APPLICATION NOTE

1 CHANNEL DAC UsING A
PWM

ZiLOG

Totally Logical

INTRODUCTION

Many MCU applications require a digital-to-analog conversion (DAC). Though many of these applications require a com-
plex DAC, some may only need a simple 1 channel DAC. Since most MCUs do not have a DAC built-in, and an external
DAC would be too expensive, an alternative method for the 1 channel DAC is used. Such a method is the generation of a
Pulse Width Modulator (PWM), which is afterwards integrated by a low pass filter. This opportunity provides the 1 channel
DAC with a resistor and capacitor. The additional advantage is that the DAC resolution can be configured by software.
However, the basic principle around such a DAC is the generation of the PWM.

PWM GENERATION

There are several ways of generating a PWM. The simplest form is generating the PWM straight from the dedicated PWM-
timer on the MCU. Unfortunately, not all MCUs have a PWM-timer built in. As an alternative solution, one could also
use 2 timers (one for the frequency and one for the duty cycle for this task) to achieve high frequency PWMs; however, a
high frequency PWM is not always necessary allowing the user to save one of the two timers. This application note describes
low frequency PWM generation with just one general purpose timer.

MCU INITIALIZATION

Shortly after the definition and interrupt table is initiated, the software initializes the MCU. It then enters the main routine
which is currently an endless loop which consists out of NOPs. The programmer can insert instructions here. The PWM
generator itself is completely interrupt-driven and is found below the label timerl:. After saving the Register Pointer and
swapping data from of the working register group, the PWM-generator determines if it is currently in the low or high cycle
of the period. If it is in the low cycle, then it jumps to the labelturn_on:, which initiates the high cycle. Conversely, if the
PWM is in the high cycle, it jumps to the label rurn_off, which initiates the low cycle. Ultimately, every time the timer
expires it initiates the next cycle.

At turn_on: (initiation of the high cycle), the port pin is pulled high and Timer] is loaded with the value for the
duration_of high_cycle. At turn_off: (initiation of low cycle), the port pin is pulled low and Timerl1 is loaded with the value
for the duration_of low cycle.

Next, the interrupt routine determines if theintegration_timer expired. The integration_timer is a software counterthat performs
the routine checks on the keys allowing the increasing or decreasing of the duty cycle(= the high cycle of the PWM). From
that point, the routine computes the correct values for the low cycle (duration_of low_cycle) and the high cycle
(duration_of_high_cycle) to keep the right period time or PWM frequency.

At the end of the interrupt routine, the original value of the register pointer is restored and the program counter is diverted
back to the main program.

Note: Timer] runs continuously and loads on the fly.

AN001300-Z8X0199 1

1 Channel DAC Using a PWM ZiLOG

CONSTANTS DEFINITION

There is a portion of the source code called the Constants Definition. Here the values of some constants can be changed and
the software behavior can be altered. The number of PWM levels (constant = pwm_levels) provides the resolution of the
PWM. The predefined value is 63, which provides a resolution of 6 bits. Thus, 2 by the power of the resolution in bits
with 1 subtracted, provides the pwm_levels. The constant max_high_cycle limits the duration of the PWM duty cycle. The
Max_high_cycle should be at least one less than the pwm_levels.

SOFT START OPTION

Additionally, there is a soft start option available. Conditional assembly can activate it. After the reset, this routine slowly
raises the duty cycle. The constant sofistart_time defines a time for the slow increase of the duty cycle. When the duty cycle
becomes long enough, the sofistart terminates. This situation occurs when the variableduration_of high cycle=start_up level.

The following flow chart (Figure 1) indicates the program sequence. Figure 2 illustrates the Interrupt Routine.
(Start)

Initialization

Main

Figure 1. Program Sequence

2 AN001300-Z28X0199

ZiLOG 1 Channel DAC Using a PWM

Port Pin=1 Port Pin=0
i \
Load T1 with Load T1 with
.duration_of_high_ .duration_of_low_
cycle cycle

e

Compute new . \
cycle times Exit J

Figure 2. Interrupt Routine

The assembler source code itself is stored in the filepwm_gen1.s. With the software now in place, the next step is to examine
the external hardware.The user must integrate the PWM to obtain a straight voltage with the required level to make itflar.
The easiest way to perform this action is by adding a low-pass RC filter (see Figure 3).

