Application Note

Z86FE04-Based RS-232
Controlled Moving Message
Display

ANO003801-Z8X1199

ZILOG WORLDWIDE HEADQUARTERS * 910 E. HAMILTON AVENUE * CAMPBELL, CA 95008
TELEPHONE: 408.558.8500 « FAX: 408.558.8300 « www.ZILOG.com

http://www.zilog.com

Application Note
A Z86E04-Based RS-232 Controlled Moving Message Display

&
O(’dQ
A

This publication is subject to replacement by a later edition. To determine whether a later edition
exists, or to request copies of publications, contact:

ZiLOG Worldwide Headquarters
910 E. Hamilton Avenue

Campbell, CA 95008

Telephone: 408.558.8500

Fax: 408.558.8300
www.ZiLOG.com

Windows is a registered trademark of Microsoft Corporation.

Information Integrity

The information contained within this document has been verified according to the general
principles of electrical and mechanical engineering. Any applicable source code illustrated in the
document was either written by an authorized ZiLOG employee or licensed consultant. Permission
to use these codes in any form, besides the intended application, must be approved through a
license agreement between both parties. ZiLOG will not be responsible for any code(s) used
beyond the intended application. Contact the local ZILOG Sales Office to obtain necessary license
agreements.

Document Disclaimer

© 2000 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices,
applications, or technology described is intended to suggest possible uses and may be
superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A
REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY
DESCRIBED IN THIS DOCUMENT. ZiLOG ALSO DOES NOT ASSUME LIABILITY FOR
INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Except
with the express written approval ZiLOG, use of information, devices, or technology as critical
components of life support systems is not authorized. No licenses or other rights are conveyed,
implicitly or otherwise, by this document under any intellectual property rights.

ANO003801-Z8X1199

Application Note
Z86E04-Based RS-232 Controlled Moving Message Display

&
O(’dQ
A

Table of Contents

DISCUSSION 1
Refreshing a Multiplexed Display 1
LED Module Connection 2
OperationalResult 5

SUMMIAIY . . 6

Technical SUPPOrt 6
Source Code 6
Flow Charts e 21
Schematics 22

Test Procedure 24
Equipment Used 24
General Test Setupand Execution 24
TestResults 24

References 25

Acknowledgements

Project Lead Engineer
Bob Bongiorno

Application and Support Engineer
Joe Rovito

System and Code Development

Bob Bongiorno

ANO003801-Z8X1199

Application Note
Z86E04-Based RS-232 Controlled Moving Message Display

&
064’
A

Z86E04-Based RS-232 Controlled Moving
Message Display

This application demonstrates the use of a Z86E04 18-pin microcontroller to con-
trol a 7-row by 60-column multiplexed moving message LED display. Because of
the number of LEDs (420), a microprocessor or microcontroller with external RAM
could be decoded and bit-mapped into a RAM buffer and clocked out at a leisurely
pace by moving some pointers around. A 63-character message buffered this way
requires a minimum of 378 bytes of RAM storage.

It is possible, however, to display a message of reasonable length using only the
Z86E04's internal register space, if the message is kept in ASCIl and decoded in
real time. By keeping the message in ASCII form, a 63-character message can be
stored in only 63 register locations.

The real time constraints are severe: fetching and decoding the ASCII characters
column by column, then clocking out a 63-bit serial data stream 250 times per
second. This application note demonstrates that the Z8 does just that, while pro-
ducing a flicker-free display using a modest 8-MHz oscillator frequency.

In addition, the application implements a 9600 bps serial input routine for dynamic
updating of the ASCII message.

Discussion

Refreshing a Multiplexed Display

Multiplexing is a common technique used to dramatically increase the number of
I/0O with only a small increase in hardware. Most designers are familiar with using
four inputs and four outputs to scan a 16-key matrix (instead of 16 unique inputs).
A multiplexed LED display works the same way, only in reverse.

In this case, the LEDs are electrically arranged to form 7 rows of 60 columns.
Each row of the LED is driven for a brief period of time before switching to the next
row. Because of the built-in optical integrator in our eyes, known as persistence of
vision, switching between rows rapidly enough produces the illusion that all the
rows are on at the same time. Figure 1 illustrates a progressive scan example.

To make this work, there are two additional requirements. First, 'overdrive' the
LEDs proportionately or they can appear dim. The dimness occurs because any
one row is only on 1/7 of the time. And second, update the rows often enough so
that each row is scanned at least 40-50 times per second, to reduce the appear-
ance of display flickering. With a red filter in front of the LEDs (required anyway for
better contrast), you can update the rows somewhat less often.

ANO003801-Z8X1199

Application Note
Z86E04-Based RS-232 Controlled Moving Message Display

&
0(’&n
A

Figure 1. Progressive Scan Example

0000 oe0 o oo eoe ° o oeee eee oo
Scan
Row 6

° ° ° ° o o ° oo oo ° ° o o °
Scan
Row 5
° ° ° ° o o e o o ° ° ° ° Scan
Row 4
° ° ° ° e o ooo ° ° ° ° Y Scan
Row 3
Scan
° ° ° ° o o ° ° ° ° ° o e Row 2
Scan
° ° ° ° o o ° ° ° ° ° oo o Row 1
Scan
Row 0

00000 o000 eccee oeo YY) ° o eee eee o °

ZILOG MICROCONTROLLER DEMO

ANO003801-Z8X1199

Application Note
Z86E04-Based RS-232 Controlled Moving Message Display

74
& 3

LED Module Connection

The display modules consist of 5 x 7 LED matrix modules. Each module contains
12 connections: seven rows and five columns, as Figure 2 illustrates.

Figure 2. LED Module Internal Connection

O O O (@) O
o o o o o
Row 6 o - N w N

Row 5

Row 4

Row 3

Row 2

Row 1

Row 0O

K

ANO003801-Z8X1199

Application Note
Z86E04-Based RS-232 Controlled Moving Message Display

&
O(’dQ
A

All of the anodes in any single row are connected. All of the cathodes in any single
column are also connected. Twelve of these modules are placed left to right to
produce a 60-column by 7-row display.

It may not be immediately obvious why a different connection matrix was chosen.
For example 21 x 20 requires only 41 outputs instead of the 67. The answer is
threefold:

First, because the display is multiplexed, and to get the same perceived bright-
ness, the LEDs must be overdriven by the inverse of the duty cycle, which is typi-
cally the number of rows. LEDs can be specified at 15 mA nominal, but 80 to 100
mA at a particular duty cycle. (LEDs may vary, so check the manufacturer's spec-
ifications.) This LED specification limits the maximum number of rows to between
five and ten. More rows cause a significant decrease in brightness.

