
Copyright ©2011 Zilog®, Inc. All rights reserved.
www.zilog.com

UM017914-1211

User Manual

eZ80® Family of Microprocessors

Zilog File System

http://www.zilog.com

ii

Zilog File System
User Manual
This publication is subject to replacement by a later edition. To determine whether a later edition exists or
to request copies of publications, visit www.zilog.com.

DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.

LIFE SUPPORT POLICY

ZILOG’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body or (b)
support or sustain life and whose failure to perform when properly used in accordance with instructions for
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A criti-
cal component is any component in a life support device or system whose failure to perform can be reason-
ably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

Document Disclaimer

©2011 Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications
or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES
NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE
INFORMATION, DEVICES or TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO
DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED
IN ANY MANNER TO USE OF INFORMATION, DEVICES or TECHNOLOGY DESCRIBED
HEREIN OR OTHERWISE. The information contained within this document has been verified according
to the general principles of electrical and mechanical engineering.

eZ80 and eZ80Acclaim! are trademarks or registered trademarks of Zilog, Inc. All other product or service
names are the property of their respective owners.

Warning:
 UM017914-1211

http://www.zilog.com

Zilog File System
User Manual

iii
Revision History

Each instance in the Revision History table below reflects a change to this document from
its previous version. For more details, click the appropriate links in the table.

Date
Revision
Level Description Page

Dec
2011

14 Updated for the RZK 2.4.0 release, which no longer supports the eZ80190
MPU; modified Manual Conventions and Directory Structure sections.

vii, viii, 2

Aug
2010

13 Updated Figure 1, Table 5 and the directory paths in the Zilog File System
Architecture, Getting Started, Directory Structure, Zilog File System APIs,
Zilog File System Configuration and Zilog File System Macro Configuration
sections for the RZK v2.3.0 release.

vii, viii, 2,
4, 7–7,9

Sep
2008

12 Updated for RZK v2.2.0 release; updated Figure 1, Directory Structure,
Zilog File System Configuration, Zilog File System Macro Configuration,
Integrating a Flash Driver sections.

2, 7, 7, 12

Jul
2007

11 Globally updated document to adhere to style. All

Jul
2007

10 Globally updated for RZK v2.1.0 release. All

May
2007

09 Removed Appendix A – Executing Sample Applications in the ZDS II Envi-
ronment and Appendix B – Executing Sample Applications in the IAR Envi-
ronment.

n/a

Jul
2006

08 Globally updated for RZK v2.0.0 release. All
UM017914-1211 Revision History

iv

Zilog File System
User Manual
Revision History UM017914-1211

Zilog File System
User Manual

v

Table of Contents

Revision History. .iii

Introduction . vii
About This Manual . vii
Intended Audience . vii
Manual Organization . vii
Abbreviations/Acronyms .viii
Manual Conventions .viii

Zilog File System Overview. 1
Zilog File System Architecture . 1
Getting Started . 2
Directory Structure . 2
Use Model . 3
Zilog File System APIs . 4
 File and Directory Naming Conventions . 6
Examples . 6

Zilog File System Configuration . 7
Zilog File System Macro Configuration . 7
Zilog File System Volume Configuration . 9

Integrating a Flash Driver. 12

Customer Support. 15
UM017914-1211 Table of Contents

vi

Zilog File System
User Manual
Table of Contents UM017914-1211

Zilog File System
User Manual

vii
Introduction

This User Manual describes the Zilog File System for Zilog Real-Time Kernel (RZK)
software for eZ80 CPU-based microprocessors and microcontrollers. The current Zilog
File System release supports the eZ80Acclaim! family of devices, which includes the
eZ80F91, eZ80F92 and eZ80F93 microcontrollers and the eZ80L92 microprocessor.

About This Manual

Zilog recommends that you read and understand the complete manual before using the
product. This manual is used as a user guide for Zilog File System.

Intended Audience

This document is written for Zilog customers who have prior exposure to RTOS and writ-
ing real-time application code and experienced at working with microprocessors/micro-
controllers and writing assembly code or compilers.

In addition to this manual, you should consider reading the following documentation:

• eZ80F91 MCU Product Specification (PS0192)

• eZ80F91 Development Kit User Manual (UM0142)

• eZ80 CPU User Manual (UM0077)

• eZ80Acclaim! Development Kits Quick Start Guide (QS0020)

• Zilog Developer Studio II – eZ80Acclaim! User Manual (UM0144)

• Zilog Real-Time Kernel Reference Manual (RM0006)

• Zilog Real-Time Kernel User Manual (UM0075)

• Zilog File System Reference Manual (RM0039)

Manual Organization

The Zilog File System User Manual is comprised of the following chapters.

