216G32 IUSC™
Integrated Universal
Serial Gontroller

0000000000000

User's Manual

Q1/95 DC 8350-00

S
=
—
S
=
o
b
T,
7z
—
N
o
D
>
F
N

Gayle Gamble
UM014001-1002

Gayle Gamble

Gayle Gamble

N SILaL
216032 IUSC™ USER'S MANUAL

Thank you for your interest in Zilog's high-speed Integrated Universal Serial Controller.
To aid the designer, the following support material is available when designing
a High Performance Serial Communication application based on Zilog's IUSC.

ABOUT THIS MANUAL

This 16C32 IUSC Integrated Universal Serial Controller
User's Manual references the 16C32 SL1660 IUSC prod-
uct (noted by referring to the topmarking on the device).
The manual is also applicable to previous revisions of the
16C32 products. Any specific differences that will affect
the use of the 16C32 product will be duly noted. These
notices occur primarily in Chapters 5,6 and 8 of this User's
Manual.

Z16C32 User's Manual
Zilog's IUSC User's Manual is a comprehensive break-
down of the functions and features of the IUSC which will

aid in the development of your application. A good place
to start is the Overview section at the beginning of the
manual, which provides a short description of each feature
and chapter. Then any chapter can be reviewed in more
detail as necessary. This User's Manual provides in-depth
descriptions of all functions and features of the IUSC as
well as supporting block diagrams, timing diagrams, and
sample applications.

ADDITIONAL DOCUMENTATION AND SUPPORT PRODUCT INFORMATION

Z16C32 Product Specification

The IUSC Product Specification provides descriptions of
features, block diagrams, pin assignments, pin descrip-
tions, register bitfunctions, and AC and DC specifications.
This specification can be found in the High Speed Serial
Communication Controllers Databook, DC-8314-01, which
also includes a product specification on the Z16C30 USC
as well as related Application Notes, support products,
and a list of third party support vendors.

Application Notes
The following Application Notes are useful in demonstrat-
ing how the IUSC can be used in different applications.

Design a Serial Board to Handle Multiple Protocols
This Application Note details an approach to handiing
multiple serial communication protocols using Zilog's
Z16C32 USC. This document is included in the High
Speed SCC Databook, DC-8314-01 mentioned above.

Datacommunications with the IlUSC™ Time Slot
Assigner

This Application Note explains the functions of the TSA
(Time Slot Assigner) section of Zilog's IUSC. This docu-
ment is also included in the High Speed SCC Databook,
DC-8314-01 mentioned above.

The Zilog Datacom Family with the 80186 CPU

This Application Note, DC-2560-03, explains and illus-
trates how Zilog's datacom family interfaces and commu-
nicates with the 80186 on an evaluation board.

Demonstration/Evaluation Boards

By selecting the board that most closely resembles your
desired application, you may be able to use parts of the
design in your implementation. These boards can be used
as software platforms while the application hardware is
being developed.

Z16C3200ZCO - Zilog's ZNW2000 Developer's Kit,
DC-8315-00, includes an add-in board for AT/ISA systems
that can be used for a wide variety of serial communica-
tions applications including Wide Area Network (WAN)
access for PC-based LAN Server/Routers at speeds up to
and above T1/E1 (1.644/2.048 Mbps) rates.

The kit contains software, hardware, and documentation
that exemplify high speed serial designs: a ZNW2000
board, User's Manual (with engineering specification, test
software documentation, schematic diagrams, bilt of ma-
terials, PAL equations, and timing analysis), and disk (with
fully documented source code, schematics, and PAL
equations).)

UM014001-1002

Gayle Gamble
UM014001-1002

Q 2iLa5

Z16C32 JUSC™ UseR's MANUAL
SUPPLEMENTARY INFORMATION

Demonstration/Evaluation Boards (Continued)

The ZNW2000 Developer's Kit can be used with Novell's
Netware, and supports Frame Relay, Point-to-Point (PPP),
and X.25 and has serial interfaces for V.35, RS-232, X.21,
RS-449/422 and RS-449/423.

Z8018600ZCO - This kit contains an assembled circuit
board, software, and documentation to support the evalu-
ation and development of code for Zilog's Z16C30 USC,
Z16C32 |USC, Z85C30 SCC, Z85230 ESCC, and Z16C35
ISCC. The board illustrates how the datacom family inter-
faces and communicates with the 80186 CPU. A board-
resident monitor program allows code to be downloaded
and executed. A specification of this product is included
in the High Speed Serial Communication Controllers
Databook, DC-8314-01 mentioned above.

Electronics Programmer's Manual

The EPM is a software tool that provides on-line documen-
tation on Zilog's USC Universal Serial Controller (Z16C30)
and IUSC Integrated Universal Serial Controller (Z16C32)

register sets and device operation. lts code generation
features makes it a most valuable tool for the programmer.
The EPM helps set the registers to ensure that the device
operates with the specified settings. Use the "Function”
option to develop .h files and to create an initialization
sequence for your software. Once you have selected the
field values as a series of C function calls, or as an
assembler table, you can include this output in any soft-
ware that utilizes the device. A specification of this product
isincluded in Zilog's Master Selection Guide, DC-5634-01.

Third Party Software Support

These third party software vendor/contractors can supply
useful drivers that have already been written for the IUSC.
These contractors' experience writing software for the
IUSC can also be used to help develop new code in a
timely manner. A list of additional Third Party support
vendors is is included in Zilog's Master Selection Guide,
DC-5634-01.

Software Support

Forward Technology (516) 496-9033
Software for data and telecommunications
Extensive experience withthe Z16C32and 285230

Telenetworks (707) 778-8737
Software for data and telecommunications
Specialists in ISDN protocols

GCOM (217) 337-4471
Drivers for many common protocols including
Frame Relay, X.25, LAPD, SDLC/HDLC,
and ADCCP

Novell 1-800-NETWARE
Software Multi-Protocol router (MPR 2.1) driver
for the NW2000 Frame Relay.

Trillium Digital Systems (310) 479-0500
Protocol stacks for common WAN applications
such as X.25, Frame Relay and ISDN

Hardware Support
Computer Modules

(408) 496-1881

Question and Answer File

During the design cycle, this extensive list of commonly
asked questions can provide helpful hints and save time in
solving problems or questions that may arise. This is an
extensive list of commonly asked questions and answers

for engineers while designing a USC or IUSC based
system. This list can be obtained from your local Zilog
Sales office.

Zilog Bulletin Board Service
Zilog's electronic BBS can be used to get product updates
on the products and download sample code from the

factory. Zilog maintains an electronic BBS that is on-line 24
hours a day. The BBS is at 408-370-8024 (2400, 8, N, 1)

UMO014001-1002

Gayle Gamble
UM014001-1002

Z16C32 IUSC™ USER'S MANUAL

TABLE OF CONTENTS

CHAPTER TITLE AND SUBSECTIONS PAGE
Chapter 1 Z16C32 [USC™ OVEIVIEWccvccvrmrrcerrerrresrsstrssnrseesssesasemssnssasssssssassensessessnsrenss 1-1
Tod FBAIUIES ..ot et e 1-1
1.2 INFOAUCHION ..ot e 1-3
1.8 PACKAGING .- ettt 1-2
1.4 GENETral OVEIVIBW ..ottt ettt 1-4
1.4.1 BUS INErfaCNg ..o v 1-4
1.4.2 Serial INterfaCingccvioviir i 1-4
1.4.3 Serial Modes and ProtoCOISccoviviiiiiieie it 1-4
1.4.4 DMA OPEIatioN ...oocvviiiiiiiiece e 1-4
T45 INTEITUPLS oooveiiiie it e et e et e e ste e e ebaeeans e aenes 1-4
1.4.6 SOftWAre SUMMEATIYoviiiiiiii ettt eae et a e rrae et s eba e sraeessneeenes 1-4

1.5 DEVICE SHUCTUIEve ittt ettt e e e 1-11
1.5.1 The Transmit Data Pathc.ccooiriinii 1-11
1.56.2 The Receive Data Path ... 112
1.5.3 CIOCKING ..t eeite ettt e s 1-12
T.5.4 INEEITUDES L.oviiiiiiieiie ettt ree e e 1-12
1.5.5 IO PO ..ottt 1-13

1.6 AbOUt This DOCUMENT ...t 1-13
Chapter 2 Z16C32 IUSC™ Bus Interfacing 21
2.1 INtrOAUCTION ..o e et 2-1
2.2 Multiplexed/Non-Multiplexed Operationcccovveivirivrenioriireeneeeeieesieeaeseeeeenees 2-1
2.3 Read/Write Data Strobhescocueiiiiiiiic e 2-4
2.4 BUS WAL ..ottt sttt et et 2-5
2.5 ACK vs WAIT HandshaKingcc.coccereriniiiioninccioneee e 2-5
2.6 Bus Interface Pin DeSCHPLONScooiiiiiiiiieiieeerce et 2-6
2.7 Pull-up Resistors and Unused PiNS ..ot e 29
2.8 The Bus Configuration Register (BCR)........cccoctvieriiininiiieiciene e 29
2.8.1 Wait vs Ready Selection ..o, 2-9
2.8.2 Bits and Fields inthe BCRcccooiiriirieccicccicn e 29

2.9 RegiSter AQArESSING .. c.ivrierrie ettt ettt e re sttt ettt et e nne s 2-11
2.9.1 Implicit Serial Data Register Addressingccccovveeriiveoneininneenecnnecnn, 2-11
2.9.2 Direct Serial Register Addressing on AD13-ADB8ccccovencnrnicininn, 2-11
2.9.3 Direct Serial Register Addressing on AD6-ADO/AD7-AD1cccccvevverrinnne 2-14
2.9.4 Indirect Serial Register Addressing inthe CCARccccccccrivivnenannnnn, 2-14
2.9.5 Direct DMA Register Addressing on AD13-AD8cccoovvvviiccniinn, 2-15
2.9.6 Direct DMA Register Addressing on AD8-ADO or AD7-AD1 2-15
2.9.7 Indirect DMA Register Addressing in the DCARcccoociiv v 2-15
2.9.8 About the Register Address Tables ... 2-16
2.9.9 Serial Data Registers RDR and TDR..........cocoviiininiiieiiiiveieiee e 2-17

i
UMO014001-1002

Gayle Gamble
UM014001-1002

CHAPTER TITLE AND SUBSECTIONS PAGE

Chapter 2 Z16C32 IUSC™ Bus Interfacing (Continued)

2.0 BYI8 Ordering ...c.cooviveiiiiiie it 2-21
2.11 Register Read and Write CYCIESoccvvviiiiiviiiiiiiiiie e 2-21
2.12 DMA CYCIE OPLIONSeiiiiiiiiiit ittt ettt 2-25
2.12.1 S//D, DJJC Status OUIPULcveireereeereeecn et 2-25
2.12.2 Wat INSEIIONooiiiiiioiiie et 2-25
2.12.3 JUAS FIEQUENCY .. .c..iiiiititit et iee e stteice ettt e aie e ebeaae b eas s aae s 2-25
Chapter 3 Z16C32 [USC™ Sample Applicationc.ccccummminesinmssmsmmmsimimiimreees 3-1
o1 INErOAUCHION «.oiiiiii ettt 3-1
3.2 /O and Memory Space AdAreSSiNgccocevvvirrieiiiiiii e 3-1
3.3 Host AAAress Handlingcoovvveiiiiieioneiee e irserenasresssessssssvesnsenns 3-3
3.4 TUSC AdAress HanAINGooveovieiieinieireeee ettt e, 36
3.5 BUS MONITOIING .oeiiitei ittt ettt et a e 3-7
3.8 ADIEr LOGIC ..vviiiiiiiiiiie et 3-8
3.7 Chip SeleCt DECOTING ..iivviiviiiiiieieecit ettt st 3-10
3.8 TUSC HOOKUD .. vvivivirieiriiiis it ses st sae e snt e ent e svae s ae e ea s e anaeancasaseannas 3-11
R I 101 (=1 (V] o I PO O SPUUR PP PR 3-12
Chapter 4 Z16C32 IUSC™ Serial Interfacingcc.ccecvverieerinrsereen . 4-1
4.1 INIPOAUCTION e 4-1
4.2 Serial Interface Pin DESCHPHONS ...ciivviiiiii it 4-1
4.3 Transmit and ReCeive CIOCKINGccovvirrie ittt sn e 4-2
4.3.1 CTRO ANA CTRT ittt ettt 4-2
4.3.2 Using PORT1-PORTO for Bit CIoCKINGcovviiriieieiieieie e 4-4
4.3.3 Baud Rate GENEratorsoocooiiiiie ettt 4-4
4.3.4 Introduction to the DPLLccvviiiiicciee e ve e 4-5
4.3.5 TXCLK and RXCLK S€leCtONvcvviciiriieiieiieiie e 4-6
4.3.6 Clocking for Asynchronous Modecccccccveiveiiiiniienincsce e 4-6
4.3.7 SyNChronous ClOCKINGovviiiiieiiiiiiecie et 4-6
4.3.8 Stopping the CIOCKSvviieie et 4-6
4.4 Data Formats and ENCOTINGccuicuiviiiiiiiiiniiiiiiinicnrccteee e 4-7
4.5 More ADOUL the DPLLccociiiiiie i 4-9
4.6 The BXD and TXD PINSooovirioniiiniicniesieitrseei e neeesre st sin et esee e snessinns 4-11
4.7 Edge Detection and INErrUPSccovcciiiiiiieriireirit e 4-12
4.8 THE /DCD PN ittt ettt e sbe st ettt b e b e ene b e e 4-13
4.9 ThE JCTS PN ..ooiiiieeiieciee ettt ettt ae e st ateestretbeteentesteacsesenarnas 4-14
4.10 The /BXC and /TXC PINSccooiriiieienieisiete s cee st an e cnne e eecane s 4-15
4.11 The /RXREQ and /TXREQ PiNSccccvniiiiinieiinen e sicenenaies e 4-16
412 TRE PO PINS oviciiiiiie ettt ettt es e eeateasas e eeeeeteereeaneeene e 4-16
4.13 TiMe SIOt ASSINEIS .oivivieiiiciiee et et eesreeeaeaeieans 4-18
4.13.1 Programming the Time SIot ASSIGNErS.......cccccviviriiiiniiiiii e 4-20
4.14 The LocalTalk (AppleTalk) Interface............coveeivviiiieiiic e 4-22
H
UMO014001-1002

Gayle Gamble
UM014001-1002

CHAPTER TITLE AND SUBSECTIONS PAGE

Chapter 5 Z16C32 IUSC™ Serial Modes and Protocolsveenervnirsneseninsssennes 5-1
5.1 Introductionccccceeivnian TS et 5-1
5.2 ASYNCHronouS MOGEScocviiiiieiiiiii e 5-1
5.3 Character Oriented Synchronous MOdes ... 5-2
5.4 Bit Oriented Synchronous Modes ... 5-4
5.5 The Mode Registers (CMR, TMR and RMR) ..., 5-6

5.5.1 Enabling and Disabling the Receiver and Transmitterco. 5-7
5.5.2 Character LENGNoviveiiiiiiciiie s 5-8
5.5.3 Parity, CRC, Serial ENCOTINGcovoiiiviiiiiiiiiiiii i, 5-8
5.6 ASYNCHAroNOUS MOTEooiiiiiiiiiiiii e 5-9
5.6.1 Break ConditionNSoveiueioe i 5-10
5.7 1S0CHIONOUS MOGEoviiiiiiiiii it 5-10
5.8 NINE-BIt MOUEoooiiiiiiitieeiee ettt 5-10
5.9 External SYNC MOOEcovviiiiiii it 5-12
5.10 Monosync and BisynC MOAESccoevvviiiiiiiii 5-13
5.11 Transparent BisynC Mode ... 5-14
5.12 Slaved MonoSYNC MOE ..ot 5-15
5.13 |EEE 802.3 (Ethernet) MOEcc.occiiiiiiiiiii 5-16
5.14 HDLC/SDLE MOGTEvooviviieeiieeciie e ettt ens 5-17
5.14.1 Received Address and Control Field Handling ... 5-18
5.14.2 Frame Length Residuals...........cccoovviiiiiiiiii e 5-19
5.14.3 Handling a Received ADOr ..o 5-20
5.15 HDLC/SDLC LOOP MOUEviiiiiiiiiiiteis et 5-20
5.16 Cyclic Redundancy Checking (CRC) ... 5-22
5.17 Parity ChECKING . .vviviieiiiiit i 5-24
5.18 Status REPOMINGoovvivrerieiece ettt et 5-24
5.18.1 Detailed Status in the TCSR........cc.coceneniimiiiiiii 5-27
5.18.2 Detailed Status inthe RCSRcccoocciiiiiiiiiii i 5-28
5.19 DMA SUPPOIt FEAUIEScoiviieiiiiiiitie ettt 5-30
5.19.1 The Character COUNLEISccoocvimrinniiiiiiii e 5-30
5.19.2 THe RCC FIFOottt ebs b 5-34
5.19.3 Transmit Control BIOCKSc..cvvvviiiiiircrc i 5-35
5.19.4 Receive Status BIOCKSccorveireicriiriiiciiciiiiiie s 5-36
5.19.5 Storing the RSB ..ot 5-37
5.19.6 Finding the End of a Received Framecccoei, 5-38
5.20 Commandscovvvienieeiieiei i s e 5-39
5.21 Resetting the Serial Controllerc.oovviiiiiini e 5-43
5.22 The Data Registers and the FIFOS ... 5-43
5.22.1 Accessing the TDR and RDR ..o 5-44
5.22.2 TxFIFO and RXFIFO Operationcccccovrvmriceriiiiiniicinieeiecoree s 5-44
B5.22.3 FUlELBVEIS .ove ettt s e 5-44
5.22.4 DMA and Interrupt Request Levelsccoiiiiii, 5-45
5.22.5 Fill Level Correctness and Reliabilityc.occocoeiciin 5-46
[
UMO014001-1002

Gayle Gamble
UM014001-1002

CHAPTER TITLE AND SUBSECTIONS PAGE

Chapter 5 Z16C32 IUSC™ Serial Modes and Protocols (Continued)

5.23 Handling Overruns and UNGEITUNSc.ocvieiieeiieeeee e 5-46
5.23.1 TXUNEITUNS ...t 5-46
5.23.2 RXOVEITUNS ..ottt 5-47
5.23.3 Bx Overrun Scribblingc..coviiiiiiiiiiii e 5-47

5.24 Between Frames, Messages, or Charactersoocoevevovveeivicicici e 5-48
5.24.1 Synchronous TranSmiSSIONccivriueiiiiieiieiee et 5-48
5.24.2 ASyNC TransmMIiSSIONc.virriiiiee sttt 5-48
5.24.3 Synchronous RECEPHON............cooiiiiieiiiie et 5-48

5.25 Synchronizing Frames/Messages with Software Responsec.ccvevvnn.nn. 5-50

Chapter 6 Z16C32 IUSC™ Direct Memory Access (DMA) Channels..............cceuveieennnee 6-1

6.1 INtrOAUCHIONcovviiiiiiicic ettt 6-1

6.2 DMA FUNAEAMENTAISocooiriiiriieeiiie e Dot 6-1
6.2.1 Addresses and Byte CoUNESccccoiiiiniiecniinn e 6-1
6.2.2 Data Width and Byte Orderningccccooveemiieneiiciieiieeciee e 6-2
6.2.3 Buffer Termination............cooiiriiiicic e, 6-3

6.3 Single BUfer MOGE ..o 6-4

6.4 PIpeliNEd MOGEc.oiiiiiie ettt 6-6
6.4.1 Avoiding Problems with the CONT Flagc.coccciiiiineiiinnii e 6-8

6.5 AITQY MOGE ...ttt 6-9

6.6 LinKed LISt MOGEcoiiiiiiiiiiiicit v 6-12
6.6.1 Using Linked List Mode to Create a Buffer Ringcccoooooeieiiieiininnn, 6-15
6.6.2 Adding a Buffertothe End of aList.......ccccccooeiviiiiiiiiii e, 6-16

6.7 Fetching Transmit CONtrol BIOCKScceiviviiiiiciieiiee et 6-17

6.8 Storing Receive Status BIOCKSccceciiiiiiiii e, 6-20

6.9 Channel SIAUSccoviviiieiie et 6-22

6.10 Commands and /BUSREQ ENGADIEc.cccevvveiiiiiiinciccc e 6-24

6.11 AJAress SEQUENCINGc.coeuiriiiririeiirre ettt ens s 6-26

6.12 Binary Format in Arrays and LiStS.........ccccovvvicriiiiicciecccee e 6-26

6.13 Conditions for DMA OPErationcccceeieiirieriireiiceeriiiseniereneesreenesressessseenenns 6-29

6.14 DMA Requests by the Receiver and Transmitterc.cocecvveveeverreveeenenne. 6-30
6.14.1 Programming the DMA Request Levels............cccceviveciinicciecc e, 6-31

