. The sine
table itself can be altered to produce other basic wave shapes. By sampling at a
faster rate, higher frequency or higher quality signals can be attained.

The PWM method used to generate analog signals is compelling. Using the Tim-
ers in this arrangement provides great flexibility and duty cycle range with very lit-
tle software overhead with regard to timer register data or control updating. In the
case of generating fixed duty cycles, Timer 1 can be used in a continuous mode,
requiring an update only when the duty cycle requires changing.

The keyscan routine is simple and modular and easily adapted to various types of
keypads.

Using the Z86E04 for the generation of DTMF tones provides a simple and cost
effective approach with the additional flexibility a Microcontroller provides. Other
standard signaling tones, like ringback and busy, as well as unique signals for
non-standard applications, are readily achievable.
AN003901-Z8X1199

Application Note
DTMF Tone Generation Using the Z86E04 MCU

6

Technical Support

 Source Code
;===
;= TITLE: DTMF.asm =
;= DATE: Started August 1999 =
;= PURPOSE: =
;= =
;= FILE TYPE: STAND ALONE MODULE =
;= =
;= HEADER FILES: equ.h, offset.s, sine.s =
;= =
;= HARDWARE: NovaTech Z8 Proto. Board ZPCB18 =
;= =
;= ASSEMBLER: ZiLOG ZDS / ZMASM =
;= PROGRAMMER: Bob Bongiorno =
;===
;
; RELEASE HISTORY:
;
; Version Date Description
; 1.00 8/15/99 Proto Release
; 1.10 9/15/99 Reasonably Functional Model
; 1.20 10/1/99 Commented and OTP Burned
;
;===
;
;***
; I/O MAP
;***
;P00 --> PWM Output
;P01 --> unused output, no connection
;P02 --> unused output, no connection

;P20 --> Row 0
;P21 --> Row 1
;P22 --> Row 2
;P23 --> Row 3
;P24 --> Col 0
;P25 --> Col 1
;P26 --> Col 2
;P27 --> Col 3

;P31 --> unused input, terminate to ground.
;P32 --> unused input, terminate to ground.
;P33 --> unused input, terminate to ground.

;***
;***

GLOBALS ON ;Required for symbol table generation.

include "equ.h" ;Equate file.

;===
;= TITLE: equ.h =
AN003901-Z8X1199

Application Note
DTMF Tone Generation Using the Z86E04 MCU

7

;= DATE: October 1, 1999 =
;= PURPOSE: =
;=
;= FILE TYPE: Included Header File =
;=
;= HARDWARE: NovaTech Z8 Proto. Board ZPCB18 =
;=
;= ASSEMBLER: ZiLOG ZDS / ZMASM =
;= PROGRAMMER: Bob Bongiorno =
;===
WORK_REG0 .equ 00h
;
p0 .equ r0
;not used .equ r1
p2 .equ r2
p3 .equ r3
bounce .equ r4
row_cnt .equ r5
key_cnt .equ r6
key_temp .equ r7
temp_rows .equ r8
;not used .equ r9
;not used .equ r10
;not used .equ r11
;not used .equ r12
;not used .equ r13
;not used .equ r14
;not used .equ r15
;
;
WORK_REG1 .equ 10h
;
offset_hi .equ r0
offset_lo .equ r1
offset .equ r0
calc_sin_value .equ r2
temp .equ r3
row_inc_hi .equ r4
row_inc_lo .equ r5
pointer_hi .equ r6
pointer_lo .equ r7
pointer .equ r6
col_inc_hi .equ r8
col_inc_lo .equ r9
r_freq_hi .equ r10
r_freq_lo .equ r11
c_freq_hi .equ r12
c_freq_lo .equ r13
row_val .equ r14
col_val .equ r15
;
KEY_CNT .EQU 06h
KEY_TEMP .EQU 07h
R_FREQ_HI .EQU 1Ah
;
xtal .equ 8000000 ;8 Mhz
sample .equ 8000 ;8000 samples/sec
ctval .equxtal/8/sample ;Formula for Timer 0, Counter value.
AN003901-Z8X1199

Application Note
DTMF Tone Generation Using the Z86E04 MCU

8

tabstp .equ 256 ;Number of entries in Sine table.