Zilog File System Overview

This chapter provides an overview of the Zilog File System, how to get started, the Zilog
File System use model, APIs and File and Directory Naming Conventions.
UM017914-1211 Introduction

http://www.zilog.com/docs/ez80acclaim/ps0192.pdf
http://www.zilog.com/docs/ez80acclaim/devtools/um0142.pdf
http://www.zilog.com/docs/um0077.pdf
http://www.zilog.com/docs/devtools/qs0020.pdf
http://www.zilog.com/docs/devtools/um0144.pdf
http://www.zilog.com/docs/software/rm0006.pdf
http://www.zilog.com/docs/software/um0075.pdf
http://www.zilog.com/docs/software/rm0039.pdf

viii

Zilog File System
User Manual
Zilog File System Configuration

This chapter provides a brief description of Zilog File System configuration.

Integrating a Flash Driver

This chapter provides details about how to write a new Flash driver and integrate it with
the Zilog File System.

Abbreviations/Acronyms

The following abbreviations/acronyms are used in this document.

Manual Conventions

The following assumptions and conventions are adopted to provide clarity and ease of use:

Use of X.Y.Z and A.B.C

Throughout this document, X.Y.Z represents the RZK version number in
Major.Minor.Revision format, and A.B.C represents the ZDS II – eZ80Acclaim! version
number in Major.Minor.Revision format.

Use of <tool>

Throughout this document, <tool> refers to ZDS II.

Use of the Words Set and Clear

The words set and clear imply that a register bit or a condition contains the values logical
1 and logical 0, respectively. When either of these terms is followed by a number, the
word logical may not be included, but it is implied.

Abbreviations/
Acronyms Expansion

ADC Analog-to-Digital Converter

IJT Interrupt Jump Table

IPC Inter Process Communication

IVT Interrupt Vector Table

LSB Least-Significant Byte

lsb Least-Significant Bit

MSB Most-Significant Byte

msb Most-Significant Bit
Introduction UM017914-1211

Zilog File System
User Manual

ix
Courier New Typeface

Code lines and fragments, equations and various executable items are distinguished from
general text by appearing in the Courier New typeface where applicable.

For example, void AppThreadEntry (void).

Hexadecimal Values

Hexadecimal values are designated by a lowercase h and appear in the Courier New type-
face. For example, STAT is set to F8h.

Use of Initial Uppercase Letters

The use of initial uppercase letters designates the names of states, modes and commands
as well as settings and conditions in general text. A few examples are provided below:

• The receiver can force the SCL line to Low to force the transmitter into a Wait state

• A Start command triggers the processing of the initialization sequence

• In Transmit Mode, the byte is sent most significant bit first

• The Slave receiver leaves the data line High.

• The bus is considered busy after the Start condition.

• The Master can generate a Stop condition to abort the transfer.
UM017914-1211 Introduction

x

Zilog File System
User Manual
Introduction UM017914-1211

Zilog File System
User Manual

1

Zilog File System Overview

The Zilog File System (ZFS) is implemented on the Zilog Real-Time Kernel (RZK) which
is a real-time, preemptive and multitasking kernel. The Zilog File System implements a
file system over RZK for Micron Flash devices and supports all basic file and directory
operations. In addition, the Zilog File System can be configured in the Zilog Developer
Studio integrated development environment (ZDS II IDE).

The features of the Zilog File System include:

• Implements a core that is independent of the underlying memory device.

• Supports easy configuration of volumes (such as C:\ or D:\ drives).

• Provides configuration parameters such as the maximum number of directories to be
created and the maximum number of files to be opened at a time. These parameters,
related to volume, optimize system operation and serve to consume less memory.

• Supports multiple volume access whether RAM memory, Flash memory or both mem-
ories are employed.

• Implements full-fledged directory operation support.

• Easy system configuration.

• Provides a way to port the Zilog File System core easily to another toolset.

• Supports all basic file and directory operations.

• Supports multiple access to a single file, however, it can be edited by only a single
person at a time.

• Recovers data after a power failure and implements garbage collection for a Flash
device to allow maximum usage of device memory to store files and directories.

• All APIs are multithread safe; that is, they are re-entrant file system APIs.

