
C

eZ80® CPU

Zilog File System
Reference Manual
RM003914-1211
opyright ©2011 Zilog Inc. All rights reserved.
www.zilog.com

http://www.zilog.com
http://www.zilog.com

Zilog File System
Reference Manual

ii
DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.

LIFE SUPPORT POLICY

ZILOG’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE
EXPRESS PRIOR WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL
COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant
into the body, or (b) support or sustain life and whose failure to perform when properly
used in accordance with instructions for use provided in the labeling can be reasonably
expected to result in a significant injury to the user. A critical component is any
component in a life support device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or system or to affect its safety or
effectiveness.

Document Disclaimer

©2011 Zilog Inc. All rights reserved. Information in this publication concerning the
devices, applications, or technology described is intended to suggest possible uses and
may be superseded. ZILOG, INC. DOES NOT ASSUME LIABILITY FOR OR
PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION,
DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO
D O E S N O T A S S U M E LI A B I L I T Y F O R I N T E L L EC T U A L PRO P E RT Y
INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION,
DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The
information contained within this document has been verified according to the general
principles of electrical and mechanical engineering.

ZMOTION, Z8 Encore! and Z8 Encore! XP are registered trademarks of Zilog Inc. All
other product or service names are the property of their respective owners.

Warning:
RM003914-1211

Zilog File System
Reference Manual

iii
Revision History

Each instance in the following revision history table reflects a change to
this document from its previous version. For more details, refer to the cor-
responding pages or appropriate links provided in the table.

Date
Revision
Level Description Page

Dec
2011

14 Globally updated for the RZK v2.4.0 release. All

Aug
2010

13 Globally updated for the RZK v2.3.0 release. All

Sep
2008

12 Globally updated for the RZK v2.2.0 release. All

Jul
2007

11 Globally updated for proper branding. All

Jul
2007

10 Globally updated for the RZK v2.1.0 release. All

Jun
2007

09 Updated document as per Zilog Style Guide; deleted
File\Directory\Volume Naming Conventions section.

All

Jul
2006

08 Globally updated for the RZK v2.0.0 release. All

Apr
2006

07 Globally updated for the RZK v1.2.2 release. All
RM003914-1211 Revision History

Zilog File System
Reference Manual

RM003914-1211 Table of Contents

iv

Table of Contents

Revision History . iii

Introduction .v

About This Manual .v

Intended Audience .v

Manual Organization .v
Zilog File System .v
File System APIs . vi

Related Documents . vi

Manual Conventions . vii

Safeguards . vii

Zilog File System. .1

Zilog File System Architecture .2

Developing Applications with the Zilog File System 4

File System APIs .5

C Run–Time Library Standard Functions .56

Appendix A. Zilog File System Data Types, Macros and Data
Structures .77

Zilog File System Data Types .77

Zilog File System Macros .77

Zilog File System Data Structures .79

Appendix B. Zilog File System Error Codes .81

Customer Support .83

Zilog File System
Reference Manual

v

Introduction

This Reference Manual describes the APIs associated with the Zilog File
System for Zilog’s eZ80® CPU-based microprocessors and microcon-
trollers. This Zilog File System release supports the eZ80Acclaim! family
of devices, which includes the eZ80F91 microcontroller.

About This Manual

Zilog recommends that you read and understand the chapters in this man-
ual before using the product. This manual is designed to be used as a ref-
erence guide for Zilog File System APIs.

Intended Audience

This document is written for Zilog customers having experience with
RTOS and with microprocessors, in writing assembly code, or in writing
higher level languages such as C.

Manual Organization

This Reference Manual contains the following chapters and appendices:

Zilog File System

This chapter provides an overview of the Zilog File System architecture
and the development of application using Zilog File System.
RM003914-1211 Introduction

Zilog File System
Reference Manual

vi
File System APIs

This chapter describes the Zilog File System APIs.

C Run–Time Library Standard Functions

This chapter describes the C functions supported by the Zilog File Sys-
tem.

Appendix A. Zilog File System Data Types, Macros and
Data Structures

This appendix lists Zilog File System data structures.

Appendix B. Zilog File System Error Codes

This appendix lists Zilog File System error codes.

Related Documents

Table 1 lists the related documents that you must be familiar with to use
the Zilog File System efficiently.

Table 1. Related Documentation

Document title Document Number

Zilog File System Quick Start Guide QS0050

Zilog Real-Time Kernel Quick Start Guide QS0048

Zilog Real-Time Kernel Reference Manual RM0006
RM003914-1211 Introduction

Zilog File System
Reference Manual

vii
Manual Conventions

The following conventions are adopted to provide clarity and ease of use.

Courier New Typeface

Code lines and fragments, functions, and various executable files are dis-
tinguished from general text by appearing in the Courier New typeface.

For example: #include "zfsapi.h".

Zilog File System Terminology

File System refers to the Zilog File System.

Safeguards

When you use any of Zilog’s development platforms, follow the precau-
tions listed below to avoid any damage to the development platform.

Always use a grounding strap to prevent damage resulting from electro-
static discharge (ESD).

Power-Up Precautions

When powering up, observe the following sequence.

1. Apply power to the PC and ensure that it is running properly.

2. Start the terminal emulator program on the PC.

3. Apply power through connector P3 on the eZ80 Development Plat-
form.

Note:
RM003914-1211 Introduction

Zilog File System
Reference Manual

viii
Power-Down Precautions

When powering down, observe the following sequence.

1. Exit the monitor program.

2. Remove power from the eZ80 Development Platform.
RM003914-1211 Introduction

Zilog File System
Reference Manual

1

Zilog File System

The Zilog File System (ZFS) is implemented using the preemptive, multi-
tasking Zilog Real-Time Kernel (RZK). ZFS includes drivers compatible
with Flash devices from Micron, AMD and Atmel, and allows customers
to create new drivers to support other Flash devices.

Key features of the Zilog File System include:

• Implements a core that is independent of the underlying memory
device.

• Supports easy configuration of volumes (such as C:\ or D:\ drives).

• Provides configuration parameters such as the maximum number of
directories to be created and the maximum number of files to be
opened at one time. These parameters, related to volume, optimize
system operation and serve to consume less memory.

• Supports multiple volume access whether RAM memory, Flash mem-
ory, or both memories are employed.

• Implements full-fledged directory operation support.

• Easy system configuration.

• Provides a way to port the Zilog File System core easily to another
toolset.

• Supports all basic file and directory operations.

• Supports multiple access to a single file; however, it can be edited by
only one person at a time.

• Recovers data after a power failure and implements garbage collec-
tion for a Flash device to allow maximum usage of device memory to
store files and directories.
RM003914-1211 Zilog File System

Zilog File System
Reference Manual

2

• All APIs are multithread safe; i.e, they are reentrant File System
APIs.

• Supports the use of a period (.) in filenames or directory names to dis-
tinguish between a filename and its extension.

• Supports media error handling; i.e., the recovery of lost data within
Flash memory.

• Supports NOR Flash devices.

Zilog File System Architecture

Figure 1 displays the architecture of the Zilog File System.

Figure 1. Zilog File System Block Diagram

Zilog File System Programming Interface

Zilog File
System Core

Zilog File System
Kernal
Maintains/manages
data structures
Maintains set of
Helper routines
Performs address
translation

Zilog File System Hardware Abstraction Layer

RZK OSAL

Flash Driver 1 Flash Driver 2 RAM Memory Driver
RM003914-1211 Zilog File System

Zilog File System
Reference Manual

3

The architecture of the Zilog File System contains a number of compo-
nents, each of which is described below.

Zilog File System Programming Interface. This layer contains the API
implementation for basic file and directory operations. These interfaces
are called by the application to access the files and directories contained
in the memory device.

Operating System Abstraction Library (OSAL). This component
implements the OS abstraction for the target OS APIs that are used by the
Zilog File System.

Zilog File System Core. This layer handles sector-related information
such as allocation and deallocation, and performs address translation. It
also invokes garbage collection to retrieve dirty sectors from the disk
when required.

The Zilog File System implements support for equally-sized blocks,
wherein a block refers to a fixed number of bytes present in memory
(which is equivalent to a physically-erasable block).

Zilog File System Hardware Abstraction Layer. This layer provides a
hardware abstraction (or driver abstraction) layer to integrate multiple
devices seamlessly without any changes in other components.

The Zilog File System implements current working directory information
on a per-thread basis, not on a per-system basis. However, it implements
volumes on a per-system basis. The Zilog File System also allows easy
volume configuration.

Developing Applications with the Zilog File System

The application can call any of the Zilog File System APIs. The
ZFSInit() API must be called first to initialize the system. This API
checks the volume for the native format of the Zilog File System and
loads file and directory information into memory. The ZFSInit() API
returns the volume information that is invalid or does not contain a valid
RM003914-1211 Zilog File System

Zilog File System
Reference Manual

4

file system. To use these volumes for storing and retrieving files/directo-
ries, the caller can check the invalid volumes and format these volumes
using the native format of Zilog File System. After the ZFSInit() API is
executed successfully, the services of Zilog File System become avail-
able. You can then create, delete, and rename directories and files.
RM003914-1211 Zilog File System

Zilog File System
Reference Manual

5

File System APIs

Table 2 provides a brief description of the Zilog File System Standard
APIs. The Zilog File System utilizes these APIs to provide the standard C
run–time library file system so that other applications remain unchanged
when ported to the ZFS. (These C APIs are listed in Table 3 on page 56.)
You can use either these ZFS APIs or the C run-time library standard
functions to develop an application, because both perform the same func-
tion.