Second, low-side drivers are considerably less expensive than their high-side
counterparts. For example, the Allegro integrated circuits, each of which drives 32
columns, are only three or four dollars. That price compares to almost one dollar
for each of the PNP high-side switches.

Finally, it is easier to keep the number of rows equal to the height of the ASCII
character (7), reducing the firmware complexity significantly.

Row and Column Drivers

The seven rows are driven by seven PNP power transistors, wired as saturated
high-side switches. Sinking current from the base turns the drivers on hard,
thereby powering all of the anodes in a particular row.

The 60 columns are connected to two 32-output low-side drivers, Allegro AN5832.
The column information is shifted serially to the drivers, minimizing the wiring and
interconnects.

Three of the four unused low-side column drivers perform the row select, driving a
74HC237 (an inverted output 138). This output turns on a UCN2003 to select the
row to drive. This row select process conserves /O on the Z8 for future expan-
sion—for example, a keypad or an EEPROM.

Displaying a Fixed Message on a Multiplexed Display

Displaying a fixed message is straightforward: decode the message row by row
(either ahead of time, if external RAM is available, or in real time as in this applica-
tion note). Shift out the first row of information and turn the first row on. Delay.
Repeat with the second through seventh rows. Then back again to the first.

Displaying and Scrolling a Moving Message

A moving message is more complex. After clocking out and displaying the sev-
enth row, shift the pointers one column to the right and repeat for all seven rows.
Then shift another column and display all seven rows. The row scanner is imple-

ANO003801-Z8X1199

Application Note
Z86E04-Based RS-232 Controlled Moving Message Display

&
O(’dQ
A

mented with a timer interrupt. In this application, the timer runs at 250 Hz, produc-
ing an individual row refresh of about 36 Hz, but leaving only 4 mS to calculate
and clock out the row data.

Serial Input and Command Parser

The application is enhanced with the addition of a serial input routine to update
the message display. ZiLOG offers other well-documented application articles
detailing bit-banged serial interface routines, so this section is brief.

A 9600 baud receive only interface is implemented. Because of the severe real
time constraints in producing a flicker-free display, the display is blanked during
reception of serial data. In addition, the first character is ignored, requiring the
addition of one dummy character at the start of each message transmitted. This
action makes it easier to code the serial routines as well.

Interrupt 2 (the falling edge of P31) detects the start bit of the dummy character,
as well as the start bit of subsequent characters. Timer 1, normally used to refresh
the display, synchronizes the sampling of the incoming bits.

Operational Result

Command List
The implemented commands are:
. xLmessage <CR>

. xSmessage <CR>

where:

* xis adummy character signalling the Z8 that serial data is following, acting as
a 'start bit' for the sequence. Wait a minimum of 5 mS after sending the
dummy character to allow the code to re-synchronize and prepare for the next
start bit. All subsequent characters are sent without delays between the
characters at the full baud rate of 9600 bits per second.

* LorS arethe commands. L is LEFT Shifting Message and S is STATIC
Message.

* message is an ASCII character string, up to 63 characters.

* <CR> is the message terminator (ASCII 13 dec).

Display Aesthetics

Some non-obvious aesthetic issues should be considered when displaying mov-
ing messages on a multiplexed display.

ANO003801-Z8X1199

Application Note
Z86E04-Based RS-232 Controlled Moving Message Display

&
O(’dQ
A

When displaying a moving message, pad the message with ten ASCII spaces so
the message appears to shift in from the right of the display. As the message
shifts left, add trailing spaces, or OFFs, to enhance readability. In this application
code, the trailing spaces (or “clocked offs”) are added automatically, but the pre-
ceding ten spaces should be part of the downloaded ASCIl message for left shift-
ing messages.

Scanning fop down while scrolling left produces the illusion of a character slanted
to the left. And vice versa. To experiment, re-arrange the table entries at label
ROW_XFORM_TABLE.

Produce slightly warped characters by scanningrows 6 0514 2 3.

Summary

Controlling a 420-LED moving message display presents severe real time chal-
lenges to any microcontroller. This application demonstrates the use of the Z8’s
built-in hardware timer, falling-edge interrupt, rich instruction set, and powerful
architecture to conquer these challenges.

The application code readily fits into the 1k program space of the Z86E04, using
only 640 bytes for code plus another ~ 350 bytes for lookup tables. Expansion to a
2k Z86EO08 allows addition of lowercase characters, scores of canned messages,
or a more complex command structure without impacting the software beyond the
additional feature requirements.

Technical Support

Source Code

Assembling the Application Code

Any Z8 assembler can be used to assemble the code, but ZiLOG Developer Stu-
dio (ZDS) is recommended. This integrated suite of software tools allows for pro-
gram file handling, editing, real-time emulation and debugging when used with the
appropriate emulator. Future versions of ZDS incorporates a C-Compiler, simula-
tor, and trace buffer. ZILOG’s web page contains news and free downloads of the

ZDS.

Place all the.S files in their own sub-directory. Invoke ZDS and select a new
project from the file menu. Under Target Selection , select Family . Under
Master Select , select Z8. Under Project Target , select Z86E04. Select

the appropriate emulator type to be used. Browse to fill in the project name by
clicking on the “...” key. Select the sub-directory containing the.S files, name the
project, (the extension is added by the program), click Save and the first ZDS

ANO003801-Z8X1199

Application Note
Z86E04-Based RS-232 Controlled Moving Message Display

&
O(’dQ
A

screen reappears with the project name, path and file extension filled in. When
everything is acceptable, click OK

Click on the Project tab and select Add to Project , then select Files .
Double click on MMSG.Sile. This file and all the other.S files are now displayed in
the project window. Next, click on the Build tab and select Build. = The output
window display the assembly results. The standard assembler and linkage set-
tings produce listing and hex files, along with the ZDS files, in the same sub-direc-
tory. Save the project and files by clicking on the File tab and selecting these
options. The ZDS project file is included, and when ZDS is installed, the above
program assembly steps can be omitted.

Programming a One-Time Programmable (OTP) device is accomplished by
selecting the OTP option with the hex code installed. Take care to never install the
OTP until access to it is required, either for blank checking, verification, or pro-
gramming. Insert a blank OTP, Z86E04 or Z86E08, into the OTP socket and click
on the program OTP selection. Differences exist between earlier GUIs and the
ZDS, so take the time to read and understand the operation of the software in use.
Pad unused memory locations with FFh before programming. If padding is not
consistently done, differences in the check sum occur. The check sum for this pro-
gram, if unchanged, is 79F6h.

The following source files are included in the source code below:

* mmsg.s The main code

* z8ioass.s Constant definitions and equate

* z8regass.s Z8 internal register assignments

* date.s An embedded date stamp

* ctable.s Character lookup table— ASCIl Dots

Instead of displaying each file separately, they are listed exactly in the order and
location they are <.included> in the main source, mmsg.s. This order is similar to
the way the output listing file (mmsg.Ist) is generated.