• Supports the use of period (‘.’) in filenames or directory names to distinguish between
the filename and its extension.

• Supports media error handling; that is, recovery of lost data in Flash memory.

• Supports NOR Flash devices.

Zilog File System Architecture

For details about the architecture of the Zilog File System, refer to the Zilog File System
Reference Manual (RM0039), which can be found on zilog.com and is also located in the
following ZDS II filepath:

<ZDSII installed directory>\Program Files\Zilog\
ZDSII_eZ80Acclaim!_A.B.C\ZTP\ZTPX.Y.Z_Lib\RZK\Docs
UM017914-1211 Zilog File System Overview

http://www.zilog.com/docs/software/rm0039.pdf
http://www.zilog.com/docs/software/rm0039.pdf

2

Zilog File System
User Manual
Getting Started

The Zilog File System development software can be installed on different platforms that
run the Windows operating system. Refer to the release notes associated with the RZK
release to determine the Windows platforms on which the Zilog File System can be
installed. The Zilog File System installation files are part of the RZK release file. In this
User Manual, only directories related to the Zilog File System are described. For more
information about the directory structure of RZK, refer to the Zilog Real-Time Kernel
User Manual (UM0075), which can be found on zilog.com and is also located in the fol-
lowing filepath:

<ZDSII installed directory>\Program Files\Zilog\
ZDSII_eZ80Acclaim!_A.B.C\ZTP\ZTPX.Y.Z_Lib\RZK\Docs

Directory Structure

Figure 1 displays the RZK directory structure.

Figure 1. RZK Directory Structure
Zilog File System Overview UM017914-1211

http://www.zilog.com/docs/software/um0075.pdf
http://www.zilog.com/docs/software/um0075.pdf

Zilog File System
User Manual

3

The Zilog File System directory contains a common directory for all target processors.
Figure 1 displays the following four subdirectories of the Zilog File System:

ZTPX.Y.Z_Lib\RZK\Inc. This directory contains the header files that must be included in
the user application.

ZTPX.Y.Z_Lib\RZK\Lib. This directory contains the NOFS.obj stub file (for the ZDS II
development environment) that must be included if Zilog File System support is not
required in the system, even though the system uses the Zilog File System APIs.

ZTPX.Y.Z_Lib\RZK\Conf. This directory contains the ZFS_Conf.c file that describes the
configuration of the Zilog File System. This file must be included in the application proj-
ect workspace to interoperate with the Zilog File System.

ZTPX.Y.Z_Lib\RZK\SamplePrograms\FS. This directory contains sample programs writ-
ten for the Zilog File System. One such sample program is the FSShell program, which
is an interactive shell application that showcases different operations performed by the
Zilog File System. Only a few commands are provided in the FSShell application. For
detailed information about the FSShell application shell commands, refer to the readme
file present in the following directory:

<ZDS II Installed directory>\Program Files\Zilog\
ZDSII_eZ80Acclaim!_A.B.C\ZTP\ZTPX.Y.Z_Lib\RZK\SamplePrograms\FS\
FSShell

The above directory also contains all of the sample programs associated with the RZK
release.

The name of the four subdirectories listed above is the same for every target eZ80 micro-
processor or microcontroller.

Use Model

The Zilog File System is provided as a library and interfaces to the file system via well-
known APIs. The Zilog File System provides you with these APIs; however, you must call
the appropriate API to obtain service from the file system. The ZFSInit API must be
called before performing any file- or directory-related operations on the volume.

ZFSInit() must be called in a thread body and not in the main() function.

The code segment below provides an example of Zilog File System calls, from the initial-
ization of the file system to calling an API.

void AppThreadEntry(void)
{

ZFS_STATUS_t status;
int cnt;
int ctr;
PZFS_VOL_PARAMS_t pvol_params, ptmp_vol;
UM017914-1211 Zilog File System Overview

4

Zilog File System
User Manual
ctr = ZFSGetVolumeCount();
if(ctr <= 0)
{
// error in getting the volume count
return ;
}

// allocate memory for volume parameters
// (sizeof(ZFS_VOL_PARAMS_t) * number of volumes)
// and store it in pvol_params
printf("\nInitializing FileSystem, Please Wait...");
status = ZFSInit(pvol_params);
if(status != ZFSERR_SUCCESS)