in _ out

Figure 3. RC Filter Configuration

ANO001300-Z8X0199 3

1 Channel DAC Using a PWM ZiLOG

SOFT START OPTION (Continued)

The values for R and C can be computed with the following formula

1
o=
¢ 27[R Silter C Silter

A standard design rule is to make

1
fg =E* pwm
10

T =
Sfilter *
2r f pwm

This way the user can get the RC time constant:

A standard design rule is to make

Rload

R filter — T

By incorporating this guideline, the user will not lose too much power in the filter resistor. Not following the formula
could also distort our calculation, causing the load resistance to be too low in comparison to the filter resistor. The load
resistor also influences the filter frequency. A factor of 1/10 makes the error negligible.

C _ T Silter
Silter —

Sfilter

If the remaining voltage ripple is still too high, the next choice is to put 2 RC filters in series (see Figure 4).

- out

Figure 4. RC Configuration Using 2 Filters

4 ANO001300-Z8X0199

ZiLOG 1 Channel DAC Using a PWM

The filter frequency (assuming both filters have the same R and C)would now be represented as:

C _ T Silter
Sfilter — R
Silter
1
— *
f g E f PWM

The resulting calculation would yeild the following:

S (!
filter —
N2 % Sows
R _ Rload _ 4 Silter
filter — Silter —
- 20 R Silter

In many cases, it is also preferable to drive some kind of induction, such as:

® motor
® magnet
® valve

® relay

Since an induction always consists out of an L and an R, a low pass filter to straighten the PWM is not always desired. This combi-
nation of L and R straightens the current (instead of the low pass filter straightening the voltage). An example of this induction using
a series resistor it illustrated in Figure 5.

Series
Resistor

Internal resistance
of the inductance

Inductance

Figure 5. Induction Example

The design rule here is that it may be necessary to obtain the value for the imaginary resistance of the inductance. The
easiest way is to measure the resistance of the inductance at the PWM frequency (voltage and current) is by incorporating
the following formula:

Xinductance = 272.* fPWM * L

induc tan ce

ANO001300-Z8X0199 5

1 Channel DAC Using a PWM ZiLOG

SAMPLE CODE (Continued)

If L is specified, then the user can calculate X; however, be careful the value for L at the PWM frequency is used. An
alternate way to get X could be calculated as follows:

1

—__ %
- 10 induc tan ce

The ohmic resistance of the inductance, on the other hand, is mostly specified. If not, the user can simply measure it with
a ohm-meter. A series resistor is required, however, before the inductance to straighten the current. The formula reads as
follows

R.,.=R-R

series induc tan ce

A feedback diode is necessary to obtain a straight current and to protect the port output transistors. Once the software and
hardware are determined the target board can be built.

Figure 6 illustrates the schematic for the 1 Channel PWM.

Mcut
—L 1 p2e pz3 |18 ®
—21 p2s pzz |2 ¥
L _ 3| e Bz
mLS pe P PUM_OUT Ré
OTw= 2 1055 p2o |18 —
e N [
we ono |4 s1 A R_Filter g
1 £ 1 xtm2 po2 13— - E o
—1,8c 7 1a pm |12 22 _gharob2 4 8<d '\‘[] 3
L . OToO [« 4 1 o |
=3 ${pra poo A x Minitaster
=M b Conrad 202651 bis 707684
oTm 21 p2 pas |10 ¥ Az Az §%°
g3z (13 213 -
286E02 - P2 opdmo-ba |
Minitaster - -
Conrad 707651 bis 20769
Figure 6. 1 Channel PWM Schematic
SAMPLE CODE

Pages 7-13 illustrate the step-by-step process of allowing a PWM to generate a DAC.

CONCLUSION

By following these suggestions, a user can easily implement DAC functionality through minor adjustments in the PWM.
Though this application note does not cover complex digital-to-analog conversions, it allows a user to supplement a 1
channel DAC for use in simpler applications.

6 AN001300-Z8X0199

ZiLOG 1 Channel DAC Using a PWM

;**Jr*********

; This application note is for

; PWM generation.