ANO003801-Z8X1199

Application Note
Z86E04-Based RS-232 Controlled Moving Message Display

&
O(’dQ
A

TITLE:
DATE:
PURPOSE:

FILE TYPE:

mmsg.s =
started July 1999

STAND ALONE MODULE -

HEADER FILES: ZSioass.s,ZBr_egass.s =

HARDWARE: NovaTech Z8 _Prot. Red Board ZPCB18 =
Custom Moving Message Display PCB =

ASSEMBLER: ZIiLOG ZDS/ZR/IASM =
PROGRAMMER: Bob Bongiorno =

release history:

Version Date Description

1.00 7/10/1999 Proto release

1.10 9/14/1999 Reasonably commented release

Burn OTP

shkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkhkkkkkkkkkkkkkkkkkhkhkhkkkk
;10 MAP
skkkkkkkkkkkkkkkkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkhkkkhhkkhkkkhkkkhkkkhkhkhkhkhkhkkhkhkkikkhx
;P00 -> STROBE (Display)
;P01 -> OE (Display)

P02 -- unused

‘P20 -> DATA (Display)
;P21 -> CLOCK (Display)

P22 -- unused

P23 -- unused

P24 -- unused

P25 -- unused

P26 -- unused

P27 -- unused

'P31 - Rx5v TTL RS232

P32 -- unused

P33 -- unused

' GLOBALS ON ;Required for Symbol File generation.
:7\-**
; include files: non-code generating

constant & i/o assignments - z8ioass.s
register assignments - z8regass.s
see end of source for character table

1
’
’
kkkkk *% * *%
’
’

* *% *kkkkk *kkkkk *% *%

INCLUDE "z8ioass.s"

ANO003801-Z8X1199

Application Note
Z86E04-Based RS-232 Controlled Moving Message Display

&
O(’dQ
A

TITLE: z8ioass.s =
DATE: July 1999 =
PURPOSE: =

FILE TYPE: .included header_file =

HARDWARE: NovaTech Z8 TDrot. Red Board ZPCB18 =
Custom Moving Message Display PCB =

ASSEMBLER: ZIiLOG ZDS/ZR/IASM =
PROGRAMMER: Bob Bongiorno =

shkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkhhhhhhhhhhkkkkkkkkkkkkx

*

*

* CONSTANT EQUATES *
ETX .equ O

CR .equ 13

LF .equ 10
SPACE .equ 32
b0 equ 1

bl .equ 2

b2 .equ 4

b3 .equ 8

b4 .equ 16

b5 .equ 32

b6 .equ 64

b7 .equ 128
nb0 .equ 255-b0
nbl .equ 255-b1
nb2 .equ 255-b2
nb3 .equ 255-b3
nb4 .equ 255-b4
nb5 .equ 255-b5
nb6 .equ 255-b6
nb7 .equ 255-b7
STACK .equ 080h ;for '08 '04

.INCLUDE "z8regass.s"

TITLE: Z8REGASS.S =
DATE: July 9, 1999 =
PURPOSE: Z8 INTERNAL REGISTER ASSIGNMENTS =

FILE TYPE: .included Header File

HARDWARE: NowﬂbchzéﬁmtRedBodePCBlS:
Custom Moving Message Display PCB =

ANO003801-Z8X1199

Application Note

Z86E04-Based RS-232 Controlled Moving Message Display

ASSEMBLER: ZiLOG ZDS/ZMASM =
PROGRAMMER: Bob Bongiorno =

*% *% * *% * *% *kkkkk *kkkkk *% * *

*

REGISTER EQUATE TABLE *
*

kkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkhkkkkhkkkkkkhkkkkhkkkkkkkkkkkkkk

R RTRTETG N

;00-03 are hw reserved !

P2 IMAGE .equ O05h

CC_HIGH .equ 06h

CC_LOW .equ 07h
ROW_MASK .equ 08h ;2"ROW
ROW .equ 0%9h
ROW_XFORM .equ OAh

TOD .equ 0Bh

RXING .equ 0OCh

RX_CHAR .equ ODh
IN_CHAR .equ OEh
P3_SAMPLE .equ OFh

RPWORK .equ 010h

RP_IRQ .equ 020h

COMMAND .equ 030h

MSG_BASE .equ 031h ;31 - 6f =63 char msg buffer
CC_MAX .equ 070h ;limit!

kkkkk *% * *% *kkkkk *kkkkk *kkkkk *% *kkkkk

L

; Interrupt Vectors
skkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhhhkkkkkkkkkkkkkkkkkhkhkhkkhkk
;

.ORG 0
.word 10 ; unused
.word 11 ; unused
.word 12 ; Falling edge P31 = Start Bit !!!
.word 13 ; unused
.word 14 ; unused
.word 15 ; Timer 1

’
skkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkhkkkkkkkkkkkkkkkkkhkhkhkkkk
1

; Start of Executed Code

skkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkhkkkkkkkkkkkkhkhkkkhkkkkkkkkkkhkkkkk
’

COLD_RESET:
jr START
nop ;Space out so time stamp falls on a nice even
nop ;hex boundary

-k *% * *% * *% * * *% * *% * *%

Embedded Time/Datestamp and Version

skkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhhkhkkkkkkkkkkkkkkkkkkhkhkkkk

i_DATE: ;. ASCII "11-24-1991 22:22"

&
O(’dQ
A

ANO003801-Z8X1199

10

Application Note
Z86E04-Based RS-232 Controlled Moving Message Display

INCLUDE "date.s"
ASCIl "09-14-1999 12:24"

ROM_VERSION:
ASCIl "01.10",CR,LF,ETX :00.00 -- 99.99 ASCII

kkkkk *% * *% *kkkkk *kkkkk *kkkkk *% *kkkkk *%

Inline INITZ8 Initialize the monitor S8 processor and registers

skkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkhkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

START:
INITZS:
DI ; initialize interrupt flip flops
clr PO ; required for some older external Rom parts
clr IMR ; make sure nobody's enabled
clr IRQ ; Kill any spurious interrupts
LD SPL#LOW(STACK)
El ; enable writes to IMR
DI ; disable interrupts
call INZ_ 10 ; non-inline misc initialization
clr RXING ;clr RX State Machine ...
RESTART:
call INZ_PUP_MSG ;default moving message
PRESTART:
call INIT_TIMER1 ;setup fortimer 1 IRQ
cr IRQ ;clr pending

Id IMR#(b5|b2) ;timerl & P31 Falling (RS232 RX Start Bit)