;***
; Interrupt Vectors / Program Memory Address 0000 - 000Bh
;***

org 0000h

.WORD DUMMY ;IRQ 0 , Not Used

.WORD DUMMY ;IRQ 1 , Not Used

.WORD DUMMY ;IRQ 2 , Not Used

.WORD DUMMY ;IRQ 3 , Not Used

.WORD KEY_SCAN ;IRQ 4 , Timer 0 Interrupt

.WORD TIMER_1 ;IRQ 5 , Timer 1 Interrupt

;***
; Start of Executed Code, 000Ch
;***
;
;***
; Initialization Begins
;***

DTMF_INIT:
DI ;Disable interrupts.

CLR P3M ;Port 3 = Digital Inputs, Port 2 = Open Drain
;Outputs.

LD P01M,#00000100b ;Port 0 = Outputs, Stack = Internal (Emulator
;requirement).

LD P2M,#00001111b ;Port 2 Mode: Output = 7,6,5 & 4. Input = 3,2,1 &
 ;0.

SRP #70h ;Setup to clear all RAM. Load a pointer (r15),
 ;in working register group 7,to one below its own

LD r15,#7Eh ;address of 7Fh.

CLR_RAM: ;This two instruction loop,(4 bytes) clears all
RAM !

CLR @r15 ;The DJNZ instruction requires a working regis-
 ;ter.

DJNZ r15,CLR_RAM ;(Ports 0 and 2 outputs are cleared here as
 ;well.)

;The last register cleared is r15 itself by the
 ;last DJNZ !

DEC KEY_TEMP ;Non-key value (FF) for first time through
 ;KEY_SCAN.

CLR IRQ ;Clear spurious interrupt requests.
LD IMR,#00010000b ;Allow IRQ 4 (Timer 0) interrupt.
LD IPR,#00001011b ;Set interrupt priority for IRQ5 > IRQ4.

LD SPL,#80h ;Stack = Top of Ram + 1 (Pre-decrementing stack
;pointer).

CLR SPH ;(A good practice during emulation.)

 LD PRE0,#00000001b ;T0 prescaler = 00h for divide by 64 and contin-
AN003901-Z8X1199

Application Note
DTMF Tone Generation Using the Z86E04 MCU

9

 ;uous mode.
CLR T0 ;T0 counter = 00h for count of 256.
LD TMR,#00000011b ;Load and enable T0 for keyscan interrupts =

 ;16.384 mSec.

EI ;Enable global interrupts.

;***
; Initialization Ends
;***

;***
; Foreground Wait-Loop
;***

WAIT_HERE: ;Program loops here in the foreground
NOP ;until the interrupt for Timer 0 /KEY_SCAN
NOP ;comes along. (User's code could be
NOP ;located here but must be tolerant of periods
JR WAIT_HERE ;of inactivity while the DTMF signal is output.

;Also, any modification of the register pointer
;will require saving and restoring it in the
;following routines.)

;***
; KEY_SCAN

;KEY_SCAN is an interrupt service routine driven by Timer 0. KEY_SCAN outputs
the ;column drive on ports 2-4, 2-5, 2-6, and 2-7. Scan inputs are on ports 2-
0, 2-1, ;2-2 and 2-3. As each column is pulled low, the inputs are checked for
an active ;key and debounced if necessary. Once a key is debounced, DTMF_OUT is
called in ;order to output the appropriate frequencies.

;***

KEY_SCAN:
SRP #WORK_REG0 ;Point to working reg. group 0.
LD P2M,#00001111b ;Set Port 2 for upper nibble outputs,

;lower nibble inputs.
COL_0:

LD p2,#11101111b ;Column 0 driven low.
CLR key_cnt ;Key 0-3.
CALL GET_KEY ;This finds active key if any.
JR Z,KEY_FOUND ;Jump to debounce key.