; FILE: pwm _genl.S

; DATE: 26.02.97

; MCU: Z86E02

; PROJECT: PWM generation techniques

; AUTHOR: Klaus Buchenberg

; SOFTWARE: REVISION 1.0

; Oscillator = 8MHz

; This program is assembled by ZiLOG ZMASM assembler

;**

GLOBALS ON

;**

; When the softstart option is wished, then set

; SOFTSTART WISHED to 1 = Yes
,-**
SOFTSTART WISHED .equ 1 ; 1 = Yes 0 = No

;**

; Bitnumber definitions
;****************************-k***************************************
bitno0 .equ %01

bitnol .equ 302

bitno2 .equ 304

bitno3 .equ %08

bitno4 .equ %10

bitnob .equ %20

bitnob .equ %40

bitno7 .equ %80

pkkkhkdkhhkhhhdkhkdhhdhkhkkkkokkokkkk ok khkhhhdhhkhk ok ddkdhkkdhkhhkhohkkhkokkdkhhhhkhkkhkdkkkkk
’

; PORTS DEFINITION

skkhkkk kb khkhdhkhkhkhkhkhhkhkhkhkhkhkhhkhkkkhkkdhhkhkbkhkhkhkhhhhhhhhhkhkhkhkbkrrhkhkhkhkhkkdkhhkhhrhkkkk
’

; Port 0 pin

; P00 : power. UP key
upkey .equ bitno0
; POl : power. DOWN key
downkey .equ bitnol
; P02 : idle input

ANO001300-Z8X0299 7

1 Channel DAC Using a PWM ZiLOG

; Port 2 pin
; P20 : output for pwm
pwm_output .equ bitno0

H P21-P27 : output idle N.C.

; Port 3 pin

; P31 : output voltage sensing, pull to ground when not used
;Usense .equ bitnol

; P32 : idle input, pull to ground when not used

; P33 : voltage reference, pull to ground when not used
;Uref .equ bitno3

Fhkhkkhkhkkhkhkdhkhkhkhkhhkhhhhhhkhhhkhkkdkkdh ok hkkhkhkohkkhkhkokkkkhkkhkkokdokdkhok sk kkkdkhokdh ko

; REGISTERS DEFINITION

;**

integration timer .equ r4 ; counts the number of periods
; softstart counter .set r5 ; counter for scoftstart routine
duration of low cycle .equ ré6 ; length of low time of period
duration of high cycle .equ r7 ; length of high time of period
; delay counter .set 3FE ; counter for delay routine

IR A SRR SRR R R EEEEEEEEEE SRR R o R R R I 3
r

; BITS DEFINITION

;**

ekkkhkhkhkk kb hkhkhkhhhkkhkhkdhhkhhkhk bbbk hkhhkhkhkhkhhkkkhkhkhhkhkhkhkdhhkkhkdrhkrhkhkhkhhkhkhkhkhkkhkokdhkhtxx
7

; CONSTANTS DEFINITION
,-**
prel min .equ 01111011b ; PRE1=30, continuous mode, int. clock
; pwm freg. =
; osc. freq./(PRE1l *
8*no_voltage levels)

; in this case pwm freq. = 521Hz

; pwm freqg. = 8E6Hz/(30*8*64)
pwm_levels .equ 63 ; number of pwm levels

; pwm resolution = log(base2)x

; pwm resolution = log(base2)64 = 6
start up level .equ 20 ; start level <= pwm levels
max_high cycle .equ 62 ; max duration of high cycle
softstart time .equ 4 ; extends start up time by

; x * 10msec.

ek kkkkk Ak hkhkkhkhkhkhkhkhk ko hkhkhkhkhkhkkhkhkkhkkhkhkkhkhArbhhhkhkhkhkhohkhkhkhkhkhkhkhhkhkhkhkhhkhkhkrrrhkhkkhkkdt
7

; MACROS

; Refer to Z8 technical manual for macro definition

,-*************************~k*"k**

bset MACRO register,bitnumber ; set the appropriate bit in
or \register, #\bitnumber ; the specified register

8 ANO001300-Z8X0299

ZiLOG 1 Channel DAC Using a PWM

MACEND
bclr MACRO register,bitnumber ; clear the appropriate bit in
and \register, # ~(\bitnumber) ; the specified register
MACEND
brset MACRO register,bitnumber, label ; IF the appropriate bit
in
tcm \register, #\bitnumber ; the specified register is
set
jr z,\label ; THEN jump to label
MACEND ; ELSE ¢o on
brclir MACRO register,bitnumber, label ; IF the appropriate bit
in the
tm \register, #\bitnumber ; specified register is reset
jr z,\label ; THEN jump to label
MACEND ; ELSE go on

pwm_high cycle MACRO
bset r2,pwm_ouatput
MACEND

pwm_low cycle MACRO
bclr r2,pwm_output
MACEND

ekkkkkkhkkhkhkhkhhkhkkkhkkhkkhkhkdkhkhkhhkkdhkkhkhkhhhkhkhkkhkhhhkhhkkkkhkdkhkhkhhkhkkhkdkhkkhkk
’