I[d CC_HIGH,#0 ;start at Oth character
ld CC_LOW,#0 ;0th column

; ;RESET OE STROBE

; ;(b2) (b1) (bO)
Id PO,#b2 ; 0 0
clr IRQ
El

’
shkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkhhhhhhkkhkhkkkkkkkkkkkkhkhhhhkkx

Main Foreground execution Loop - wait here while left shifting

* *kkkkkkkkkhhhhkx *kkkkk *kkkkk *kkkkkkkhhhhkk

MAIN:

cp COMMAND#D' ;stay here until a LEFT shifting msg is done
jr NZ,MAIN ;or indefinitely if a static msg
DI

l[d COMMAND,#L'
jr PRESTART

’
rkkkkkkkkkkkkkkkkkhkkkkhkkkkkkhkkkhkkkhkkkhkkkkkhhkkhkkkkkkkkkkhkkkkk

This is secondary execution Loop -
; we jump here after Rxing first RS232 char and grab and buffer
; subsequent chars until a <CR> is received

* *% *kkkkk *kkkkk *% * *%

RS232_FIRST_CHARACTER:
LD SPL,#LOW(STACK)
srp #RPWORK
ld r0,#MSG_BASE

ANO003801-Z8X1199

Application Note

Z86E04-Based RS-232 Controlled Moving Message Display

ld r2,#SPACE

$$:
Id @r0,r2
inc r0
cp r0,#(CC_MAX) ;clr out buffer memory
ir Nz$B
ld r2#CR
Id @ro0,r2
Id IMR,#b2
clr IRQ
El ;allow subsequent start bits

Id rl1#MSG_BASE-2) first char is -1, pre inc -2
CHARIN_LP:

inc rl
cp rl#CC_MAX+1)
ir NZzZS$F
55 dec rl ;just keep overwriting last char
call CHRIN ;get a char in r0, Set Carry iff CR
Id @r1,r0

ir C,PARSE_NEW_COMMAND
jr CHARIN_LP

PARSE_NEW_COMMAND:

DI
clr RXING ;allow for a NEW msg next time
jp PRESTART
CHRIN:
tm RXING,#b7 ;WAIT indefinitely for a char
ir Z,CHRIN
Id r0,RX_CHAR
and RXING #nb7 ;clr char available
cp ro,#'Z'+1
ir CS$F
55 and r0,#nb5 ;convert to LC if >=cap 'Z'
cp r0#CR
i Z3$F
rcf ;no - clear carry
ret
$$:
scf ;yes set carry
ret

’
rkkkkkkkkkkkkkkkkhkkkhkkkkkkhkkkhkkkkkkkkkkkkhhkkhkkkkkkkkkkhkkkkk

; End of Foreground execution Loop
rkkkkkkkkkkkkkkkkkkkhkkhkkhkkhkkhkhkkhkhkkhkkhkhkkhkkkhkkhkkkhkkhkkhkkhkkhkkkhkkkkkkkkkkx

shkkkkkkkkkkkkkkkhkhkkhhhhhhhrrkkkkhkhkkhhhhhhhhhhrrkkkkkkkhkhkkhhhhrx
’

; SUBROUTINE: INZ_PUP_MSG

; Initialize Power Up Message to a default scrolling

; Message that can be downloaded over.

; This copies the Message in ROM @ Loc: PUP_MSG
; to internal register start at Loc: MSG_BASE

B R e e
’

&
O(’dQ
A

ANO003801-Z8X1199

12

Application Note
Z86E04-Based RS-232 Controlled Moving Message Display

&
O(’dQ
A

INZ_PUP_MSG:
ld COMMAND#L' ;command for a left scrolling msg
Id rl,#MSG_BASE ;pointto Start of ASCII MSG in Register Space

Id r2,#HIGH(PUP_MSG)
Id r3,#LOW(PUP_MSG)

INZ_PM_LP:

Idc r0,@rr2

cp rO#ETX

ir Z$F

Id @r1,r0

inc rl ;destination ++
incw 2 :source ++

ir INZ_PM_LP
ret

PUP_MSG:
ASCII ™ HELLO WORLD: ZILOG MICRO MOVING MESSAGE
DEMO",CR,ETX

’
rkkkkkkkkkkkkkkkkhkkkhkkkkkkhkkkhkkkhkkkhkkkkkhhkkhkkkkkkkkkkhhkkkk

* SUBROUTINE: INIT_TIMER1
; Set up Timer 1 for Periodic and Recurring
15 IRQs

kkkkk *kkkkkkkhhhhhhkhikkkxkx *kkkkk *kkkkk *kkkkkkkhhhhkk

INIT_TIMERL:

and TMR,#nb3 ;disable count - T1!
ld PREL1#20*4+(b1|b0) ;prescal = 20, clock internal, wrap

;a pre-scaler of 1 at 8 MHz yields 1uS per T1 !l!
ld T1,#200 ;4000 uS (200*20) for 8. 0 MHz xtal
;adjust this or prescaler dep. on xtal
;watch service length !
;this yields a row refresh of 250Hz/7rows
i~ 35.7 Hz
I5 period Individual Row Refresh (I5 rate / 7 rows)
3000 uS 47.6 Hz
3500 uS 40.8 Hz
3760 uS 36.0 Hz
4000 uS 35.7 Hz

The more frequently the IRQ, the faster the scan , the less the flicker
However, there is a lot to execute in the IRQ (clocking out 60 cols.)
and you have to make sure you don't run out of time.

For flicker free operation, try to keep individual row refresh rate
between 40-50 Hz. If you have a red filter, Ok to go down to 30 Hz.

For much more than 60 columns, or much > 36 Hz, this requires a
faster crystal than the 8 mHZ we are using. Or better code
crunching during the DO_60_LOOP:

ANO003801-Z8X1199

13

Application Note

Z86E04-Based RS-232 Controlled Moving Message Display

or TMR#(b2|b3) ;reload T1 & enable count
ret

; Subroutine: INZ_10

; Miscellaneous initialization that does not need
; to be inline, so it was put in a subroutine to

; improve code readability.

skkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkhkkkhkkkkkkkkkkkhkkkhkkkkkkkkkkhkkkkk

INZ_10:

LD IPR,#00001100B ; Priority:5>3>0>2>1>4 (A>B>C)
clr P2M ; all P2 OUTPUTS

LD P3M,#00000001b ;b7-b2=0 RESERVED
bl =1 P31/32 ANALOG !
;b0 =1 Port 2 push pull

LD PO1M,#00000100b ; b7-b3 =0 RESERVED
;b2 =1 RESERVED
; b1b0 =00 PO0O-P0O3 = OUTPUTS
ld rp,#RPWORK
ret