COL_1:
LD p2,#11011111b ;Column 1 driven low.
LD key_cnt,#4 ;Key 4-7
CALL GET_KEY ;
JR Z,KEY_FOUND ;

COL_2:
LD p2,#10111111b ;Column 2 driven low.
LD key_cnt,#8 ;Key 8-11
CALL GET_KEY ;
JR Z,KEY_FOUND ;

COL_3:
LD p2,#01111111b ;Column 3 driven low.
LD key_cnt,#12 ;Key 12-15
AN003901-Z8X1199

Application Note
DTMF Tone Generation Using the Z86E04 MCU

10
CALL GET_KEY ;
JR NZ,SCAN_EXIT ;Jump for no active key found.

KEY_FOUND: ;Active key found.
ADD key_cnt,row_cnt ;Add row value from GET_KEY to key base value.
CP key_cnt,key_temp ;If key is same,
JR Z,KEY_SAME ;go debounce it.
CLR bounce ;Not same, so clear debounce counter.
LD key_temp,key_cnt ;Make them the same for the next time around.
JR SCAN_EXIT ;Exit with no action taken.

KEY_SAME:
INC bounce ;Debounce counter.
CP bounce,#4 ;The same key for 4 reads ?
JR NZ,SCAN_EXIT ;If not, exit with no action taken.

DEBOUNCED:
LD key_temp,#0FFh ;Else debounced so set key_tmp = non-key value

 ;and
CLR bounce ;clear bounce counter for next key scan.
JR DTMF_OUT ;Go output DTMF for key_cnt value.

SCAN_EXIT:
LD p2,#11111111b ;All columns inactive.
IRET ;Return to WAIT_HERE loop and reenable T0 int.

GET_KEY:
LD temp_rows,p2 ;Input port 2 and save in temp_rows.
AND temp_rows,#0Fh ;Clear for Row data only.

ROW_0:
CLR row_cnt ;Set for Row 0.
CP temp_rows,#00001110b ;Row 0 key ?
JR Z,KEY_RET ;Yes, return.

ROW_1:
INC row_cnt ;No. Set for Row 1.
CP temp_rows,#00001101b ;Row 1 key ?
JR Z,KEY_RET ;Yes, return.

ROW_2:
INC row_cnt ;No. Set for Row 2.
CP temp_rows,#00001011b ;Row 2 key ?
JR Z,KEY_RET ;Yes, return.

ROW_3:
INC row_cnt ;No. Set for Row 3.
CP temp_rows,#00000111b ;Row 3 key ?

KEY_RET:
RET ;Return.

;***
; DTMF_OUT

;Output DTMF signals based on the key value in key_cnt.
;Stay here till no key is active.
;Timer 0 runs continuously at the sample rate. The DTMF output
;is raised at start of its' cycle.
;T0 is a polled interrupt.
;Timer 1 runs as a one-shot timer whose counter is loaded with the Sine value.
;T1 is a vectored interrupt that pulls the DTMF line back down once per T0
cycle.
;T0 is the PWM frequency, T1 controls the ON time or Duty-Cycle.
AN003901-Z8X1199

Application Note
DTMF Tone Generation Using the Z86E04 MCU

11
;***

DTMF_OUT:
SRP #WORK_REG1 ;Set up pointer for working register group 1.
CLR TMR ;Stop timers.
LD pointer_hi,#>Sine ;Load the Sine table, high byte, base address

 ;into pointer_hi.

DTMF_OFFSET:
LD offset_hi,#>offset_table ;Load offset_table base address
LD offset_lo,#<offset_table ;into offset register pair.

RL KEY_CNT ;Rotate key_cnt, left twice, to multiply x 4.
RL KEY_CNT ;RL works here because we know that bits 4 to 7

;are always zero with 16 keys.
;Add this value to the offset low byte pointer.

ADD offset_lo,KEY_CNT ;Each key corresponds to 4 successive entries
;in the table.

;The upper byte, offset_hi, is 01h because the table is
;located at '01C0'h. The max key_cnt after shifting is 3Ch.
;(0000 1111 > 0011 1100)
;Adding to C0h yields FCh. Because no carry is generated,
;we don't have to increment offset_hi, it's always 01h.

;Each key is a designated row and column frequency pair.
;Get the table increment values based upon the current key.
;We need a row frequency word and column frequency word.
;These values are the step size for "walking through"
;the Sine table. The larger the step, the higher the frequency.