Table 2. Zilog File System Standard APIs

Function Name Description

ZFSChdir Changes the current working directory.

ZFSClose Closes the open file.

ZFSDelete Deletes an existing file.

ZFSDeleteDir Deletes an existing directory or subdirectories.

ZFSFormat Formats the volume for use in Zilog File System.

ZFSGetCwd Returns the current working directory.

ZFSGetCwdLen Returns the number of bytes that current working directory
string contains.

ZFSGetDirFileCount Returns the number of files/directories contained in the direc-
tory.

ZFSGetErrNum Returns the error number if recent Zilog File System API exe-
cution contains an error.

ZFSGetVolumeCount Returns the number of volumes contained in the system.

ZFSGetVolumeParams Returns the system volume parameters.

ZFSInit Initializes Zilog File System.

ZFSList Lists all files/directories contained in a path.

ZFSMkdir Creates a directory under a path.
RM003914-1211 File System APIs

Zilog File System
Reference Manual

6

ZFSOpen Opens a file for reading/writing/appending or create a new file.

ZFSRead Reads data from an open file.

ZFSRename Renames a file.

ZFSRenameDir Renames a directory.

ZFSSeek Sets file read/write pointer to the specified location.

ZFSShutdown Uninitializes Zilog File System.

ZFSWrite Writes data to an open file.

Table 2. Zilog File System Standard APIs (Continued)

Function Name Description
RM003914-1211 File System APIs

Zilog File System
Reference Manual

7

ZFSCHDIR

Include
#include "zfsapi.h"

Prototype

ZFS_STATUS_t ZFSChdir(IN INT8 *dir);

Description

The ZFSChdir() API changes the current working directory to the direc-
tory path specified. Further operation is performed on this current work-
ing directory if a relative path is provided to any of the Zilog File System
APIs. ZFSInit must be called before using any of the Zilog File System
APIs.

Argument(s)

Return Value(s)

This API returns the following values when it is executed.

dir A pointer to a directory name or path to which the cur-
rent working directory is to be set.

ZFSERR_SUCCESS Current working directory is
changed successfully.

ZFSERR_NOT_INITIALIZED The Zilog File System is not
initialized.

ZFSERR_INVALID_FILEDIR_PATH Directory name or directory
path is invalid.
RM003914-1211 File System APIs

Zilog File System
Reference Manual

8

Example

Change the current working directory to filepath of C:/root/new_dir.

ZFS_STATUS_t status ;

status = ZFSChdir("C:/root/new_dir");
if(status != ZFSERR_SUCCESS)
 printf("\n Unable to change the directory");
else
 printf("\n Changed the current working directory
successfully");

ZFSERR_CWD_PATH_LENGTH_MORE The resultant current working
directory string size is more
than the configured one.

ZFSERR_INVALID_VOLUME The volume to which the direc-
tory path, filename, and/or cur-
rent working directory
corresponds is invalid. The vol-
ume is not formatted with Zilog
File System native format or
the current working directory
information stored for the
thread is corrupted.
RM003914-1211 File System APIs

Zilog File System
Reference Manual

9

ZFSCLOSE

Include
#include "zfsapi.h"

Prototype
ZFS_STATUS_t ZFSClose(IN ZFS_HANDLE_t handle);

Description

The ZFSClose() API closes an open file that is associated with the cor-
responding handle returned by the ZFSOpen() API.

Argument(s)

Return Value(s)

This API returns the following values.

Example

Close the open new_file.txt file.

ZFS_STATUS_t status ;
extern ZFS_HANDLE_t fs_handle ;
status = ZFSClose(fs_handle);
if(status != ZFSERR_SUCCESS)

handle The handle of the open file that must be closed.

ZFSERR_SUCCESS The file is closed successfully.

ZFSERR_NOT_INITIALIZED The Zilog File System is not initialized.
ZFSInit must be called before using any
Zilog File System API.

ZFSERR_INVALID_HANDLE The file handle is invalid.
RM003914-1211 File System APIs

Zilog File System
Reference Manual

10
 printf("\n Unable to close the file");
else
 printf("\n Closed the open file");
RM003914-1211 File System APIs

Zilog File System
Reference Manual

11
ZFSDELETE

Include
#include "zfsapi.h"

Prototype
ZFS_STATUS_t ZFSDelete(IN INT8 *file_name);

Description

The ZFSDelete() API deletes the specified file from the disk. The
file_name argument contains the full path including the filename. The
path can be a absolute path or a relative path.

Argument(s)

Return Value(s)

This API returns the following values when it is executed.

file_name File path including the filename to be deleted from the
disk.

ZFSERR_SUCCESS Current working directory is
changed successfully.

ZFSERR_NOT_INITIALIZED The Zilog File System is not
initialized. ZFSInit must be
called before using any Zilog
File System API.

ZFSERR_FILE_DIR_DOES_NOT_EXIST File does not exist.

ZFSERR_INVALID_FILEDIR_PATH The path is invalid.
RM003914-1211 File System APIs

Zilog File System
Reference Manual

12
Example

Delete the new_file.txt file that exists in the c:/dir1/new_dir file-
path.

ZFS_STATUS_t status ;

status = ZFSDelete("C:/dir1/new_dir/new_file.txt");
if(status != ZFSERR_SUCCESS)
 printf("\n Unable to delete the file");
else
 printf("\n Deleted the file");

ZFSERR_FILE_DIR_IN_USE File is already open for an
operation (reading/writing/
appending).

ZFSERR_INVALID_VOLUME The volume to which the
directory path, filename,
and/or current working
directory corresponds is
invalid. The volume is not
formatted with the Zilog File
System native format or the
current working directory
information stored for the
thread is corrupted.
RM003914-1211 File System APIs

Zilog File System
Reference Manual

13
ZFSDELETEDIR

Include
#include "zfsapi.h"

Prototype
ZFS_STATUS_t ZFSDeleteDir(IN INT8 *dir_name, IN UINT8
del_all);

Description

The ZFSDeleteDir() API deletes a directory and its contents from the
disk. The directory name dir_name can be provided via an absolute path
or relative path. The API returns an error if any threads make the direc-
tory or its child directories its current working directory (CWD). It returns
an error if any files contained in the directory or its subdirectories are
opened for reading or writing. This API returns an error if the root direc-
tory is being deleted.

Argument(s)
dir_name The directory path or directory name to be deleted from the

disk.
del_all This argument deletes all the files/directories contained in the

directory or deletes only the directory specified from the disk.
This argument contains the following values:
• ZFS_FALSE: If del_all is set to ZFS_FALSE, it deletes

an empty directory. If the directory is not empty, it returns
the ZFSERR_DIRECTORY_NOT_EMPTY value.

• ZFS_TRUE: If del_all is set to ZFS_TRUE, it deletes
all files or directories contained in the specified directory
including this directory.

Return Value(s)

This API returns the following values when it is executed.
RM003914-1211 File System APIs

Zilog File System
Reference Manual

14
ZFSERR_SUCCESS The files and directories are
deleted when del_all is
ZFS_TRUE and the directory is
deleted only if it is empty when
del_all is ZFS_FALSE.

ZFSERR_NOT_INITIALIZED ZFS is not initialized.
ZFSInit() must be called
before using any Zilog File
System API.

ZFSERR_INVALID_ARGUMENTS Parameters passed are invalid.

ZFSERR_FILE_DIR_DOES_NOT_EXIS
T

Directory does not exist.

ZFSERR_INVALID_FILEDIR_PATH The directory path is invalid.

ZFSERR_INVALID_OPERATION The directory or its subdirecto-
ries are in use (some threads
use this directory or its subdi-
rectory as a current working
directory).

ZFSERR_DIRECTORY_NOT_EMPTY The directory is not empty (this
error is returned if del_all is
ZFS_FALSE).

ZFSERR_INVALID_VOLUME The volume to which the direc-
tory path, filename, and/or cur-
rent working directory
corresponds is invalid. The vol-
ume is not formatted with the
Zilog File System native format
or the current working directory
information stored for the
thread is corrupted.
RM003914-1211 File System APIs

Zilog File System
Reference Manual

15
Example 1

Delete the files and directories contained in the path C:/dir1/new_dir.

ZFS_STATUS_t status ;
status = ZFSDeleteDir("C:/dir1/new_dir", ZFS_TRUE);
if(status != ZFSERR_SUCCESS)
 printf("\n Unable to delete the files/directories");
else
 printf("\n Deleted the files and directories");

Example 2

Delete the C:/dir1/empty_dir directory.

ZFS_STATUS_t status ;
status = ZFSDeleteDir("C:/dir1/empty_dir", ZFS_FALSE);
if(status != ZFSERR_SUCCESS)
 printf("\n Unable to delete the directory");
else
 printf("\n Deleted the directory");
RM003914-1211 File System APIs

Zilog File System
Reference Manual

16
ZFSFORMAT

Include
#include "zfsapi.h"

Prototype
ZFS_STATUS_t ZFSFormat(IN INT8 *volname);

Description

The ZFSFormat()API formats a volume with the Zilog File System for-
mat. If any file contained in the volume is already open, or if any thread
has established a current working directory in the volume (except for the
root directory of the volume), this API format will not succeed.

Argument(s)
volname The name of the volume that must be formatted.

Return Value(s)

This API returns the following values when it is executed.

ZFSERR_SUCCESS The specified volume is format-
ted successfully.