{
printf("FAILED : %d", status);
ptmp_vol = pvol_params;
for(cnt = 0 ; cnt < status ; cnt ++, ptmp_vol++)
{
printf("\n\nVolume Name: %s", ptmp_vol->vol_name);
printf("\nFormatting the volume: %s", ptmp_vol->vol_name);
status = ZFSFormat((INT8*) &ptmp_vol->vol_name[0]);
if(status != ZFSERR_SUCCESS)
{
printf("FAILED");
return;
}
else
printf("SUCCESS");
}
}
else
printf("DONE") ;
// Now call any Zilog File System APIs
// Create a directory
status = ZFSMkdir("EXTF:/","Dir.0");
if(status != ZFSERR_SUCCESS)
printf("New Directory is created");
else
printf("Unable to create a directory: %d", status);
:
:

}

Zilog File System APIs

The Zilog File System provides a number of standard APIs that execute different actions.
These APIs are briefly described in Table 1. For more detailed information about the Zilog
Zilog File System Overview UM017914-1211

Zilog File System
User Manual

5

File System APIs, refer to the Zilog File System Reference Manual (RM0039), which can
be found on zilog.com and is also located in the following filepath:

<ZDS II Installed directory>\Program
Files\Zilog\ZDSII_eZ80Acclaim!_A.B.C\ZTP\ZTPX.Y.Z_Lib\RZK\Docs

Table 2 provides a list of C Run-Time standard library APIs that are supported by the
Zilog File System.

Table 1. Zilog File System Standard API

Function Name Description

ZFSChdir Change the current working directory.

ZFSClose Close the opened file.

ZFSDelete Delete an existing file.

ZFSDeleteDir Delete an existing directory or subdirectories.

ZFSFormat Format the media used in the Zilog File System.

ZFSGetCwd Returns the current working directory.

ZFSGetCwdLen Returns the number of bytes contained in CWD string.

ZFSGetDirFileCount Returns the number of files and directories present in the given directory.

ZFSGetErrNum Returns the error number if recent Zilog File System API execution contains
an error.

ZFSGetVolumeCount Returns the number of volumes present in the system.

ZFSGetVolumeParams Returns the volume parameters such as free space, used space, volume
name and volume size.

ZFSInit Initializes the Zilog File System and returns the invalid volume(s) informa-
tion for the required processes such as formatting of the volume etc.

ZFSList Lists all files and directories present in given path.

ZFSMkdir Creates a directory under the given path.

ZFSOpen Opens a file for reading/writing/appending or create a new file.

ZFSRead Reads data from an opened file.

ZFSRename Renames a file.

ZFSRenameDir Renames a directory.

ZFSSeek Sets file read/write pointer to the specified location.

ZFSShutdown Uninitializes the file system.

ZFSWrite Writes data to a opened file.
UM017914-1211 Zilog File System Overview

http://www.zilog.com/docs/software/rm0039.pdf

6

Zilog File System
User Manual
 File and Directory Naming Conventions

The following conventions are applicable to the naming of directories, files and volumes
in the Zilog File System:

• Names must start with an alphabet or with an underscore (_)

• Names must be less than 16 bytes in length

• Names can contain a combination of alphabets, numbers, periods (.) and underscores
(_)

• Names must not contain two successive periods

• Names must not contain any special characters

Examples

The following list presents valid file\directory\volume names.

• a_b.c

• a_b.c

• _b.c

• __b.c.txt

Conversely, the following list presents file\directory\volume names that are invalid.

• 1a.c

Table 2. Zilog File System – Supported C Run-Time Standard Library APIs

Function Name Description

fopen Opens a file for reading/writing.

fclose Closes an opened file.

fputc Puts a character into the file.

fgetc Returns a character from the file.

fputs Stores a string into the file.

fgets Gets a string from the file.

fread Reads the specified number of bytes from the file.

fwrite Writes the specified number of bytes into the file.

fseek Alters the file pointer position.

ftell Returns the file pointer position.

feof Determines whether it is end of file or not.
Zilog File System Overview UM017914-1211

Zilog File System
User Manual

7

• .2

• file.c
UM017914-1211 Zilog File System Overview

8

Zilog File System
User Manual
Zilog File System Configuration

The Zilog File System is configured according to your requirements. The Zilog File Sys-
tem configuration file is located in the following path:

<ZDS II Installed directory>\Program Files\Zilog\
ZDSII_eZ80Acclaim!_A.B.C\ZTP\ZTPX.Y.Z_Lib\RZK\Conf

For internal and external Flash volumes, the Zilog File System requires equal-sized blocks
to store files and directories. If block sizes are unequal, the behavior of the Zilog File Sys-
tem is unknown. The driver must be capable of handling the logical block sizes for read-
ing/writing/erasing operations. Table 3 lists the logical block sizes for the sample Flash
drivers provided with the RZK release.