6.15 Inter-Channel Operation and PriOrityc..ccocooveeiiiiiniiic e 6-32

6.16 Bus Acquisition and Release TiMiNgc.ccoecvvevinveriinineiiceseee e 6-33

6.17 BUS CYCIE OPLONSc.veoviieriiiieetiec ettt sttt ae e 6-34
6.17.1 D//C, S//D Status OULPULc.coveviviieieieeceie ettt 6-34
6.17.2 Wat INSEIHIONccoiiiiiiiiii ettt 6-34
6.17.3 JUAS FIEAUENCYooeviiiieeieetceecee ettt 6-34

6.18 Master BUS CYCIESc.cvoiviiiiiiiciicciee e 6-35

6.19 Bus Occupancy Throttlingcccoeiiiiiiiiicicce e 6-38

6.20 Operating FIOWCHEISccovviieiiriei ettt 6-39

6.21 Array and Linked List Fetching Status..............cccoovveiiiiiiiieeicecee e 6-43

v
UM014001-1002

Gayle Gamble
UM014001-1002

CHAPTER TITLE AND SUBSECTIONS PAGE

Chapter 7 Z16C32 IUSC™ Interrupts y 7-1
T4 INITOAUCHION .vviiiiieci ettt ettt e e 7-1
7.2 Interrupt Acknowledge Daisy Chainscccovviiiiiiiiioiiee e 7-1
7.3 External Interrupt Control LOGIC..........coociiiiiiiiniiii e, 7-2
7.4 Megacells, TYpes, 8NA SOUICESccoviriiieiiiiiie i 7-3
7.5 Internal INterrupt OPErationove e 7-5
7.6 Details Of the MOde] ..o 7-7
7.7 Interrupt Options iNthe BCR ..o 7-8
7.8 Interrupt Acknowledge CYCIES ..o 7-8
7.9 Interrupt Acknowledge vs Read CycCles ... 7-13
7.10 Serial Controtler INterrupt TYPESv oot 7-13

7.10.1 Receive Status Interrupt Sources and IABItScoccoovvcviicnicniicn 7-13
7.10.2 Receive Data INterrUPLScvee it 7-15
7.10.3 Transmit Status Interrupt Sources and 1A BItS ..., 7-17
7.10.4 Transmit Data INterruptscccocviivienii 7-18
7.10.5 1/O Pin Interrupt Sources and IABItS ..o 7-19
7.10.6 Miscellaneous Interrupt Sources and A BitS..........ccocvviiiiiinin 7-20
7.11 Serial 1P and S BitScoiiiiiiiie ettt 7-20
7.12 Serial Interrupt ENable BitSccoccivvieiinriiiiii e 7-21
7.13 Serial Controller Interrupt OPLioNSccoe i 7-22
7.14 Serial INterrUPt VECIOISooviiieiieiee e 7-23
7.15 DMA Controller INterrupt TYPES ...cccovvrvvriiiiiiiiiiin e 7-23
7.16 DMA Interrupt Sources and IA BitSccoooiciiiiiiiiiiic i 7-24
717 DMAIP @nd TUS BItS ...veiviiiiiiiii ettt 7-25
718 DMA TE BIS .oviiviiiieiieciiiie ettt ettt e st ene e bt st 7-25
7.19 DMA-Controller-Level Interrupt Options ..o 7-25
7.20 DMA INerrupt VECIOTS ..c..v ettt e 7-25
7.21 Software REQUIrEMENLSccoceeiiiiriiriiniiiii i 7-26
7.21.1 Nested INterrupts ... 7-26
7.21.2 Which Type(s) to Handle? ... 7-27
7.21.3 HandliNg @ TYPE ...oocviiveeiiricreninie e seeeice e sttt s sinesissesssorassione 7-27
7.21.3.1 Receive Status or Transmit Status TYPeccccvcevvvivrccnciniiiiinn 7-27

7.21.3.2 1/O Pin or Miscellaneous TYPEccceriiriiceiiniiiir e 7-27

7.21.3.3 RXOr TX DMA TYPE ...oiiriiiiiinieiieeiincen et srnns s snens 7-27

7.21.3.4 Receive Data TYPEc.ccovveiieeeiiiiiierrr e 7-28

7.21.3.5 Transmit Data TYPE.....cccverieririieciiniiit s 7-28

7.21.4 EXtiNgG e ISR....ccviiiiiecceec i 7-29

Chapter 8 Z16C32 IUSC™ Software Summary 8-1
8.1 INTrOAUCHION ... 8-1
8.2 ADOUL RESEHINGveiviiit it e 8-1
8.3 Programming Ordercccoeaiciiiiiiiiii s 8-2
8.4 Using DMA to Initialize the Serial CONtroller ... 8-2
8.5 “Determining the Device Revision Level ... 8-3

8.5.1 FetChing FIrst TCBooviiviiiiiiiiiiecct e 8-3
8.5.2 Determining Later REVISIONSc.c.cviiiiiiiini 8-3
v
UMO014001-1002

Gayle Gamble
UM014001-1002

CHAPTER TITLE AND SUBSECTIONS

Chapter 8 Z16C32 IUSC™ Software Summary (Continued)

8.6 Tips and TEChNIQUEScovviriiciecie et
8.6.1 Common Hardware Problems.............ccoooeveovecicoioeer .
8.6.2 Common Software Problems..............cc.oocovvivviivicecoi,

8.7 Serial Controller Test MOJES 8c.ovvvvveviieecceeeeeeeeeee e

8.8 Register REferenCe...........oooviiiiciecccceeeeee e
8.8.1 Register AdAressesc..covviiviinriieiiiininie i
8.8.2 Conditions/CONEXtc.oovovieiiiieiiieeeeees e
8.8.3 DESCHPLON ..ottt e,
8.8.4 RW SHAtUS ...c.oooiiiiiii et

8.9 Re@ISter TADIESoviiiiieececce e

Burst/Dwell Control Register (BDCR)cc.coocvivivieiviiiieiieine,
Bus Configuration Register (BCR)c.cccovevveeiveirieeiieicin
Channel Command/Address Register (CCAR)..........ccccoooveveennne.
Channel Command/Status Register (CCSR)c.occoeviveiirinnn.
Channel Control Register (CCR).......c.ccvvvveiiiioeeeeeeoe oot
Channel Mode Register (CMR)........c...oovvviviiniiniir e,
Clear DMA Interrupt Register (CDIR)c.cooooviieiiiieci e
Clock Mode Control Register (CMCR)c.oooooviiviiiiiece
Daisy Chain Control Register (DCCR)cccooveveiiieeveciicee,
DMA Array Count Register (DACR)ccccoovvivieiiiciiee
DMA Command/Address Register (DCAR)occooevvvvvecinn.
DMA Control Register (DCR)oooovoeieiiie e,
DMA Interrupt Control Register (DICR)ccoceveevieieiiicicee.
DMA Interrupt Vector Register (DIVR)ccccocovviviviveieieeee
Hardware Configuration Register (HCR)cccoovvivveieieieeen,
Input/Output Control Register (IOCR)........ccccooeveieiiiieeeciiin
Interrupt Control Register (ICR)covovivveiiiieiecs e
Interrupt Vector Register (IVR)........c.ccoovviveveiie v
Miscellaneous Interrupt Status Register (MISR) ...
Next Receive Address Register Lower (NRARL)c..ocveenenn.
Next Receive Address Register Upper (NRARU).............c..cocu.....
Next Receive Byte Count Register (NRBCR).........c..cccocevevveecnnne,
Next Transmit Address Register Lower (NTARL)cccocevennne.
Next Transmit Address Register Upper (NTARU)c.cooveei.
Next Transmit Byte Count Register (NTBCR)c..ccccocvvevvevenane.
Port Control Register (PCR)c.ocovivieiieeeeeeeceee e
Port Status Register (PSRccoo oo
Receive Address Register Lower (RARL)...........ccccooveviiivirinnn,
Receive Address Register Upper (RARU)c..co.cccevviivinii,
Receive Byte Count Register (RBCR)......c..cocooeveviviiiiieieeenn .
Receive Character Count Register (RCCR)........c..cccoovvvvenivecnn,
Receive Command/Status Register (RCSR)c..cccovvrivrinninenn,
Receive Count Limit Register (RCLR).........ccoeviiviiviieiiceiin,
Receive Data Register (RDR)ccoooveemieeeceeeeeeeeee e

Vi
UMO014001-1002

Gayle Gamble
UM014001-1002

CHAPTER TITLE AND SUBSECTIONS PAGE

Chapter 8 Z16C32 IUSC™ Software Summary (Continued)
8.9 Register Tables (Continued)

Receive DMA Interrupt Arm Register (RDIAR)co.oovieieiviveiiiee e, 8-34
Receive DMA Mode Register (RDMR)ooviiiiieiiie e, 8-35
Receive Interrupt Control Register (RICR)c.cccoovviiiiiiiieee e 8-36
Receive Mode Register (RMR)c.ocoiviiiiiiii e, 8-37
Receive Sync Register (RSR)vv i e 8-37
Set DMA Interrupt Register (SDIR)ccooiiiiviiiieiiceees e 8-38
Status Interrupt Control Register (SICR)cooviveiiiiiieieee e 8-38
Test Mode Control Register (TMCR)covouiiiiiiiiee ettt 8-39
Test Mode Data Register (TMDR)ooiviiiiiieiieiecc i 8-39
Time Constant 0 Register (TCOR) ..ot 8-39
Time Constant 1 Register (TCTR) ..o 8-39
Transmit Address Register Lower (TARL)cooooiiiiieiiccc e 8-39
Transmit Address Register Upper (TARU) ..o, 8-40
Transmit Byte Count Register (TBCR)ccooovviiiriiiiiececece e 8-40
Transmit Character Count Register (TCCR)c.coivviiiieiieieiereec e 8-40
Transmit Command/Status Register (TCSR)cccooevvieiiiiiecie e 8-41
Transmit Count Limit Register (TCLR)c.oov oo 8-42
Transmit Data Register (TDR)ccoviircriiminiineninirc e 8-42
Transmit DMA Interrupt Arm Register (TDIAR)ccoocviiiiiiiieceeceee 8-42
Transmit DMA Mode Register (TDMR)coviiiiiiiiicee e 8-43
Transmit Interrupt Control Register (TICR)ooooviieiiiccceeeee e, 8-44
Transmit Mode Register (TMR)ccocoviiiiiiiiiciceecee st 8-45
Transmit Sync Register (TSRcociieiierii ittt st 8-45
Chapter 9 Z16C32 IUSC™ Appendix: Changes 9-1
.1 INOAUCHION ..ottt ettt eb e s e b e assas b eras 9-1
9.2 BasSiC TMIUNOIOGYeoviiiviiiiiiiiiec ettt et 9-1
9.3 COMMANGSveviriiriiiiiee ettt ettt st e st areere s et eresrsere et s restsans 9-1
9.4 Bit/FIeld NAMEScc.coiiiiiriiierec ettt ettt sttt ene e 9-1

Chapter 10 Application Notes
Design a Serial Board to Handle Multiple Protocolsccvvivvciveeieeennn 10-1
Datacommunications IUSC/MUSC Time Slot ASSIgNercccccooveveevviirieneniienonn, 10-15
Superintegration™ ProdUCES GUILEccvvveireoirereee et e e eeeteareseteereseertentanteans S-1
General Terms and Conditions Of SAlEcccceviviiriiciirie e T-1
Sales Offices, Representatives and DIStrDULOIS ..o, Z-1
Literature Guide Ordering INFOIMALIONcc.ooiviiiiie e L-1

Vit
UMO014001-1002

Gayle Gamble
UM014001-1002

Z16C32 IUSC™ USER'S MANUAL
TABLE OF CONTENTS

FIGURE TITLES PAGE
Chapter 1- Z16C32 IUSC™ Overview
Figure 1-1. TUSC LOGIC SYMDOLcooiviiiiieieces e 1-2
Figure 1-2. TUSC 68-Pin PLCC PiNOULc.ccoiiviiiierireccceeeeceeeee e 1-3
Figure 1-3. IUSC BIOCK DI@Qramcccccooeiiiieiiiaiiriier et 1-11
Chapter 2 Z16C32 IUSC™ Bus Interfacing
Figure 2-1. Simple Multiplexed SYStemcccocooiiiiiiieee e, 2-1
Figure 2-2. Multiplexed System with ALE-/AS-ALE Remappingc.ccccoevvcennn.n 2-2
Figure 2-3. Simple Bus DemultiplexXingc..ccooovenioiieniniieceece e 2-3
Figure 2-4. User-Friendly Bus DemultipteXingcco.ocooveveivinvivoiieiceece e 2-3
Figure 2-5. /RD and WR Signalingcccoevviiiiviiiiieececeeeee e, 2-4
Figure 2-6. R/MW and /DS SIGNalingcocceveviiiiirireierireeeenet et 2-5
Figure 2-7. A Fast and Slow Cycle, with Three Kinds of Handshaking 2-5
Figure 2-8. Bus Configuration Register (BCR)........c..ccccooovviveiiviiiiiceeeeeeeeeeee, 2-10
Figure 2-9. IUSC Register Addressing (1 0f 2)ccccoiiiiiviiiiiir e 2-12
Figure 2-10. 1USC Register Addressing (20f 2)c.ococeeievieiiiviiece e, 2-13
Figure 2-11. Channel Command/Address Register (CCAR)cccovvvvvvvivvecnn.n, 2-14
Figure 2-12. DMA Command/Address Register (DCAR)c..ccooveveveivivvceirininen. 2-15
Figure 2-13. Register Read Cycle with Multiplexed Addresses and Data 2-22
Figure 2-14. Register Write Cycle with Multiplexed Addresses and Data................. 2-22
Figure 2-15. Register Read Cycle with Non-Multiplexed Data Lines........................ 2-23
Figure 2-16. Register Write Cycle with Non-Multiplexed Data Lines 2-24
Chapter 3 Z16C32 IUSC™ Sample Application
Figure 3-1. Sample IUSC Application SChematicccovvieevirieviciice i 3-2
Figure 3-2. Register Map in [/O SPaCe.........cceovveeeceiieecc et 3-3
Chapter 4 Z16C32 IUSC™ Serial Interfacing
Figure 4-1. A Model of the Z16C32's Clocking LOGICcooevveviviieceeeceicieveee e, 4-3
Figure 4-2. Clock Mode Control Register (CMCR)c.cocovviiiivieiiiieeeceeeeen 4-4
Figure 4-3. Hardware Configuration Register (HCR)c..ccooveirriiieririeinsinreinenns 4-4
Figure 4-4. Data Formats/ENCOTINGcccvvvivrniiiireeieiiiricriirec e erevees s erevenees 4-8
Figure 4-5. Channel Command/Status Register (CCSR).........ccoooevevevicvie i 4-9
Figure 4-6. Input/Output Control Register (IOCR)ccocveveeiiievicecee e 4-11
Figure 4-7. Status Interrupt Control Register {SICR)c.cocoovvviviiviiieeecei, 4-12
Figure 4-8. Miscellaneous Interrupt Status Register (MISR)cccoovvvvvieerenne, 4-12
Figure 4-9. /DCD Auto-Enabhing TiIMiNgc.ccevivviviieiiieeir e 4-13
Figure 4-10. /CTS Auto-Enable Timing ..o 415
Figure 4-11. Port Control Register (PCR)c..coooeveiiieceeeeece e 4-17
Figure 4-12. Port Status Register (PSR)ccciviiiiiiicececece e 417
Figure 4-13. Start of Received or Transmitted Data in a TSA Application 4-19
Figure 4-14. Length of Received or Transmitted Data in a TSA Application............. 4-19
Figure 4-15. Structure of the RICR and TICRccooiiiiiviiiiccces e 4-21
e vill
UM014001-1002

Gayle Gamble
UM014001-1002

FIGURE TITLES PAGE

Chapter 5 Z16C32 IUSC™ Serial Modes and Protocols

Figure 5-1. ASYNCHronoUS Data........ciiieiiiiiiii 5-1
Figure 5-2. Character Oriented Synchronous Data...........cooinn 5-2
Figure 5-3. HDLC/SDLC DAEAovvvmiiiisiniirisimiiii s 5-5
Figure 5-4. The Channel Mode Register (CMR) ... 5-7
Figure 5-5. The Transmit Mode Register (TMR) ... 5-7
Figure 5-6. The Receive Mode Register (RMR) ... 5-7
Figure 5-7. Carrier Detection for a Received Ethernet Frame ... 5-16
Figure 5-8. The Channel Command/Status Register (CCSR)..cviiiieeenceciin, 5-21
Figure 5-9. A Model of the Receive Datapath ... 5-23
Figure 5-10. How the IUSC Provides the “Queued” Status Bits inthe RCSR............. 5-26
Figure 5-11. The Transmit Command/Status Register (TCSR) oo, 5-26
Figure 5-12. The Receive Command/Status Register (RCSR) ... 5-28
Figure 5-13. A Model of the Transmit Character Counter Featurec.cc.oooeees 5-32
Figure 5-14. A Model of the Receive Character Counter Feature ... 5-33
Figure 5-15. The Channel Command/Status Register (CCSR).........ocooiviiiicns 5-34
Figure 5-16. The Channel Control Register (CCR) ... 5-35
Figure 5-17. The First (or Only) 16 bits of a Transmit Control BlocKccccccceiinins 5-35
Figure 5-18. The First (or Only) 16 Bits of a Receive Status BloCK.....oieiiiiiiiiie 5-37
Figure 5-19. The Channel Command/Address Register (CCAR) oo 5-38
Chapter 6 Z16C32 IUSC™ Direct Memory Access (DMA) Channels
Figure 6-1. The DMA Mode Registers (TDMR and RDMR) ... 6-2
Figure 6-2. Single Buffer Mode DMA Operation ... 6-5
Figure 6-3. Pipelined Mode DMA Operation ... 6-7
Figure 6-4. Posting a New Buffer (Pipelined Mode) ... 6-8
Figure 6-5. Array Mode DMA Operationc..ocoiveiiiiiiniis 6-10
Figure 6-6a. Linked List DMA Mode with a Three-Buffer Ring (1 0f 2) ...ccoveenn 6-13
Figure 6-6b. Linked List DMA Mode with a Fixed Three-Buffer Ring (2 of 2) 6-14
Figure 6-7a. Array Mode Transmit Control Blocks with TCBINA/L=1 ..o 6-18
Figure 6-7b. Linked List Transmit Control Blocks with TCBINA/L=1 oo 6-19
Figure 6-8. Receive Status BIOCKScoocovmiiiiiiiiniii s 6-21
Figure 6-9. The DMA Command /Address Register (DCARY) ..o 6-25
Figure 6-10. The DMA Control Register (DCR).........c.ccoomiiiiiis 6-26
Figure 6-11a. The Order of Binary Values in Arrays and Linked LiStSccccvervinnnn. 6-27
Figure 6-11b. The Order of Binary Values in Arrays and Linked ListS..v.cocevvvrvivennn 6-28
Figure 6-12. Bus Acquisition and Release Timing ..., 6-33
Figure 6-13. Master Read CyCIeS ... 6-36
Figure 6-14. Master Write CyCles ... 6-37
Figure 6-15. The Burst/Dwell Control Register (BDCR) ... 6-38
Figure 6-16a. DMA Channel Operation FlowChart...............ocoiii 6-40
Figure 6-16b. DMA Channel Operation Flowchart..............coooiin 6-41
Figure 6-16c. DMA Channel Operation Flowchart.............conn 6-42
Figure 6-17. The DMA Array Count Register (DACR) ... 6-43
IX
UM014001-1002