ZFSERR_NOT_INITIALIZED The Zilog File System is not ini-
tialized. ZFSInit must be called
before using any Zilog File Sys-
tem API.

ZFSERR_INVALID_VOLUME_NAME Volume name is not contained in
the configuration.

ZFSERR_VOLUME_IS_IN_USE The volume is in use; that is, a file
contained in the volume is open or
a thread has established a current
working directory within a direc-
tory contained in the volume.
RM003914-1211 File System APIs

Zilog File System
Reference Manual

17
Example

Format a volume named C.

ZFS_STATUS_t status ;
status = ZFSFormat("C");
if(status != ZFSERR_SUCCESS)
 printf("\n Unable to format the volume");
else
 printf("\n Formatted the volume");
RM003914-1211 File System APIs

Zilog File System
Reference Manual

18
ZFSGETCWD

Include
#include "zfsapi.h"

Prototype
ZFS_STATUS_t ZFSGetCwd(IN_OUT INT8 *pcwd_path);

Description

The ZFSGetCwd() API returns the current working directory as an abso-
lute pathname. The buffer should be allocated by the caller. The caller
must call the ZFSGetCwdLen() API to obtain the number of bytes of
memory to be allocated to store the current working directory.

Argument(s)
pcwd_path A pointer to the memory that is allocated to store the cur-

rent working directory.

Return Value(s)

This API returns the following values when it is executed.

ZFSERR_SUCCESS The current working directory is
returned successfully.

ZFSERR_NOT_INITIALIZED The Zilog File System is not initial-
ized. ZFSInit must be called before
using any Zilog File System API.

ZFSERR_INVALID_ARGUMENTS Arguments to the API are invalid.
RM003914-1211 File System APIs

Zilog File System
Reference Manual

19
Example

Retrieve the current working directory.

ZFS_STATUS_t status ;
extern INT8 *pcwd_path; // assuming that
memory is

// allocated
status = ZFSGetCwd(pcwd_path);
if(status != ZFSERR_SUCCESS)
 printf("\n Unable to get the current working
directory path");
else
 printf("\n Current working directory is : %s",
pcwd_path);

ZFSERR_INVALID_VOLUME The volume to which the directory
path, filename, and/or current work-
ing directory corresponds is invalid.
The volume is not formatted with the
Zilog File System native format or
the current working directory infor-
mation stored for the thread is cor-
rupted.
RM003914-1211 File System APIs

Zilog File System
Reference Manual

20
ZFSGETCWDLEN

Include
#include "zfsapi.h"

Prototype
INT ZFSGetCwdLen(void);

Description

The ZFSGetCwdLen() API returns the number of bytes of memory to be
allocated to store the current working directory. The caller must call ZFS-
GetCwd to obtain the current working directory path.

Argument(s)

None.

Return Value(s)

This API returns the length (positive value) of the current working direc-
tory string if successful. If unsuccessful, it returns the following errors:

ZFSERR_NOT_INITIALIZED The Zilog File System is not initialized.

ZFSERR_INVALID_VOLUME The current working directory pointed to
the volume is incorrect. The volume is not
formatted in the Zilog File System native
format or the current working directory
information stored for the thread is cor-
rupted.

ZFSERR_INTERNAL Internal error.
RM003914-1211 File System APIs

Zilog File System
Reference Manual

21
Example

Retrieve the current working directory.

INT ncwd_len;
ncwd_len = ZFSGetCwdLen();
if(ncwd_len <= 0)
printf("\n API returned an error");
else
printf("\n Length of the CWD in string format is: %d",
ncwd_len);
RM003914-1211 File System APIs

Zilog File System
Reference Manual

22
ZFSGETDIRFILECOUNT

Include
#include "zfsapi.h"

Prototype
INT32 ZFSGetDirFileCount(IN INT8 *dir_path);

Description

The ZFSGetDirFileCount() API returns the number of files and
directories contained in the specified directory. After calling this API, the
caller should allocate the memory to obtain details about the files and
directories contained in the specified directory by the following com-
mand: (count * sizeof(ZFS_FD_LIST_t))

Argument(s)

Return Value(s)

This API returns the number of files and directories contained in the
directory. If an error occurs, it returns the following values:

dir_path The directory name or directory path within which the
files and directories are counted.

ZFSERR_NOT_INITIALIZED The Zilog File System is not
initialized. ZFSInit must be
called before using any Zilog
File System API.

ZFSERR_INVALID_ARGUMENTS Arguments to the API are
invalid.
RM003914-1211 File System APIs

Zilog File System
Reference Manual

23
Example

Obtain the number of files and directories contained in the C:/dir/
new_dir directory.

INT32 nfd_cnt ;

nfd_cnt = ZFSGetDirFileCount("C:/dir/new_dir");
if(nfd_cnt >= 0)
 printf("\n Number of files/dirs = %ld", nfd_cnt);
else
 printf("\n Error occurred in the execution");

ZFSERR_INVALID_FILEDIR_PATH Directory name or directory
path are invalid.

ZFSERR_INVALID_VOLUME The volume to which the direc-
tory path, filename, and/or cur-
rent working directory
corresponds is invalid. The vol-
ume is not formatted with the
Zilog File System native format
or the current working directory
information stored for the
thread is corrupted.
RM003914-1211 File System APIs

Zilog File System
Reference Manual

24
ZFSGETERRNUM

Include
#include "zfsapi.h"

Prototype
ZFS_STATUS_t ZFSGetErrNum(void);

Description

The ZFSGetErrNum() API returns the error code stored when a ZFS
API is executed. The return values are valid only if this API is called
immediately after either the ZFSOpen() or fopen() APIs are called.

Argument(s)

None.

Return Value(s)

This API returns the status of the previously-executed API and is valid
only for ZFSOpen or fopen APIs. See <CrossRef>ZFSOpen on page 37.

Example

Obtain the error number for the previous operation in the current thread.

ZFS_STATUS_t status ;
ZFS_HANDLE_t fs_handle ;
fs_handle = ZFSOpen("C:/dir/child_dir/bin_file.txt",
ZFS_WRITE, ZFS_MODE_BINARY);
if(fs_handle == NULL)
{
 printf("\n File open error and error number is : %d",
ZFSGetErrNum());
}
else
 printf("\n File is opened in WRITE mode");
RM003914-1211 File System APIs

Zilog File System
Reference Manual

25
ZFSGETVOLUMECOUNT

Include
#include "zfsapi.h"

Prototype
ZFS_STATUS_t ZFSGetVolumeCount(void);

Description

The ZFSGetVolumeCount() API returns the number of volumes con-
tained in the system.

Argument(s)

None.

Return Value(s)

This API returns number of volumes contained in the system.

Example

Obtain the number of volumes contained in the system.

ZFS_STATUS_t status ;

status = ZFSGetVolumeCount();
if(status < 0)
 printf("\n Error");
else
 printf("\n Volume count = %d", status);
RM003914-1211 File System APIs

Zilog File System
Reference Manual

26
ZFSGETVOLUMEPARAMS

Include
#include "zfsapi.h"

Prototype
ZFS_STATUS_t ZFSGetVolumeParams(IN INT8 *vol_name,
ZFS_VOL_PARAMS_t *vol_params, UINT8 get_all);

Description

The ZFSGetVolumeParams() API returns the volume parameters vol-
ume name, total space, free space, dirty space, and used space. An option
provides the details about all volumes contained in the system, or about a
particular volume. The caller of this API should first call the ZFSGet-
VolumeCount API to obtain the number of volumes present and then
allocate memory (count * sizeof(ZFS_VOL_PARAMS_t)). The start-
ing location of the allocated memory should be passed to this API.

Argument(s)

vol_name Volume name for which volume information is obtained.
This name can be anything except NULL if get_all is
equal to ZFS_TRUE; in this case, all volume informa-
tion is returned.
RM003914-1211 File System APIs

Zilog File System
Reference Manual

27
Return Value(s)

This API returns the following values when it is executed.

Example

Display information for volumes contained in the system.

ZFS_STATUS_t status;
extern ZFS_HANDLE_t fs_handle ;
extern ZFS_VOL_PARAMS_t vol_params[];// assuming that
 // memory is

 // allocated.
status = ZFSGetVolumeParams("EXTF", &vol_params[0],
ZFS_TRUE);

vol_params Pointer to the first location of the memory that was allo-
cated to store the volume information.

get_all This flag specifies whether to obtain information for all
volumes or information specific to one volume. It can
include either of the values specified below:

• ZFS_TRUE: If this flag is specified, then informa-
tion about all volumes is returned. In this case, the
vol_name can be anything except NULL.

• ZFS_FALSE: If this flag is specified, then informa-
tion about only the specified volume is returned.

ZFSERR_SUCCESS Volume information is returned
successfully.

ZFSERR_NOT_INITIALIZED The Zilog File System is not ini-
tialized. ZFSInit must be called
before using any Zilog File Sys-
tem API.

ZFSERR_INVALID_ARGUMENTS Arguments to the API are invalid.
RM003914-1211 File System APIs

Zilog File System
Reference Manual

28
if(status != ZFSERR_SUCCESS)
 printf("\n Error returned");
else
{
// display volume information here
}

RM003914-1211 File System APIs

Zilog File System
Reference Manual

29
ZFSINIT

Include
#include "zfsapi.h"

Prototype
ZFS_STATUS_t ZFSInit(PZFS_VOL_PARAMS_t pvol_params);

Description

This API initializes Zilog File System, and retrieves information stored in
the volume. If the ZFSInit API is successful in retrieving information, it
updates the internal structure of the Zilog File System with appropriate
information so that all other ZFS APIs work. If the configured volume is
invalid, the ZFSInit API returns the number of invalid volumes located
in the configuration, the details of which are stored in the pvol_params
argument. The caller must first call the ZFSGetVolumeCount() API,
then allocate memory for the ZFS_VOL_PARAMS_t structure in all vol-
umes, and pass the address to the ZFSInit API. If a volume is invalid,
the volume can be made valid only by calling the ZFSFormat() API and
formatting the volume using the Zilog File System native format. The
value of the ZFS_VOL_PARAMS_t.is_valid API indicates the validity
of the volume.