LD temp,#R_FREQ_HI ;Set indirect pointer to r_freq_hi register
address.

LDCI @temp,@offset ;r_freq_hi
LDCI @temp,@offset ;r_freq_lo
LDCI @temp,@offset ;c_freq_hi
LDCI @temp,@offset ;c_freq_lo

;Column and row frequency offsets are now in place.

;Set-up Timer 0 and 1 to prepare for PWM / DTMF signal generation on
;port 0-0.

DTMF_TIMERS:
 LD PRE0,#00000101b ;T0 prescaler = 1, continuous mode.

LD T0,#ctval ;T0 is loaded with 7Dh for 8 khz sample rate (8
Mhz

;xtal).
LD TMR,#00000011b ;Load and enable T0 for the first time.

LD PRE1,#00000110b ;T1 prescaler = 1, one shot mode.
LD calc_sin_value,#20 ;Load a dummy value for the first time.
LD IMR,#00100000b ;Allow vectored T1 interrupt only.
CLR IRQ ;Clear all pending ints.
EI ;Reenable global ints.

DTMF_LOOP:
OR P0,#00000001b ;Raise DTMF output line, port 0-0.
AN003901-Z8X1199

Application Note
DTMF Tone Generation Using the Z86E04 MCU

12
LD T1,calc_sin_value ;T1 counter loaded = last calc. value.
OR TMR,#00001100b ;Start T1 (One shot mode.)

TCM P2,#00001111b ;Check for any key still active.
JR Z,DTMF_EXIT ;No active key, exit. Else, continue DTMF

 ;out.

;At some point Timer 1's interrupt will come along and set the output low.
;In the meantime, we are calculating Timer 1's counter value for the NEXT pass
thru
;the DTMF_LOOP.
;The DTMF signal is the sum of 2 sine waves. The T1 value, or duty cycle, is
;changed 8000 times /sec. CALCULATE_PWM executes at this rate in order to
determine ;the next sum of the row and column value from the sine table. The
row_inc pair is ;the previous pointer for the row Sine table. Only the upper
byte is used
;to find the next sine value. Likewise, the column_inc pair works the same way
for
;the column frequency. Once we have a row and column sine value, they are added
;together. The column frequency requires a 3 db higher level with respect to
;the row.
;This is accomplished by shifting the column left before adding to the row.
;Because the sine table has been located with the lower byte of its address at
00,
;and because it's 256 bytes long, (00 --> FF), we don't have to be concerned
with
;the upper byte of the sine table address; it’s always 02. This simplifies the
math
;each time the “calc_sin_value” is determined.

CALCULATE_PWM:
ADD row_inc_lo,r_freq_lo ;The r_freq pair for the key is added to

 ;the
ADC row_inc_hi,r_freq_hi ;last pointer value and stored. The high

 ;byte
LD pointer_lo,row_inc_hi ;row_inc_hi is loaded into the sine table

 ;pointer_lo.
LDC row_val,@pointer ;The new row value from the sine table.

ADD col_inc_lo,c_freq_lo ;Now we do the same for the column.
ADC col_inc_hi,c_freq_hi ;
LD pointer_lo,col_inc_hi ;
LDC col_val,@pointer ;We now have the column value as well.

RL col_val ;The column value is doubled
;by shifting left before the sum. This is to

 ;give
;the column frequencies a 3 db gain over the
;row frequencies. (This is refered to as "twist"
;in the telephone industry.)

ADD row_val,col_val ;2(col_val) + row_val --> row_val .
LD calc_sin_value,row_val ;The calc_sin_value is this sum.

;Save it for the next T1 load in the
DTMF_LOOP.

WAIT_T0_POLLED:
TM IRQ,#00010000b ;Test for T0 IRQ set.
AN003901-Z8X1199

Application Note
DTMF Tone Generation Using the Z86E04 MCU

13
JR Z,WAIT_T0_POLLED ;If not, loop back to test it again.
AND IRQ,#11101111b ;Else, T0 IRQ is set, so clear it and
JR DTMF_LOOP ;jump to start next cycle of DTMF output.

DTMF_EXIT: ;The key is no longer active.
DI ;(Always disable global interrupts while modify-

 ;ing
;Int regs.)