Gayle Gamble
UM014001-1002

FiGURE TITLES ' PAGE

Chapter 7 Z16C32 IUSC™ Interrupts

Figure 7-1. An Interrupt Daisy Chain........c.cocoeiiiiiiniiniiiciee e, 7-2
Figure 7-2. External Interrupt CONtrolcccovviiiiiiie e 7-2
Figure 7-3. The IUSC Interrupt SUBSYStEM ..., 7-4
Figure 7-4. A Model of the Interrupt Logic for Source “s" and Type “t"c.......... 7-6
Figure 7-5. An Interrupt Acknowledge Cycle

with IACKMODE=00 on a Multiplexed BUSc..cooovoviiivieiiiccoe 7-9
Figure 7-6. An Interrupt Acknowledge Cycle

with IACKMODE=00 on a Non-Multiplexed BUSc...cccccovvrniinininiiinan, 7-10
Figure 7-7. An Interrupt Acknowledge Cycle with IACKMODE=01 7-11
Figure 7-8. An Interrupt Acknowledge Cycle with IACKMODE=11 7-12
Figure 7-9. The Receive Command/Status Register (RCSR)c.ccocoveiiviinnnns 7-14
Figure 7-10. The Receive Interrupt Control Register (RICR)oooevvieiiiriienn, 7-14
Figure 7-11. A Sample Service Routine for Receive Data Interrupts 7-16
Figure 7-12. The Transmit Command/Status Register (TCSR)ccccooviviieiie . 7-17
Figure 7-13. The Transmit Interrupt Control Register (TICR)..........cccccvovveivciieiniinn, 7-17
Figure 7-14. The Status Interrupt Control Register (SICR)ccccoiieniiiniiinne 7-19
Figure 7-15. The Miscellaneous Interrupt Status Register (MISR)cccccocviriien. 7-19
Figure 7-16. The Daisy Chain Control Register (DCCRY)c..cccoovvviriiiiiieniinn, 7-21
Figure 7-17. The Interrupt Control Register (ICR)cccoooviiiiiiiiee 7-22
Figure 7-18. The Interrupt Vector Register (IVR)oooveoeriieeieen e 7-23
Figure 7-19. The Transmit and Receive DMA

Interrupt Arm Registers (TDIAR and RDIAR) ..o, 7-24
Figure 7-20. The Set and Clear DMA Interrupt Registers (SDIR and CDIR) 7-24
Figure 7-21. The DMA Interrupt Control Register (DICR)ccccooceeiiviiirieinierenn 7-24
Figure 7-22. The DMA Interrupt Vector Register (DIVR)cccoooeviiiiiiii 7-26

Chapter 8 Z16C32 IUSC™ Software Summary
Figure 8-1. Test Mode Data Register with TMCR 4-0 = 00101 (Clock Mux Outputs) .. 8-8
Figure 8-2. Test Mode Data Register with TMCR 4-0 = 00111 (Clock Mux Inputs) 8-9
Figure 8-3. Test Mode Data Register with TMCR 4-0 = 01110 (I/O & Misc. Status) .. 8-10

X
UMO014001-1002

Gayle Gamble
UM014001-1002

Z16C32 IUSC™ USER'S MANUAL
TABLE OF CONTENTS

TABLE TITLES PAGE
Chapter 1 Z16C32 IUSC™ Overview
Table 1-1. Bus Interfacing Features of the IUSC (Chapter 2)........ccc.oov oo, 1-5
Table 1-2. Serial Interfacing Features of the IUSC (Chapter 4)...............ccocoveiiennn, 1-6
Table 1-3. Serial Controller Features of the IUSC (Chapter 5)c..ocooevieciiienionen, 1-7
Table 1-4. More Serial Controller Features of the IUSC (Chapter 4)cc........ 1-8
Table 1-5. DMA Features of the IUSC (Chapter 8)cc.coccviveiioiccnin 1-9
Table 1-6. Interrupt Features of the IUSC (Chapter 7)cccoooicieiiiiiiiieee 1-10
Chapter 2 Z16C32 IUSC™ Bus Interfacing
Table 2-1. IUSC Registers, in Address Orderccccoviviiioiiniiiinie e 2-17
Table 2-2. IUSC Registers, in Alphabetical Order..............occcoiiiiiiiiniicci 2-19
Table 2-3. System Configuration Programmingc.ccooviiiiiiiiiiicinii s 2-21
Chapter 3 Z16C32 IUSC™ Sample Application
Table 3-1. Logic Equations for UB “MACOMP" ... 3-3
Table 3-2. Logic Equations for U7 "Addr1” ... 3-4
Table 3-3. Logic Equations for UB “Addr2”c.cccoiviiiiiiiiiiiee e, 3-4
Table 3-4. Logic Equations for U21 “Addr3” ... 3-5
Table 3-5. Logic Equations for U22 “Addrd”cccc i 3-6
Table 3-6. Logic Equations for U9 “ISA_MON" ... 3-7
Table 3-7. Logic Equations for U10 “Arbiter” ... 3-9
Table 3-8. Logic Equations for UT3 “CS"coiiiiiiiiiii 3-10
Table 3-9. Logic Equations for U21 “IntReq” ... 3-12
Chapter 6 Z16C32 IUSC™ Direct Memory Access (DMA) Channels
Table 6-1. States of @ DMA Channelccooce i 6-44
Xl
UMO014001-1002

Gayle Gamble
UM014001-1002

Serial interfacing 4
Serial Modes and Protocols B

Direct Memory Access
(BDMA) Channels &

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2LaB

USER'S MANUAL

CHAPTER 1

Z16C32 1USC™
OVERVIEW

1.1 FEATURES

Full-Duplex Mutti-Protocol Serial Controller

Two Multi-Mode DMA Channels with Péak Transfer
Rates Up to 13.33 Mbytes/sec

Serial Data Rates to 20 Mbits/sec

Serial Modes Include Asynchronous, Synchronous,
SDLC, HDLC, Ethernet, and Nine-Bit

Two Baud Rate Generators
Digital Phase Locked Loop for Clock Recovery

Receive and Transmit Time Slot Assigners for ISDN
and Fractional T1 Applications

Ten General-Purpose /O Lines Plus Carrier Detect,
Clear to Send, and Two Clock |/Os

Transmit and Receive Frame-Length Counters,
Independent of the DMA Facility

HDLC/SDLC Features Include 8-Bit Address Checking,
Loop Mode, 16/32-Bit CRC, Programmable |dle State,
Auto Preamble Option or Programmable Minimum
Flag Count Between Frames, Real-Time or In-Data-
Stream Abort Notification

Sync Features Include 2-Bit to 16-Bit Sync Pattern,
Sync Strip Option, 16/32-Bit CRC, Programmable Idle
State, Auto Preamble Option, X.21 XMIT/RCV Slaving

Async Features Include False-Start Filtering, Stop Bit
Length Programmable by 1/16-Bit Steps, Parity
Generation/Checking, Break Generation/Detection

32-Character Transmit and Receive FIFOs Between
the Serial Controller and the DMA Channels

Improved Bus/Serial Interlocks Prevent Extra Received
DMA Characters and Misreporting of FIFO Fill Levels

DMA Modes Include Single Buffer, Pipelined, Array
Chained, and Linked-List

16-Bit and 32-Bit Addressing, 8-Bit or 16-Bit Data
Received Frames can be Placed in Separate Memory
Buffers or Stored Successively Without Regard for
Buffer Boundaries

Received-Frame Status can be Stored with DMA Control
Info or After the End of Each Frame

Transmit-Frame Control Info can Come from the DMA
Control Structure or Before the Start of Each Frame

Buffer Ring Wraparound Protection

Programmable Throttling of DMA Bus Occupancy
Flexible Adaptation to Various System Buses
Flexible Interrupt and Bus-Arbitration Modes
Interrupt and Bus-Acknowledge Daisy Chains
Socket-and Software-Compatible with Z16C31 IUSC
High-Speed, Low Power CMOS Technology

68-Pin PLCC

1-1

UMO014001-1002

Gayle Gamble
UM014001-1002

Z16C32 lusc™
USER'S MANUAL

O 205
1.2 INTRODUCTION

The Z16C32 Integrated Universal Serial Controller (IUSC™)
is the latest member of Zilog's large and popular family of
multi-protocol serial controllers, which ranges from the
original Z80-SIO through the industry standard SCC and
the more recent ESCC, ISCC, and USC. Compared to the
SCC family and most competing devices, the USC family
features more serial protocols, a 16-data bus, higher data
rates, larger FIFOs, better support for DMA operation, and
more convenient software handling. The IUSC adds a
Direct Memory Access (DMA) facility that has correspond-
ingly powerful capabilities for transferring data to and from
data buffers in memory.

CLK — AD15-ADO
/RESET - - UAS
/CS - /AS
oirc - /DS
SiD - /RD
- WR
MWAIT/RDY — - RIAW
L B/wW
/INTACK - Z16C32 L ant
e -4 USC™ L ko
JABORT — - /BUSREQ
/BIN - - /BOUT
/RXC - /RXREQ
TXC - TXREQ
RxD - |- TxD
cTS
/oco
PORT7-0
Figure 1-1. IUSC Logic Symbol

UMO014001-1002

Gayle Gamble
UM014001-1002

216C32 lUSC™

@ 2il5 USER'S MANUAL
1.3 PACKAGING
E
€ 3 ¥
<2 0Q ¢ w822 ¢yggao 3t 2
32¢dsoQES89 <0 zFE2
/ 9 87 6 5 4 3 2 1 68 67 66 65 64 63 62 61
/ABORT 10 60 /BIN
/INT 1 [] 59 /BUSREQ
IE! 12 58 CLK
IEO 13 57 /BOUT
V8Ss 14 56 V8S
VvDD 15 55 VDD
ADO 16 54 AD8
ADT |17 216C32 lUSC™ 53| ADS
AD2 | 18 (Top View) 52 | AD10
AD3 19 51 AD1H1
AD4 20 50 AD12
AD5 21 49 AD13
ADS6 22 48 AD14
AD7 23 47 AD15
VSS 24 46 V8S
vDD 25 45 vDD
T7
/RXREQ 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 POR
O Qo Q0OQa®”w O O VO - N ®MmT v O
Ww X X O X Xk O 0@ £EEE EEE
pa o T
& TaR"R>>>86566566066060
t a oo a o aa
Figure 1-2. 1USC 68-Pin PLCC Pinout
1-3

UMO014001-1002

Gayle Gamble
UM014001-1002

N2L05

Z16C32 lusc™
USER'S MANUAL

1.4 GENERAL OVERVIEW

The following descriptions should be helpful ininitial evalu-
ation of the IUSC. Tables 1-1 through 1-6 give a brief
overview of Chapters 2 and 4-8.

1.4.1 Bus Interfacing

Chapter 2 describes interfacing the IUSC to a processor or
backplane bus. The IUSC includes several flexible inter-
facing options as described in Table 1-1. Many of these
options are controlled by the Bus Configuration Register
(BCRY), which is implicitly the destination of the first write to
the IUSC after a Reset, and is then no longer accessible to
software.

1.4.2 Serial Interfacing

Chapter 4 covers Serial Interfacing, the “other side” of
hardware design from Bus Interfacing. Table 1-2 summa-
rizes the Serial Interfacing features of the 1USC, which
include Clock Selection, Baud Rate Generation, serial
data Encoding and Decoding, a Digital Phase Locked
Loop for reconstructing clocking from received data, “mo-
dem control”" and general-purpose Port pins, and Time Slot
Assigner logic for ISDN/T1 applications.

1.4.3 Serial Modes and Protocols

Chapter 5 covers how to program the Transmitter and
Receiver to handle many different protocols and applica-

tions. This Chapter focuses on software aspects of using
the 1USC while Chapter 4 is more hardware-oriented.
Tables 1-3 and 1-4 show the major subjects that you can
find in Chapter 5.

1.4.4 DMA Operation

Chapter 6 covers both hardware and software aspects of
using the {USC's integrated DMA channels. These chan-
nels can be used in any of four basic modes with a number
of options, as outlined in Table 1-5.

1.4.5 Interrupts

While Chapters 4-6 mention which conditions and events
can be enabled/armed to interrupt the processor, Chapter
7 combines all aspects of the IUSC's extensive interrupt
capabilities, including interrupt acknowledge cycles, vec-
tors, and use of Interrupt Under Service bits to implement
nested interrupts. Table 1-6 summarizes the subject.

1.4.6 Software Summary

Chapter 8 contains only a small amount of new material.
The bulk of the Chapter is the Register Reference tables
that summarize the use and function of each bit and field
in each register in the {USC.

UM014001-1002

Gayle Gamble
UM014001-1002

N 2iLa5

Z16C32 lUSC™
USER'S MANUAL

Table 1-1. Bus interfacing Features of the IUSC (Chapter 2)

Multiplexed or Separate
Address and Data Bus(es)

can be selected for processor access to [USC registers. Addresses and Data are
always multiplexed when the IUSC’s DMA channels fetch or store serial data in
memory. External components can be used to demultiplex DMA addresses and data,
if the host bus requires this.

Read/Write Control Signals

Separate Read and Write strobes, or Data strobe and Direction control can be used.
Only one sst of signals should be connected for processor access. Both are provided
during DMA operation.

8-Bit or 16-Bit Data Bus

DMA efficiency and bandwidth are doubled by using a 16-bit bus, and software size
and tediousness is improved as well. With an 8-bit data bus and non-multiplexed
Address and Data, the bus pins that would otherwise be unused can be used for
register addressing from the processor. When the IUSC is bus master it always drives
addresses on all 16 AD pins.

Ready, Wait, or
Acknowledge Handshaking

can be selected for both processor cycles and DMA operation. If Wait signaling is

selected, the IUSC drives Wait for interrupt acknowledge cycles but not for register
accesses — its 60 ns register access time is fast enough for no-Wait operation in
almost ali applications. If Acknowledge signaling is selected, the part drives Acknowl-
edge for both interrupt acknowledge cycles and register accesses. The IUSC
responds to Acknowledge or Wait signaling when it is the bus master.

Interrupt Acknowledge Cycles

Status line, single-pulse, or double-pulse cycles can be selected. The IUSC can also
be used on buses that do not include Interrupt Acknowledge cycles.

Direct or Indirect Register
Addressing

The board designer can conserve the address space occupied by the IUSC by re-
quiring software to write register addresses into the IUSC, or can maximize software
efficiency by presenting register addresses directly. On a non-multiplexed 16-bitdata
bus, the latter choice requires external components/logic to multiplex the address
onto the AD pins.

Registers

There are 32 16-bit registers in the Serial Controller section, including four selectable
subregisters in the MS byte of two of them. The DMA section includes eight
“shareable” 16-bit registers that apply to both channels, eight 16-bit registers that are
specific to the Transmit channel, and eight that are specific to the Receive channel.

Big-Endian or Little-Endian
Byte Ordering

Motorola or Intel style addressing can be selected for serial data and for addresses
in DMA buffer descriptors. Byte addressing within the IUSC's 16-bit registers is
inherently Little-Endian/intel style, as is addressing within the register pairs that hold
32-bit DMA addresses.

Context Indication Option

During Bus Master operation the IUSC can output signals to differentiate Transmit
from Receive DMA channel operation, and serial data accesses from accesses to
buffer descriptors.

Automatic One-Walt-State
Option

For Bus Master operation, this option allows the IUSC to be used with slower memories
without requiring external logic to generate Wait, Ready, or Acknowledge signaling.

1-6

UM014001-1002

Gayle Gamble
UM014001-1002

NA2La5

21632 IUSC™
USER'S MANUAL

Table 1-2. Serial Interfacing Features of the IUSC (Chapter 4)

Clock Selection

Clocking for the Transmitter and Receiver can come from any of the /RxC, /TxC,
PORTO, or PORT1 pins, and can be used directly or can be divided by 4, 8, 16, or 32
by Counters 0 and 1, and/or by any value from 1 to 65,536 by Baud Rate Generators
0and 1. Or, clocking can come from the Digita! Phase Locked Loop (DPLL) module,
which tracks transitions on the RxD pin.

Clock Output

Clocking can also be driven out on the /TxC and/or /RxC pin(s) for use by on-board
logic, a modem or other interface.

CTRO, CTR1

These two 5-bit free-running counters can each divide /RxC, /TxC, PORTO, or PORT1
by 4, 8, 16, or 32. They can provide the Transmit or Receive bit clocks directly, or can
act as "prescalers” for the Baud Rate Generators.

Baud Rate Generators

BRGO and BRG1 are 16-bit counters, each of which can divide /RxC, /TxC, PORTO,
PORT, or the output of CTRO or CTR1 by any value from 1 to 65,536. They can source
the Transmit or Receive bit clocks, act as the reference clock for the DPLL, or can be
used as timers on either a polled or interrupt-driven basis. They can be stopped and
started by software, and can run continuously or stop when they reach zero. Their
period (time constant) values can be reprogrammed dynamically, effective immedi-
ately or when the BRG counts down to zero.

Digital Phase Locked Loop

The DPLL can divide /RxC, /TxC, or the output of BRGO or BRG1 by 8, 16, or 32, while
resynchronizing to transitions on RxD, to recover a Receive clock from the Receive
data signal. This can be done only when the received data stream includes enough
transitions to keep the recovered clock synchronized to the data. NRZI-Space
encoding of HDLC/SDLC frames, or Biphase (FM) encoding with any protocol,
guarantees such data transitions.

Data Encoding

The 1USC can encode transmitted data and decode received data in NRZI-Mark,
NRZ|-Space, Biphase-Mark (FM1), Biphase-Space (FMO), Biphase-Level (Manches-
ter), or Differential-Biphase-Level modes. These encodings are used in various
applications to maintain synchronization between transmitting and receiving equip-
ment.

Echoing and Looping

Received data can be repeated onto TxD, or transmitted data can be looped back to
the Receiver for testing.

Modem Controls
and Interrupts

Carrier Detect and Clear to Send inputs can auto-enabie the Receiver and Transmit-
ter, respectively. Rising and/or falling edges on these pins can cause interrupts, as
can edges on the Transmit and Receive Clock pins (when they are not used for
clocking), and/for the Transmit and Receive Request pins.

Port Pins

Eight “port” pins can be programmed as general-purpose inputs or outputs, or can
carry a specific input or output signal for each pin. They differ fromthe pins mentioned
in the above section in that they cannot cause interrupts. Thus they are more suitable
for modem control outputs than for inputs.

Time Slot Assigners

These circuits allow integrated “gapping” or gating of a high-speed input clock, to

restrict IUSC Transmit and Receive operation to only a selected number of “time slots”
within a cyclic time-multiplexed frame as in ISDN and Fractional T1 applications. They
can reduce the requirements for external components from a fult framer to a simple
Frame Sync detector.

UM014001-1002

Gayle Gamble
UM014001-1002

AN 2iLa5

216C32 1USC™
USER'S MANUAL

Table 1-3. Serlal Controller Features of the IUSC (Chapter 5)

Major Protocol Categories

Chapter 5 begins with a small tutorial on the differences between Asynchronous,
Character-Oriented Synchronous, and Bit-Oriented Synchronous (Packet) protocols.

Asynchronous Protocols

In addition to classic Async, the [USC can handle the following variations:
Isochronous (1X rather than 16-64X clock)
Nine-Bit (Address Wakeup - an extra bit signifies Address/Data)

Character-Oriented
Synchronous Protocols

External Sync (Receive only: simple character assembly)
Monosync (1-character sync pattern, no hardware framing)

Bisync (2-character sync pattern, no hardware framing)
Transparent Bisync (Bisync + hardware support for Transparency)
Slaved Monosync (Xmit only; X.21 Tx character alignment to Rx)
IEEE 802.3 (Ethernet; requires external collision detect and backoff)

Bit-Oriented Synchronous
Protocols

HDLC/SDLC
HDLC/SDLC Loop (RxD is repeated on TxD except when Xmit is enabled and
triggered by a received Go Ahead/Abort sequence)

Character Length

Is programmable from 1-bit/character to:

W 8 bits including Parity, if any, in synchronous modes

W 8 bits plus Parity, if any, in Async mode

B 8 bits plus Parity plus the Address/Data bit in Nine-Bit mode

CRC Generation/Checking

In synchronous modes, the IUSC will generate and check CRC-CCITT, CRC-16, or
CRC-32 codes for each frame or message. For character-oriented modes other than
802.3, software can selectively control which characters are included in the CRC, for
both transmitting and reception. For HDLC/SDLC and 802.3, CRC status can be
stored in memory for each received frame.

Parity Checking

Asynchronous or Synchronous modes. Odd/Even/Mark/Space/None.

Transmit Status Reporting

Optional interrupt on: Preamble Sent, |dle Sent, Abort Sent, End of Frame/Message,
CRC Sent, Underrun
No interrupt: All Sent, Tx Empty

Receive Status Reporting

Optional Interrupt on: Exited Hunt, Idle Received, Break, Abort (immediate or
synchronized with the RxFIFO), Rx Boundary (end of frame/message), Parity Error,
Overrun

No interrupt: Short Frame, Code Violation Type, CRC Error, Framing Error, Rx
Character Available

Character Counters

These 16-bit counters decrement for each character received or fetched from
memory for transmission. The Tx CC can control the length of Tx frames in synchro-
nous modes using DMA. The Rx CC tracks the length of each Rx frame in synchronous
modes using DMA, and optionally interrupts in case an Rx frame is too long.