Argument(s)

Return Value(s)

This API returns the number of invalid volumes present in the configura-
tion if successful. Otherwise, it returns the one of the following values:

pvol_params Address of the memory where the details for invalid
volumes are stored.
RM003914-1211 File System APIs

Zilog File System
Reference Manual

30
Example

Initialize the File System.

extern ZFS_VOL_PARAMS_t vol_params[] ; // Assuming the
 // memory is

 // allocated.
ZFS_STATUS_t nInvalidVolCnt ;
ZFS_STATUS_t nVols ;

nVols = ZFSGetVolumeCount() ; // The memory is
//allocated ZFS_VOL_PARAMS_t
//structure for number of volumes

nInvalidVolCnt = ZFSInit (&vol_params[0]) ;
if(nInvalidVolCnt == 0)
printf("\nZilog File System is initialized
successful");
else if(nInvalidVolCnt < 0)
printf("\nError in executing the API");
else
printf("\nThe system has invalid volumes : %d",
nInvalidVolCnt) ;

ZFSERR_SUCCESS Initialization of the Zilog File Sys-
tem is successful.

Number of invalid volumes The ZFSInit API returns the num-
ber of invalid volumes located in
the configuration, the details of
which are stored in the
pvol_params argument.

ZFSERR_ALREADY_INITIALIZED The Zilog File System is already
initialized.
RM003914-1211 File System APIs

Zilog File System
Reference Manual

31
ZFSLIST

Include
#include "zfsapi.h"

Prototype
ZFS_STATUS_t ZFSList(IN INT8 * path, IN_OUT
ZFS_FD_LIST_t * list , IN UINT8 startCnt);

Description

The ZFSList() API returns file and directory information, and returns a
maximum of eight entries each time it is called. If the directory contains
more than eight files or directories, this API must be called until an error
is received or less than eight items are received. The caller must provide
an entry count from which eight items will be returned.

The caller of this API must call first the ZFSGetDirFileCount() API
to obtain the number of files/directories present and then allocate the
memory (count * sizeof(ZFS_FD_LIST_t)). The starting location
of the allocated memory should be passed to this API.

Argument(s)

path Directory name or directory path for which file and
directory information is to be retrieved.

list Pointer to the first location of the memory that is allo-
cated to store file or directory data.

startCnt Entry count after which eight new items are returned.
RM003914-1211 File System APIs

Zilog File System
Reference Manual

32
Return Value(s)

This API returns one of the following values when it is executed.

ZFSERR_SUCCESS File and directory data is
successfully retrieved and
stored in the argument.

ZFSERR_NOT_INITIALIZED The Zilog File System is not
initialized. ZFSInit must be
called before using any Zilog
File System API.

ZFSERR_INVALID_ARGUMENTS Arguments to the API are
invalid

ZFSERR_INVALID_FILEDIR_PATH Directory path or directory
name is invalid.

ZFSERR_FILE_DIR_DOES_NOT_EXIST Directory name does not
exist in the volume.

ZFSERR_INVALID_OFFSET_RANGE Count of entry is invalid.

ZFSERR_INVALID_VOLUME The volume to which the
directory path, filename,
and/or current working
directory corresponds is
invalid. The volume is not
formatted with the Zilog File
System native format or the
current working directory
information stored for the
thread is corrupted.
RM003914-1211 File System APIs

Zilog File System
Reference Manual

33
Example

Display file and directory information about the files and directories con-
tained in the C:/dir/child_dir.

ZFS_STATUS_t status ;
extern ZFS_FD_LIST_t fd_list[]; // assuming that

// memory is
// allocated.

ZFS_STATUS_t cnt = 0 ;
do
{
status = ZFSList("C:/dir/child_dir", &fd_list[0],
cnt);
if(status != ZFSERR_SUCCESS)
 printf("\n Error returned");
else
{
 //lists directories/files
}
cnt = cnt+status ;
} while(status > 0);
RM003914-1211 File System APIs

Zilog File System
Reference Manual

34
ZFSMKDIR

Include
#include "zfsapi.h"

Prototype
ZFS_STATUS_t ZFSMkdir(IN INT8 *path, IN INT8
*dirname);

Description

The ZFSMkdir() API creates a directory in the specified directory path.
The path can be a relative path or an absolute path wherein the new direc-
tory name, dirname, must be only a directory name and must not contain
a pathname.

Argument(s)

Return Value(s)

This API returns one of the following values when it is executed.

path Path within which the new directory must be created.

dirname Directory name to be created.

ZFSERR_SUCCESS New directory is created
successfully.

ZFSERR_NOT_INITIALIZED The Zilog File System is
not initialized. ZFSInit
must be called before
using any Zilog File Sys-
tem API.

ZFSERR_INVALID_ARGUMENTS Arguments to the API are
invalid.
RM003914-1211 File System APIs

Zilog File System
Reference Manual

35
ZFSERR_INVALID_FILEDIR_PATH Directory path or direc-
tory name is invalid.

ZFSERR_INVALID_FILE_DIR_NAME Directory that must be
created is invalid.

ZFSERR_FILE_DIR_DOES_NOT_EXIST Directory name within
which the new directory
must be created does not
exist in the volume.

ZFSERR_FILE_DIR_ALREADY_EXISTS A file or directory with
the same name of new
directory to be created
already exists in the vol-
ume.

ZFSERR_FILE_DIR_COUNT_LIMIT_
REACHED

The directory in which a
new directory to be cre-
ated already contains the
maximum number of files
and/or directories (255
files).

ZFSERR_DIR_COUNT_LIMIT_REACHED Directory count limit
throughout the system is
reached.

ZFSERR_INTERNAL Internal error.
RM003914-1211 File System APIs

Zilog File System
Reference Manual

36
Example

Create a directory named new_child_dir within the C:/dir/
child_dir directory.

ZFS_STATUS_t status ;
status = ZFSMkdir("C:/dir/child_dir",
"new_child_dir");
if(status != ZFSERR_SUCCESS)
 printf("\n New directory is created successfully");
else
 printf("\n Unable to create a new directory");

ZFSERR_DATAMEDIA_FULL Volume is full. No space
is present to create a
directory.

ZFSERR_INVALID_VOLUME The volume to which the
directory path, filename,
and/or current working
directory corresponds is
invalid. The volume is not
formatted with the Zilog
File System native format
or the current working
directory information
stored for the thread is
corrupted.
RM003914-1211 File System APIs

Zilog File System
Reference Manual

37
ZFSOPEN

Include
#include "zfsapi.h"

Prototype
ZFS_HANDLE_t ZFSOpen(IN INT8 *filename, IN UINT8 mode,
IN UINT8 type);

Description

The ZFSOpen() API opens the existing file in read, or read/write, or
append mode. The ZFSOpen() API creates a new file if the specified file
does not exist. The corresponding ZFSRead() or ZFSWrite() API can
be used to read from or write to the file for data. On successful execution,
this API returns the handle for the file that must be used when reading
from or writing to the file. The filename can be in a relative path or an
absolute path, and can include the name of the file that must be opened.
Reading and writing of the file can be performed in ASCII or BINARY
mode. A file can be opened in READ mode many times, but a file in the
WRITE/READ_WRITE/APPEND mode can be opened in only one instance.
RM003914-1211 File System APIs

Zilog File System
Reference Manual

38
Argument(s)

Return Value(s)

This API returns the handle for the file that is opened. This handle is pro-
vided to the ZFSRead(), ZFSWrite(), ZFSSeek(), and ZFSClose()

filename File name that must be opened in respective mode.

mode File opening mode can contain any of the following values:

ZFS_READ: Opens file in read mode; to be successful, the
file should exist in the volume. The file position is set to the
beginning.

ZFS_WRITE: Opens file in write mode; If the file does not
exist in the volume, then this API creates a new file; other-
wise, if the file exists, the API truncates the file size to 0.
The file position is set to the beginning.

ZFS_READ_WRITE: The file is opened in read/write
mode. To be successful, the file should exist in the volume.
The file position is set to the beginning of the file.

ZFS_APPEND: The file is opened in append mode. Only a
write operation can be performed on this file handle. Data
is appended to the end of the file.

type File can be opened in translation or no-translation mode
and can contain either of the following values:

ZFS_MODE_BINARY: File opened in binary mode; no
translation occurs while reading or writing.

ZFS_MODE_ASCII: Translation occurs when file is
opened in ASCII mode. While reading, the carriage return-
line feed (CR-LF) combinations are translated to line feed
(LF) and can be read until the number of bytes in the ZFS-
Read API are reached. While writing, the LF character is
converted into the (CR-LF) combination.
RM003914-1211 File System APIs

Zilog File System
Reference Manual

39
APIs. If file opening is not successful, the API returns NULL. The error
code can be obtained by calling the ZFSGetErrNum API, which returns
one of the following values:

ZFSERR_SUCCESS New directory is created suc-
cessfully.