Zilog File System Macro Configuration

The Zilog File System provides macros for the configuration of different volumes and the
behavior of the File System. These macros, described in Table 4, are present in the
ZFS_Conf.c file, which is located in the following filepath:

<ZDS II Installed directory>\Program Files\Zilog\
ZDSII_eZ80Acclaim!_A.B.C\ZTP\ZTPX.Y.Z_Lib\RZK\Conf

You must provide the correct values of the macros and the volume configuration; other-
wise, the behavior of the Zilog File System is not defined.

Table 3. Logical Block Sizes for Sample Flash Drivers

Flash Type Block Size Starting Address Comments

eZ80F91 Internal Flash 32 KB 0x8000 First 32 KB may contain the boot-up code
for RST vectors.

eZ80F92 Internal Flash 16 KB 0x4000 First 16 KB may contain the boot-up code
for RST vectors.

eZ80F93 Internal Flash 16 KB 0x4000 First 16 KB may contain the boot-up code
for RST vectors.

MT28F008B 128 KB 0x120000 Only 128 KB equal sized blocks are used.

AT49BV162A 64 KB 0x330000 Only 64 KB equal sized blocks are used
(eZ80F91 Mini module configuration).

AM29LV160B 64 KB 0x310000 Only 64 KB equal sized blocks are used
(eZ80F91 Mini module configuration).
Zilog File System Configuration UM017914-1211

Zilog File System
User Manual

9

Table 4. Zilog File System Macros

Macro Default Value Description

ZFS_TOTAL_NUM_BLOCKS 7 This macro contains the total number
of blocks present in the system. For
each RAM volume, add 1 block. For
each Flash volume, add a relative
number of blocks. A block is a physi-
cal erase block in Flash.

ZFS_TOTAL_NUM_SECTORS (0xE0000/ZFS_SEC_SIZE) This macro contains the total number
of sectors present in the Zilog File
System, excluding the sectors pres-
ent in RAM volumes.

ZFS_TOTAL_NUM_VOLUMES 1 This macro contains the number of
volumes present in the Zilog File
System.

ZFS_MAX_FILE_OPEN_COUNT 20 This macro contains the number of
maximum file open instances at a
time. Therefore, at a given point of
time, a maximum of 20 file open
instances is allowed. This value is
per system value and not per volume
value.

ZFS_MAX_DIRS_SUPPORTED 50 This macro contains the maximum
number of directories present in the
system. This value is per system and
not per volume. This value also
includes the root directories of vol-
umes configured.
UM017914-1211 Zilog File System Configuration

10

Zilog File System
User Manual
Zilog File System Volume Configuration

The Zilog File System provides a structure (ZFS_CONFIG_t) to accommodate the differ-
ent parameters of a volume. These structures are briefly described in Table 5.

Table 5. Description of Structure Members of ZFS_CONFIG_t

Member Description Values It Contains

vol_name This member contains the vol-
ume name; it starts with a letter
or an underscore (_) and con-
tains only letters, a number or
an underscore (_).

String of a maximum length of 16 bytes.

vol_type Volume type. This member con-
tains the type of the volume.

This member contains any of the following values:
ZFS_RAM_DEV_TYPE for a volume that resides
in RAM.
ZFS_EXT_FLASH_DEV_TYPE for a volume that
resides in either internal or external Flash.

vol_addr This member contains the start-
ing address of the volume.

Starting address of the volume.

vol_size Size of the volume in bytes. Size of the volume in bytes.

vol_blks Number of blocks present in the
volume.

For a RAM volume, contains 1. For a Flash vol-
ume, this value relates to the number of physical
erasable blocks that are present within the volume
memory range.

vol_secs Number of sectors present in
the volume.

Volume size ÷ ZFS_SEC_SIZE. The Zilog File
System supports only 512 bytes sector size. (The
ZFS_SEC_SIZE macro is defined to be 512).

pfn_drv_init Driver init function for file sys-
tem storage device.

For a RAM volume, contains RamDrv_Init. For
internal/external Flash volumes, place the function
named FS_<device>_Init.

pfn_drv_read Driver read function for file sys-
tem storage device.