RCC FIFO

Four-deep store for ending Rx Character Counter values for each frame. This can be
read directly by software, as an alternative to storing these values in Receive
Status Blocks.

1-7

UM014001-1002

Gayle Gamble
UM014001-1002

N 2iLa5

Z16C32 IusC™
USER'S MANUAL

Table 1-4. More Serial Controller Features of the IUSC (Chapter 4)

Transmit Control Blocks

The Tx DMA channel can fetch the Tx CC frame length and other control information
for each frame/message, either before the frame in the memory buffer or from the
Array/Linked List entry that describes the buffer.

Receive Status Blocks

The Rx DMA channel can store the Rx CC frame length residual and the frame status
(including CRC status) for each frame/message, either after the frame in the memory
buffer, or in the Array/Linked List entry that describes the buffer.

Serial Controller Commands

Software can write 36 different command codes to three different register fields to
control the operation of the serial controlier section of the IUSC. Commands can be
divided into those that select a long-term configuration of the IUSC (like selecting
which serial character in a 16-bit word comes first), those that make the part perform
atime-sequenced action (like sending an Abort sequence), and those that change the
state of the part immediately (like purging a FIFO).

Software Reset

Software can reset the serial controller section of the IUSC by writing a central register
bit, similarly to a hardware-signaled Reset.

Rx and Tx FIFO Storage

32-character FIFOs stand between the Tx DMA channel and the Transmitter, and
between the Receiver and the Rx DMA channel. They help pro-rate the timing
overhead of exchanging bus control between the processor or central arbiter and the
IUSC, over enough transfers to reduce the impact of this overhead. Fill level counters
track how many characters are in each FIFO, and independently programmable
threshold values determine when DMA operation will be triggered tofill or empty them,
and/or when an interrupt will be requested.

Between Frames/Messages

In synchronous modes the Transmitter will do the following before the first data

character of each frame or message, or after the last one:

B optionally send a 8-64 bit Preamble for PLL synchronization or minimum inter-
frame timing

H send an “opening” Sync sequence or Flag

W after the last character from memory, optionally send the CRC accumulated by
the IUSC. Thus, when this option is not used, a CRC received with a frame can
be sent back out without being regenerated.

M send a “closing” Flag or Sync

H send a selected “idie” pattern unless/until the next frame is ready to be sent

Waiting for Software Software can selectthree optionalinterlocks between frames, to allow itto doreal-time
Response processing on a frame-by-frame basis.
1-8

UM014001-1002

Gayle Gamble
UM014001-1002

N 2La5

216C32 [USC™
USER'S MANUAL

Table 1-5. DMA Features of the IUSC (Chapter 6)

DMA Basics

The IUSC's integrated DMA channels handle addresses up to 32 bits wide, 16-bit
buffer length fields allowing buffers up to 65,536 bytes long, and 16-bit or 8-bit data
transfers. They can operate in the four major modes described below.

Single Buffer Mode

Software programs one buffer address and length into the DMA channel, which needs
to be reprogrammed before it can transfer another buffer.

Pipelined Mode

Software starts the channel as in Single-Buffer mode, but while the channel is
transferring a buffer, software can program the address and length of the next buffer
into the channel. The channel needs to be restarted only when/if it comes to the end
of a buffer, and software has not provided the address and length of another one.

Array Mode

Software programs into the DMA channel, the address of an Array in memory that
contains the addresses and lengths of several buffers. The channel needs to be
restarted only after it has read or written serial data in all of the buffers.

Linked List Mode

Like Array mode except that rather than a continuous Array of addresses and lengths,
software provides a List, each entry of which includes the address and length of one
memory buffer and the memory address of the next entry. Software can add new
entries to the end of the list as the DMA channel is transferring previous buffers, and
in this way can keep the Rx or Tx DMA channel going indefinitely.

Frame/Buffer Independence

A frame or message can span several buffers in memory, or one buffer can contain
several frames/messages. The DMA section tracks the length of memory buffers while
the serial section tracks frame lengths. An optional Early Termination feature makes
a DMA channel finish with a buffer when the serial controller signals it that a frame is
ending.

DMA Operation

The IUSC requests use of the bus when the RxFIFO or TxFIFO reaches a programmed
level of fullness/femptiness, when the end of a frame or message is received, or when
it needs to fetch the address and length of a new buffer in Array or Linked List mode.

DMA Status Reporting

Optional interrupt on: End of Array/List, End of Buffer, Hardware or Software Abort
No interrupt for: Continue, Getting Link, Busy, Initializing.

DMA Commands

Allows software to Reset, Pause, or Abort channels, and to Start or Restart them in
three different ways.

Bus Occupancy Throttling

An IUSC's use of the bus can be limited in terms of the number of transfers it will do
per bus grant, or the number of clocks it will use the bus per grant.

UMO014001-1002

Gayle Gamble
UM014001-1002

A 2iIL05

21632 lUSC™
USER'S MANUAL

Table 1-6. Interrupt Features of the IUSC (Chapter 7)

Interrupt Acknowledge
Daisy Chaining

was one of Zilog's original contributions to microprocessor architecture. On
the 1USC, its use (to determine which of several interrupting devices to service first)
is optional, and performance is much improved compared to older devices.

External Interrupt Control

can be used instead of a daisy chain to implement interrupt priority schemes other
than strict priority, such as “fairness,” rotating, or first-come first-served.

Types of Interrupts

that can be selectively enabled or disabled include Receive Status, Receive Data,
Transmit Status, Transmit Data, I/O Pin, miscellaneous, Tx DMA, and Rx DMA
interrupts.

Receive Status Interrupt

sources that can be selectively armed or disarmed include Exited Hunt, Idle Re-
ceived, Break, Abort (immediate andfor synchronized to received data), End of
Frame/Message, Parity Error, and RxFIFO Overrun.

Receive Data Interrupt

can occur when the RxFIFO reaches a programmed level of fuliness

Transmit Status Interrupt

sources that can be selectively armed or disarmed include Preamble Sent, |dle Sent,
Abort Sent, End of Frame/Message Sent, CRC Sent, and Tx Underrun.

Transmit Data Interrupt

can occur when the TxFIFO reaches a programmed level of emptiness.

/O Pin Interrupt

The interrupts that can be selectively armed or disarmed include rising and/or falling
edges on the /DCD, /CTS, /RxREQ, /TXREQ, /RxC, and /TxC pins.

Miscellaneous Interrupt

sources that can be selectively armed or disarmed include Rx Character Counter
Underflow, DPLL Sync Loss, Baud Rate GeneratorO zero, and BRG1=0.

DMA Interrupt

sources that can be selectively armed or disarmed in each channel include End of
Array/List, End of Buffer, Software Abort, and Hardware Abort.

Nested Interrupts

are fully supported in that the IUSC includes an Interrupt Pending and Interrupt Under
Service bit for each type of interrupt.

Interrupt Acknowledge Cycles

The IUSC is compatible with a wide variety of processors in that the signal that
identifies an acknowledge cycle can be sampled like an address bit, or can carry a
single or double pulse similar to a read or write strobe.

Interrupt Vectors

The IUSC can include identification of the highest priority requesting type of interrupt
in the vector that it returns during an interrupt acknowledge cycle.

Non-Acknowledging Buses

Software can simulate the effects of interrupt acknowledge cycles, so that the IUSC
can be used on buses that do not provide such cycles, like the 1SA (AT) bus.

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2La5

21632 IUSC™
USER'S MANUAL

1.5 DEVICE STRUCTURE

Figure 1-3 shows the basic structure of the IUSC. The Bus
interface module stands between the -external bus pins
and an on-chip 16-bit data bus that interconnects the
Receiver, Transmitter, Receive and Transmit FIFO stor-
age, Receive and Transmit DMA channels, Clock Genera-
tor, Interrupt logic, and I/O Port functions.

1.5.1 The Transmit Data Path

The host processor or the on-chip Transmit DMA channel
can write transmit data into the Transmit First-In, First-Out
(TxFIFO) memory. At any time, the TxFIFO can be empty or
can contain from 1 to 32 characters to be transmitted.
Characters written into the TxFIFO become available to the
Transmitter in the order in which they were written.

While the host processor can itself write data into the
TxFIFO, it is more efficient to use the Transmit DMA
channelto fetch the data. Software can set up the Transmit
DMA channel to operate in any of four major modes. In
Single-Buffer mode, the channel transfers one block of
consecutive bytes from host memory given a program-
mable location and length, delivering the data to the
TxFIFO, and then notifies the host processor and stops.
Software has to reprogram the channel before it can
transfer another block, but in many applications there is
time to do this because the TxFIFO holds 32 characters.

In Pipelined mode, there are two sets of buffer address and
length registers: software can program one set while the
DMA channel is using the other set. When the channel

System Memory

g

Host Processor

0 (N T S S (S S S

Bus interface

mememana

i1 Transmit] Interrupt e RS?&?R’ i

: DMA Control | :

T /Y

Transmit J\/ Receive :

FIFO FIFO ;

V4 Vo H

. Serial Clock Port 7 t i

Logic A) i

Transmitter SRl Receiver :

vt] it — S

gner ¢ BRGO, BRG1, i Assigner :

lusc™) -]
1 y y

Serial Interface

Legend:

Main Data Flow mmp
Register Access <>
Control Signals «—s

Figure 1-3. IUSC Block Diagram

UMO014001-1002

Gayle Gamble
UM014001-1002

QNA2La5

21632 IUSC™
USER'S MANUAL

finishes transferring one block, it notifies the host proces-
sor. Ifthe host has set up the other register set, the channel
proceeds to start transferring data from the next buffer.

In Array mode, the host processor programs the Tx DMA
channe! with the address of a table containing the ad-
dresses and lengths of the memory buffers. This table can
also contain control information for each frame. When the
channel finishes transferring the data from one memory
buffer to the TxFIFO, it fetches the next buffer address and
length from the table and begins to transfer the data from
that buffer.

In Linked List mode, the host programs the channel with
the address of the start of a linked list of buffer addresses
and lengths, in which each entry also includes the address
of the next entry. These entries can also contain control
information for each frame. Channel operation is similar to
operation in array-chained mode, but includes the extra
steps of fetching the link addresses.

The host can program the Transmitter to trigger the DMA
controlier to fill its FIFO at varying degrees of FIFO “emp-
tiness.” Selecting this point involves balancing the prob-
ability and consequences of “underrunning” the transmit-
ter, against the overhead for the DMA channe! to acquire
and release control of the host bus more often.

Finally, the Transmitter takes characters from the Transmit
FIFO and converts them to serial data on the TxD pin. While
this function is conceptually simple, the Transmitter may
do any of the following in addition to parallel-serial conver-
sion: start, stop, and/or parity bit generation, calculating
and sending CRCs, automatic generation of opening and
closing Sync or Flag characters, encoding the serial data
into any of several formats that guarantee transitions and
carry clocking with the data, and/or controlling transmis-
sion based on the CTS pin. The Z16C32 can also send a
programmable minimum number of Flags between HDLC/
SDLC frames.

For ISDN and Fractional T1 applications the Transmitter
section includes Time Slot Assigner logic that can be used
to enable the Transmitter only periodically and for specific
bytes within amultiple-sourced, cyclically time-multiplexed
data stream.

1.5.2 The Receive Data Path

in general, the functions of the Receiver section are the
inverse of those of the Transmitter: it monitors the serial
dataonthe RxD pin, recognizes its organization according
to the serial mode selected by the software, and converts
the data to parallel characters that it places in the Receive
FIFO. Again, there is more to the process than just serial-
parallet conversion. Depending on the serial mode the
Receiver may have to detect and synchronize start bits,

check parity and stop bits, calculate and check CRCs,
detect Sync/Flag, Abort and/or Idle sequences, recognize
control characters including transparency considerations,
decode the serial data and extract clocking using any of
several encoding schemes, and/or enable and disable
reception based on the DCD input pin. The Receiver's
checking functions generate several status bits associ-
ated with each character, that accompany the characters
through the Receive FIFO. The Z16C32 can notify software
ofreceived HDLC/SDLC Abort sequences in real time and/
or in the received data stream.

The Receiver section also includes a Time Slot Assigner
that can be used to enable reception only for specific bytes
within a multiple-destination, cyclically time-multiplexed
data stream like an ISDN or Fractional T1 link.

The Receive FIFO can hold up to 32 characters and their
associated status bits. As the receiver writes entries into
their FIFOs, they become available to either the host
processor or the Receive DMA channel in the order in
which they were received. Similarly to the transmit side, the
Receive FIFO includes detection logic for various degrees
of “fullness.” Separate thresholds control when the Re-
ceive DMA channel starts refilling the FIFO, and at which
the IUSC requests an interrupt.

While the host processor can access data from the Re-
ceive FIFOs, it is more efficient to use the Receive DMA
channel to transfer the data directly into buffer areas in
memory. Asonthe transmit side, software can programthe
Receive DMA channel to operate in Single-Buffer mode,
Pipelined mode, Array mode, or Linked List mode. The
Z16C32 can store the status and length of each frame after
the last character of each frame, or, in Array and Linked
List modes, in the DMA control structure.

1.5.3 Clocking

The Serial Clocking Logic section creates the clocking
signals for the channel's Transmitter and Receiver. Soft-
ware can program the clocking logic to do this in various
ways based on one or more external clock(s) for each
channel. An on-chip Digital Phase Locked Loop (DPLL)
circuit can recover clocking from encoded data on RxD.

1.5.4 Interrupts

The Interrupt Control section gathers the various “request”
lines from the Transmitter, Receiver, and the DMA chan-
nels, and takes care of requesting host interrupts and
responding to host interrupt-acknowledge cycles or to
software equivalents. Interrupt operation depends on the
data written to the Bus Configuration Register and on
several registers in the Receiver, Transmitter, and DMA
channels.

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLa5

216C32 JUSC™
USER'S MANUAL

1.5.5 1/0 Port

The /O port section provides eight pins that can be used
formodem control lines or any other purpose. Each pincan
be individually controlled as an input or output, and most

of them can optionally be used for a specific/dedicated
input or output signal.

1.6 ABOUT THIS DOCUMENT

This manual provides a staged and gradual introduction to
the [USC. The manual is structured according to the
IUSC’s major internal blocks and various aspects of their
operation, rather than as a list and description of each of
its registers. The various registers and fields are covered
in conjunction with the facilities that they report on and

control. Chapter 8 reviews the general programming model
andincludes a concise description of each register bitand
field for quick reference.

Refer to the IUSC Product Specification for actual timing
parameters and electrical specifications.

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLa5

Bus Interfacing E

Serial Modes and Protocois

Direct Memory Access 5
(DMA) Channels &

UMO014001-1002

Gayle Gamble
UM014001-1002

NSILa5

USER'S MANUAL

GHAPTER 2

Z16C32 IuSsc™
BUS INTERFACING

2.1 INTRODUCTION

The IUSC can be used in systems with various micropro-
cessor and backplane buses. lts flexibility with respect to
host bus interfacing derives from its Bus Configuration
Register (BCR); from on-chip logic that monitors bus

activity before software writes the BCR, and from certain
other registers in the serial and DMA controllers. This
chapter describes how to use these facilities to interface
the IUSC to a variety of host microprocessors and buses.

2.2 MULTIPLEXED/NON-MULTIPLEXED OPERATION

One important distinction among buses is whether they
include separate sets of lines for addresses and for data,
or whether the same set of lines carries both addresses
and data. As a DMA bus master the IUSC always operates
in the latter (multiplexed) fashion. If the host bus does not
multiplex addresses and data, addresses and data from
the IUSC can be easily demuitiplexed as described later.
If it does (as with a Zilog 16C01), the AD pins of the IUSC
can be directly connected to those of the host.

As a DMA master, the IUSC maintains 32-bit addresses. It
presents the MS and LS 16 bits of an address as it drives
JUAS and /AS Low, respectively, and this information is
valid at the following rising edge. As a slave on a multi-
plexed bus, the IUSC captures addressing at rising edges
on /AS. If this signaling is the same as that used on the host
bus (as with a Zilog 16COx), then the IUSC's /AS pin can be
directly connected to the corresponding bus signal. Fig-
ure 2-1 shows such a system.

SN6-SNO >
16C01 AD15-ADO >
IAS >
/BUSREQ /BUSACK
/BUSREQ /BIN l
AD15-ADO ,7’ p % o[
Wwse™ el den
IAS

Figure 2-1. Simple Multiplexed System

UMO014001-1002

Gayle Gamble
UM014001-1002

A 2iLa5

Z16C32 IUSC™
USER'S MANUAL

2.2 MULTIPLEXED/NON-MULTIPLEXED OPERATION (Continued)

If the host's address strobe signaling is different from that
of the IUSC (as with an 8086), then external logic must
generate a compatible /AS signal for the IUSC.

Unless the rest of the system can use this /AS signal,
externallogic must also transformthe /AS and /UAS issued
by the IUSC as a bus master, to signaling that is compat-
ible with the host bus. Figure 2-2 shows such an applica-
tion.

If the host bus does not multiplex addresses and data,
external devices must be added to latch the address when
the IUSC is the bus master. Figures 2-3 and 2-4 illustrate
two ways to interface the IUSC to a non-multiplexed bus.
Figure 2-3 includes minimum hardware but requires that
software write the register address into the IUSC each time
it is going to access a register. In this mode, the IUSC's
JAS pin should be pulled up to ensure a constant high logic

level. The enhanced interface of Figure 2-4 includes driv-
ersto sequence the low-order bits of the host address onto
the IUSC's AD lines, and logic to synthesize a puise on the
/AS pin. This interfacing method has the advantage that
software can directly address the IUSC's registers.

The IUSC monitors the /AS pin from the time the /RESET pin
goes High until the software writes the Bus Configuration
Register. If it sees /AS go Low at any point in this period,
then after the software writes the BCR, the IUSC captures
the state of the low order AD lines, S//D, C//D, and /CS, at
eachrising edge of /AS. If /AS remains High, software may
have to write each register address into the Channel or
DMA Command/Address Register (CCAR or DCAR) be-
fore reading or writing a register. (If the host bus only
includes eight data lines, AD13-AD8 can carry register
addresses.)

A19-A16 -
8086 AD15-ADO >
ALE <[>—>
HOLD HLDA
T l
/BUSREQ /BIN
AD15-ADO ;’ p % o}
USC™ s _JIEN_
IAS

Figure 2-2. Multipiexed System with ALE-/AS-ALE Remapping

2-2

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLaB

216C32 lySC™
USER'S MANUAL

A31-A16
A15-A0
D15-D0
Cntr Signals
Yy
Decode vCC
I 3
» <
Control [T
>’|_ Logic |e
] | .S
/BUSREQ /BIN o OE ol
/AS q EN
lusc™ /RD, WR e —
AD15-AD0O D OF Q
JUAS d EN

Figure 2-3. Simple Bus Demultiplexing

A31-A16
A15-A0
D15-D0
Cntrl Signals
LR
Decode
]
Control l>
Logic
7
—»—I— ? < l 7
] 1 2
/BUSREQ /BIN D OE al—!
/AS 9 EN
jusg™ /RD./WR fe— —
AD15-ADO D OE Q
JUAS d EN

Figure 2-4. User-Friendly Bus Demultiplexing

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2105

216C32 lUSC™
USER'S MANUAL

2.3 READ/WRITE DATA STROBES

Another difference among host buses is the way in which
read and write cycles are signaled and differentiated.
Figures 2-6 and 2-7 show two standard methods sup-
ported by the IUSC. In Figure 2-8, the bus includes
separate strobe lines for read and write cycles, commoniy
called /RD and /WR. In Figure 2-7, the bus includes a data
strobe line, /OS, that goes Low for both read and write
cycles, and a R//W line that differentiates read cycles from
writes. The IUSC includes pins for all four of these signals.
The two that match up with host bus signals should be
connected to those signals. The two unused pins should
be pulled up to a high level with resistors of about 10
kOhmes.

There is no programmable option for the distinction be-
tween /RD-/WR and R//W-/DS operation. As a master the
IUSC simply drives all four lines as shown in Figures 2-5

and 2-6. As a slave the IUSC responds to either pair of
lines, which is why itis important to puli up the unused pair.

Read Operation:

WR*

Data Bus

Write Operation:

RD*

WR* \ /
Data Bus (Master) a F
Data Bus (Slave) q-_ﬁ

Figure 2-5. /RD and /WR Signaling

Also, as a slave the IUSC does not demand that the R/W
line remain valid throughout the assertion of /DS. It cap-
tures the state of R//W at the leading/falling edge of /DS, so
that R//W need only satisfy setup and hoid times with
respect to this edge.