ZFSERR_NOT_INITIALIZED The Zilog File System is not
initialized. ZFSInit must be
called before using any of
the Zilog File System APIs.

ZFSERR_INVALID_ARGUMENTS Arguments to the API are
invalid.

ZFSERR_INVALID_FILEDIR_PATH File path or file name are
invalid.

ZFSERR_INVALID_FILE_DIR_NAME Invalid file name or direc-
tory name.

ZFSERR_FILE_DIR_DOES_NOT_EXIST The directory in which the
file resides, or the file has to
be created, do not exist.

ZFSERR_FILE_IS_ALREADY_OPEN The file trying to open is
already opened by the same
thread or other threads in
READ/WRITE/
READ_WRITE/APPEND
mode.

ZFSERR_MAX_FILE_OPEN_COUNT_
REACHED

File open instance count
limit is reached. There are
already a number of file
open instances that are equal
to the number that is config-
ured.
RM003914-1211 File System APIs

Zilog File System
Reference Manual

40
Example

Create a file named bin_file.txt in the C:/dir/child_dir direc-
tory.

ZFS_STATUS_t status ;
ZFS_HANDLE_t fs_handle ;
fs_handle = ZFSOpen("C:/dir/child_dir/bin_file.txt",
ZFS_WRITE, ZFS_MODE_BINARY);
if(fs_handle == NULL)
{
 printf("\n File open error and error number is : %d",
ZFSGetErrNum());
}
else
 printf("\n File is opened in WRITE mode");

ZFSERR_FILE_DIR_COUNT_LIMIT_
REACHED

Number of files and directo-
ries contained in the direc-
tory has already reached the
maximum limit of 255 files.

ZFSERR_DATAMEDIA_FULL Volume is full. No space is
present to create a file.

ZFSERR_INVALID_VOLUME The volume to which the
directory path, filename,
and/or current working
directory corresponds is
invalid. The volume is not
formatted with the Zilog File
System native format or the
current working directory
information stored for the
thread is corrupted.
RM003914-1211 File System APIs

Zilog File System
Reference Manual

41
ZFSREAD

Include
#include "zfsapi.h"

Prototype
INT32 ZFSRead(IN ZFS_HANDLE_t handle, IN_OUT UINT8
*buf, IN UINT bytes);

Description

The ZFSRead() API reads characters up to a specific number of bytes
from the file that is associated with the handle. The file pointer associated
with the handle is increased by the number of bytes actually read. If the
stream is opened in ASCII mode, carriage return-line feed (CR-LF) pairs
are replaced with single line feed (LF) characters. The replacement has no
effect on the file pointer or return value. The position of the file pointer is
indeterminate if an error occurs.

Argument(s)

handle Handle of the file upon which a read operation is to be
performed.

buf Buffer to store the read data. The caller of this API
should allocate memory for sufficient bytes.

bytes Number of characters to read from the file.
RM003914-1211 File System APIs

Zilog File System
Reference Manual

42
Return Value(s)

This API returns the number of bytes read if successful; otherwise, it
returns one of the following error values (these error codes are negative):

Example

Use the ZFSRead() API to read 100 bytes from a file that is opened in
ZFS_READ mode then contain the corresponding handle in fs_handle.

ZFS_HANDLE_t fs_handle;
ZFS_STATUS_t status ;
INT32 numBytesRead ;
UINT8 buf_read[100] ;
numBytesRead = ZFSRead(fs_handle, &buf_read[0], 100);
if(numBytesRead <= 0)
 printf("\n Read error");
else
 printf("\n Read %ld bytes from the file",
numBytesRead);

ZFSERR_NOT_INITIALIZED The Zilog File System is not initial-
ized. ZFSInit must be called before
using any Zilog File System API.

ZFSERR_INVALID_ARGUMENTS Arguments to the API are invalid.

ZFSERR_INVALID_HANDLE Handle is not associated with the
opening of the file.

ZFSERR_INVALID_OPERATION The Read operation is invalid on the
opening of the file (the file is not
opened in ZFS_READ or
ZFS_READ_WRITE mode) or the
file position is already reached at the
end of the file.
RM003914-1211 File System APIs

Zilog File System
Reference Manual

43
ZFSRENAME

Include
#include "zfsapi.h"

Prototype
ZFS_STATUS_t ZFSRename(IN INT8 *src_file_path, IN INT8
*dst_file_name);

Description

The ZFSRename() API renames a file with a new file name. The file-
name that must be renamed can be in a relative path or an absolute path. If
the file to be renamed is in use (that is, if the file is opened by any thread
for reading/writing), then this API returns an error.

Argument(s)

Return Value(s)

This API returns one of the following values when it is executed.

src_file_path The name of the file that must be renamed. The
specified path can include the file name and can be
a relative or absolute path.

dst_file_name New name for the file.

ZFSERR_SUCCESS File is renamed to the new
name successfully.

ZFSERR_NOT_INITIALIZED The Zilog File System is not
initialized. ZFSInit must be
called before using any Zilog
File System API.
RM003914-1211 File System APIs

Zilog File System
Reference Manual

44
ZFSERR_INVALID_ARGUMENTS Arguments to the API are
invalid.

ZFSERR_INVALID_FILEDIR_PATH File path is invalid.

ZFSERR_INVALID_FILE_DIR_NAME New file name is invalid.

ZFSERR_FILE_DIR_DOES_NOT_EXIST The file that must be
renamed does not exist in the
directory path.

ZFSERR_FILE_DIR_ALREADY_EXISTS A file or directory with the
same name as the new file
name already exists in the
volume.

ZFSERR_FILE_DIR_IN_USE The file that must be used is
already open for reading/
writing/appending.

ZFSERR_INTERNAL Internal error.

ZFSERR_DATAMEDIA_FULL Volume is full. No space is
available to create a direc-
tory.

ZFSERR_INVALID_VOLUME The volume to which the
directory path, filename,
and/or current working
directory corresponds is
invalid. The volume is not
formatted with the Zilog File
System native format or the
current working directory
information stored for the
thread is corrupted.
RM003914-1211 File System APIs

Zilog File System
Reference Manual

45
Example

Use the ZFSRename() API to rename a file named old_file_name
with a name new_file_name in the C:/dir/child_dir directory.

ZFS_STATUS_t status ;
status = ZFSRename("C:/dir/child_dir/old_file_name",
"new_file_name");
if(status != ZFSERR_SUCCESS)
 printf("\n File is renamed to the new file name");
else
 printf("\n Unable to rename file name");
RM003914-1211 File System APIs

Zilog File System
Reference Manual

46
ZFSRENAMEDIR

Include
#include "zfsapi.h"

Prototype
ZFS_STATUS_t ZFSRenameDir(IN INT8 *src_dir_path, IN
INT8* dst_dir_name);

Description

The ZFSRenameDir() API renames a directory. The new directory name
can be in a relative path or an absolute path. If the directory to be renamed
is in use (that is, if a file is opened for operation such as reading/writing in
this directory or subdirectory, or if any thread adopts this directory or sub-
directory as the current working directory), then this API returns an error.
This API does not allow the root directory to be renamed.

Argument(s)

Return Value(s)

This API returns one of the following values when it is executed.

src_dir_path The directory name that must be renamed. The path
includes the directory name and can be relative or
absolute path.

dst_dir_name New directory name for the directory.

ZFSERR_SUCCESS Directory is renamed suc-
cessfully.

ZFSERR_NOT_INITIALIZED The Zilog File System is not
initialized. ZFSInit() must be
called before using any Zilog
File System API.
RM003914-1211 File System APIs

Zilog File System
Reference Manual

47
ZFSERR_INVALID_ARGUMENTS Arguments to the API are
invalid.

ZFSERR_INVALID_FILEDIR_PATH Directory path is invalid.

ZFSERR_INVALID_FILE_DIR_NAME New directory name is
invalid.

ZFSERR_FILE_DIR_DOES_NOT_EXIST The directory that must be
renamed does not exist in the
volume.

ZFSERR_FILE_DIR_ALREADY_EXISTS A file or directory with the
same name as that of the new
directory already exists in
the volume.

ZFSERR_FILE_DIR_IN_USE Some files in the directory
are already open for use, or
the child directories of the
specified directory that must
be renamed are set as the
current working directory of
a thread.

ZFSERR_INTERNAL Internal error.

ZFSERR_INVALID_VOLUME The volume to which the
directory path, filename,
and/or current working
directory corresponds is
invalid. The volume is not
formatted with the Zilog File
System native format or the
current working directory
information stored for the
thread is corrupted.
RM003914-1211 File System APIs

Zilog File System
Reference Manual

48
Example

Use the ZFSRenameDir API to rename a directory named
old_dir_name with the new directory name new_dir_name in the C:/
dir/child_dir directory.

ZFS_STATUS_t status ;
status = ZFSRenameDir("C:/dir/child_dir/old_dir_name",
"new_dir_name");
if(status != ZFSERR_SUCCESS)
 printf("\n Directory is renamed to the new directory
name");
else
 printf("\n Unable to rename directory");
RM003914-1211 File System APIs

Zilog File System
Reference Manual

49
ZFSSEEK

Include
#include "zfsapi.h"

Prototype
ZFS_STATUS_t ZFSSeek(IN ZFS_HANDLE_t handle, IN INT32
offset, IN INT8 origin);

Description

The ZFSSeek() API moves the file pointer to the specified value. The
next operation on the file occurs at a new location. This API can be used
to reposition the pointer anywhere in the file.

If this API is called on a file that is opened in ZFS_APPEND mode, it
returns an error.