’
rkkkkkkkkkkkkkkkkhkkkhkkkkkkhkkkhkkkhkkkhkkkkkhhkkhkkkkkkkkkkhhkkkk
’

; Interrupt Routines:
; 12 is falling edge of P31 (used for RS-232 Rx)
; I5is Timer 1 IRQ

kkkkk *kkkkkkkhhhhhhkhikkkxkx *kkkkk *kkkkk *kkkkkkkhhhhkk

10: ; unused

11: ; unused

13: ; unused

14: ; unused
JP START

’
rkkkkkkkkkkkkkkkkkhkkkkhkkkkkkhkkkhkkkhkkkkkkhkkhkhkkkhkkkkkhkkkkhkkkkk

; Interrupt Routine: 12

; 12 is falling edge of P31 == Start bit
we need to delay about 52 uS (1/2 bit time)
at 8 mHZ this is 208 cycle to center on Rx data and
optionally perform false start bit detection.

quite a bit by the time code at 12: is executed.
It also means that there is additional latency when |5 starts
interrupting, so the actual target should be ~ 140 cycles

IRQ latency is about 68 cycles which means we've already delayed

rkkkkkkkkkkkkkkkkkhkkkhkkkkkkhkkkhkkkkkkhkkkkhkkhhkkhkkkkkkkkkkhkkkkk

; RESET OE STROBE
;o (b2) (b1) (bO)

ld PO,#b2 ;10 1 0

clr IN_CHAR ;76

tm RXING,#b5 ;10

jr NZ,2_SUBSEQUENT;12

and P2,#nb6 ;scope trigger for timing
and TMR,#nb3 ;disable any count !
ld PREL1#20*4+(b1 ;prescal = 20, clock internal, 1x only

I2: ;falling edge P31 = Start bit ...

0 DISPLAY OFF!

ANO003801-Z8X1199

Application Note
Z86E04-Based RS-232 Controlled Moving Message Display

&
O(’dQ
A

Id T1,#104 'RESET T1 JIC

or TMR,#(b2|b3) ;reload T1 & enable count!

clr IRQ
3:

tm IRQ,#b5

ir Z,3%B ;wait 2mS till 1st char flushed thru
or P2#b6 ;10

Id RXING,#b5 ;set 1st char HO !

clr IRQ

ip RS232_FIRST_CHARACTER
I2_ SUBSEQUENT:

;by the time we get around to re-init timer 1 for subsequent bit rate

;IRQs below (see <*****) we are pretty well centered on the incoming bitstream
;having introduced about 176 out of (208-68) cycles required to be perfectly
;centered. (we are just past center, about 9 uS)

;If desirable, use the scope trigger (firing unused outputs) and

;a delay loop to center perfectly, by moving the reload/restart of T1 back up
;through the code a little. Or carefully count cycles.

;This is were you could implement false start bit detect if desired.

and RXING,#b5 ;10 clr all but b5
or RXING,#b6 ;10 setb6

Id IMR,#b5 ;10 ONLY timer IRQs allowed
' and TMR,#nb3 ;10 disable any count!
ld PREL1#1*4+(b1]|b0);10 prescale =1, clock internal, wrap
ld T1,#104 ;10 RESET T1
or TMR#(b2|b3) ;10 reload T1 & enable count <*xx****
or P2#b6 ;scope trigger
clr IRQ ;clr pending timer/P31 IRQs
' iret

:***

; Interrupt Routine: 15

I5 is the periodic Timer 1 IRQ

It is used for two purposes ...

I5_SERIAL_IN:
If we are in the middle of Receiving RS-232 Data, it times
and reads in the accumulates the data bits
IRQ latency is about 68 cycles

15:
else, it does the Row interlacing/multiplexing and scrolls
the message as required.

shkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhhhhhkkkhkhkkkkkkkkkkkkhkhhhhkx
1

;RXING =

;b7 ==> CHAR AVAILABLE in RX_CHAR

;b6 ==> RXING in Progress (IN_CHAR)

;b5 ==> RXING char 2 thru ?

:b4->b0 decimal 0-7 ==> clocking data bits

;b4->b0 decimal 8 ==> stop bits x1xx 1000 REST STATE MACHINE

ANO003801-Z8X1199

15

;DON'T USE little Rs (working register addressing) - no time to save RP !!

I5_SERIAL_IN:
"and P2#nb6 :SCOPE TRIGGER
" tm RXING#b3 -still clocking d0-d7 ?
jr Z,KEEP_CLOCKING 'YES
:NO
ld RX_CHAR,IN_CHAR
or RXING, #b7 :set char available
and RXING,#nb6 ;leave b5 alone !
Id IMR,#b2 ;re-enable start detection ONLY
clr IRQ ; reset any pending IRQs
I5_ RTNA:
or P2,#b6 ;exit gik - faster than jr DONE_RX

KEEP_CLOCKING:

scf ;assume "1"
tm P3_SAMPLE,#bl
jr NZS$F
rcf
$$:
rrc IN_CHAR ;rotate into b7 and propagate down
NEXT_BIT:
inc RXING
I5_RTNB:
or P2,#b6 ;exit gik - faster than jr DONE_RX

ROW_XFORM_TABLE:
.byte
.byte
.byte
.byte
.byte
.byte
.byte

;i\/lacro definition below

CLOCK_RO_ROW_MASK:
P2,#(nb0&nb1)

P2,#00000000b ;clock(bl) = LOW

P2
r0,ROW_MASK

Z,3DCRM

P2,#00000001b ;Zero, turn off LED by clocking a one

iret

iret

.byte
.byte
.byte
.byte
.byte
.byte
.byte

clr
tm

5,b0
3,b1
1,b2
2,b3
6,b4
4,b5
0,b6

5,b0
0,b6
3,b1
4,b5
1,b2
6,b4
2,b3

and

Application Note

Z86E04-Based RS-232 Controlled Moving Message Display

;output a "5" to access Row 0
;output a "3" to access Row 1
;output a "1" to access Row 2
;output a "2" to access Row 3
;output a "6" to access Row 4
;output a "4" to access Row 5
;output a "0" to access Row 6

;output a "5" to access Row 0
;output a "0" to access Row 6
;output a "3" to access Row 1
;output a "4" to access Row 5
;output a "1" to access Row 2
;output a "6" to access Row 4
;output a "2" to access Row 3

.macro

DATA (b0)=LOW
1if NZ, bit set = LEAVE DATA =0= ON

&
O(’dQ
A

ANO003801-Z8X1199

16

Application Note

Z86E04-Based RS-232 Controlled Moving Message Display

or P2#00000001b ;Zero, turn off LED by clocking a one
$DCRM:

or P2,#00000010b ;Raise Clock

.endm

I5: ;Timer 1 IRQ service routine

Data transferred on CLOCK rising edge
; Latches pass thru to outputs when STROBE is high
; Output is ENABLED when OE is HIGH