For a RAM volume, contains RamDrv_Read. For
internal/external Flash volumes, place the function
named FS_<device>_Read.

pfn_drv_write Driver write function for file sys-
tem storage device.

For a RAM volume, contains RamDrv_Write. For
internal/external Flash volumes, place the function
named FS_<device>_Write.

pfn_drv_erase Driver erase function for file
system storage device.

For a RAM volume, contains RamDrv_Erase. For
internal/external Flash volumes, place the function
named FS_<device>_Erase.

pfn_drv_close Driver close function for file
system storage device.

For a RAM volume, contains RamDrv_Close. For
internal/external Flash volumes, place the function
named FS_<device>_Close.
Zilog File System Configuration UM017914-1211

Zilog File System
User Manual

11
An example of volume configuration for RAM and Flash is provided in the code segment
that follows. Configuration of the volume must be stored into the g_zfs_cfg variable
that is present in the ZFS_Conf.c file.

typedef struct
{

INT8 vol_name[ZFS_MAX_VOL_NAME_LEN + 1] ;
UINT8 vol_type ; // ZFS_VOL_RAM,

ZFS_VOL_INTFLASH,
// ZFS_VOL_EXTFLASH

UINT8* vol_addr; // starting address of volume.
UINT32 vol_size ; // in bytes
UINT vol_blks ; // number of blocks present in

// the volume. (for RAM it
// will be 1, for Flash
// related to the erasable

UINT vol_secs ; // units number of sectors
// function pointers for all

// driver entries and other routines that require the different
// search algorithm function pointers for all devices.

DRV_INIT pfn_drv_init ;
DRV_READ pfn_drv_read ;
DRV_WRITE pfn_drv_write ;
DRV_ERASE pfn_drv_erase ;
DRV_CLOSE pfn_drv_close ;

// function pointers for Zilog File System routines
} ZFS_CONFIG_t, *PZFS_CONFIG_t ;

Sample Zilog File System Configuration

The sample Zilog File System configuration contains two volumes:

• One volume resides in Flash (EXTF) that starts at address location 0x120000, with 7
blocks and a volume size of 0xE0000

• One volume resides in RAM (RAMF) that starts at address location 0xB80000, with 1
block and a volume size of 0x80000

System-wide, 20 file open instances can be present at a time, and 50 directories can be cre-
ated throughout the system.
UM017914-1211 Zilog File System Configuration

12

Zilog File System
User Manual
The following code segment presents an example Zilog File System configuration file,
ZFS_Conf.c.

#define ZFS_TOTAL_NUM_BLOCKS (7 + 1)
#define ZFS_TOTAL_NUM_SECTORS (0xE0000/ZFS_SEC_SIZE)
#define ZFS_TOTAL_NUM_VOLUMES (1 + 1)
#define ZFS_MAX_FILE_OPEN_COUNT (20)
#define ZFS_MAX_DIRS_SUPPORTED (50)
#define ERASE_FLASH (0)
ZFS_CONFIG_t g_zfs_cfg[ZFS_TOTAL_NUM_VOLUMES] =
{

{
"EXTF", // vol name
ZFS_EXT_FLASH_DEV_TYPE, // vol type
(UINT8*)0x120000, // vol_start_addr
0xE0000, // vol_size
7, // vol_blocks
(0xE0000/ZFS_SEC_SIZE), // number of sectors

FS_MT28F008_Init,
FS_MT28F008_Read,
FS_MT28F008_Write,
FS_MT28F008_Erase,
FS_MT28F008_Close

},
{
"RAMF", // vol name
ZFS_RAM_DEV_TYPE, // vol type
(UINT8*)0xB80000, // vol_start_addr
0x80000, // vol_size
1, // vol_blocks
(0x80000/ZFS_SEC_SIZE), // number of sectors

RamDrv_Init,
RamDrv_Read,
RamDrv_Write,
RamDrv_Erase,
RamDrv_Close

}
} ;
Zilog File System Configuration UM017914-1211

Zilog File System
User Manual

13
Integrating a Flash Driver

This chapter briefly describes how to create a new driver for a Flash device other than
those supported, and how to integrate this Flash driver with the Zilog File System library
so that files and data can be stored in the Flash driver within the structure of the Zilog File
System.

The Zilog File System’s hardware abstraction module requires the Flash driver to be writ-
ten with an appropriate prototype and requires the function to return particular values
when the function succeeds or fails.