Only one of the bus signals /DS, /RD, and /WR may be
active at a time. This restriction also includes /INTACK if
it carries a strobe rather than a sampled level (see Chapter
6 for more information about interrupts). Ifthe IUSC detects
more than one of these inputs active simultaneously, it
enters an inactive state from which the only escape is
through the /RESET pin. When using multiple IUSCs, do
not connect their /DS pins as well as their /RD and /WR
pins, because the first time one of them becomes bus
master and drives /DS and /RD or /DS and /WR Low, it will
inactivate the others. Instead, provide separate pull-up
resistors for each of the /DS pins, or for each of the /RD and
/WR pins, whichever signals are not used.

Read Operation:

R//W (Master)

RI/W (Slave)

DS* U

Data Bus _D_
Write Operation:
R//W (Master) \ /
R//W (Slave) \ /

TN/

Data Bus (Master)

Data Bus (Slave)

Figure 2-6. R//W and /DS Signaling

2-4

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLa5

216C32 JUsC™
USER'S MANUAL

2.4 BUS WIDTH

Another major difference among host buses is the number
of data bits that can be transferred in one cycle. Software
canconfigure the IUSC totransfer 16 bits atatime, in which
case it is still possible to transfer eight bits when this is
necessary or desirable. On a 16-bit data bus, the DMA
channels can transfer either two data characters percycle,
or one per cycle with alternating cycles using AD15-AD8
and AD7-ADO.

Software can also restrict both master and slave opera-
tions to transferring only eight bits at a time on the AD7-
ADO pins. This leaves the AD15-AD8 pins unused during
slave cycles: another BCR option allows them to carry
register addresses. The latter option aliows software to
directly address IUSC registers even on a non-multiplexed
bus, without having to write an address into the 1USC
before it accesses a register.

2.5 ACK VS WAIT HANDSHAKING

The last major difference among host buses involves the
handshaking signals that slave devices use for speed-
matching with masters. Figure 2-7 illustrates the three
variations incommon use. In the first, called Wait signaling,
if a master selects a slave and the slave cannot capture
write data or provide read data within the time required to
keep the master operating at full speed, it quickly (combi-
natorially) drives a Wait output Low, and then returns it to
High when it is ready to complete the cycle. Some periph-
eral devices have Wait outputs that are open-collector or
open-drain, which can be tied together for a negative logic
wired-OR function. The IUSC drives its Ready/Wait output
high or low at all times, so that a logic gate must be used
to negative-logic OR (positive logic AND) its Wait line with
Wait signal(s) from other devices, to produce the WAIT
input to the processor.

Inthe second scheme, “Acknowledge” signaling, all slaves
must respond when a master directs a cycle to them, by
driving an Acknowledge signal (sometimes called /DTACK)
Low to allow the master to complete the transfer, and
keeping it Low until the master does so. As with the
previous scheme, some peripherals provide slave ACK
outputs that are open-collector or open-drain, which can
be tied together for a negative logic wired-OR function,
while with the IUSC a logic gate must be used to negative-
logic OR separate ACK lines to produce the Acknowledge
input to the masters.

In the third scheme, "Ready” signaling, all slaves must
respond when the master directs a cycle to them, by

RD* or WR*
or DS*

T Nn_—_—" \

driving a Ready signal High to allow the master to com-
plete the transfer, and keeping it High until the master
does so. This scheme differs from Wait signaling in the
default state of the handshaking signal between cycles
(High for Wait signaling, Low for Ready). It has similar
timing as ACK signaling, but differs in the polarity of the
handshaking signal. With Ready signaling, the board
designer mustinclude alogic gateto positive-logic OR the
various slaves’ Ready lines to produce a composite Ready
input for the bus master(s).

The IUSC supports Acknowledge and Ready signaling for
ali cycles, and Wait signaling for interrupt acknowledge
cycles. The IUSC's register access times should be short
enough to avoid the need for Wait signaling on all but the
fastest processors. The board designer can combine the
IUSC's /WAIT//RDY output with similar signals from other
slaves, by means of an external logic gate or (for Acknowl-
edge and Wait) by using an external tri-state or open-
collector driver.

If software writes the Bus Configuration Register (BCR) at
an address that makes the S//D pin Low, the IUSC drives
/WAIT//RDY Low as an “Acknowledge” signal. If software
writes the BCRwith S//DHigh, the IUSC drives /WAIT//RDY
as a "Wait" signal.

Ready signaling can be handled by using Acknowledge
signaling and inverting the sense of the signal. When
doing this, remember that /WAIT//RDY is bidirectional to
the IUSC because of the on-chip DMA channels.

—

WAIT*

ACK*

N/
— 7\

Ready

~_ /
N/
/- \L

Figure 2-7. A Fast and Slow Cycle, with Three Kinds of Handshaking

2-5

UM014001-1002

Gayle Gamble
UM014001-1002

N2La5

Z16C32 USC™
USER'S MANUAL

2.6 BUS INTERFACE PIN DESCRIPTIONS

/RESET. Reset (input, active Low). A Low on this line
places the IUSC in a known, inactive state, and conditions
it so that the data, from the next write operation that asserts
the /CS pin, goes into the Bus Configuration Register
(BCR) regardless of register addressing. /RESET should
be driven Low as soon as possible during power-up, and
as needed when restarting the overall system or the
communications subsystem.

CLK. System Clock (input). This signal is the timing refer-
ence for the DMA channels. (The serial controller section
is clocked by the selected sources of receive and transmit
ctocking.)

AD15-ADO0. Address/Data Bus (inputs/tri-state outputs).
After Reset, these lines carry data between the controlling
microprocessor and the IUSC, and may also carry multi-
plexed addresses of registers within the IUSC. Operation
between the host processor and the IUSC is called Slave
mode. Once the software has setup the IUSC™ and placed
it into operation, these lines also carry multiplexed ad-
dresses and data between the IUSC and system memory;
such operation is called master mode. AD15-ADO0 can be
used in a variety of ways based on whether the IUSC
senses activity on /AS after Reset, and on the data written
to the Bus Configuration Register (BCR).

ICS. Chip Select (input, active Low). A Low on this line
indicates that the controlling microprocessor’s current bus
cyclereferstoaregisterinthe IlUSC. The IUSC ignores /CS
when a Low on /INTACK indicates that the current bus
operation is an interrupt acknowledge cycle. On a muiti-
plexed bus, the IUSC latches the state of this pin at rising
edges on /AS, while on a non-multiplexed bus it fatches
/CS at leading/falling edges on /DS, /RD, or WR.

S//D. Serial/DMA (inputftri-state output, input High indi-
cates “serial”). Cycles with /CS Low, and /INTACK and
S//D both High, access registers in the serial controller
section. Cycles with /INTACK High, and /CS and S//D both
Low, access registers in the DMA controller section. The
state of this line when the Bus Configuration Register is
written determines “wait vs acknowledge” operation, as
described in a later section. On a muitiplexed bus, the
IUSC latches the state of this pin at rising edges of /AS,
while on a non-multiplexed bus it latches the state at the
leading/falling edges of /DS, /RD, or WR.

Software can program the IUSC so that when itis acting as
abusmaster, itdrivesthisline High toindicate a DMA cycle
for serial data and Low to indicate an “array” or “list"
access.

D//C. Data/Control (inputftri-state output, input High indi-
cates Data). A slave read cycle with /CS Low, and
/INTACK, S//D, and D//C High, fetches data from the serial
controller's receive FIFO through the Receive Data Regis-
ter (RDR). A slave write cycle with the same conditions
writes data into the transmit FIFO through its Transmit Data
Register (TDR). Slave cycles with /INTACK and S$//D High,
and /CS and this pin Low, read or write registers in the
serial controller. On a multiplexed bus the IUSC latches the
state of this pin at rising edges of /AS, while on a non-
multiplexed busitlatches the state at leading/falling edges
of /DS, /RD, or WR.

For slave cycles using direct register addressing, with
/INTACK High and both /CS and S//D Low, the state of this
line at rising edges of /AS selects between the registers of
the transmit DMA channel (Low) and those of the receive
DMA channel (High). Using register pointer addressing
with /INTACK High and /CS and S//D both Low, the IUSC
ignores this line, taking the DMA channel selection from a
bit in the DMA Command/Address Register. Software can
program the IUSC so that when itis acting as a bus master,
it drives this line High to indicate a DMA cycle for the
receiver and Low to indicate a cycle for the transmitter.

IAS. Address Strobe (input/tri-state output, active Low).
After a reset, the IUSC's bus interface logic monitors this
signal to see if the host bus multiplexes addresses and
data on AD15-ADO. If the logic sees activity on /AS before
(or as) software writes the Bus Configuration Register, then
in subsequent slave cycles directed to the IUSC, it cap-
turesregister selection fromthe AD lines, S//D, and C//D on
the rising edges of /AS.

When external logic generates pulses on/AS, it should not
qualify them so that /AS goes low only on cycles directed
to the IUSC. Since the IUSC captures the state of /CS only
on rising edges of /AS, such a scheme renders the IUSC
‘always selected”, so that it responds to every cycle on
/RD, WR, or /DS.

When the IUSC takes control of the bus and operates as a
master, it always uses the bus in a multiplexed fashion,
driving /AS Low when it places the least significant 16 bits
of an address on the AD15-ADO lines. External devices
can be used to de-multiplex the address and data, if this
is necessary to match the characteristics of the host
processor or host bus.

2-6

UM014001-1002

Gayle Gamble
UM014001-1002

Q2005

216C32 JUSC™
USER'S MANUAL

For a non-multiplexed bus, this pin should be pulled up to
+5V using a 10 kOhm resistor. If a processor uses a
nonmultiplexed bus, yet has an output called Address
Strobe (e.g., 680x0 devices), this pin should not be tied to
the processor output.

JTUAS. Upper Address Strobe(tri-state output, active Low).
When the IUSC takes control of the bus and operates as a
master, it drives JUAS Low when it places the more signifi-
cant 16 bits of an address on AD15-ADO0. External memory
and other slave devices (or de-multiplexing latches) should
capture the MS address at each rising edge on this line.

R//W. Read/Write Control (input/tri-state output, Low signi-
fies “write"). R//W and /DS indicate read and write cycles
on the bus, for host processors/buses using this kind of
signaling. When the IUSC has taken control of the bus and
is operating in Master mode, this pin is an output that
remains valid throughout the Low time of /DS. In slave
cycles, the IUSC samples R//W at each leading/falling
edge of /DS.

/DS. Data Strobe (inputftri-state output, active Low). R//W
and /DS indicate read and write cycles on the bus for host
processors/buses having this kind of signaling. It is an
output when the IUSC has taken control of the bus and is
operating in Master mode, otherwise it is an input that is
qualified by /CS Low or /INTACK Low. In Master mode, the
R//W line remains valid throughout the Low time of this line.
in Slave mode, the IUSC samples R//W at each leading/
falling edge on this line. For slave write cycles and master
read cycles, the IUSC captures data at the rising (trailing)
edge onthis line. For slave read cycles, the IUSC provides
valid data on the AD lines within the specified access time
after this line goes Low, and keeps the data valid until after
the master releases this line to High. For master write
cycles, the IUSC places valid data on the AD lines before
it drives this signal to Low, and keeps the data valid until
after it drives this line back to High.

/RD. Read Strobe (input/tri-state output, active Low). This
line indicates a read cycle on the bus for host processors/
buses having this kind of signaling. Itis an output when the
IUSC has taken control of the bus and is operating in
Master mode, otherwise it is an input that is qualified by
/CS Lowor /INTACK Low. For master read cycles, the IUSC
captures data at the rising (trailing) edge of this line. For
slave read cycles, the IUSC provides valid data on the AD
lines within the specified access time after this line goes
Low, and keeps the data valid until after the master drives
this line back to High.

IWR. Write Strobe (input/tri-state output, active Low). This
line indicates write cycles on the bus, for host processors/
buses having this kind of signaling. Itis an output when the
IUSC has taken control of the bus and is operating in
Master mode, otherwise it is an input that is qualified by
/CS Low. For slave write cycles, the I[USC captures write
data attherising (trailing) edge of this line. For master write
cycles, the IUSC places valid data on the AD lines before
it drives this signal to Low, and keeps the data valid until
after it drives this line back to High.

Note: Only one of /DS, /RD, or/WR may be driven in one
bus cycle.

B/W. Byte/Word Select (tri-state output, High indicates
8-bit transfer). When the IUSC takes controt of the bus and
operates as a master, a High on this line indicates that a
byte is to be transferred, and a Low indicates that 16 bits
are to be transferred. The IUSC ignores this signal during
slave cycles: it takes the byte/word distinction from an AD
line at the rising edge of /AS, or from a bit in the Channel
Command/Address Register or DMA Command/Address
Register.

/WAIT//RDY. Wait, Ready, or Acknowledge Handshaking
(inputftri-state output, active Low). The IUSC drives this
line full-time after Reset, except that it releases the line to
act as an input when it has taken control of the bus and is
operating in Master mode. in both directions, the line can
carry "Wait" or “Acknowledge” signaling depending onthe
state of the S//D input during the initial BCR write. If S//D is
High when the BCR is written, this line operates thereafter
as a Ready/Wait line for Zilog and some Intel processors.
In this mode the IUSC will not complete a master cycle
while this line is Low, and it asserts this line Low until it is
ready to complete an interrupt acknowledge cycle, but it
never asserts this line when the host accesses one of the
{USC registers.

If S//D is Low when the BCR is written, this line operates
thereafter as an Acknowledge line for Motorota and some
Intel processors. In this mode, the lUSC will not complete
a master cycle until this line is Low. It asserts this line Low
for register read and write cycles, and when it is ready to
complete an interrupt acknowledge cycle.

In any case /WAIT//RDY is a tri-state (not open-drain)
output. The board designer can combine this signal
with similar signals from other slaves by using an
external logic gate or a tri-state or open-collector driver.

UM014001-1002

Gayle Gamble
UM014001-1002

N 205

Z16C32 [USC™
USER'S MANUAL

2.6 BUS INTERFACE PIN DESCRIPTIONS (Continued)

AINT. Interrupt Request (output, active Low). The IUSC
drives this line Low when (1) its IEI pin is High, (2) one or
more of its interrupt type (s) is (are) enabled and pending,
and (3) the Interrupt Under Service flag is not set for its
highest priority enabled/pending type, nor for any higher-
priority internal type within the IUSC. Software can pro-
gram whether the bus interface drives this pin in a totem-
pole or an open-drain fashion.

NINTACK. Interrupt Acknowledge (input, active Low). A
Low on this line indicates that the host processor is
performing an interrupt acknowledge cycle. In some sys-
tems a Low on this line' may further indicate that external
logic has selected this [USC as the device to be acknowl-
edged, or as a potential device to be acknowledged. A
field in the Bus Configuration Register selects whether this
line carries a level-sensitive “status” signal that the IUSC
should sample at the leading edge of /AS or /DS, or a
single-pulse or double-pulse protocol. The IUSC will re-
spond to an interrupt acknowledge cycle in a variety of
ways depending on this programming and the state of the
/INT and [El lines, as described in Chapter 7.

IEL. Interrupt Enable In(input, active High). This signal and
the IEO pin can be part of an interrupt-acknowledge daisy-
chain with other devices that may request interrupts. If IE!
is High outside of an interrupt acknowledge cycle, and one
or more IUSC interrupt type(s) is (are) enabled and pend-
ing, and the Interrupt Under Service flag is not set for the
(highest priority such) type nor for any higher-priority type
within the IUSC, then the IUSC requests an interrupt by
driving its /INT pin Low. i the IE! pin is High during an
interrupt acknowledge cycle, and one or more IUSC inter-
rupt type(s) is (are) enabled and pending, and the Inter-
rupt Under Service flag is not set for the (highest priority
such) type, nor for any higher-priority type within the IUSC,
then the IUSC keeps IEO Low and responds to the cycle.

IEO. interrupt Enable Out(output, active High). This signal
and/or IEI can be part of an interrupt acknowledge daisy
chain with other devices that may request interrupts. The
IUSC drives its IEO pin Low whenever its IE! pin is Low,

and/for whenever the Interrupt Under Service flag is set for
any condition. The IUSC drives this signal slightly differ-
ently during an interrupt acknowledge cycle, in that it also
forces IEO Low if it is (has been) requesting an interrupt.

/BUSREQ. Bus Request (output, active Low). The DMA
controller section drives this line Low to request control of
the host bus. /BUSREQ can be an open-drain or totem-
pole output depending on a bit in the Bus Configuration
Register. In open-drainmode, the [USC samplesthe pinas
an input and only drives it Low after sampling it High.

"MBIN. Bus Acknowledge In (input, active Low). When the

IUSC receives a falling edge on this input, it samples
whether it has been driving (or has just begun to drive)
/BUSREQ. If so, it keeps /BOUT High and takes control of
the host bus. If not, it “passes the bus grant” by driving
/BOUT Low. This signal can be used with /BOUT to form a
bus-grant daisy chain for arbitration of bus control. Alter-
natively, it can be connected to a direct, positive grant from
an external arbiter, and the /BOUT pin can be left uncon-
nected.

/MBOVUT. Bus Acknowledge Out (output, active Low). As
noted above, this signal can be used with /BIN to form a
bus-grant daisy chain for arbitration of bus control.

/ABORT. Abort Master Cycle (input, active Low). A Low on
this line during a master cycle makes the currently active
DMA channel terminate its activity and enter a disabled
state. Note that /ABORT is only effective during a DMA
cycle, so that the IUSC knows which channel should be
aborted. Also note that external logic must set /WAIT//RDY
to the right state for the cycle to complete, in order for
/ABORT to have an effect.

Ve Vg, Powerand Ground. The inclusion of seven pins for
each power rail insures good signal integrity, helps pre-
vent transients on outputs, and improves noise margins on
inputs. The IUSC's internal power distribution network
requires that all these pins be connected appropriately.

2-8

UMO014001-1002

Gayle Gamble
UM014001-1002

AN 2La5

216C32 JusC™
USER'S MANUAL

2.7 PULL-UP RESISTORS AND UNUSED PINS

All unused input pins should be pulled up, either by
connecting them directly to Vcc or with aresistor. Thismay
include /INTACK, IEl, and /ABORT.

Bi-directional pins should typically be pulled up with a 10
kOhm resistor, to allow the IUSC to drive them as outputs.
This always includes /AS, R/W, /DS, /RD, and WR, and
may also include /TXREQ, /RxREQ, /TxC, /RxC, /CTS,
/DCD, and PORT7-0. Furthermore, when multiple IUSCs

are used in a design, whichever pin(s) is (are) unused
among /DS, /RD, and /WR should be pulled up individually
(using one resistor per unused device input) rather than
being connected among all the devices.

Tri-statable output pins may need to be pulled up to protect
external logic from the effects of having a floating input.
Again, a 10 kOhm resistor is recommended. This may
include /BUSREQ, fUAS, B//W, TxD, and /INT.

2.8 THE BUS CONFIGURATION REGISTER (BCR)

The BCRis a 16-bit register as shown in Figure 2-8. All the
bits in the BCR reset to zero. Software's first access to the
IUSC after a hardware reset, must be a write to the BCR. If
the host processor handles 16-bit data, and the data bus
between it and the IUSC is at least 16 bits wide, then the
software's initial access to the IUSC should be a 16-bit
write. This write can be to any address that activates the
/CS pin; the data will be placed in the BCR. If the host can
only write bytes to the IUSC, all data should be transferred
on the AD7-ADO pins. In such a system, pull-down resis-
tors of about 10 kOhms should be attached to the AD15-
ADS pins to ensure the state of these lines during the BCR
write. (AD15 may want to be pulled up instead of down, as
described in the section on the SepAd bit below.)

2.8.1 Wait vs Ready Selection

The following paragraphs describe the significance of the
various bits and fields in the BCR. Besides these data bits,
the IUSC captures the state of the S//D pin when the
software writes the BCR. It uses this captured state after
the BCR write, such that if S//D was Low, it drives the /WAIT
//RDY pin as an “acknowledge” (or an inverted “ready”)
signal during register accesses and interrupt acknowl-
edge cycles, while if S//D was High, it drives the pinas a
“wait” signal during interrupt acknowledge cycles only.
Therefore, software should program the BCR at an ad-
dress that corresponds to the kind of slave-to-master
handshaking used on the host bus.