; INTERRUPTS VECTOR

ekkhkhkhkhkhkdhhkkhkhkhhkdkhhhhkhhkhkhkhkhkhkdhkhkkhkhkhkdhdkhkdhkhkhkhkhkkkhkhkhkhkkhkdkhkkhhkhkhhkhrkx
’

.MLIST
.LIST

; Interrupt vector address %00 to %0C

.ORG $0000
.word irq0
.word irqgl
.word irgz
.word irg3
.word irg4
.word timerl

ek khkkkkkkkhhkkhkhkkkhkhkhkhkhkhhhhhhhhkkkkkdkhkkkdhhkhkhkkhkdkhdkhxk
7

; PROGRAM STARTS HERE *

rhkkhhhkhkk kA hhkdhhkhkkkdhkhkhhkhkhkkhkhkhkkhhkhkhhhhhhhhhkhhkhkkhkk
’

BEGINNING:
.ORG $0C
irq0:

AN001300-28X0299 9

1 Channel DAC Using a PWM ZiLOG

irql:

irqg2:

irg3:

irg4:
di
1d PO1M, #00000101b ;PO, Pl input, irternal stack
1d P2M, #00000000b ;P20-P27 output
1d P3M, #00000011b ;P3 analog + P2 push pull
and P2,#11111110b ;Switch off transistor
clr SPH
1d SPL, #%40 ; INIT STACK POINTER
1d IPR, #00001010b ; IRQS5 has highest priority
1d IMR, #00100000b ; enable Tl interrupt

; INITIALIZE RAM TO "O"

; srp #%30
; 1d R14, #%3d
jzram: clr @R14
; dinz R14, zram
; Initialize all registers
srp #200 ; set working register to %00
clr integration timer
1d prel, #prel min ; preset T1
el
1d TMR, #00011100b
IF SOFTSTART_WISHED
1d duration of high cycle, #1
call softstart ; increase level slowly
ELSE
1d duration of high cycle, #start up level ; preset pwm level
ENDIF

shkhkhkhAdrhhbhhkdhhhhkhhhkhkkkkhkhhkhkbkr bbb bhbhbhhhrhhbhhh kbbb hhkhdbhhhkrrhhkhkhhdhdkkk
’

PIILSLITIEI T I TP 7 7L 7707707777777 7077777777 777777777777
; MAIN USER PROGRAM
; The pwm generator runs as a batch task via T1 interrupt.
; This is the user program that runs in front.
PILTITTI LTI 7 77777777000 P PP PP rrirrir7 7777777077070 777770777/77777
Main:

NOP ; insert your instructions

; here
jp Main

ekk bk hkhhkhhkhkhhhkhhkhhkhhkhkhkdhkhkhbhkhkhbhhbhkhbhbhkhbhkhhhhkhkhkhkhhkbhkhkhkhkdbhkhkhkddhhhkddrdkhtkk
’

i SUBROUTINES

10 ANO001300-Z8X0299

ZiLOG 1 Channel DAC Using a PWM

IF SOFTSTART WISHED
PILTTIITTILIT 7770770000777 7777777707077777777771777777
; 1.5us x (30x222) = 10 mS

PILTILTTIITT 0070777777 777777777777701777777777777777

delay counter .set 3FE
delaylOmsec:
1d delay counter, #222 ; 6 cycles
loopl:
nop ; 6 cycles
nop ; 6 cycles
dec delay counter ; 6 cycles
jr nz, loopl ; 12 cycles
ret
ENDIF

P ITTIT I 7 0007777770777 7777777777 77777707777777777777777777777777717777777777777
1177 707777777777777

; Increases the pwm level slowly after the start.
; (extends light bulb life or speeds up
; the engine slow = less start momentum)

PILLLLIIILT TP L0707 7777777070077 77 77777777770 777777777777777777777777777777777
117770777 77777077777

IF SOFTSTART WISHED
softstart counter set r5
softstart:
cp duration_of high _cycle, #start up level ; Is the start up level
jr GE,end softstart ; reached, already?
1d softstart counter, #softstart time

softstart delay:
call delaylOmsec

dinz softstart counter,softstart delay

slow_down:
inc duration of high cycle ; No, then increase
;1d duration of low cycle, #pwm levels ; the level slowly.
;sub duration of low_cycle,duration of high cycle
jr softstart ; Yes, then go to main.

end_softstart:
ret
ENDIF

PILLIIITIII TP P77 7707707777770 77 777777070777 777777777777777777

; Timerl interrupt occurs on each edge of the period.