Argument(s)

handle Handle of the file on which a seek operation is to be per-
formed.

offset Number of bytes from the origin.

origin Initial position from where the offset must be moved.
This parameter can contain any of the following values:
ZFS_FILE_BEGIN: origin is from the beginning of the
file.
ZFS_FILE_END: origin is from the end of the file.
ZFS_FILE_CURRENT: origin is from the current file
pointer position.

Note:
RM003914-1211 File System APIs

Zilog File System
Reference Manual

50
Return Value(s)

This API returns one of the following values when it is executed.

Example

Use the ZFSSeek() API to move the file pointer position to 100 from the
current position for the file newfile.txt. This file is open in READ
mode, and its handle is contained in fs_handle.

ZFS_STATUS_t status ;
ZFS_HANDLE_t fs_handle ;
status = ZFSSeek(fs_handle, 100, ZFS_FILE_CURRENT);
if(status != ZFSERR_SUCCESS)
 printf("\n Seek operation returned an error");
else

ZFSERR_SUCCESS Seek operation is performed
successfully.

ZFSERR_NOT_INITIALIZED The Zilog File System is not
initialized. ZFSInit must be
called before using any Zilog
File System API.

ZFSERR_INVALID_ARGUMENTS Arguments to the API are
invalid.

ZFSERR_INVALID_HANDLE Handle is not associated with
the opening of the file.

ZFSERR_INVALID_eOPERATION The seek operation is invalid
because it is being performed
on a file that is open in
ZFS_APPEND mode.

ZFSERR_INVALID_OFFSET_RANGE The file pointer position move-
ment exceeds the file size.
RM003914-1211 File System APIs

Zilog File System
Reference Manual

51
 printf("\n Seek operation is performed
successfully");
RM003914-1211 File System APIs

Zilog File System
Reference Manual

52
ZFSSHUTDOWN

Include
#include "zfsapi.h"

Prototype
ZFS_STATUS_t ZFSShutdown(void);

Description

The ZFSShutdown() API uninitializes the File System for all volumes
contained in the configuration. The ZFSInit API must be called to reini-
tialize the File System.

Argument(s)

None.

Return Value(s)

This API returns one of the following values:

Example

Shut down the ZFS.

ZFS_STATUS_t status ;
status = ZFSShutdown();
if(status != ZFSERR_SUCCESS)
 printf("\n File system shut down is not successful");

ZFSERR_SUCCESS The Zilog File System has shut down
successfully.

ZFSERR_ALREADY_SHUTDOWN The Zilog File System has already
shut down.

ZFSERR_FS_BUSY If any thread opens a file for reading/
writing, this API returns an error.
RM003914-1211 File System APIs

Zilog File System
Reference Manual

53
else
 printf("\n File system shutdown is successful");
RM003914-1211 File System APIs

Zilog File System
Reference Manual

54
ZFSWRITE

Include
#include "zfsapi.h"

Prototype
INT32 ZFSWrite(IN ZFS_HANDLE_t handle, IN UINT8 *buf,
IN UINT bytes);

Description

The ZFSWrite() API writes characters up to a specific number of bytes
into a file. The file pointer associated with the handle is incremented by
the number of bytes actually written. If the file is opened in ASCII mode,
each carriage return (CR) is replaced with a carriage return-line feed (CR-
LF) combination. The replacement has no effect on the return value.

Argument(s)

Return Value(s)

This API returns the number of bytes written if successful; otherwise, it
returns one of the following values to indicate an error (these error codes
are negative):

handle Handle of the file on which the write operation is to be
performed.

buf Data to write into the file.

bytes Number of characters to write into the file.

ZFSERR_NOT_INITIALIZED The Zilog File System is not initial-
ized. ZFSInit must be called before
using any Zilog File System API.

ZFSERR_INVALID_ARGUMENTS Arguments to the API are invalid.
RM003914-1211 File System APIs

Zilog File System
Reference Manual

55
Example

Write 100 bytes to a file that is opened in ZFS_READ_WRITE mode.
The file’s handle is contained in fs_handle.

ZFS_STATUS_t status ;
extern ZFS_HANDLE_t fs_handle ;
INT32 numBytesWritten ;
UINT8 buf_write[100] ;// this buffer contains data

 // to write
numBytesWritten =
ZFSWrite(fs_handle,&buf_write[0],100);
if(numBytesWritten <= 0)
 printf("\n Read error");
else
 printf("\n Written %ld bytes to the file",
numBytesWritten);

ZFSERR_INVALID_HANDLE Handle is not associated with the file
open instance.

ZFSERR_INVALID_OPERATION The Write operation is invalid on the
instance of file open (indicates that
the file is not opened in ZFS_WRITE
or ZFS_READ_WRITE or
ZFS_APPEND mode).

ZFSERR_DATAMEDIA_FULL No empty space is available in the
volume to perform the write opera-
tion.

ZFSERR_DEVICE Device returned an error.
RM003914-1211 File System APIs

Zilog File System
Reference Manual

56
C Run–Time Library Standard
Functions

The standard library of C functions supported by the Zilog File System is
listed in Table 3.

Table 3. Zilog File System: Supported C Standard Library APIs

Function
Name Description

fopen Opens a file for reading/writing.

fclose Closes an open file.

fread Reads the specified number of bytes from the file.

fwrite Writes the specified number of bytes into the file.

fgetc Returns a character from the file.

fputc Returns a character into the file.

fgets Returns a string from the file.

fputs Stores a string into the file.

fseek Alters the file pointer position.

ftell Returns the file pointer position.

feof Determines whether it is end of file or not.
RM003914-1211 C Run–Time Library Standard Functions

Zilog File System
Reference Manual

57
FOPEN

Include
#include "cfileapi.h"

Prototype
FILE *fopen(const char *filename, const char *mode);

Description

The fopen() function opens a file specified by a filename with the type
of access defined by mode. If successful, this function returns a handle for
the file; otherwise, it returns NULL. If the file is opened in ASCII or trans-
lated mode, then, when reading from the file, each carriage return-line
feed (CR-LF) character pair will be translated into a line feed (LF) char-
acter. During writing, each LF character is converted into a CR-LF pair.

Argument(s)

filename The name of the file that must be opened. This parame-
ter can also contain the path in which the file is con-
tained. The path can be relative to the current working
directory or an absolute path.

mode File opening mode can contain any of the following val-
ues:

r Opens specified file in read mode. If the file does
not exist or cannot be found, the fopen call fails
(translation of new line characters).

w Opens an empty file in write mode. If the file
exists, the file size is truncated to zero (translation
of new line characters).
RM003914-1211 C Run–Time Library Standard Functions

Zilog File System
Reference Manual

58
Return Value(s)

This function returns a handle to the file that is opened if successful; oth-
erwise it returns NULL.

Example

Use the fopen() function to open a file called new_file.txt in which
the file handle is stored in fs_handle.

struct FILE *fs_handle ;

mode
(cont’d)

a Opens specified file in append mode, before writ-
ing the new data to the file; if the specified file
does not exist, a new file is created with the speci-
fied file name and opened in append mode (trans-
lation of new line characters).

r+ Opens in both read and write mode (the file must
exist; translation of new line characters).

rb Opens for reading. If the file does not exist or can-
not be found, the fopen call fails (translation of
new line characters is suppressed).

wb Opens an empty file for writing. If the file exists,
the file size is truncated to zero (translation of new
line characters is suppressed).

ab Opens for writing at the end of the file (appending)
before writing new data to the file; if the specified
file does not exist, a new file is created with the
specified file name and opened in append mode
(translation of new line characters is suppressed).

r+b Opens for both reading and writing (the file must
exist; translation of new line characters is sup-
pressed).
RM003914-1211 C Run–Time Library Standard Functions

Zilog File System
Reference Manual

59
fs_handle = fopen("new_file.txt", "wb");
if(fs_handle == NULL)
 printf("\n File cannot be opened for writing");
else
 printf("\n File opened in WRITE mode successfully");
RM003914-1211 C Run–Time Library Standard Functions

Zilog File System
Reference Manual

60
FCLOSE

Include
#include "cfileapi.h"

Prototype
int fclose(FILE *stream);

Description

The fclose() function closes an open file.

Argument(s)
stream Handle for the file that must be closed.

Return Value(s)

This function returns 0 if the file is closed successfully; otherwise, it
returns -1 to indicate an error.

Example

Use the fclose() function to close the file called new_file.txt in
which in the handle is stored in fs_handle.

extern struct FILE *fs_handle;// file handle for
 // "new_file.txt"

if(fclose(fs_handle) != 0)
 printf("\n File could not be closed.");
else
 printf("\n File closed successfully");
RM003914-1211 C Run–Time Library Standard Functions

Zilog File System
Reference Manual

61
FREAD

Include
#include "cfileapi.h"

Prototype
size_t fread(void *buffer, size_t size, size_t count,
FILE *stream);

Description

The fread() function reads data up to the count items of the specified
size bytes from the input stream and stores them in a buffer. The file
pointer associated with the stream, if any, is increased by the number of
bytes actually read. If the stream is opened in text mode (ASCII or trans-
lated), carriage return-line feed (CR-LF) pairs are replaced with single
line feed characters. The replacement has no effect on the file pointer or
the return value. The file-pointer position is indeterminate if an error
occurs.