2.8.2 Bits and Fields in the BCR

SepAd (Separate Address; BCR15). This bit should only
be written as 1 with 16 Bit=0. This combination conditions
the IUSC to use AD7-ADO for data and to take register
addressing from AD13-ADS8. In this mode the IUSC takes
the Upper/Lower byte indication (U//L) from AD8 and the
register address from AD13-ADS. The external drivers for
these signals must be tri-stated when the IUSC is the bus
master.

With this interfacing technique, the BCR must be written at
an address such that AD13-AD8 are Low (0). Further,
AD15 must be High (1) and AD14 must be Low (0) when
software writes the BCR. The designer can ensure this by
connecting AD15 and AD14 to more significant address
lines and writing the BCR at an appropriate address.
Alternatively, the designer can ensure this by connecting
apull-upresistorto AD15 and a pull-down resistor toAD 14,
both being about 10 kOhms.

This mode is useful with a non-multipiexed bus, to avoid
making the software write a register address to CCAR or
DCAR before each register access. In this mode the IUSC
captures the state of AD13-AD8 on each leading/falling
edge on /DS, /RD, or WR. But software can still program
SepAd=1 (with 16 Bit=0) when the IUSC has detected
early activity on /AS. In this case the IUSC captures
addressing from AD13-AD8 on each rising edge of /AS,
rather than from the Low-order AD lines as would be true
with SepAd=0.

2-9

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLa5

216C32 JusC™v
USER'S MANUAL

2.8.2 Bits and Fields in the BCR (Continued)

SepAd Reserved

IAckMode |BRQTP] 16-Bit JARQTP SR/!thf

15 14 13 12 A 10 9 8

7 6 5 4 3 2 1 0

Figure 2-8. Bus Configuration Register (BCR)

The predecessor Z16C31 device used BCR7-6 as a
"ByteSwap” field that controlled how the Transmit DMA
channel captured bytes from the D15-D0 lines when it was
reading bytes over a 16-bit bus. On the Z16C32 these bits
are Reserved—software written for the Z16C31 may pro-
gram them with 10 or 11, but new software should write 00
to this field. In effect, the Z16C32’s Transmit DMA channel
uses 16 Bit (BCR2) in place of BCR7, to control whether it
fetches bytes from the two halves of the bus alternately,
and uses the state bit that's controlled by “Select D15-D8
or D7-DO First” commands in place of BCRS, to control
which half of the bus corresponds to even and odd
addresses.

The 1AckMode field (BCR5-4) controls how the host pro-
cessor drives the /INTACK pin. 00 indicates that the IUSC
should capture the state of /INTACK at the start of each bus
cycle. Onamultiplexed bus it does this at the rising edges
of /AS, while on a bus with separate address and data lines
it does so at falling edges on /DS or /RD.

This field should be 01 if /INTACK carries a single Low-
active pulse during interrupt acknowledge cycles.

The 10 value in this field is reserved and should not be
programmed.

IAckMode should be 11 if /INTACK carries two pulses
during an interrupt acknowledge sequence. This mode is
compatible with several Intel microprocessors.

BRQTP (Bus Request Totem-Pole; BCR3). If this bit is 1,
the IUSC drives its /BUSREQ pin in a totem-pole fashion
(both High and Low). If itis O, the IUSC drives /BUSREQ in
an open-drain fashion (Low only), in which case an exter-
nal puli-up resistor should be provided. In the latter case,
the IUSC samples /BUSREQ before driving it; if the pin is
Low, the logic waits until it goes High before driving it back
" to Low.

16-Bit(BCR2). This bit should be written as 1 when the host
data bus is 16 bits wide (or wider). Writing this bit as 0 has
three main effects: it restricts the IUSC to using byte
operations on AD7-ADO when it is the bus master, it
restricts the host to using byte transfers on AD7-ADO when
reading and writing the {USC's registers, and it makes the
IUSC ignore the state of the “B//W" signal or bit for register
accesses. This bit also controls whether “implicit” ac-
cesses to the CCAR, TDR, RDR, and DCAR are 8 or 16 bit
wide.

ARQTP (interrupt Request Totem-Pole; BCR1). If this bitis
0, the IUSC drives its /INT pin in a totem-pole fashion (both
High and Low). If /IRQTP is 1, the IUSC drives /INT in an
open-drain fashion (Low only), in which case it should have
an external pull-up resistor.

SRightA (Shift Right Addresses; BCRO). This bit is signifi-
cant only for a multiplexed bus—the IUSC ignores it for a
nonmultiplexed bus. If SRightA is 1, the IUSC captures
slave register addressing from the AD6-ADO pins and
ignores the AD7 pin. In this mode, ADO carries the Upper/
Lower byte indication (U//L), AD5-AD1 carry the actual
register address, and AD6 carries the Byte/Word indica-
tion (B//W). If SRightA is 0, the IUSC captures addressing
from AD7-AD1 and ignores ADQ. It takes UJ//L from AD1,
the register address from AD6-AD2, and B//W from AD7.
This bit applies to accesses to both the serial and DMA
sections of the IUSC, but it has no effect on the use of the
S//D and D//C pins.

SRightA should be 0 in order to use the IUSC as an 8-
bit peripheral on a 16-bit bus, which is not likely to be
a common application. Some sections of this manual
assume that SRightA is 1.

Al bits in the BCR, other than those described above, are
reserved and should be programmed as 0. If the proces-
sor canonly write bytes tothe IUSC, software can only write
the 8 LS Bits of the BCR, on the AD7-ADO lines. In this case,
the state of AD15-AD8, when software writes the BCR,
must be ensured by connecting these pins to pull-down
resistors of about 10 kOhms or, if SepAd=1, to host
address lines.

2-10

UMO014001-1002

Gayle Gamble
UM014001-1002

N 205

216C32 [USC™
USER'S MANUAL

2.9 REGISTER ADDRESSING

The flowchart of Figures 2-9 and 2-10 shows the complete
process by which the IUSC determines which register to
access when a host processor cycle asserts /CS and one
of /RD, WR, or /DS.

In all accesses to WSC registers, the S//D pin selects
between registers in the serial controller and those in the
DMA controllers. The IUSC samples S//D, and other pins
as described below, at the rising/trailing edge of /AS, or, if
JAS is pulled up so that it's always High, at the falling/
leading edge of /DS, /RD, or WR.

2.9.1 Implicit Serial Data Register
Addressing

If the tUSC samples S//D and the D//C pin both High, a write
operation accesses the Transmit Data Register (TDR) and
aread operation selects the Receive Data Register (RDR).
The access is implicitly 16 bits wide if the 16-bit in the Bus
Configuration Register (BCR2)is 1 (indicating a 16-bit data
bus) or eight bits wide if BCR2 is 0.

This means that, on a 16-bit bus, software can neither write
a byte to the TDR/TxFIFO nor read a byte from the RDR/
RxFIFO using an address that makes D//C High. Instead,
software must provide the explicit address of the LS byte
of the TDR/RDR, either directly or by writing it to the CCAR.

2.9.2 Direct Serial Register Addressing on
AD13-ADS8

If the IUSC samples S//D High and D//C Low, it accesses
a serial controller register. If the SepAd bit in the Bus
Configuration Register (BCR15) is 1 (which should only be
the case with an 8-bit data bus) the IUSC samples the
AD13-AD9 pins as aregister address to select which serial
controlier register to access, and samples AD8 as U//L to
select which byte of the register to access. The {USC
always interprets a U//L bit in the “Little-Endian” fashion,
with a 1 indicating the more-significant eight bits of the
register. If the IUSC samples AD13-AD8 as all 0's in this
mode, indicating the Channel Command/Address Regis-
ter (CCAR), the IUSC uses the contents of the CCAR to
select which register to access, as described in Indirect
Serial Register Addressing 2.9.4.

2-11

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLas

Z16C32 JUSC™
USER'S MANUAL

2.9 REGISTER ADDRESSING (Continued)

Start: Host Cycle
with /CS Low -
which register to R'W?

Activity
on /AS after
Reset?

SEPAD
(BCR15)

(Non-Mux'ed
Bus)

(Mux'ed Bus)

(No Separate
Ad)

Py

(Separate Addr)

Capture S//D,
B//W = ADS,
RegAd = AD5-ADO, |—
ID/C = D/iIC

at rise of /AS

Activity
on /AS after

Capture S//D,
Yes RegAd = AD13-ADS8,

) ID/C = DilC
Reset? " (Mux'ed Bus) at rise of /AS
(Non-Mux'ed Bus) <

Capture S/D,
Reg/\ =AD13-ADS8,
ID/C = D//C at fall
of /DS, /RD, or WR

Capture S/D,
ID/C = D//C at fall
of /DS, /RD, or WR

Low/0 | (DMA)

RegAd = DCARS-0
B//W = DCARS;
ID/C = DCAR7;

then DCARS-0=0

RegAd = CCAR5-0
B//W = CCAR6
then CCAR5-C0 =0

Force B/W
=1 (Byte)

v
To "A" on Next Page

Low/0 | (Control)

B//W = Not 16-Bit
(BCR2)

!

To "B" on Next Page

Figure 2-9. IUSC Register Addressing (1 of 2)

2-12

UMO014001-1002

Gayle Gamble
UM014001-1002

Z16C32 USC™

UMO014001-1002

N 21La5 USER'S MANUAL
"A" From Previous Page
(" Accoss the VA
register selected
y (RegAd),
8/16 bits per B/W
(Serial)
Access the Recelve
DMA register
selected by (RegAd),
8/16 bits per B/W
(Control)
Access the Transmit
DMA register
selected by (RegAd), “B" From
8/16 bits per BI/W Previous Page
Read 1 or 2
characters from the
RxFIFO, deﬁ:’anding
on B/,
Access the Serial Write 1 or 2
Controlier register characters to the
selectad by (RegAd), TxFIFO, demnding
8/16 bits per BI/W on B/
Figure 2-10. IUSC Register Addressing (2 of 2)
2-13

Gayle Gamble
UM014001-1002

N 2105

Z16C32 lUSC™
USER'S MANUAL

2.9.3 Direct Serial Register Addressing on
AD6-ADO or AD7-AD1

if the IUSC samples S//D High and D//C Low, SepAd
(BCR15)is 0, and the IUSC detected activity on /AS before
or as the BCRwas written, the IUSC samples the Low-order
AD pins to determine what kind of serial controller register
access itshould do. Ittakes the register selection (RegAd)
from AD5-AD1 if SRightA (BCRO) is 1, or from AD6-AD2 if
SRightA is 0. If 16-bit (BCR2) is 1, the IUSC samples AD6
(or AD7 if SRightA/BCRO is 0) as B/W to determine
whether to access all 16 bits of the register (if B//W is 0) or
just eight bits. If 16-bit is O or B//W is 1, it samples ADO (or
AD1 if SRightA is 0) as U//L to select which byte of the
register to access. The IUSC always interprets a U//L bitin
the “Little-Endian” fashion, with a 1 indicating the more-
significant eight bits of the register. U//L should be O for all
16-bit accesses.

If the IUSC samples AD6-ADO (or AD7-AD1 if SRightAis 1)
as all 0's in this mode, indicating the Channel Command/
Address Register (CCAR), the IUSC uses the contents of
the CCAR to select which register to access, as described
in the next section.

2.9.4 Indirect Serial Register Addressing in
the CCAR

if the IUSC samples S//D High and D//C Low, and:

1. SepAd(BCR15)is 1 and the IUSC samples AD13-AD8
as all zero indicating the CCAR, or

2. SepAdis 0, the IUSC detected activity on /AS before
or as the BCR was written, and it samples AD6-ADO as
all zero indicating the CCAR, or

3. SepAdis0and the IUSC did not detect activity on /AS
before nor as the BCR was written,

then it uses the less-significant byte of the CCAR to select
how to access a serial controller register.

Figure 2-11 shows the CCAR. When the IUSC takes indi-
rect register addressing from it, the RegAd field (CCARS-
1) selects which register to access. If 16-bit (BCR2) is 1,
the IUSC uses CCARG as B/MW to determine whether to
access all 16 bits if the register (if B//W is 0) or just 8. If 16-
bitis O or B//Wis 1, it uses CCARO as U//L to select which

byte of the register to access. The IUSC always interprets
a U//L bitin the “Little-Endian” fashion, with a 1 indicating
the more-significant eight bits of the register. U//L should
be O for all 16-bit accesses.

Whenever it uses CCAR as an indirect address, the IUSC
thereafter clears CCARB-0 to zero, so that the next access
to the CCAR address again references all 16 bits of the
CCAR itself. Thus, after writing a register address to the
CCAR, reading or writing the CCAR address accesses the
register selected by the address written, but another write
to the CCAR address thereafter again writes an address
into the CCAR.

CCARor DCAR can always be used to select aregister for
asubsequentaccesstothe CCAR or DCAR address, even
if the IUSC detected activity on /AS after Reset, and
regardless of the state of SepAd (BCR15).

Typically when software uses indirect register addressing,
the CCAR and DCAR are the only register addresses it
reads and writes, every other access being to write a
register address. Note that the CCAR itself can be ac-
cessed in a single read or write operation: for example, to
write a command to the RTCmd field, software does not
have to first write the address of the CCAR (which is zero).
Specifying a register address for the next access to the
CCAR can be done inthe same write operation withissuing
acommand in RTCmd and/or changing the RTMode field.

‘The RxD and TxD Pins' in Chapter 4 describes how the
RTMode field in the CCAR controls echoing and looping
between the Transmitter and Receiver. Typically this field
is zero, butin applications using indirect register address-
ing and non-zero RTMode values, software must take care
to preserve the current value of RTMode when it writes
register addresses to the CCAR.

When using indirectaddressing, some hardware/ software
mechanism has to prevent an IUSC interrupt, or any
interrupt that leads to a context switch away from an
interrupted IUSC task, from occurring between the time an
addressis written into the CCAR and when the subsequent
read or write is done. This is because an address that has
been written into the CCAR is part of the interrupted task’s
context that would want to be saved, but there is no way to
read such an address out of the IUSC—reading the CCAR
returns the contents of the addressed register!

RT Chan
RTCmd Reset RTMode Load | BW RegAddr U/
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

Figure 2-11. Channel Command/Address Register (CCAR)

2-14

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2La5

216C32 JUSC™
USER'S MANUAL

2.9.5 Direct DMA Register Addressing on
AD13-AD8

Ifthe IUSC samples S//D Low, itaccesses a DMA controller

register. If the SepAd bit in the Bus Configuration Register
(BCR15) is 1 (which should only be the case with an 8-bit
data bus) the IUSC samples the AD13-AD9 pins as a
RegAd to select which DMA controller register to access.

DMA controlier registers fall into two categories. One copy
of each “shareable” register (e.g., DCAR) applies to both
channels, while other registers are duplicated in each
channe! (e.g., TDMR and RDMR). When the address on
AD13-AD9 indicates a shareable register, the IUSC ig-
nores the D//C pin, while for non-shareable registers it
samples D//C to select whether to access the Transmit or
Receive channel register. D//C High (1) selects the Re-
ceive channel.

The IUSC samples AD8 as U//L to select which byte of the
register to access. The IUSC always interprets a U//L bitin
the “Little-Endian” fashion, with a 1 indicating the more-
significant eight bits of the register.

If the IUSC samples AD13-ADS8 as all zero in this mode,
indicating the DMA Command/Address Register (DCAR),
it uses the contents of the DCAR to select which register to
access, as describedin indirect DMA Register Address-
ing 2.11.7.

2.9.6 Direct DMA Register Addressing on
ADG-ADO or AD7-AD1

If the IUSC samples S//D Low, SepAd (BCR15)is 0, and it
detected activity on /AS before or as the BCR was written,
the IUSC samples the low-order AD pins to determine what
kind of DMA controller register access it should do. It takes
the register selection (RegAd) from AD5-AD1 if SRightA
(BCRO) is 1, or from AD6-AD?2 if SRightA is 0.

DMA controller registers fall into two categories. There is
only one copy of each “shareable” register (e.g., DCAR}),
while other registers are duplicated in each channel (e.g.,
TDMR and RDMR). When RegAd indicates a shareable
register, the IUSC ignores the D//C pin, while for non-
shareable registers it samples D//C to select whether to
access the Transmit or Receive channel register. D//C
High (1) selects the Receive channel.

If 16-Bit (BCR2) is 1, the IUSC samples AD6 (or AD7 if
SRightA/BCRO is 0) as B//W to determine whether to
access all 16 bits of the register (if B//W is 0) or just 8 bits.
If 16-Bitis O or B/Wis 1, it samples ADO (or AD1 if SRightA
is 0) as U//L to select which byte of the register to access.
The IUSC always interprets a U//L bit in the “Little-Endian”
fashion, with a 1 indicating the more-significant eight bits
of the register. U//L should be O for all 16-bit accesses.

if the IUSC samples AD8-ADO (or AD7-AD1 if SRightAis 1)
as all zero in this mode, indicating the DMA Command/
Address Register (DCAR), it uses the contents of the
DCAR to select which register to access, as described in
the next section.

2.9.7 Indirect DMA Register Addressing in
the DCAR

If the IUSC samples S//D Low, and:

1. SepAd (BCR15) is 0 and the IUSC did not detect
activity on /AS before nor as the BCR was written, or

2. SepAd is 1 and the IUSC samples AD13-AD8 as all
zero indicating the DCAR, or

3. SepAdis 0, the IUSC detected activity on /AS before
or as the BCR was written, and it samples AD6-ADO as
all zero indicating the DCAR,

then it uses the less-significant byte of the DCAR to select
how to access a DMA controller register.

Figure 2-12 shows the DCAR. When the IUSC takes indi-
rectaddressing from it, the RegAd field (DCARS5-1) selects
which register to access.

DMA controller registers fall into two categories. There is
only one copy of each “shareable” register (e.g., DCAR),
while other registers are duplicated in each channel (e.g.,
TDMR and RDMR). When RegAd indicates a shareable
register, the IUSC ignores the Rx/Tx Reg field (DCAR7),
while for non-shareable registers it uses Rx/Tx Reg to
select whether to access the Transmit or Receive channet
register. A 1 selects the Receive channel. (The IUSC
ignores the D//C pin when taking indirect addressing from
the DCAR.)

pCmd Reserved | TUTX | MBRE RF’{Q‘ BIW RegAddr uin
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Figure 2-12. DMA Command/Address Register (DCAR)
2-15

UMO014001-1002

Gayle Gamble
UM014001-1002

216C32 lysC™

@ Zilm USER'S MANUAL
2.9.7 Indirect DMA Register Addressing in 2.9.8 About the Register Address Tables
the DCAR (Continued)

If 16-bit (BCR2) is 1, the IUSC uses DCARG as B/W to
determine whether to access all 16 bits of the register (if
B//W is 0) or just eight bits. If 16-bitis 0 or B/Wis 1, ituses
DCARO as U//L to select which byte of the register to
access. The IUSC always interprets a U//L bitin the “Little-
Endian” fashion, with a 1 indicating the more-significant
eight bits of the register. U//L should be O for all 16-bit
accesses.

Whenever it uses DCAR as an indirect address, the IUSC
thereafter clears DCARG-0 to zero, so that the next access
tothe DCAR address againrefers to all 16 bits of the DCAR
itself. Thus, after writing a register address to the DCAR,
reading or writing the DCAR address accesses the regis-
ter selected by the address written, but writing tothe DCAR
address thereafter writes another address into the DCAR.

Typically when software uses indirect register addressing,
the DCAR and CCAR are the only register addresses it
reads and writes, every other access being to write a
register address. Note that the DCAR itself can be ac-
cessed in a single read or write operation: for example, to
write a command to the DCmd field, software does not
have to first write the address of the DCAR (which is zero).
Specifying a register address for the next access to the
DCAR can be done in the same write operation with issuing
a command in DCmd and/or changing the MBRE bit.

Commands and /BUSREQ Enable in Chapter 6 de-
scribes how the MBRE bitin the DCAR controls whether the
IUSC can request control of the host bus to do DMA
transfers. Typically this bit is set. When indirect register
addressing Is used, software must take care to pre-
serve the current state of MBRE when it writes register
addresses to the DCAR.

When using indirect addressing, some hardware/software
mechanism has to prevent an IUSC interrupt, or any
interrupt that leads to a context switch away from an
interrupted IUSC task, from occurring between the time an
address is written into the DCAR and when the subsequent
read or write is done. This is because an address that has
been written into the DCAR is part of the interrupted task’s
context that would want to be saved, but there is no way to
read such an address of the IUSC—reading the DCAR
returns the contents of the addressed register.

