
6-25

Z180 BREAK DETECTION
APPLICATION NOTEZilog

AN971800300

Within the Z80® product family, there is a group of products
based on the Z180™ MPU Core. They are the Z180 (Z80180,
Z8S180), Z181™ and Z182. The Z180 MPU is a
Superintegration™ device built around a Z80 compatible
CPU core, and also includes two UART channels, two DMA
channels, two 16-bit timers, CSIO, and other system
functions. The on-board UART (universal asynchronous

receiver/transmitter) channels meet most common
asynchronous communication requirements except break
sequence handling. These UART channels lack the
embedded hardware features necessary to send/detect
break. This application note describes how to handle
break.

WHAT IS THE BREAK SEQUENCE?

INTRODUCTION

reak sequence is a key area not automatically dealt with by all devices however, it is
possible to handle break sequences through simple edge detection and hardware
configuration techniques.

In the asynchronous communication environment, the
“break sequence” is commonly used to interrupt the
process. The sequence is defined as the contiguous
transmission of “0” (space) for a certain length of time. The
CCITT “blue book” specification states that the time duration
for this is larger than 2M+3 bit time (where M is the
character length). After the break sequence, another 2M+3

bit time consisting of the contiguous transmission of “1”
(mark) is required to start the next character. Most serial
communication devices, including Z8 x 30 SCC and Z844x
SIO, define this condition as “null character with framing
error”. These devices usually generate interrupt at both the
start and the end of the break sequence.

Z180’S BEHAVIOR RELATIVE TO THE BREAK SEQUENCE

When the Z180 UART channel sees the break sequence,
it behaves as follows:

If the character bit length is “M”, without parity; numbers
are bit cell time at given transmission speed; and T is the
duration of the space condition; then :

T < 0.5 Receive nothing

0.5 < T < 1.5 Receive all “1” data without error

1.5 < T < 2.5 Receive all “1” data, except D0
location receives “0” without
error.

2.5 < T < 3.5 Receive all “1” data, except D1,
D0 locations receive “0” without
error.

M + 0.5 < T < M + 1.5 Receive all “0” data
without error. (This is the
condition which normally
receives “0”.)

M + 1.5 < T < M + 2.0 Receive all “0” data with
framing error.

M + 2.0 < T < M + 3.0 Receive all “0” data with
framing error, followed by
all “1” data without error.

M + 3.0 < T < M + 4.0 Receive all “0” data with
framing error, followed by
all “1” data, except D0
location receives “0”
without error.

B
BREAK DETECTION ON Z80180 AND Z181

Barbara E Lau
AN006201-0201

6-26

Z180 BREAK DETECTION
APPLICATION NOTEZilog

AN971800300

Z180'S BEHAVIOR RELATIVE TO THE BREAK SEQUENCE (Continued)

M + 4.0 < T < M + 5.0 Receive all “0” data with
framing error, followed by
all “1” data, except D1,
D0 locations receive “0”
without error.

M + 8.0 < T < M + 9.0 Receive all “0” data with
framing error, followed by
all “0” data without error.

M + 9.0 < T < M + 9.5 Receive all “0” data with
framing error, followed by
all “0” data with framing
error.

In other words, Z180 UART receives the all 0 data with
framing error, but may receive the trailing end of the
character without error. The all 0 character with framing
error will be continuously received as long as break
condition exists.

IMPLEMENTATION

To send break sequence requires external hardware. One
approach, as shown in the following (Figure 1), is to have
one gate on the TxD pin and mask off the status when the
break sequence is needed. The I/O port to mask TxD could
be one of the modem control signals on-chip PIO or PIA.
Since the TxD pin is forced to 0 while the control signal is
active, writing a dummy character and using Tx interrupt is
one possible way to time the duration.

Knowing the Z180’s behavior also makes it possible to
detect break sequence as follows. On the reception of the
all 0 character with framing error, disable receiver and
discard the character, and re-enable the receiver on the
rising edge of the receive data line (the end of break

sequence). For this purpose, the Z80 CTC can be used to
detect the edge. On the Z181, the on-chip Z80 CTC can be
used.