Argument(s)

Return Value(s)

The fread() function returns the number of items actually read, which
may be less than count if an error occurs or if the end of the file is
encountered before reaching count. Use the feof function to distinguish

buffer Storage location for the data.

size Item size in bytes.

count Maximum number of items to be read.

stream Pointer to the FILE structure (file upon which the read
operation is to be performed).
RM003914-1211 C Run–Time Library Standard Functions

Zilog File System
Reference Manual

62
a read error from an end-of-file condition. If an error occurs, this function
returns 0.

Example

Use the fread() function to read 1000 items of 16 bytes’ length from the
file named new_file.txt in which the handle is stored in fs_handle.

extern struct FILE *fs_handle; // file handle for
//"new_file.txt"

unsigned char buf[1000 * 16] ;
size_t cnt ;
cnt = fread(&buf[0], 16, 1000, fs_handle);
if(cnt == 0)
 printf("\n unable to read the contents or an error
has occurred");
else
 printf("\n Items read = %d", cnt);
RM003914-1211 C Run–Time Library Standard Functions

Zilog File System
Reference Manual

63
FWRITE

Include
#include "cfileapi.h"

Prototype
size_t fwrite(const void *buffer, size_t size, size_t
count, FILE *stream);

Description

The fwrite() function writes data up to count items, of specified size
length each, from the buffer to the output stream. The file pointer associ-
ated with stream is incremented by the number of bytes actually written.
If stream is opened in text mode (ASCII or translated), each carriage
return is replaced with a carriage return/line feed pair. The replacement
has no effect on the return value.

Argument(s)

Return Value(s)

The fwrite() function returns the number of items actually written,
which may be less than count if an error occurs. In addition, if an error
occurs, the file position indicator cannot be determined.

buffer Pointer to data to be written

size Item size in bytes

count Maximum number of items to be written

stream Pointer to the FILE structure (the file on which the Write
operation is to be performed)
RM003914-1211 C Run–Time Library Standard Functions

Zilog File System
Reference Manual

64
Example

Use the fwrite function to write 1000 items of 16 bytes’ length to a file
named new_file.txt for which the handle is stored in fs_handle.

extern struct FILE *fs_handle ; // file handle for
//"new_file.txt"

extern unsigned char buf[1000 * 16] ; // buffer to
 //write

size_t cnt ;
cnt = fwrite(&buf[0], 16, 1000, fs_handle);
if(cnt == 0)
 printf("\n unable to write the contents or an error
has occurred");
else
 printf("\n Items written to the file = %d", cnt);
RM003914-1211 C Run–Time Library Standard Functions

Zilog File System
Reference Manual

65
FGETC

Include
#include "cfileapi.h"

Prototype
int fgetc(FILE *stream);

Description

This function reads a single character from the current position of a file
associated with stream. The function increments the associated file
pointer to point to the next character. If the stream is at end of file, the
end-of-file indicator for the stream is set.

Argument(s)

Return Value(s)

The fgetc() function returns the character read as an int if sucessfully
executed and returns EOF to indicate an error or the end of the file.

Example

Use the fgetc() function to read a character from a file named
new_file.txt in which the handle is stored in fs_handle.

extern struct FILE *fs_handle ; // file handle for
 //"new_file.txt"

int char_read ;
char_read = fgetc(fs_handle);
if(char_read == EOF)
 printf("\n unable to read the character");
else

stream Pointer to the FILE structure (file on which the Read
operation is to be performed).
RM003914-1211 C Run–Time Library Standard Functions

Zilog File System
Reference Manual

66
 printf("\n Character read was : %c", char_read);
RM003914-1211 C Run–Time Library Standard Functions

Zilog File System
Reference Manual

67
FPUTC

Include
#include "cfileapi.h"

Prototype
int fputc(int c, FILE *stream);

Description

The fputc() function writes the single character c to a file at the posi-
tion indicated by the associated file position indicator (if defined) and
advances the indicator as appropriate. If the file was opened in append
mode, the character is appended to the end of the stream.

Argument(s)

Return Value(s)

This function returns the character written. In the event of an error, EOF is
returned.

Example

Use the fputc function to write a character to a file named
new_file.txt in which the handle is stored in fs_handle.

extern struct FILE *fs_handle ; // file handle for
 // "new_file.txt"

int char_written ;

char_written = fputc('A', fs_handle);

c Character to write into the file.

stream Pointer to the FILE structure (file on which the Write
operation is to be performed).
RM003914-1211 C Run–Time Library Standard Functions

Zilog File System
Reference Manual

68
if(char_written == EOF)
 printf("\n unable to write the character");
else
 printf("\n Character written was : %c",
char_written);
RM003914-1211 C Run–Time Library Standard Functions

Zilog File System
Reference Manual

69
FGETS

Include
#include "cfileapi.h"

Prototype
char *fgets(char *string, int n, FILE *stream);

Description

The fgets() function reads a string from the input stream argument and
stores it in string. fgets reads characters from the current stream posi-
tion. It includes the first newline character at the end of the stream, or
includes the number of characters read up to n–1, whichever occurs first.
The result stored in string is appended with a NULL character. The
newline character, if read, is included in the string.

Argument(s)

Return Value(s)

Each of these functions returns string. NULL is returned to indicate an
error or an end-of-file condition. Use the feof function to determine
whether an error occurred.

Example

Use fgets() to read a string from a file named new_file.txt in which
the handle is stored in fs_handle.

string Storage location for the read data.

n Maximum number of characters to read.

stream Pointer to the FILE structure (file on which the Read
operation is to be performed).
RM003914-1211 C Run–Time Library Standard Functions

Zilog File System
Reference Manual

70
extern struct FILE *fs_handle ; // file handle for
// "new_file.txt"

extern char *pbuf;
pbuf = fgets(pbuf, 100, fs_handle);
if(pbuf == NULL)
 printf("\n unable to read the string");
else
 printf("\n String read is : %s", pbuf);
RM003914-1211 C Run–Time Library Standard Functions

Zilog File System
Reference Manual

71
FPUTS

Include
#include "cfileapi.h"

Prototype
int fputs(const char *string, FILE *stream);

Description

The fputs() function copies string to the output stream at the current
position and does not copy the terminating NULL character.

Argument(s)

Return Value(s)

This function returns a non-negative value if it is successful (excluding
0); otherwise, it returns EOF.

Example

Use the fputs() function to write the string Hello World to a file
named new_file.txt in which the handle is stored in fs_handle.

extern struct FILE *fs_handle ; // file handle for
 // "new_file.txt"

char *pbuf = "Hello World" ;
if(fputs(pbuf, fs_handle) > 0)
 printf("\n successfully written to the file");
else
 printf("\n error in writing the string");

string String that must be written to the file.

stream Pointer to the FILE structure (file on which the write opera-
tion is to be performed).
RM003914-1211 C Run–Time Library Standard Functions

Zilog File System
Reference Manual

72
FSEEK

Include
#include "cfileapi.h"

Prototype
int fseek(FILE *stream, long offset, int origin);

Description

The fseek() function moves the file pointer (if any) associated with
stream to a new location that is offset a number of bytes from the origin.
The next operation on the stream occurs at the new location. This API
returns an error if it is called on a file that is opened in APPEND (a or ab)
mode.

Argument(s)

Return Value(s)

If successful, fseek() returns 0. Otherwise, it returns a nonzero value.

stream Pointer to the FILE structure (file on which the file pointer
must be set).

offset Number of bytes from origin.

origin Specifies the origin from which the offset number of bytes is
added to set the new file pointer position; can contain the
following values:
SEEK_CUR: Current position of file pointer.
SEEK_END: End of file.
SEEK_SET: Beginning of file.
RM003914-1211 C Run–Time Library Standard Functions

Zilog File System
Reference Manual

73
Example

Use the fseek() function sets the file position pointer to 100 from the
beginning of the file in which the handle is stored in fs_handle.

extern struct FILE *fs_handle ; // file handle for
 // "new_file.txt"

if(fseek(fs_handle, 100, SEEK_SET) == 0)
 printf("\n successfully set the file pointer position
in the file");
else
 printf("\n error in fseek");
RM003914-1211 C Run–Time Library Standard Functions

Zilog File System
Reference Manual

74
FTELL

Include
#include "cfileapi.h"

Prototype
long ftell(FILE *stream);

Description

The ftell() function obtains the current position of the file pointer (if
any) associated with stream. The position of the file pointer is expressed
as an offset value relative to the beginning of the stream.

Argument(s)
stream Pointer to the FILE structure (the file upon which the file

pointer is obtained).

Return Value(s)

The ftell() function returns the current file position. The value
returned by ftell may not reflect the physical byte offset for streams
opened in text mode, because text mode causes carriage return-line feed
(CR-LF) translation. Use ftell with fseek to return to file locations
correctly. On error, ftell() returns –1L.

Example

Use ftell() function obtains the size of the file in which the handle is
stored in fs_handle.

long lbegin ;
long lend ;
extern struct FILE *fs_handle ; // file handle for

 //"new_file.txt"
 //long lbegin, lend ;
RM003914-1211 C Run–Time Library Standard Functions

Zilog File System
Reference Manual

75
if(fseek(fs_handle, 0, SEEK_SET) == 0)
 printf("\n successfully set the file pointer position
in the file");
else
 printf("\n error in fseek");

lbegin = ftell(fs_handle);

if(fseek(fs_handle, 0, SEEK_END) == 0)
 printf("\n successfully set the file pointer position
in the file");
else
 printf("\n error in fseek");

lend = ftell(fs_handle);

 printf("\n size of the file = %ld", (lend-lbegin));
RM003914-1211 C Run–Time Library Standard Functions

Zilog File System
Reference Manual

76
FEOF

Include
#include "cfileapi.h"

Prototype
int feof(FILE *stream);

Description

The feof() routine (implemented both as a function and as a macro)
determines whether the end of stream has been reached. When end of file
is reached, read operation returns an end-of-file indicator until the
stream is closed or until fseek is called against it.