; LOWER STROBE

; clock out 60 data bits RIGHT TO LEFT:

; Do 60x

; Lower clock: Output Data: Raise CLOCK;clocks on rising edge
; LOOP

Clock out 3 Row Selects
! LOWER OE ;Display off

; RAISE STROBE, OE
; LOWER STROBE

ld P3_SAMPLE,P3 ;snapshot P3 NOW ! Just in case RXING
in progress
tm RXING #b6
jr NZI5_SERIAL_IN ;yes Il
push rp
srp #RP_IRQ
and ROW, #7 ;JIC makes a7
dec ROW ;For ROW =610 0 Step -1
jr PLS$F
Ild ROW,#6
$$:
Id r2,#HIGH(ROW_XFORM_TABLE)
ld r3#LOW(ROW _XFORM_TABLE)
Id r0,ROW
rcf
rlc r0 ;*2
add r3,r0
adc r2,#0
Idc r0,@rr2
incw rr2
Idc rl1,@rr2
I[d ROW_XFORM,r0
Ild ROW_MASK,r1
ld r4,CC_HIGH
Id r5CC_LOW
Id r6,#60 ;clock out 60 data bits ...
ld r7,#MSG_BASE
Id r8#CR
Id r9,#SPACE
DO_60_LOOP:
; Id r0#MSG_BASE ;point to Start of ASCIl MSG in Registe

&
O(’dQ
A

ANO003801-Z8X1199

17

Application Note

Z86E04-Based RS-232 Controlled Moving Message Display

;Space
Id rO,r7
add rO,r4 ;index to proper character
ld r1,@r0 ;fetch
; cp rl#CR
cp rlr8
clr 10 ;assume end of Msg, preload w/ "OFF"
jr Z,OUTPUT_DATA ;CR=YES, skip lookup & increment
; sub rl1#SPACE ;CHAR TABLE STARTS AT space
sub rl,r9 ;CHAR TABLE STARTS AT space
Id r2,rl ;copy to r2
rlc rl ;*¥2, carry is clear
add r1,r2 ;*3 (still no overflow if char < 107 dec)
; rcf
; clr r0
rfic rl ;
rlc 0 ;*6 ...RR0O = (CHAR - 32)*6

add rl #LOW(ASCII_TABLE)
adc rO,#HIGH(ASCII_TABLE) ;rrO points to proper char

add r1,r5 ;CC_LOW
adc r0,#0 ;and now to the proper column
Idc r0,@rr0 ;FETCH Column Data
; ;0 has column data for Current Column
inc 5 ;next Column CC_HIGH,LOW ++
cp r5#6
jr NZ,OUTPUT_DATA
clr 15
inc r4
OUTPUT_DATA:
CLOCK_RO_ROW_MASK ;RO has column data, ROW_MASK has proper
;bit to ex.

dinz r6,D0_60_LOOP

DONE_60:
Id- r0,ROW_XFORM
Id ROW_MASK #b0

CLOCK_R0O_ROW_MASK :output LSB of ROW address
" 1d ROW_MASK,#bl
CLOCK_R0O_ROW_MASK ;output MSB of ROW address

ld ROW_MASK,#b2
CLOCK_RO_ROW_MASK ;output HSB of ROW address

after all data is clocked,
; how bang the lines around to strobe the new data in

; ‘RESET OE STROBE
; ;(b2) (b1) (bO)
1 0 0

Id PO#b2
Id PO#b2|b0 1 0 1
Id PO #b2[b1|b0 11 1
Id PO#b2[bl 1 1 0

" ¢cp ROWH0

&
O(’dQ
A

ANO003801-Z8X1199

18

Application Note

Z86E04-Based RS-232 Controlled Moving Message Display

ir NZI5_RTN ;every time full refresh is complete
cp COMMAND,#S' ;if Static, leave Pointers alone
jr ZI5 RTN
cp COMMAND,#D' ;or if shift is done, leave Pointers alone
r ZJI5_RTN
' ld r0,#MSG_BASE ;point to Start of ASCII MSG in Register
;Space
add r0,CC_HIGH ;if char @ BASE + CCHlI is cr, don't shift
Id rl,@r0 ;fetch
cp rl#CR
ir NZSHIFT_LEFT
ld COMMAND,#D' ;tell foreground shift left complete !
SHIFT_LEFT:
inc CC_LOW ;else continue scrolling left
cp CC_LOW.,#6
ir NZI5_RTN
clr CC_LOW
inc CC_HIGH
I5 RTN:
and IRQ,#nb5
pop rp
iret
:***
; include file: character table

*kkkk *kkkkkkkhhhhkhkhikkkxkx *kkkkk *kkkkk *kkkkkkkhhhhhk
’

INCLUDE "ctable.s"

TITLE: ctable.s =
DATE: July 1999 =
PURPOSE: =

FILE TYPE: included char Ioo_kup table =

Custom Moving Message Display PCB =

ASSEMBLER: ZiLOG ZDS/ZK/IASM =
PROGRAMMER: Bob Bongiorno =

HARDWARE: NovaTech Z8 Prot. Red Board ZPCB18 =

™o

SCIl_TABLE: ;Only 32-90 imple-
:mented

ESPA: .BYTE 080H,080H,080H,080H,080H,080H :20-
EXCLAM: .BYTE 080H,080H,080H,079H,080H,080H 21-!
DQUOTE: .BYTE 080H,080H,070H,080H,070H,080H 22-"
POUND: .BYTE 014H,07FH,014H,07FH,014H,080H 23-#
DOLLAR: .BYTE 012H,02AH,07FH,02AH,024H,080H :24-$
PERCEN: .BYTE 062H,064H,008H,013H,023H,080H :25-%
ANDSG: .BYTE 036H,049H,055H,022H,005H,080H 126-&
GRAVE: .BYTE 080H,080H,050H,060H,080h,080H 27
LRBRAC: .BYTE 080H,080H,01CH,022H,041H,080H ;28-(
RRBRAC: .BYTE 080H,041H,022H,01CH,080H,080H ;29-)
ASTE: .BYTE 014H,008H,03EH,008H,014H,080H 2A-*

&
O(’dQ
A

ANO003801-Z8X1199

19

Application Note
Z86E04-Based RS-232 Controlled Moving Message Display

- .
O(’dQ
A

PLUS: .BYTE 008H,008H,03EH,008H,008H,080H ;2B-+
COMMA: .BYTE 080H,080H,005H,006H,080H,080H ;2C-,
MINUS: .BYTE 008H,008H,008H,008H,008H,080H ;2D--
DOT: .BYTE 080H,080H,003H,003H,080H,080H ;2E-.
RSLASH: .BYTE 002H 004H 008H OlOH 020H 080H 12F-/
X0: .BYTE O03EH, 041H 041H O41H O3EH 080H ;30