The Zilog File System requires the Flash driver to provide basic access routines for Flash
that perform the reading or writing of a number of bytes to and from Flash memory, in
addition to performing the erasure of the physical blocks of Flash. For more information
about the functionality of the basic access routines of the Flash driver that must be inte-
grated with the Zilog File System, refer to Flash Driver APIs section in the Zilog Real-
Time Kernel Reference Manual (RM0006).

Depending upon the characteristics of the Flash device1, access to the Flash device can be
made sequentially and on a first-come/first-served basis. To achieve this type of sequence,
the developer must use any one of the synchronization objects present in RZK (for exam-
ple, a semaphore). These functions are referred to as Flash driver wrapper functions in the
Zilog File System.

When the Flash driver wrapper functions and driver routines are ready, the Flash driver is
integrated with the Zilog File System to store files and directories in Flash memory. The
Zilog File System provides a way of integrating a custom Flash driver that can be used to
store files and directories.

The ZFS_Conf.c file defines a global variable, g_zfs_cfg, which is of the
ZFS_CONFIG_t structure type. You can change the member values of the structure to suit
your requirements. For more information about Zilog File System configuration, see
<CrossRef>Zilog File System Configuration on page 8. For more information about creat-
ing a project workspace for your sample application, refer to Zilog Real-Time Kernel User
Manual (UM0075).

To provide an example, suppose a custom Flash driver, with the name MYFLASH, has rou-
tines such as MYFLASH_Init, MYFLASH_Read, MYFLASH_Write, MYFLASH_Erase and
MYFLASH_Close and that the starting address is 0x100000, with seven erasing blocks to
be used for the storage of files and directories for the Zilog File System. Each block con-
tains 64 KB of space of storage. The configuration block must appear like the code seg-
ment provided below:

1. Some Flash devices, upon reading a byte, return the status byte if the Flash device is currently operating in write or erase modes.
UM017914-1211 Integrating a Flash Driver

http://www.zilog.com/docs/software/um0075.pdf
http://www.zilog.com/docs/software/um0075.pdf
http://www.zilog.com/docs/software/rm0006.pdf
http://www.zilog.com/docs/software/rm0006.pdf

14

Zilog File System
User Manual
#define ZFS_TOTAL_NUM_BLOCKS (7)
#define ZFS_TOTAL_NUM_SECTORS ((7 * 0x10000)/ZFS_SEC_SIZE)
#define ZFS_TOTAL_NUM_VOLUMES (1)

ZFS_CONFIG_t g_zfs_cfg = {
"EXTF", // vol name
ZFS_EXT_FLASH_DEV_TYPE, // vol type for Flash

// device type
(UINT8*)0x100000, // vol_start_addr = 0x100000
(7 * 0x10000), // vol_size (7 * 64KB)
7, // vol_blocks
((7 * 0x10000)/ZFS_SEC_SIZE), // number of sectors
MYFLASH_Init,
MYFLASH_Read,
MYFLASH_Write,
MYFLASH_Erase,
MYFLASH_Close
} ;
Integrating a Flash Driver UM017914-1211

Zilog File System
User Manual

15
Customer Support

To share comments, get your technical questions answered or report issues you may be
experiencing with our products, please visit Zilog’s Technical Support page at
http://support.zilog.com.

To learn more about this product, find additional documentation or to discover other facets
about Zilog product offerings, please visit the Zilog Knowledge Base at http://zilog.com/
kb or consider participating in the Zilog Forum at http://zilog.com/forum.

This publication is subject to replacement by a later edition. To determine whether a later
edition exists, please visit the Zilog website at http://www.zilog.com.
UM017914-1211 Customer Support

http://support.zilog.com
http://zilog.com/kb
http://zilog.com/kb
http://zilog.com/forum
http://www.zilog.com

16

Zilog File System
User Manual
Customer Support UM017914-1211

	Zilog File System User Manual
	Revision History
	Table of Contents
	Introduction
	About This Manual
	Intended Audience
	Manual Organization
	Abbreviations/Acronyms
	Manual Conventions

	Zilog File System Overview
	Zilog File System Architecture
	Getting Started
	Directory Structure

	Use Model
	Zilog File System APIs
	File and Directory Naming Conventions
	Examples

	Zilog File System Configuration
	Zilog File System Macro Configuration
	Zilog File System Volume Configuration

	Integrating a Flash Driver
	Customer Support