Z180’s interrupts from the on-chip UART are handled
through vectored interrupt, regardless of the interrupt
mode programmed through instruction (IM0/1/2). You can
enable the interrupt for transmitter and receiver separately,
but the vector for both will be the same. So, the interrupt
routine has to handle both interrupts, from the receiver and
the transmitter. Upon interrupt, the interrupt handing routine
has to poll the status register (stat0), judge the cause and
initiate a correction.

RTSo
TX

RTSo
T 'X

TX

User
System

Port

T 'X

Figure 1. Break Sequence Generation

Barbara E Lau
AN006201-0201

6-27

Z180 BREAK DETECTION
APPLICATION NOTEZilog

AN971800300

CONCLUSION

As discussed, the Z180’s UARTs do not have an automatic
break detection circuit; however, it is possible to handle
the break sequence using edge detection, and with
additional hardware one can also generate break.

;*********************************** *
;* *
;* Break detection for Z181 *
;* April 5, 1991 *
;* By Jim Nobugaki *
;* *
;***********************************

; This is a break detection program for ASCI0.
;
; The environment assumed is the Z181 application board
;(Z8018100ZCO), and
; the clock speed is 12.288 MHz.
;
; It is an interrupt-driven program using CTC0 for rising
; edge detect, CTC1 for falling edge detect
;

.z800

*include 181macro.lib ;Read in Z180 register
;names and
;macro for Z180 new
;instructions

org 08400h ; top of RAM physical
;address

bkdet: ld sp,stack ;set up the stack pointer

ld a,high vecttab ;init i reg

ld i,a

ld a,00h ;init il
out0 (il),a

im 2 ;set int mode 2

ld a,low ctcvect
out0 (ctc0),a ;init CTC int vect

ld hl,bkend
ld (ctcvect),hl

ld hl,bkend
ld (ctcvect+2),hl

ld hl,asci0int ;set asci0 int vect
ld (vecttab+0eh),hl

ld a,01000001b ;configure pia1 as ctc i/o
out0 (scr),a

ld a,00010001b ;set 38400 bps
out0 (cntlb0),a ;change this for desired

;speed

ld a,00001000b ;enable only rx int
out0 (stat0),a

xor a ;clear stat flag
ld (bip),a

ld a,01010000b ;select cnta0
out0 (cntla0),a ;only Rx enable!

ei

PROGRAMMING EXAMPLE

The following program example was written for the Z181™

using Zilog’s Z181 evaluation board (P/N: Z8018100ZCO),
and verified to work up to 38400 Kbps. As discussed
above, this program is interrupt-driven, and uses on-chip
CTC channel 0 and 1 for edge detection. One channel is
used for rising edge detection, and the other channel is
used to detect the falling edge of the data. On the interrupt
from ASCI0, this program reads the stat0 and checks for
errors. If there was a framing error, then read out the
character and check if it is zero. If that character was 00,
then disable the receiver and enable CTC0/CTC1 for edge
detection. When it detects edge, re-enable the receiver.
Enabling interrupts for both edges accounts for cases
when the rising edge of the data comes before enabling

CTC (for rising edge detection). In these cases, the falling
edge which needs to be detected is the falling edge of the
start bit of the next character.

This program has one shortcoming. If the pulse width is too
short to recognize the following character (as all “1” data),
the rising edge of the data may appear before the CTC is
enabled for rising edge detection, depending on the
processing speed/overhead, In this case, enabling the
receiver after the start bit will throw off the sampling point
of the data slightly. The extent of the deviation will vary
depending on the interrupt response time for the CTC
interrupt.