X1: .BYTE 080H, 021H 07FH,001H,080H, 080H ;31

X2: .BYTE 021H,O43H,O45H,049H,031H,080H ;32

X3: .BYTE 042H,041H,051H,069H,046H,080H ;33

X4: .BYTE O0O0CH,014H,024H,07FH,004H,080H ;34

X5: .BYTE 072H,051H,051H,051H,04EH,080H ;35

X6: .BYTE O01EH,029H,049H,049H,006H,080H ;36

X7: .BYTE 040H,047H,048H,050H,060H,080H ;37

X8: .BYTE 036H,049H,049H,049H,036H,080H ;38

X9: .BYTE 030H,049H,049H,04AH, 03CH 080H ;39
COLON: .BYTE 080H 080H 036H 036H 080H 080H ;3A-:
SCOLON: .BYTE O8OH 080H 035H O36H 080H 080H ;3B-;
LARROW: .BYTE 080H,008H,014H,022H,O41H,080H ;3C-<
EQUAL: .BYTE 014H,014H,014H,014H,014H,080H ;3D-=
RARROW: .BYTE 080H,041H,022H,014H,008H,080H ;3E->
QUESTI: .BYTE 020H,040H,045H,048H,030H,080H ;3F-?
AT: .BYTE O03EH,041H,05DH,055H,05DH,038H ;40-@
XA: .BYTE O03FH,044H,044H,044H,03FH,080H 41

XB: .BYTE 07FH,049H,049H,049H,036H,080H 42

XC: .BYTE O03EH,041H,041H,041H,022H,080H ;43

XD: .BYTE 07FH,041H,041H,022H,01CH,080H 44

XE: .BYTE 07FH,049H,049H,049H,041H,080H 45

XF: .BYTE 07FH,048H,048H,048H,040H,080H ;46

XG: .BYTE O03EH,041H,049H,049H,02FH,080H A7

XH: .BYTE 07FH,008H,008H,008H,07FH,080H ;48

XI: .BYTE 080H,041H,07FH,041H,080H,080H ;49

XJ: .BYTE 002H,001H,041H,07EH,040H,080H JAA

XK: .BYTE 07FH,008H,014H,022H,041H,080H 4B

XL: .BYTE 07FH,001H,001H,001H,001H,080H ;4C

XM: .BYTE 07FH,020H,018H,020H,07FH,080H ;4D
XN: .BYTE 07FH,010H,008H,004H,07FH,080H JAE

XO: .BYTE 03EH,041H,041H,041H,03EH,080H ;AF

XP: .BYTE 07FH,048H,048H,048H,030H,080H ;50

XQ: .BYTE O03EH,041H,045H,042H,03DH,080H ;51

XR: .BYTE 07FH,048H,04CH,04AH,031H,080H ;52

XS: .BYTE 031H,049H,049H,049H,046H,080H ;53

XT: .BYTE 040H,040H,07FH,040H,040H,080H ;54

XU: .BYTE 07EH,001H,001H,001H,07EH,080H ;55

XV: .BYTE 07CH,002H,001H,002H,07CH,080H ;56
Xw: .BYTE 07EH,001H,00EH,001H,07EH,080H ;57
XX: .BYTE 063H,014H,008H,014H,063H,080H ;58

XY: .BYTE 070H,008H,007H,008H,070H,080H ;59

XZ: .BYTE 043H,045H,049H,051H,061H,080H ;5A

OPTIONAL lowercase SET BELOW - not assembled (see .IF) but can be
; if using a larger ROM (for example, Z86E08)

AF 0

LBRAC: .BYTE 080H,080H,07FH,041H,041H,080H,0H ;5B-[
LSLASH: .BYTE OH ;5C-\

RBRAC: .BYTE 080H,041H,041H,07FH,080H,080H,0H ;5D-]
UPVEE: .BYTE 010H,020H,07FH,020H,010H,080H,0H ;5E-*
UNDER: .BYTE 001H,001H,001H,001H,001H,080H,0H 5F-_

ANO003801-Z8X1199

20

Application Note
Z86E04-Based RS-232 Controlled Moving Message Display

&
O(’dQ
A

ACCENT: .BYTE 040H,020H,010H,080H,0H :60-"
LA: .BYTE 002H,015H,015H,015H,00FH,080H,0H 61
LB: .BYTE 07FH,009H,011H,011H,00EH,080H,0H 62
LC: .BYTE O0OEH,011H,011H,011H,002H,080H,0H 63
XLD: .BYTE O0OEH,011H,011H,009H,07FH,080H,0H :64
XLE: .BYTE O0OEH,015H,015H,015H,00CH,080H,0H 165
LOWERF: .BYTE 008H,03FH,048H,040H,020H,080H,0H :66
LG: .BYTE 018H,025H,025H,025H,03EH,080H,0H 67
LH: .BYTE 07FH,008H,010H,010H,00FH,080H,0H :68
LI: .BYTE 080H,011H,05FH,001H,080H,080H,0H :69

LJ: .BYTE 002H,001H,011H,05EH,080H,080H,0H 16A
LK: .BYTE 080H,07FH,004H,00AH,011H,080H,0H :6B
LL: .BYTE 080H,041H,07FH,001H,080H,080H,0H :6C
LM: .BYTE O01FH,010H,00CH,010H,00FH,080H,0H ;6D
LN: .BYTE 01FH,008H,010H,010H,00FH,080H,0H :6E
LO: .BYTE 00EH,011H,011H,011H,00EH,080H,0H 6F
LP: .BYTE O01FH,014H,014H,014H,008H,080H,0H ;70
LQ: .BYTE 008H,014H,014H,00CH,01FH,080H,0H 71
LR: .BYTE 01FH,008H,010H,010H,008H,080H,0H 72
LS: .BYTE O009H,015H,015H,015H,002H,080H,0H 73
XLT: .BYTE 010H,07EH,011H,001H,002H,080H,0H 74
LU: .BYTE 01EH,001H,001H,002H,01FH,080H,0H 75
LV: .BYTE 01CH,002H,001H,002H,01CH,080H,0H 76
Lw: .BYTE O01EH,001H,006H,001H,01EH,080H,0H 77
LX: .BYTE 011H,00AH,004H,00AH,011H,080H,0H ;78
LY: .BYTE 018H,005H,005H,005H,01EH,080H,0H ;79
LZ: .BYTE O011H,013H,015H,019H,011H,080H,0H TA
LCBRAC: .BYTE 080H,008H,036H,041H,080H,080H,0H ;7B
BAR: .BYTE 080H,0H ;7C-|-BLANK BAR
RCBRAC: .BYTE 080H,041H,036H,008H,080H,080H,0H ;7D-}
TIL: .BYTE O0OCH,012H,03FH,012H,004H,080H,0H ;7E-~-CENT SIGN
DEL: .BYTE OH :7F-DO NOT USE
.endif

ANO003801-Z8X1199

21

Application Note

Z86E04-Based RS-232 Controlled Moving Message Display

Flow Charts

Figure 3.