Tables 2-1 and 2-2 show the names and addresses of the
addressable registers in the IUSC, in address and alpha-
betical order. The Direct Address columns assume that
SRightA (BCRO) is 1. The RegAddr column in the Tables
reflects the state of AD5-AD1, AD13-AD39, CCAR5-1, or
DCARS-1 as applicable.

If 16-Bit (BCR2)is 1, the B//W bit from AD6, AD14, CCARS,
or DCARS selects between a 16-bit transfer (if O/Low) and
an 8-bittransfer (if 1). If “16-bit" is 0, the IUSC ignores ADS6,
AD14, CCARS, or DCARB (as applicable). Note that the
values in the “8-bit data” columns of Tables 2-1 and 2-2
include the B//W bit 1 for both direct and indirect address-
ing, as is required on a 16-bit bus. When 16-bit (BCR2) is
Othese address values can be used as shown, or 64 lower
like the addresses shown in the “16-bit data” columns.

For 8-bit transfers on either an 8-bit or 16-bit bus, the state
of ADO, AD8, CCARO, or DCARO selects the more-signifi-
cant eight bits of the register (if 1/High) or the less-
significant eight bits. In this regard, and in the register
addresses of the two halves of 32-bit DMA address regis-
ters, the lUSC is “Little-Endian” like Intel microprocessors.
(The next section describes the IUSC's byte-ordering
flexibility in the TDR and RDR, and in address fetching in
DMA Array or Linked Listmode.) For 16-bit transfers, ADO,
AD8, CCARO or DCARO should be O/Low.

The Direct Address columns of the Tables assume:

1. SRightA (BCRO) is 1,

2. the processor's multiplexed AD6-ADC lines are
connected to ADB-ADO, orits A5-AQ lines are connected
to AD13-ADS8, depending on SepAd (BCR15), -

3. the processor’s A7 line is connected to D//C, and

4. the processor's A8 line is connected to S//D.

If your design differs from these assumptions, register

addressing will be different from that shown in the Direct
Address columns.

2-16

UMO014001-1002

Gayle Gamble
UM014001-1002

Q2305

21632 lusc™
USER'S MANUAL

2.9.9 Serial Data Registers RDR and TDR

The RDRand TDR are actually "the read and write sides of"
the same register location. The IUSC ignores the state of
AD4, AD12, or CCARA4 (as applicabie) whenever the rest
of the address indicates an access to TDR or RDR. For
simplicity Tables 2-1 and 2-2 show RDR at the Lower
address and TDR at the Higher one.

The MS bytes of RDR and TDR should never be read or
written alone, only as part of a 16-bit access. On a Zilog

16C0x or Motorola 680x0 system, use direct addresses

353 or 369 (161 or 171 hex) to select the LS byte for byte
transfers. On an Intel-based system, use direct addresses
352 or 368 (160 or 170 hex) to select the LS byte for byte
transfers.

Table 2-1. IUSC Registers, in Address Order

Direct Direct DCAR7-0 or DCAR7-0 or
Reg Address: Address: CCARG6-0: CCARG6-0:
Register Name Acronym S/D D/fc Addr 16-Bit Data 8-Bit Data 16-Bit Data 8-Bit Data
DMA Command/Address ~ DCAR L(0) X 00000 0/0 64,5/40,1 0/0 64,5/40,1
Transmit DMA Mode TOMR L) L) 00001 22 66,7/42,3 22 66,7/42,3
DMA Control DCR L (0) X 00011 6/6 70,1/46,7 6/6 70,1/46,7
DMA Array Count DACR L(0) X 00100 8/8 72,3/489 8/8 72,3/489
Burst/Dwell Control BDCR L(0) X 01001 18/12 82,3/52.3 18/12 82,3/52,3
DMA Interrupt Vector DIVR L (0) X 01010 20/14 84,5/545 20/14 84,5/54,5
DMA Interrupt Control DICR L(0) X 0+100 24/18 88,9/58.9 24/18 88,9/58,9
Clear DMA interrupt CDIR L{0) X 01101 2611A 90,1/5A,B 2611A 90,1/5A.8
Set DMA Interrupt SDIR L (0) X 01110 28/1C 92,3/5C,0 28/1C 92,3/5C,D
Transmit DMA Interrupt Arm TDIAR L) L) 01111 30/1E 94,5/5EF 30/1E 94,5/5E F
Transmit Byte Count TBCR L) L@ 10101 42027 106,7/6A8 42/2A 106,7/6A.8
Transmit Address (Lower) TARL L{O) L) 10110 44/2C 108,9/6C,D 44/2C 108,9/6C,D
Transmit Address (Upper) TARU L) L) 10111 46/2E 110,1/6EF 46/2E 110,1/6EF
Next Transmit Byte Count ~ NTBCR LO L@© 11101 58/3A 122.3/TAB 58/3A 122,3/7TAB
Next Transmit Address (L) NTARL L0 L@ 11110 60/3C 124,5/7C.D 60/3C 1245/7C,D
Next Transmit Address (U) NTARU L) L) 1111 62/3E 126,7/7EF 62/3F 126,7 [TEF
Receive DMA Mode RDMR L) H() 00001 130/82 1945/C2,.3 130/82 194,5/C2,3
Receive DMA Interrupt Am RDIAR L) H(Q) 01111 158/9E 222 3/DEF 158/9E 222,3/DEF
Receive Byte Count RBCR LO) HQ) 10101 170/AA 234 5/EAB 170/AA 2345/EAB
Receive Address (Lower) RARL LO) H(Q) 10110 172/AC 236,7/EC,D 172/AC 236,7/EC.D
Receive Address (Upper) RARU L) H(Q) 10111 174/AE 238,9/EEF 174/AE 238 9fEEF
Next Receive Byte Count ~ NRBCR L{0) H() 11101 186/BA 250,1/FAB 186/BA 250,1/FAB
Next Receive Address (L) NRARL L{O) H() 11110 188/BC 252,3/FC,D 188/8C 252.3//FC,D
Next Receive Address (U} NRARU L) H() 1111 190/BE 254 4fFE F 190/BE 254,5/FEF
Channel Command/Address CCAR H({1) L) 00000 256/100 320,1/140,1 op 64,65/40,1
Channel Mode CMR H{) L) 00001 258/102 322,3/142,3 22 66,7/42,3
Channe! Command/Status CCSR H(1) L@© 00010 260/104 3245/1445 4/ 68,9/44,6
Channel Control CCR H(1) L(0) 00011 262/106 326,7/146,7 6/ 70,1/46,7
Port Status PSR H(1) L) 00100 264/108 3289/148,9 8/8 72,3/48,9
Port Control PCR H({1) L(0) 00101 266/10A 330,1/14AB 10/0A 74,5/4A,B
217

UMO014001-1002

Gayle Gamble
UM014001-1002

. Z16C32 lUSC™
@ 2ilan USER'S MARUAL

2.9.9 Serial Data Registers RDR and TDR (Continued)

Table 2-1. IUSC Registers, in Address Order (Continued)

Direct Direct DCAR7-0 or DCAR7-0 or

Reg Address: Address: CCARG6-0: CCARG-0:
Register Name Acronym S§/D D/C Addr 16-BitData 8-BltData 16-Bit Data 8-Bit Data
Test Mode Data TMDR H{1) L(0) 00110 268/10C 332,314CD 12/0¢ 76,7/4C,D
Test Mode Control TMCR H(1) L 00111 270/10E 334 5/14EF 14/0F 78,9/4E,F
Clock Mode Control CMCR H(1) L(O) 01000 2721110 336,7/150,1 16/10 80,1/50,1
Hardware Configuration HCR H(1) L{0) 01001 2741112 338,9/152,3 18/12 82,3/52,3
Interrupt Vector IVR H(1) L{0) 01010 276/114 340,1/1545 20/14 84,5/54,5
Input/Output Control I0CR H(1) L) 01011 278/116 342,3/156,7 22/16 86,7/56,7
Interrupt Control ICR H(1) L) 01100 280/118 34451589 24/18 88,9/58,9
Daisy-Chain Control DCCR H(1) L(O 01101 282/11A 346,7/15A.8 26/1A 90,1/5A,B
Misc. Interrupt Status MISR H(1) L(0) 01110 284/11C 348,9/15C,D 28/1C 92,3/5C,D
Status Interrupt Control SICR H() L{0) o1 286/11E 350,1/15EF 30/1E 94,5/5E,F
Receive Data RDR H(1) L{O) 1x000 288/120 352,3/160,1 32/20 96/60
{Read only; TR for Write) orH(1) XXX 384-511 384-511 x x
Receive Mode RMR H(1) L) 10001 290/122 354,5/162,3 34/22 98,9/52,3
Receive Command/Status ~ RCSR H(1) L) 10010 292/124 356,7/164.5 36/24 100,1/64,5
Receive Interrupt Control RICR H(1) L 10011 2941126 358,9/166,7 38/26 102,3/66,7
Receive Sync RSR H(1) L{O 10100 296/128 360,1/168.9 40/28 104,5/58,9
Receive Count Limit RCLR H(1) L0 10101 298/12A 362,3/16A,B 42/2A 106,7/6A,.8
Receive Character Count RCCR H(1) L{0) 10110 300/12C 364,5/16C.D 44/2¢ 108,9/5C,0
Time Constant 0 TCOR H(1) L) 10111 302/12E 366,7/16E,F 46/2F 110,1/6E,F
Transmit Data TOR H(1) L) 1x000 304/130 368,9/170,1 48/30 112/70
(Write only; RDR for Read) orH(1) XXX 384-511 384-511 x x
Transmit Mode T™R H(1) L@ 11001 306/132 370,11172,3 50/32 114,5/72,3
Transmit Command/Status ~ TCSR H(1) L©O 11010 308/134 372,3/1745 52/34 116,7/74,5
Transmit Interrupt Control ~ TICR H(1) L0 11011 310/136 374 5/178,7 54/36 118,9/76,7
Transmit Sync TSR H(1) L) 11100 3121138 376,7178.9 56/38 120,1/78,9
Transmit Count Limit TCLR H(1) L) 11101 314/13A 3789/17AB 58/3A 122,3/7A,.8B
Transmit Character Count ~ TCCR H(1) L0 11110 316/13C 380,1/17CD 60/3C 124,5/7C,.0
Time Constant1 TCIR H(1) L) 1111 318/13E 382,3/17EF 62/3€ 126,7/7E,F
2-18

UMO014001-1002

Gayle Gamble
UM014001-1002

. Z16C32 JUsC™
@ 2l USER'S MANUAL

Table 2-2. IUSC Registers, In Alphabetical Order

Direct Direct DCAR?7-0 or DCAR7-0 or

Reg Address: Address: CCARG-0: CCAR6-0;
Register Name Acronym S/D D/ Addr 16-BitData 8-BitData 16-Bit Data 8-Bit Data
Burst/Dwell Control BDCR L{0) X 01001 18/12 82,3/52,3 18712 82,3/52,3
Channel Command/Address CCAR H L) 00000 256/100 320,1/140.1 (1] 64,65/40,1
Channel Command/Status CCSR H{1) L0 00010 260/104 324511445 44 68,9/44,5
Channel Control CCR H(1) L(0) 00011 262/106 326,7146,7 6/ 70,1/46,7
Channel Mode CMR B(1) L) 00001 258/102 322,3/142.3 22 66,7/42,3
Clear DMA Interrupt CDIR L (0) X 01101 26/1A 90,1/5A.8 26(1A 90,1/5A.8
Clock Mode Controf CMCR H(1) L(0) 01000 272/110 336,7/150,1 16/10 80,1/50,1
Daisy-Chain Control DCCR H(y L) 01101 282/11A 346,7/15A8 26/1A 90,1/5A,B
DMA Array Count DACR L{0) X 00100 8/8 72,3/489 8/8 72,3/48.9
DMA Command/Address ~ DCAR L(0) X 00000 0/0 64,5/40.,1 0/0 64,5/40,1
DMA Control DCR L{0) X 00011 6/6 70,1/46,7 6/6 70,1/46,7
DMA Interrupt Contro! DICR L (0} X 01100 24/18 88,9/58,9 24/18 88,9/58,9
DMA Interrupt Vector DIVR L{0) X 01010 20/14 845/54,5 2014 84,5/54.5
Hardware Configuration HCR H(1) L(0) 01001 2741112 338,9/152,3 18/12 82,3/52,3
Input/Output Control I0CR H(1) L0 01011 278/116 342,3/156,7 22/16 86,7/56,7
Interrupt Control ICR H{1) L{0) 01100 280/118 3445/158,9 24/18 88,9/58,9
Interrupt Vector IVR H({1) L) 01010 276/114 340,1/154.5 20/14 84,5/54,6
Misc. Interrupt Status MISR H(1) L(0) 01110 284/11C 3489/15CD 28/1C 92,3/5C,D
Next Receive Address (L) ~ NRARL LO) HM 11110 188/BC 252,3/FC.D 188/8C 252.3/FCD
Next Receive Address (U) NRARU LO) HW 111 190/BE 254 AfFEF 190/BE 254 5fFEF
Next Receive Byte Count ~ NRBCR LO) HM 11101 186/BA 250,1/FAB 186/BA 250,1/FAB
Next Transmit Address (L) NTARL LO) L) 11110 60/3C 124,5/7CD 60/3C 124 5/TCD
Next Transmit Address (U) NTARU L@O) L) 1111 62/3E 126,7/TEF 62/3E 126,7/TEF
Next Transmit Byte Count ~ NTBCR LO) L 1101 58/3A 122,3/TAB 58/3A 122,3/7TAB
Port Control PCR H{1) L(0) 00101 266/10A 330,1/14A8 10/0A 74,5/4A.8B
Port Status PSR H({1) L{0) 00100 264/108 328,9/148,9 858 72,3/48,9
Receive Address (Lower) RARL LO) HM 10110 172/AC 236,7/eC,D 172/AC 236,7/EC.D
Receive Address (Upper) RARU L@ H(Q) 10111 174/AE 238 9/EEF 174/AE 238 9/EEF
Receive Byte Count RBCR LO HM 10101 170/AA 234 5/EAB 170/AA 234 5/EAB
Receive Character Count RCCR H(1) L{O) 10110 300/12C 364,5/16C.D 44/2¢ 108,9/6C,0

2-19

UMO014001-1002

Gayle Gamble
UM014001-1002

. 216032 JUSC™
N 2iLa5 Usen's MANUAL

2.9.9 Serial Data Registers RDR and TDR (Continued)

Table 2-2. 1USC Registers, in Alphabetical Order (Continued)

Direct Direct DCAR7-0 or DCAR7-0 or

Reg Address: Address: CCARG-0: CCARG-0:
Reglster Name Acronym S/D D/ Addr 16-BitData 8-BltData 16-Bit Data 8-Bit Data
Receive Command/Status ~ RCSR H({1) L(0) 10010 292/124 356,7/164,5 36/24 100,1/64,5
Receive Count Limit RCLR H({1) L{0) 10101 298/12A 362,3/16A,8 42/2A 106,7/6A,.8
Receive Data RDR H() L(0) 1x000 288/120 352,3/260,1 32/20 96/60
(Read only; TDR for Write) orH(1) XHOOKX 384-511 384-511 xx 0
Receive DMA Interrupt Arm RDIAR L) H() 01111 168/9E 222,3/0EF 158/9€ 222 3/DEF
Receive DMA Mode ROMR L K 00001 130/82 1945/C23 130/82 1945/C2,3
Receive Interrupt Control RICR H(i) L) 10011 294/126 358,9/166,7 36/26 102,3/56,7
Receive Mode RMR H(1) L(0) 10001 290/122 354,5/162,3 34/22 98,9/62,3
Receive Sync RSR H) L) 10100 296/128 360,1/168.9 40/28 104,5/56,9
Set DMA Interrupt SDIR L(0) X 01110 28/1C 92,3/5C,0 28/1C 92,3/5C,D
Status Interrupt Control SICR H(1) L(0) 01111 286/11E 350,1/15EF 30/1E 94,5/5E,F
Test Mode Control TMCR H(1) L{0) 00111 270110 334 514K F 14/0F 78,9/4E,F
Test Mode Data TMDR H() L{0) 00110 268/10C 332,3/14CD 12/0¢ 76,7/4C,D
Time Constant 0 TCOR H(1) L) 10111 302/12E 366,7/16E,F 46/2E 110,1/6E,F
Time Constant1 TC1R H) L{0) 111 318/13E 3823MTEF 62/3 126,7/7€,F
Transmit Address (Lower) TARL LO) L) 10110 44/2C 108,9/6C.D 44/2C 108,9/6C.0
Transmit Address (Upper) TARU L0} L0 10111 46/2F 110,1/6EF 46/2€ 110,1/6EF
Transmit Byte Count TBCR L) L) 10101 42/2A 106,7/6A8 42/2A 106,7/6A8
Transmit Character Count TCCR H(1) L) 11110 316/13C 380,1/17CD 60/3C 124,5/7C,D
Transmit Command/Status ~ TCSR H(1) L(0) 11010 308/134 372,3/1745 52/34 116,7/74,5
Transmit Count Limit TCLR H() L(0) 11101 314/13A 378,9/17AB 56/3A 122,3/7A,B
Transmit Data TOR H(1) L(0) 1x000 304/130 368,9/170,1 48/30 112/70
(Write only; RDR for Read) orH(1) X0 384-511 384-511 x 0
Transmit DMA Interrupt Arm - TDIAR L@ L0 01111 30/1E 94 5/5EF 30N1E 94 5/5E F
Transmit DMA Mode TDMR LO) L 00001 22 66,7/42.3 22 66,7/42,3
Transmit Interrupt Controf ~ TICR H{1) L(0) 11011 310/136 3745/176,7 54/36 118,9/76,7
Transmit Mode T™MR H{) L) 11001 306/132 370,1/172,3 50/32 114,5/72,3
Transmit Sync TSR H(1) L(0) 11100 312/138 376,7/178,9 56/38 120,1/78,9
2-20

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLa5

216C32 lusC™
USER'S MANUAL

2.10 BYTE ORDERING

Various microprocessors differ on the correspondence
between addresses and how bytes are arranged within a
16-bit or 32-bit value. The Zilog Z80 family and most Intel
processors use what is sometimes called the “Little-Endian”
convention: the least significant byte of a word has the
smallest address, and the most significant byte has the
largest address. The Zilog Z16COx and Motorola 680x0
processors are “Big-Endian”: they store and fetch the MS
byte in the lowest-addressed byte, and the LS byte in the
highest address.

The Z16C32 includes two separate control facilities that
allow itto be used with either kind of processor. The “Select
D15-D8 First” and “Select D7-DO First” commands in the
RTCmd field of the Channel Command/Address Register
(CCAR15-11) contro! the byte ordering within a
16-bit transfer of serial data, and apply to DMA and
processor accesses to RDR and TDR. These commands
also control which data lines the Transmit DMA channel
takes byte data from on a 16-bit bus. The ALBVO bit in the
DMA Control Register (DCR12) controls how the DMA
channels fetch buffer addresses and lengths from memory
when operating in "Array” or “Linked List" mode. The
following table summarizes how these bits should be
programmed for various system configurations:

Table 2-3. System Configuration Programming

Bus Processor

Size Type Programming

8 Bits Big-Endian 16-bit (BCR2) := 0
ALBVO (DCR12) := 1

8 Bits Little-Endian 16-bit (BCR2) := 0
ALBVO (DCR12):=0

16 Bits Big-Endian 16-bit (BCR2) := 1
ALBVO (DCR12) := 1
RTCmd (CCAR15-11) =
“Select D15-D8 First"

16 Bits Little-Endian 16-bit (BCR2) := 1

ALBVO (DCR12) := 0
RTCmd (CCAR15-11) :=
“Select D7-DO First”

2.11 REGISTER READ AND WRITE CYCLES

Figures 2-13 through 2-16 show the waveforms of the
signals involved when the host processor reads or writes
an [USC register. Separate drawings are included for the
signaling on a bus with multiplexed addresses and data,
and for a bus with separate address and data lines.
Several things have been done to minimize the number of
figures.

1. The cases of separate read and write strobes vs a
direction line and a data strobe, have been combined
by labeling the strobe traces as “/DS or /RD" and “/DS
or /WR". The direction line R//W is shown in the figures,
but a note reminds readers that its state does not
matter with /RD and /WR.

2. The difference between “wait” and “acknowledge”
signaling is handled by showing the /WAIT//RDY trace
as "maybe or maybe not” going Low, with appropriate
labeling. (The {USC never asserts a "Wait" indication
during a register access cycle.)

3. The difference between a sampled (address-like)
/INTACK signal, and one thatis a strobe, is handled by
showing it “maybe or maybe not" going Low after the
address-sampling time, again with appropriate
labeling.