CLR TMR ;Stop both timers.
CLR IRQ ;Clear all pending interrupts.
LD IMR,#00010000b ;Enable T0 interrupts only.
LD PRE0,#00000001b ;Set T0 prescaler for divide by 64 (00) and

;continuous mode.
CLR T0 ;Set T0 counter for divide by 256 (00); 16 mSec

 ;int.
LD TMR,#00000011b ;Load and enable T0 for KEY_SCAN work.

CLR row_inc_lo ;Reset pointers so sinewaves will be
CLR row_inc_hi ;in phase. This is for the optional 4 column
CLR col_inc_lo ;keypad with additional offset table entries.
CLR col_inc_hi ;This clearing is not necessary for 3 column

 ;keypad.

IRET ;Return to WAIT_HERE loop and reenable T0 int.

;***
; TIMER_1 Interrupt Service Routine
;***
TIMER_1: ;Timer 1 interrupt service.

AND P0,#11111110b ;Lower DTMF output line.
IRET ;Reenable Timer IRQ's and return to DTMF work.

;***
; Offset Table
;***

org 01C0h ;Locate offset_table

include "offset.S" ;offset_table.
;
;==
;= TITLE: offset_table.s =
;= DATE: October 1, 1999 =
;= PURPOSE: =
;=
;= FILE TYPE: Included Row and Column Frequency Lookup Table =
;=
;= HARDWARE: NovaTech Z8 Proto. Board ZPCB18 =
;=
;= ASSEMBLER: ZiLOG ZDS / ZMASM =
;= PROGRAMMER: Bob Bongiorno =
;==
;
; Offset Table for Frequency Increment
; ------------------------------------
;

AN003901-Z8X1199

Application Note
DTMF Tone Generation Using the Z86E04 MCU

14
offset_table:
; Key / Row Freq / Col Freq
; -------------------------

.word 7709,9904 ; * / 941 Hz / 1209 Hz

.word 6980,9904 ; 7 / 852 Hz / 1209 Hz

.word 6308,9904 ; 4 / 770 Hz / 1209 Hz

.word 5710,9904 ; 1 / 697 Hz / 1209 Hz
;

.word 7709,10945 ; 0 / 941 Hz / 1336 Hz

.word 6980,10945 ; 8 / 852 Hz / 1336 Hz

.word 6308,10945 ; 5 / 770 Hz / 1336 Hz

.word 5710,10945 ; 2 / 697 Hz / 1336 Hz
;

.word 7709,12100 ; # / 941 Hz / 1477 Hz

.word 6980,12100 ; 9 / 852 Hz / 1477 Hz

.word 6308,12100 ; 6 / 770 Hz / 1477 Hz

.word 5710,12100 ; 3 / 697 Hz / 1477 Hz
;
; last column for 16 keypad consists of pure sines for debugging only
;

.word 12000,12000 ; D / 1500 Hz Sinewave

.word 8000,8000 ; C / 1000 Hz Sinewave

.word 4000,4000 ; B / 500 Hz Sinewave

.word 2000,2000 ; A / 250 Hz Sinewave

; Hex Conversion for Reference
; ----------------------------

; .byte 1Eh,1Dh,26h,0B0h
; .byte 1Bh,44h,26h,0B0h
; .byte 18h,0A4h,26h,0B0h
; .byte 16h,4Eh,26h,0B0h

; .byte 1Eh,1Dh,2Ah,0C1h
; .byte 1Bh,44h,2Ah,0C1h
; .byte 18h,0A4h,2Ah,0C1h
; .byte 16h,4Eh,2Ah,0C1h

; .byte 1Eh,1Dh,2Fh,44h
; .byte 1Bh,44h,2Fh,44h
; .byte 18h,0A4h,2Fh,44h
; .byte 16h,4Eh,2Fh,44h

; Optional Pure Sine Hex Codes for debugging only

; .byte 2Eh,0E0h,2Eh,0E0h
; .byte 1Fh,40h,1Fh,40h
; .byte 0Fh,0A0h,0Fh,0A0h
; .byte 07h,0D0h,07h,0D0h