Use Row # as an index to lookup ASCII
char & row drivers

ThisCharCounter(High,Low) =
CharCounter(High,Low)
COUNTDOWN =60 (DO 60X)

|

Fetch ASCIl Char @ MSG_BASE +
TempCharCounter(High) in Reg Space

<CR>

No
Yes v

Fetch ASCII Column Data from
ROM lookup table

.

INC ThisCharCounter(Char,subcolumn)
to point to next column

|

CLOCK OUT 1 bit proper row from
ASCII lookup above

Done 60x ?

Yes
v
Clock out three bytes of ROW ID
Lower OE Raise STROBE
Raise OE Lower STROBE

No

iret < i

o4
&L)22

Given a Row number, 0-6 - tranform it to a proper
char. row and row binary output code

CC_HIGH is current character pointer - High byte.

It points to character currently displayed at leftmost
column. CC_LOW is current character pointer - Low
byte. It points to a particular column (0-5) of
CC_HIGH

The entire Message is stored in Z8 register space
starting at register MSG_BASE

If it is a <CR> = end of message, we will clock out
"1"s to turn off the rest of the LED columns for this
scan.

Otherwise., point to char's ASCII lookup table and
fetch the proper Column data

Bump to next column in preparation for next time
through the loop

Use ASCII Column data ANDed w/ ROW
transform to figure out whether to clock out a "0"
(ON) or a "1" (OFF)

Keep going until all 60 bits of column data have
been clocked

Latch the new Data into the column and row drivers

If All 7 (0-6) Rows have been displayed AND this is
currently a left moving message, Bump CharCounter
by one to implement the scrolling function.

Noﬁ

INC CharCounter(Char,subcolumn)

(Shift Message Left One Column)

until leftmost column is <CR> then
treat as a STATIC MESSAGE

ANO003801-Z8X1199

Application Note
Z86E04-Based RS-232 Controlled Moving Message Display

Schematics

Figure 4. Z86E04 Microcontroller Schematic

vee
Jp2
T U I
) vee
—a1
(2
HEADER 2 ul 3
v 5 | vee pop |11 SIROBE STROBE 2
end ol N2 OE DATA ds
Cl b0 113 OF 5
f— CLOCK 7
1 15 DATA —
XIAL RETURN 14| ep z? 16 CLOCK e 8
n7 v HEADER 8
HCQ 7| xm :gg e Gnd
1
2p 8 MHz P26 Ty RI
P55 Tk Pl
[(] ® P26 - use shoightthvu DB SHIELDED
Y]T ™ P27 — cablefoa PC 1
——+t0
|3 6 | yp a1 8 £ 1 5
I 9 Q1 2
2p P2 g 7 1°
P33 RO RX 3 O
0
=Y b x| 2na4o1 10k 73 "y
end 6nd % o 9
D1 7| DIODE 5 15
V \/
Gnd
1 1
1
Gnd 0

ANO003801-Z8X1199

23

Application Note
Z86E04-Based RS-232 Controlled Moving Message Display

74
o 24

Figure 5. Moving Message Display Driver Schematic

AN3

R7
56

VIED

o

2

8
UCN-5832A

Omo mwa O (&

Oow wraOauw [T
Er

<o

Qow wux Lz

vOD
4

12 - 5x7 modules form a 60 x 7 array.
Each character is 6x7 = 10 characters

MoD
8
%%2%2%2
910123
0000
1111
567686

AND
AN1
ANZ
AN3
AN4
ANS

ANO003801-Z8X1199

Application Note
Z86E04-Based RS-232 Controlled Moving Message Display

&
O(’dQ
A

Test Procedure

Equipment Used

Testing the Moving Message Display requires the following equipment:

* Target Moving Message Display PCBs

* 5y, 3A bench supply

* Windows 95/98/NT-based PC with ZDS 2.11 installed

* Z86CCPO1ZEM(CCP Emulator) Z86CCP00ZAC (Emulator Accessory Pack)
* 8V @ 0.8 A power supply

The following additional software is required to exercise the display’s RS-232
interface:

* mmsg.bas BASIC source code for updating Display from msg.txt.

* mmsg.exe Compile DOS executable of above, hard-coded for COM1.

* msg.txt ASCII file used by mmsg.exe . Downloaded to test the display

* A DOS or Windows terminal program running on the Com: port of choice,
Com. Params = 9600,n,8,1 can be substituted for the above files.

General Test Setup and Execution

Exercise the product by either burning an OTP (stand alone) or running the appli-
cation from the emulator. (If programming an OTP, and the unused memory is
filled with FFh, the check sum should be 79F6h.)

If using an emulator, the PC requires at least two free serial ports: one for the
emulator and one for the application’s RS-232 interface. Follow the instructions in
the Assembling the Application Code section.

Reserve COM1: (if available) for the application serial port. The included BASIC
programs are hard-coded for COM1:. If a problem arises, modify the BASIC
source, or, instead, type in simple commands using any terminal emulator pro-
gram on the Com: port chosen.

If using the included BASIC program, run the program and hit <any key> to step
through various static and scrolling messages. If running from a terminal program,
carefully following the instruction syntax in the Command List section of this appli-
cation note to type the desired message.

Test Results

Using the included BASIC program or Terminal program, the display of static and
scrolling messages can be demonstrated. Modify the source (as described in the

ANO003801-Z8X1199

25

Application Note
Z86E04-Based RS-232 Controlled Moving Message Display

o4
¥ /7 gl 26

text) to scan bottomup instead of top down . Also, slow the refresh rate (Timer 1)
and observe the loss of smooth animation and onset of flicker.

References
Serial Communications Using the Z8 CCP Software UART, AP96Z28X1300,

ZiLOG, Inc., 1997.
Allegro Microsystems Databook, UCN5832A Datasheet, Allegro Microsystems,

1995.

ANO003801-Z8X1199

	Z86E04-Based RS-232 Controlled Moving Message Display
	Acknowledgements
	Discussion
	Refreshing a Multiplexed Display
	LED Module Connection
	Operational Result

	Summary
	Technical Support
	Source Code
	Flow Charts
	Schematics

	Test Procedure
	Equipment Used
	General Test Setup and Execution
	Test Results

	References