Argument(s)
stream Pointer to the FILE structure (file on which to find an EOF

condition).

Return Value(s)

The feof() function returns a nonzero value after the first read operation
that attempts to read past the end of the file. It returns 0 if the current posi-
tion is not end of file. There is no error return.

Example

Use the feof() function verifies whether it is an end of file condi-
tion or not for a file whose handle is contained in fs_handle.

extern ZFS_HANDLE_t fs_handle ;
if(feof(fs_handle))
 printf("\n END Of File reached");
else
 printf("\n no End Of File is reached");
RM003914-1211 C Run–Time Library Standard Functions

Zilog File System
Reference Manual

77
Appendix A. Zilog File System
Data Types, Macros and Data
Structures

This appendix describes the data types, macros and data structures that
are used by the Zilog File System APIs.

Zilog File System Data Types

Table 4 lists the data types used by the Zilog File System. These data
types are dependent on the data types employed by the Zilog Real-Time
Kernel and are described in the Zilog Real-Time Kernel Reference Man-
ual (RM0006).

Zilog File System Macros

Table 5 lists the macros used by the Zilog File System. You can use these
macros to pass values and to interpret return values within parameters or
various data structures.

Table 4. Zilog File System Data Types

Data Type Definition

ZFS_STATUS_t INT (integer)

ZFS_HANDLE_t VOID * (void pointer)

FILE VOID (void data type)
RM003914-1211

http://www.zilog.com/docs/software/rm0006.pdf
http://www.zilog.com/docs/software/rm0006.pdf

Zilog File System
Reference Manual

78
Table 5. Zilog File System Macros

Macro Description

ZFS_DIR_TYPE This macro identifies whether the entry in ZFS_FD_LIST_t
structure is a directory or not. When checking for the entry type,
use the following pseudocode.

If ((~(fd_list->fd_type)) & ZFS_DIR_TYPE)
// It is a directory.

If((~(fd_list->fd_type)) & ZFS_FILE_TYPE)
// It is a file.

ZFS_FILE_TYPE This macro identifies whether the entry in the ZFS_FD_LIST_t
structure is a file or not. When checking for entry type, use the
following pseudocode.

If((~(fd_list->fd_type)) & ZFS_DIR_TYPE)
// It is a directory.

If((~(fd_list->fd_type)) & ZFS_FILE_TYPE)
// It is a file.

ZFS_FILE_BEGIN This macro is used by the ZFSSeek() API to pass the original
value. It seeks the beginning of the file, see ZFSSeek on
page 49.

ZFS_FILE_CURRENT This macro is used by the ZFSSeek() API to pass the original
value. It seeks the current file pointer position in the file, see
ZFSSeek on page 49.

ZFS_FILE_END This macro is used by the ZFSSeek() API to pass the original
value. It seeks the end of the file, see ZFSSeek on page 49.

ZFS_READ This macro is used by the ZFSOpen() API to pass the mode of
file open. This macro is used to open the file in READ mode, see
ZFSOpen on page 37.

ZFS_WRITE This macro is used by the ZFSOpen() API to pass the mode of
file open. This macro is used to open the file in WRITE mode,
see ZFSOpen on page 37.
RM003914-1211

Zilog File System
Reference Manual

79
Zilog File System Data Structures

The two Zilog File System data structures, ZFS_FD_LIST_t and
ZFS_VOL_PARAMS_t, are described in this section.

ZFS_FD_LIST_t

This structure is used to store file or directory attributes, such as the name,
size, and the time of modification.

typedef struct {
INT8 fd_name[ZFS_MAX_FILE_NAME_SIZE + 1] ;
UINT8 fd_type ; // entry typem, DIRECTORY or
FILE
UINT32 fd_size; // size of the file
UINT8 fd_sec; // TimeStamp-seconds
UINT8 fd_min; // TimeStamp-Minutes
UINT8 fd_hrs; // TimeStamp-Hours

ZFS_APPEND This macro is used by the ZFSOpen() API to pass the mode of
file open. This macro is used to open the file in APPEND mode,
see ZFSOpen on page 37.

ZFS_READ_WRITE This macro is used by the ZFSOpen() API to pass the mode of
file open. This macro is used to open the file in READ_WRITE
mode, see ZFSOpen on page 37.

ZFS_MODE_ASCII This macro is used by the ZFSOpen() API to pass the type of
file open. This macro is used to open a file in translation mode,
see ZFSOpen on page 37.

ZFS_MODE_BINARY This macro is used by the ZFSOpen() API to pass the type of
file open. This macro is used to open a file in no-translation
mode, see ZFSOpen on page 37.

Table 5. Zilog File System Macros (Continued)

Macro Description
RM003914-1211

Zilog File System
Reference Manual

80
UINT8 fd_day; // TimeStamp-Dat
UINT8 fd_mon; // TimeStamp-Month
UINT8 fd_year // TimeStamp-Year
UINT8 fd_century; // TimeStamp-Century

} ZFS_FD_LIST_t ;

To decode the contents of fd_type, use the following pseudocode.

If((~(fd_list->fd_type)) & ZFS_DIR_TYPE)
 // It is a directory
If((~(fd_list->fd_type)) & ZFS_FILE_TYPE)
 // It is a file.

ZFS_VOL_PARAMS_t

This structure is used to store Zilog File System information such as vol-
ume name, free space, used space, and dirty space contained in the vol-
ume. Memory space is stored in bytes.

typedef struct {
UINT8 vol_name[ZFS_MAX_FILE_NAME_SIZE + 1] ;
UINT8 is_valid ; // ZFS_TRUE indicates volume is

 // valid, ZFS_FALSE indicates vol-
// ume is invalid.

UINT32 vol_size ;
UINT32 free_space ;
UINT32 used_space ;
UINT32 dirty_space ;

} ZFS_VOL_PARAMS_t, *PZFS_VOL_PARAMS_t ;
RM003914-1211

Zilog File System
Reference Manual

81
Appendix B. Zilog File System
Error Codes

The Zilog File System returns error codes depending on the execution of a
Zilog File System APIs. The error codes mentioned in Table 6 are valid
only for Zilog File System APIs and are not applicable to C file APIs.

Table 6. Zilog File System Error Codes

Return Value
Error

Codes

ZFSERR_SUCCESS 0

ZFSERR_INVALID_HANDLE –1

ZFSERR_INVALID_ARGUMENTS –2

ZFSERR_NOT_INITIALIZED –3

ZFSERR_INVALID_FILEDIR_PATH –4

ZFSERR_INVALID_OPERATION –5

ZFSERR_DIRECTORY_NOT_EMPTY –6

ZFSERR_INVALID_FILE_DIR_NAME –7

ZFSERR_FILE_DIR_ALREADY_EXISTS –8

ZFSERR_FILE_DIR_COUNT_LIMIT_REACHED –9

ZFSERR_DIR_COUNT_LIMIT_REACHED –10

ZFSERR_DATAMEDIA_FULL –11

ZFSERR_INTERNAL –12

ZFSERR_FILE_DIR_DOES_NOT_EXIST –13

ZFSERR_FILE_DIR_IN_USE –14

ZFSERR_INVALID_OFFSET_RANGE –15

ZFSERR_FILE_IS_ALREADY_OPEN –16
RM003914-1211

Zilog File System
Reference Manual

82
ZFSERR_MAX_FILE_OPEN_COUNT_REACHED –17

ZFSERR_DEVICE –18

ZFSERR_INVALID_VOLUME_NAME –19

ZFSERR_VOLUME_IS_IN_USE –20

ZFSERR_ALREADY_SHUTDOWN –21

ZFSERR_FS_BUSY –22

ZFSERR_ALREADY_INITIALIZED –23

ZFSERR_CWD_PATH_LENGTH_MORE –24

ZFSERR_INVALID_VOLUME –25

Table 6. Zilog File System Error Codes (Continued)

Return Value
Error

Codes
RM003914-1211

Zilog File System
Reference Manual

RM003914-1211 Customer Support

83

Customer Support

To share comments, get your technical questions answered, or report
issues you may be experiencing with our products, please visit Zilog’s
Technical Support page at http://support.zilog.com.

To learn more about this product, find additional documentation, or to dis-
cover other facets about Zilog product offerings, please visit the Zilog
Knowledge Base at http://zilog.com/kb or consider participating in the
Zilog Forum at http://zilog.com/forum.

This publication is subject to replacement by a later edition. To determine
whether a later edition exists, please visit the Zilog website at http://
www.zilog.com.

http://support.zilog.com
http://zilog.com/kb
http://zilog.com/forum
http://www.zilog.com
http://www.zilog.com

	Zilog File System Reference Manual
	Revision History
	Table of Contents
	Introduction
	About This Manual
	Intended Audience
	Manual Organization
	Zilog File System
	File System APIs

	Related Documents
	Manual Conventions
	Safeguards

	Zilog File System
	Zilog File System Architecture
	Developing Applications with the Zilog File System

	File System APIs
	C Run–Time Library Standard Functions
	Appendix A. Zilog File System Data Types, Macros and Data Structures
	Zilog File System Data Types
	Zilog File System Macros
	Zilog File System Data Structures

	Appendix B. Zilog File System Error Codes
	Customer Support