;***
; Sine Table
;***

org 0200h ;Locate Sine Table
AN003901-Z8X1199

Application Note
DTMF Tone Generation Using the Z86E04 MCU

15
include "Sine.s" ;Sine table.
;
;==
;= TITLE: Sine.s =
;= DATE: October 1, 1999 =
;= PURPOSE:
;=
;= FILE TYPE: Included Sine Value Lookup Table =
;=
;= HARDWARE: NovaTech Z8 Proto. Board ZPCB18 =
;=
;= ASSEMBLER: ZiLOG ZDS / ZMASM =
;= PROGRAMMER: Bob Bongiorno =
;==
;
Sine:

.byte 17, 17, 18, 18, 18, 19, 19, 20, 20, 20, 21, 21, 21, 22, 22, 22
;

.byte 23, 23, 23, 24, 24, 24, 25, 25, 25, 26, 26, 26, 27, 27, 27, 27
;

.byte 28, 28, 28, 28, 29, 29, 29, 29, 29, 30, 30, 30, 30, 30, 31, 31
;

.byte 31, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32
;

.byte 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 31, 31, 31, 31, 31
;

.byte 31, 31, 31, 30, 30, 30, 30, 30, 29, 29, 29, 29, 29, 28, 28, 28
;

.byte 28, 27, 27, 27, 27, 26, 26, 26, 25, 25, 25, 24, 24, 24, 23, 23
;

.byte 23, 22, 22, 22, 21, 21, 21, 20, 20, 20, 19, 19, 18, 18, 18, 17
;

.byte 17, 17, 16, 16, 16, 15, 15, 14, 14, 14, 13, 13, 13, 12, 12, 12
;

.byte 11, 11, 10, 10, 10, 9, 9, 9, 8, 8, 8, 7, 7, 7, 7, 7
;

.byte 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3
;

.byte 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
;

.byte 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3
;

.byte 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6
;

.byte 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11
;

.byte 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 16, 16, 16, 17
;
;***
; Dummy Interrupt Service Routine
;***

org 03F8h ;Locate Dummy interrupt handler to just
;fit into top of memory for 1K ROM device.
;This is a recommended routine for all Z8's.
;Locate just inside available ROM space.
;Fill unused ROM locations ahead of this
;with NOP's (FF).
AN003901-Z8X1199

Application Note
DTMF Tone Generation Using the Z86E04 MCU

16
DUMMY: ;Vector here for spurious interrupts.
DI ;Disable global,
CLR IMR ;potential and
CLR IRQ ;all pending interrupts.
JP DTMF_INIT ;Jump to cold start / initialization.

;***
; Program End
;***

end
===
;===

Schematic

Note: VDC voltage is not to exceed the input voltage and / or power dissipation
of the LM7805 regulator. The ÒFilter CAPÓ is selected based on the supply
voltage and ripple and the minimum regulator drop-out voltage. All CAP

Figure 1. DTMF Tone Generation Schematic
AN003901-Z8X1199

Application Note
DTMF Tone Generation Using the Z86E04 MCU

17
values are in µF with +80/-20% tolerance, except for the caps in DTMF
OUT filter. They are +5/ -5% tolerance.

Flowcharts

Figure 2. DTMF (Initialization) and WAIT_LOOP

INITIALIZE
REGISTERS AND

ENABLE
KEY_SCAN / T0

INTERRUPT
ONLY

WAIT_LOOP

Wait here until
Timer 0

Interrupts

DTMF
AN003901-Z8X1199

Application Note
DTMF Tone Generation Using the Z86E04 MCU

18

Figure 3. KEY_FOUND

Scan_Exit

Key_Cnt + Row_Cnt =
Key_Cnt

Key Unchanged
for 4 Reads ?

[Begin Debounce]

Yes

No

Increment Debounce
Counter

Jump to
DTMF_Out

Deselect Columns

Return from
Interrupt Service

From KEY_SCAN
No Active Key

KEY_FOUND
AN003901-Z8X1199

Application Note
DTMF Tone Generation Using the Z86E04 MCU

19
Figure 4. DTMF_OUT

Load Sine Table
and Offset Table Base

Addresses into
Pointer and Offset Registers

Key_Cnt X 4 = Key_Cnt

 Key_Cnt + Offset_lo =
 Offset_lo

Load Ofset Table
Values into

r_freq and c_freq
register pairs

that correspond to
the selected Key

r_freq_hi
r_freq_lo

and
c_freq_hi
c_freq_lo

are now in place

DTMF_TIMERS

Init Timer 0 for 8 khz, Cont. Mode.
Init Timer 1 for One-Shot Mode.