ANO001300-Z8X0299 11

1 Channel DAC Using a PWM ZiLOG

; The timing depends on the power level = high/low ratio.
PLLLILTITTTT I 0 7777770777 700777777777777777777777777777777777777777
timerl:
push rp ; working register
srp #200 ; group 0 reserved
; for timerl
; interrupt

brclr r2,pwm_output, turn on ; If last pwm-cycle was
; low then next pwm-
; cycle is high
turn off:
pwm_low cycle
1d Tl,duration_of high cycle ; On next T1
end of count,
; low cycle is finished, and
; duration of high cycle
; 1s loaded from Tl into
; 8bit-down-counter
jr end of interrupt
turn_on:
pwm_high cycle
1d Tl,duration of low cycle ; On next T1
end of count,
; high cycle is finished,
; and duration of low cycle
;isloadedfromTlinto8bit-
; down-counter

PILTTILLT LTI 7777007777077 077077777777 77 777777777777 7777777770777777777777777771777
[1177070777777777777

; If upkey is pressed = PO0 low then increase
; the duration of the pwm-high-cycle.
; If downkey is pressed = POl low then decrease

; the duration of the pwm-high-cycle
N NN NN NN Iy,
I11T1777 777707777777

dinz integration timer,end of interrupt

brclr r0,upkey, increase level

brclr

Jjr
decrease_ level:

dijnz
increase level:

r0,downkey, decrease level
end of interrupt

duration of high cycle,cycle adjust

inc duration of high cycle
cp duration of high cycle, #max high cycle
Jr GT,decrease_level

cycle adjust:
1d
sub

duration of low cycle, #pwm levels
duration of low cycle,duration of high cycle

12

ANO001300-Z28X0299

ZiLOG 1 Channel DAC Using a PWM

end_of interrupt:

pop rp
iret

END

AN001300-28X0299 13

1 Channel DAC Using a PWM ZiLOG

Information Integrity:

The information contained within this document has been verified according to the general principles of electrical and mechanical
engineering. Any applicable source code illustrated in the document was either written by an authorized ZiLOG employee or licensed
consuitant. Permission to use these codes in any form besides the intended application, must be approved through a license agreement
between both parties. ZiLOG will not be responsible for any code(s) used beyond the intended application. Contact your local ZiLOG
Sales Office to obtain necessary license agreements.

© 1998 by ZiLOG, Inc. All rights reserved. No part of this document may be copied or reproduced in any form or by any means
without the prior written consent of ZiLOG, Inc. The information in this document is subject to change without notice. Devices sold
by ZiLOG, Inc. are covered by warranty and patent indemnification provisions appearing in ZiLOG, Inc. Terms and Conditions of
Sale only.

Z1L.OG, INC. MAKES NO WARRANTY, EXPRESS, STATUTORY, IMPLIED OR BY DESCRIPTION, REGARDING THE IN-
FORMATION SET FORTH HEREIN OR REGARDING THE FREEDOM OF THE DESCRIBED DEVICES FROM INTELLEC-
TUAL PROPERTY INFRINGEMENT. ZILOG, INC. MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR
ANY PURPOSE.

ZiLOG, Inc. shall not be responsible for any errors that may appear in this document. ZiLOG, Inc. makes no commitment to update
or keep current the information contained in this document.

ZiLOG’s products are not authorized for use as critical components in life support devices or systems unless a specific written
agreement pertaining to such intended use is executed between the customer and ZiLOG prior to use. Life support devices or systems
are those which are intended for surgical implantation into the body, or which sustains life whose failure to perform, when properly
used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the
user.

ZiLOG, Inc.

910 East Hamilton Avenue, Suite 110
Campbell, CA 95008

Telephone (408) 558-8500

FAX 408 558-8300

Internet: http://www.zilog.com

14 AN001300-28X0299