Barbara E Lau
AN006201-0201

6-28

Z180 BREAK DETECTION
APPLICATION NOTEZilog

AN971800300

CONCLUSION (Continued)

wait_here: jr wait_here ;wait here
forever

;int service routine for asci0
;

asci0int: push af ;save regs to be used
push bc

in0 a,(stat0) ;read stat
ld b,a ;save stat info into b

and 0f0h ;mask info

jp z,asci0int1 ;no rec related int...

and 070h ;any errors ?
jr nz,rec_err

;;;;;;;;
;process for normal rec’d char here
;;;;;;;;
in0 a,(rdr0) ;read char
;;;;;;;;

jp asci0int1 ;jump to tx check

rec_err: in0 a,(rdr0) ;read char
bit 4,b ;see if it is FE?
jr z,asci0int2 ;if not, OVRN or PE...

cp a,00h ;see if it’s 00h+FE
jr z,asci0int3

;;;;;;;;
;here comes simple FE...
;;;;;;;;

ld a,01000000b ;error reset
out0 (cntla0),a
jp asci0int1 ;jump to tx check

asci0int3: ld a,00010000b
;disable Rx,
;with error reset

out0 (cntla0),a

ld a,11010101b ;start ctc0 for /edge
;detect

out0 (ctc0),a
ld a,01h ;tc=1

out0 (ctc0),a

ld a,11000101b ;start ctc1 for \edge
detect

out0 (ctc1),a
ld a,01h ;tc=1
out0 (ctc1),a

ld a,0ffh
ld (bip),a ;set break in process flag.

ld a,00000000b ;shut off rec int!
out0 (stat0),a

jp asci0int1 ;branch to tx int check

asci0int2: ;;;;;;;;

;process for parity error/overrun error here
;;;;;;;;

ld a,01000000b ;error reset
out0 (cntla0),a

asci0int1: bit 1,b
jr z,asci0int4

;;;;;;;;
;If there’s something to send, place routine here
;For this case, don’t destroy b register!
;;;;;;;;

asci0int4: bit 2,b ;/dcd int ?
jr z,asci0exit

;;;;;;;;
;if there’s something to do with /dcd, place routine
here
;;;;;;;;

asci0exit:pop bc ;restore regs
pop af
ei
ret

;bkend -
;this routine called when detecting edges of rxd,
;which is the end of break (hopefully... ^_^!).
;if rising edge (int from ctc0), that is the end of break
;if falling edge (int from ctc1), missed rising edge for the
;end of break and that’s start of start bit of next char...

Barbara E Lau
AN006201-0201

6-29

Z180 BREAK DETECTION
APPLICATION NOTEZilog

AN971800300

;Interrupt vector table
;

org bkdet+200h

vecttab:ds 20h ;reserve space for z180 vector

ctcvect:ds 8h ;int vector table for ctc

bip: ds 1 ;break in progress flag

dummy:ds 0ffh ;space for stack
stack:

end

bkend: push af ;save regs

ld a,01001011b ;s/w reset, stop ctc0/1
out0 (ctc0),a
out0 (ctc1),a

ld a,01010000b ;select cnta0
out0 (cntla0),a ;enable Rx again!

ld a,00001000b ;enable rx int again
out0 (stat0),a

xor a ;clear stat flag
ld (bip),a

pop af ;restore regs

ei
reti

Zilog’s products are not authorized for use as critical compo-
nents in life support devices or systems unless a specific written
agreement pertaining to such intended use is executed between
the customer and Zilog prior to use. Life support devices or
systems are those which are intended for surgical implantation
into the body, or which sustains life whose failure to perform,
when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to result in
significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave.
Campbell, CA 95008-6600
Telephone (408) 370-8000
Telex 910-338-7621
FAX 408 370-8056
Internet: http://www.zilog.com

© 1997 by Zilog, Inc. All rights reserved. No part of this document
may be copied or reproduced in any form or by any means
without the prior written consent of Zilog, Inc. The information in
this document is subject to change without notice. Devices sold
by Zilog, Inc. are covered by warranty and patent indemnification
provisions appearing in Zilog, Inc. Terms and Conditions of Sale
only. Zilog, Inc. makes no warranty, express, statutory, implied or
by description, regarding the information set forth herein or
regarding the freedom of the described devices from intellectual
property infringement. Zilog, Inc. makes no warranty of mer-
chantability or fitness for any purpose. Zilog, Inc. shall not be
responsible for any errors that may appear in this document.
Zilog, Inc. makes no commitment to update or keep current the
information contained in this document.

Barbara E Lau
AN006201-0201