DTMF_LOOP
AN003901-Z8X1199

Application Note
DTMF Tone Generation Using the Z86E04 MCU

20
AN003901-Z8X1199

Application Note
DTMF Tone Generation Using the Z86E04 MCU

21
Figure 5. DTMF_LOOP

Raise DTMF output, P0-0

Start Timer1,
One-shot mode

Key
Still

Active ?
No

Calculate_PWM

Load Timer 1 with
the LAST

calc_sin_value

Yes

pointer_lo <-- row_inc_hi

row_val is loaded from Sine table @ pointer

pointer_lo <-- col_inc_hi

col_val is loaded from Sine table @ pointer

Add row_freq to the row_inc and save in
row_inc

Add col_freq to the col_inc and save in
col_inc

calc_sin_val <-- 2 (col_val) + row_val

WAIT_T0_POLLED

DTMF_LOOP

DTMF_EXIT

Disable Interrupts

Set-up Timer 0 for KEY_SCAN
and

Disable Timer 1

Clear row_inc and col_inc pointers

Return from Interrupt
(IRET)

Enable Timer 0 Interrupts

Return to WAIT_LOOP
AN003901-Z8X1199

Application Note
DTMF Tone Generation Using the Z86E04 MCU

22
 Test Procedure

Equipment Used

Testing the DTMF Tone Generation program requires the following equipment:

¥ Windows 95/98/NT-based PC with ZDS 2.11 installed

¥ Z86CCP01ZEM and/or a Z86E04 programmed as specified

¥ Z86CCP00ZAC

¥ 8 Volt @ 1 Amp power supply and/or a 5 Volt @ 100-mAmp power supply

¥ Oscilloscope (required if viewing the DTMF waveforms)

¥ Audio amplifier and speaker (required if monitoring audio signals)

¥ Frequency counter (required if precise measurement of sine wave frequency
is necessary)

¥ Breadboard of circuit.

Figure 6. WAIT_TO_POLLED and Timer 1 Interrupt Service

Timer 0 IRQ
Set ?

Yes

Reset Timer 0 IRQ

No

Jump to DTMF_LOOP

Lower DTMF Output

Return from Interrupt
(IRET)

WAIT_T0_POLLED Timer 1, Interrupt
Service
AN003901-Z8X1199

Application Note
DTMF Tone Generation Using the Z86E04 MCU

23
General Test Setup and Execution

The testing was performed with ZDS 2.11 and the Z86E04 as the target chip. The
18-pin emulator target cable is connected from the emulator to the target proto
board. The proto board used the Novatech Z8 prototyping board.Though specific
MCU pin numbers are provided, this code works on almost any Z8, provided two
timers are available. The pin numbers must be reviewed and some modifications
would be required.

ZDS 2.11 is used to assemble the source program (DTMF.s) and monitor the
Z86E04 register file memory windows, if required.The emulator runs the program
when Reset GO is selected. Optionally, an OTP may be programmed and
installed in the proto board, allowing operation without the PC and Emulator. The
check-sum for the program is 59F7h if assembled as is and all unused memory
locations are filled with FFh.

Test Results

The program works as specified and the standard DTMF and optional sine waves
are generated for the corresponding key selected.

References
DTMF Tone Generation Using the Z8 CCP, AP96Z8X1200, ZiLOG, Inc., 1997.
AN003901-Z8X1199

	DTMF Tone Generation Using the Z86E04 MCU
	Acknowledgements
	General Overview
	Sine Wave Generation
	DTMF Tone Generation
	PWM Using the Z8 Timers 0 and 1

	Summary
	Technical Support
	Source Code
	Schematic
	Flowcharts

	Test Procedure
	Equipment Used
	General Test Setup and Execution
	Test Results

	References