Chapter 6 covers details of DMA cycles initiated by the
IUSC as the bus master, while Chapter 7 covers interrupt
acknowledge cycles.

The actual timing parameters and electrical specifica-
tions of the IUSC are given in the companion publication
IUSC Product Specification.

2-21

UMO014001-1002

Gayle Gamble
UM014001-1002

D205

21632 JUSC™
USER'S MANUAL

2.11 REGISTER READ AND WRITE CYCLES (Continued)

ADnn < Add|

——

Data

S/ID, D/IC

/CS

\

/INTACK

XX
/
AN

N

)~ (Only if lackMode = 00}

/MR, (/RD or /DS)

ms — _A

\a

{Required with /DS, not with /RD.)

p————Wait Mode

——
RIW , A\,
/DS or RD \
/WAIT//RDY

~
-Acknowledge Mode

Figure 2-13. Register Read Cycle with Multiplexed Addresses and Data

ADnn

S//D, DIIC

/CS

/INTACK

/RD, (/WR or /DS)

IAS

RIW

/DS or WR

MWAIT//RDY

X
\
/

1 I~ <

{Only if tackMode = 00)

__/

./

(Required with /DS, not with /WR.)

—

vy

o Wait Mode

\—J/‘ Acknowledge Mode

Figure 2-14. Register Write Cycle with Multiplexed Addresses and Data

2-22

UMO014001-1002

Gayle Gamble
UM014001-1002

Z16C32 lUSC™
UsER'S MANUAL

8//D, DIIC X: x

/CS

™~

/INTACK / \ » ————— (Only it lackMode = 00)

/AS, WR, (/RD or /DS) H H
/\-—-—————-——— (Required with /DS, not with /RD)

- TN

/DS or /RD

§ p————Wait Mode
MAIT/RDY \—{ﬁ
i Acknowledge Mode

Figure 2-15. Register Read Cycle with Non-Multiplexed Data Lines

UMO014001-1002

2-23

Gayle Gamble
UM014001-1002

216C32 JusC™

@ 2iL USER'S MANUAL
2.11 REGISTER READ AND WRITE CYCLES (Continued)

ADnn Daia

S//D, DIIC
/cs \ i /

/INTACK / \ ——— (Onlyif lackMode = 00)

/As, /\WR, (/RD or /DS)

RIW \/

& — (Required with /DS, not with /RD)
p ——— Wait Mode

WAIT//RDY _@
Acknowledge Mode

Figure 2-16. Register Write Cycle with Non-Multiplexed Data Lines

2-24
UMO014001-1002

Gayle Gamble
UM014001-1002

QN 2iLa5

216C32 usc™
USER'S MANUAL

2.12 DMA CYCLE OPTIONS

Three bits in the DMA Control Register (DCR) affect how

“the IUSC operates as a bus master—that is, how it acts
when it has contro! of the bus. This information is presented
both here and in Chapter 6.

2.12.1 S//D, D//IC Status Output

The DCSDOut bit (DCR4) controls whether the IUSC
drives the S//D and D//C pins when it is the bus master. If
DCSDOut is 1, the IUSC drives S//D Low for Tx channel
operations and High for Rx channel cycles, and drives
D//C High during transfers of serial data and Low during
array or linked-list fetching. When this bit is 1, on a
muitiplexed bus S//D and D//C cannot be connected
directly to any of the address/data lines with the AD pins,
and external drive on the S//D and D//C pins must be tri-
stated (released) while the IUSC is the bus master.

If neither externat logic nor monitoring equipment (like a
logic state analyzer) has any use for the information de-
scribed above, software can program DCSDOut as 0. In
this case the IUSC never drives S//D and D//C, and these
pins can be connected directly to AD lines on a multi-
plexed bus, or can be driven full-time by external drivers on
a non-multiplexed bus.

2.12.2 Wait Insertion

It the 1Wait bit (DCR3) is 1, the IUSC extends the data
portion of each master bus cycle by one CLK period. This
allows use of sfower memories for a given CLK frequency,
or use of a faster CLK frequency with a particular memory
type. Signaling on /WAIT//RDY can be used to extend
master bus cycles, regardless of the state of this bit. When
1Wait is 1 the IUSC starts actively sampling /WAIT//RDY
one CLK period later than when it is 0.

2.12.3 /UAS Frequency

Since the DMA channels maintain 32-bit addresses but
have only a 16-bit external bus, they present each address

in two parts. They signal the availability of the more
significant half of an address by driving /UAS Low, and
signal that the LS half of an address is on the AD lines by
driving /AS Low. The UASAII bit (DCR2) controls how often
the channels present the more-significant half of the ad-
dress. If UASAIl is 1, every master bus cycle includes
presentation of the more-significant half of the address on
the AD15-ADO pins, with a Low-going pulse on /JUAS. This
means that every bus cycle takes at least four cycles of
CLK.

If UASAIl is 0, the IUSC includes a /UAS sequence only in
cycles that meet one or more of the following criteria:

1. in the first cycle after taking control of the bus from
another master,

2. inthefirstcycle after switching from one channel to the
other,

3. inPipelined mode, inthe firstcycle after switching from
one buffer to the next,

4. for achannel in Array or Linked List mode, in the first
cycle after switching from data buffer accesses to
array/list accesses, or vice-versa,

5. inthefirst cycle after incrementing a memory address
results in a carry from A15to A16, even if the AddrSeg
field (DCR1-DCRO) is 10 so that the carry is blocked.

When the IUSC includes a /JUAS sequence in a bus cycle,
the minimum length of the bus cycle is 4 CLK periods, while
if it does not, the bus cycle can be as short as 3 CLKs.

UASAIl should be programmed as 1 only if required by
unusual external hardware. For example, if the IUSC and
another bus master share an upper-address latch and the
other bus master can insert cycles between IUSC cycles
within the same bus grant, UASAI! would want to be 1.

2-25

UMO014001-1002

Gayle Gamble
UM014001-1002

Sample Application B

Serial Modes and Protoculs

Direct Memory Access R
(DMA) Channels Bud

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLas

USER'S MANUAL

CHAPTER 3

Z16G32 IUSC™
SAMPLE APPLICATION

3.1 INTRODUCTION

Figure 3-1 shows a sample application of two IUSCs
interfaced to an ISA (AT) personal computer bus. The
designincludes two 128K x 8 static RAMs that can be read

or written by either the host (80x86) processor or by the
IUSCs. This example is a simplified version of a commer-
cial-quality design thatis available for licensing from Zilog.

3.2 /O AND MEMORY SPACE ADDRESSING

The design presents a block of four registers in I/O space,
two of which are implemented in this example. The J1
jumper header allows this 4-byte block to be located
anywhere in the upper 512 bytes of the 1 Kbyte I/O space
of the original PC/XT architecture. Figure 3-2 shows the
(simplified) structure of this 4-byte block.

If software writes to the highest of these four I/O addresses
repeatedly, the write pulses will pump down an RC circuit
(R1, C1) that also provides a power-on reset.

Writing to the second of the four I/O addresses allows
software to set the location of the RAM and IUSCs in
memory space, as well as selecting which ISA bus inter-
ruptlevel the board should use. Onthe ISA bus, the design
presents a 16 Kbyte “window” into the 256 Kbytes of RAM
on the card. Writing to the first of the four I/O addresses
allows software to set the base of this window within the
RAM on the card.

When the base of the window within the RAM is set to zero,
the first 512 bytes of the 16K window refer not to RAM but
tothe registers in the IUSCs, with U1 (“IUSC 0”) occupying
addresses 0-255 and U2 (“IUSC 1") occupying 256-511.

3-1

UMO014001-1002

Gayle Gamble
UM014001-1002

Z16C32 lUSC™
USER'S MANUAL

u18

st o
§~
El

LINAZBEC

TR

U4

a.a::a::::iiﬁ!aﬁ! goey

TR i
55 B aanulallse 3

EggeE:

i nm
mmaa&zili

s i

ME\
232
b}
JREROARR

Rrafenaz pK

n?in
;;bﬂ.;ilii;iﬁ'l !;‘
,,,,, L oi
:::9:1::::5 34338 OBy
2 1
"“,’ SRRVRBRE
=
"‘1 W
8 8
u ARAVASRE] =
M
u ARRORIRT
g
e 1111143 J
j sy .| ohinieii apilejeiviels|
' H
s3asfaannnnete iiiiiiii

U1

ekl L}
umnsu,,; 38 5um -gmﬁigﬂii!ﬁiﬁi

geurekR
PRFERRH

HRatag

isiﬁiiis H
RRRFRER T
11143 1Y

Figure 3-1. Sample IUSC Application Schematic

3-2

UMO014001-1002

Gayle Gamble
UM014001-1002

Z16C32 lusc™
USER'S MANUAL

|/O address

Window address A17-14

1/0 address +1 Interrupt level

Comparison address A18-14

1/0 address +2

/0 address +3

Multiple writes Reset the board

7 6 5

4 3 2 1 0

Figure 3-2. Register Map in I/O Space

3.3 HOST ADDRESS HANDLING

Proceeding from the upper-left corner of Figure 3-1, the
HC374 “U5" implements the second of the four I/O space
registers, including the Comparison Address signals CA18-
CA14 that determine where the board resides within the
second 512 Kbytes of the first 1 Mbyte of the 16 Mbyte
memory space of the ISA (AT) bus. The three MSBits of this
register hold the Interrupt Level code IL.2-1L0, that controls
onwhichof seven ISA bus interrupt levels the U18 Interrupt
Requester device requests interrupts.

The actual memory address comparison is performed by
the U6 Memory Address Comparator, which drives its
combinatorial output “/MAEQ" Low when the address on
the “LA" and high-order “SA" lines of the ISA bus matches
the CA18-CA14 value. In addition, the “MAComp” device
drives the IMEMCS 16 line of the ISA bus low whenever the
address matches, to signify that it's a 16-bit device. The
equations for U6 are shown in Table 3-1.

Table 3-1. Logic Equations for U6 “MAComp”

JHIOK = /[LA23*/LA22*/LA21*/LA20*LA19*/LA18*/CA2118*/LA17*/CA2017

+ JLA23%LA22*/LA21*LA20* LA19*/LA18*/CA2118" LA17* CA2017
+ JLAZ23%/LA22%LA21*/LA20* LA19* LA18* CA2118*/LA17*/CA2017
+ [LA23%LA22*LA21*/LA20* LA19* LA18* CA2118* LA17* CA2017

/LONOK = /CTRL1*/SA16* CA1916
+ /CTRL1* SA16*/CA1916
+ [CTRL1*/SA15* CA1815
+ /CTRL1* SA15*/CA1815
+ /CTRL1*/SA14* CA14
+ [CTRL1* SA14*/CA14

MAEQ = /HIOK* LONOK
MCS16 = 1 ; open-collector/open-drain
MCS16.TRST = /HIOK* LONOK ; drive when equal

Note:
In the logic equations in this chapter, */* represents logical negation, **”
presents logical And, and "+" presents logicat Inclusive OR.

The J1 jumper header plus its pull-up resistors source the
Comparison Address signals CA8-CA2. U7 "Addr1” and
U8 “Addr2” compare CA8-CA2to SA8-SA2 onthe ISA bus,
driving the /IOEQ line low whenever these lines match and
SA9is High. U7-U8 also act as buffers for the low-order SA
lings, driving the address on SA8-SA2 onto the RAM
address lines MA8-MA2 whenever the /ATBG signal is
Low, signifying thatthe host on the ISA (AT) busiis in control
of the RAMs.

A third function of U7-U8 is to multiplex the address from
SA5-SA2 onto the AD5-AD?2 lines of the lUSCs, whenever
/ATBG is low and the Address Strobe line (/AS) is low. The
equations for U7 and U8 are shown in Tables 3-2 and 3-3
respectively.

3-3

UMO014001-1002

Gayle Gamble
UM014001-1002

. Z16C32 lusC™
@ p—| ¥ e USER'S MANUAL
3.3 HOST ADDRESS HANDLING (Continued)

Table 3-2. Logic Equations for U7 “Addr1”

GROUP MAS MA4 MA3 MA2
GROUP ADS AD4 AD3 AD2
; drive addresses from AT bus onto MA lines
MA2 = [SA2
/MA3 = [SA3
MA4 = [SA4
MASTRST = /ATBG

; multiplex the addresses from the AT bus onto the AD lines
; for register addressing in the (USCs

/AD2 = [SA2
/AD3 = [/SA3
/AD4 = [SA4
ADS.TRST = [ATBG*/AS ; drive SA to AD during Address Strobe
» match the I/O address on the SA lines
fIOEQ240 = SA2*/CA2 + /[SA2*CA2
+ SA3*/CA3 + /SA3*CA3
+ SA4*/CA4 + [SA4*CA4

; IOEQ is low-active
/IOEQ = |0EQ24/I*"IOEQ56*IOEQ78*SAS*/AEN

Note:
In the logic equations in this chapter, */” represents logical negation, **"
presents logical And, and “+” presents logical nclusive OR.

Table 3-3. Logic Equations for U8 “Addr2”

GROUP MAS MA8 MA7 MAG MA5
; drive addresses from AT bus onto MA lines
/MA5 = [SA5
/MA6 = [SA6
/MA7 = [SA7
/MA8 = /SA8
MAS.TRST = /ATBG
; drive address bit 5 to the IUSCs during address strobe
/AD5 = [SA5

AD5.TRST = /ATBG*/AS

; match the /O address on the SA lines
/IOEQS56 = SAS5*/CAS + /[SA5*CAS5
+ SAB*/CAB + /SAEG*CA6
SA7*/CA7 + [SAT*CAT7
+ SAB8*/CAS8 + /[SAB*CAS8

; open-collector driver for Reset
/OCRES 1
OCRES.TRST RESET

/IOEQ78

Note:
In the logic equations in this chapter, */" represents logical negation, “**
presents logical And, and "+" presents logical inclusive OR.

3-4
UMO014001-1002

Gayle Gamble
UM014001-1002

A 2iLa5

Z16C32 JusC™
USER'S MANUAL

U21 “Addr3” handles the fow order addresses similarlyto U21 also multiplexes /SBHE or B//W from the IUSCs, onto
U7-U8: when /ATBG is low it drives SA1-SAO onto MA1- the /BHE signal depending on the state of /ATBG. The

MAO, and when /ATBG and /AS are both low it drives SA1- equations for U21 are shown in Table 3-4.
0 onto AD1-ADO. In the latter case it also synthesizes a

value for AD6 from the SAO and /SBHE lines. The IUSC

uses AD6 to determine whether aregister accessis toafull

16-bit register or only to one byte.

Table 3-4. Logic Equations for U21 “Addr3”

GROUP ADS ADO AD1 AD6
GROUP LOMAS MAO MA1
GROUP HIMAS MA16 MA17

: drive addresses from the AT bus onto the MA lines
; NO LONGER latch A1-AQ from the lUSCs !!!!

MAO = [SAD
MA1 = [SA1
LOMAS.TRST = /ATBG
: latch MS bits of IUSC addresses and drive onto MA lines
/MA16 = [ADO */UAS*PU2 ; capture MS address from IUSC
+ /ADO *MA16 ; deglitch term
+ /MA16* UAS*PU2 ; hold high address from IUSC
MA17 = JAD1*/UAS*PU2
+ [AD1*MA17 ; deglitch term
+ MA17* UAS*PU2
HIMAS.TRST = ATBG ; drive high address when IUSC controlling bus
; drive LS bits of AT bus addresses back to lUSCs for register addressing
/ADO0 = [SAO
/AD1 = /SA1
; drive ADB6 of register addresses with B/W indication
/AD6 = [SAO*/SBHE ; else high for byte operation
ADS.TRST = /ATBG*/AS : drive onto AD lines during AS (from ISA_Mon)
; convert from B/W style of IUSCs to BHE style
/BHE = /ATBG*/SBHE ; from AT bus
+ ATBG* MAO ; odd byte op by IUSC
+ ATBG*BW ; word op by IUSC

Note:
In the logic equations in this chapter, */" represents logical negation, “**
presents logical And, and “+" presents logical Inclusive OR.

UMO014001-1002

3-5

Gayle Gamble
UM014001-1002

Q2005

Z16C32 [usc™
USER'S MANUAL

3.3 HOST ADDRESS HANDLING (Continued)

The last of the four address-handling PLDs is U22 “Addr4”.
Itdrives SA17-SA9 onto MA17-MAQ when /ATBG is low, as
well as decoding when these lines are all zero, indicating
an access to an IUSC rather than RAM, and driving /IUSEL
accordingly. The equations for U22 are Table 3-5.

The HC374 U23implements the lowest addressed register
of the four I/O space locations, capturing the LS 4 bits that
software writes to this location, and presenting them on
MA17-MA14 thereafter whenever /ATBG is Low.

Table 3-5. Logic Equations for U22 “Addr4”

GROUP LOMAS MA13 MA12 MA11 MA10 MAS

; drive addresses from the AT bus onto the MA lines

/MA9 = /SA9

/MA10 = /SA10

/MA11 = JSA11

MA12 = [SA12

MA13 = /SA13

LOMAS.TRST = /ATBG . drive lo ads whenever AT controlling bus
» decode whether the cycle is targeted for the IUSCs
lUSEL = /SAZ*/SA10*/SA11*/SA12*/SA13*/MA14*MA15"/MA16*/MA17

Note:
In the logic equations in this chapter, “/* represents logical negation, **
presents logical And, and “+" presents logical Inclusive OR.

3.4 IUSC ADDRESS HANDLING

Thefina! function of U21 is to capture the state of AD1-ADO
whenever an IUSC drives /UAS low, and to present it
thereafter on MA17-MA16.

The 74FCT373 latches U20 and U54 similarly capture the
LS 16 bits of the address when an IUSC drives /AS low, and
present this value on MA15-MAO thereafter.

3-6

UMO014001-1002

Gayle Gamble
UM014001-1002

pum—_

IR COSEIURET g

N 2iLa5

216C32 JUSC™
USER'S ManuaL

3.5 BUS MONITORING

U9 "ISA_Mon" monitors the outputs of the host address
handlers described above, namely /MAEQ, /IOEQ, and
/IUSEL, plus the ISA (AT) bus control signals BALE,
/MEMR, /MEMW, /IOR, and /IOW, and the arbiter outputs
/ATBG and /ATBG2. From these signals it derives the
following outputs:

J/LMAEQ. A latched version of IMAEQ (which follows the
LA lines and thus is not well-synchronized to data transfer
cycles). LMAEQ is low when the host address falls within
the board's memory address range.

JATCY. Lowwhenever the host s trying to access aboard-
level register, RAM, or an IUSC on this board.

/AS. Pulsed low when a host access to RAM oran IUSC is
beginning, to strobe the register address and chip selec-
tion into the 1USCs.

/RD. Low-active output enable for the RAMs and IUSCs.
/WR. Low-active write strobe for the RAMs and IUSCs.
/BIOR. Low-active register read strobe.

/BIOW. Low-active register write strobe.

/BLKBG. A signal that blocks bus granting to the IlUSCs by
the Arbiter logic, if/while a cycle from the host looks like it

may be targeted for this board.

The equations for these outputs are shown in Table 3-6.

Table 3-6. Logic Equations for U9 “ISA_Mon"

GROUP RW RD WR
; latch MAEQ
/LMAEQ = /MAEQ *BALE
+ MAEQ */LMAEQ
+ /LMAEQ*/BALE

: block bus grants to IUSCs by Arbiter, if cycle may be starting

/BLKBG = /MAEQ*BALE
+ [IOEQ*BALE

; start if memory address equal
; start if I/O address equal

: mod 1/4/93, use LMAEQ because Compaq 486/33M doesn't “wait” LA23-17

; further modified 1/4/94, to improve IUSC access to RAM and prevent

: host locking up the RAM during a block move or compare (on some platforms)
+ [BLKBG*/BALE*/LMAEQ*ATCY* IOR*IOW
+ /BLKBG*/BALEY/IOEQ*ATCY*MEMR*MEMW

; request from the bus

JATCY = [LMAEQ*/MEMR ; memory read
+ /LMAEQ*/MEMW ; memory write
+ /IOEQ *IOR ; /O read
+ [/IOEQ */IOW ; 11O write

; make address strobe for cycle to {USC

; mod 1/4/93, use LMAEQ because Compaq 486/33M doesn't “wait” LA23-17

JAS = ATBG2/LMAEQ
+ BALE*/MAEQ
ASTRST = /ATBG

; for first cycle of AT grant
; for subsequent one
; drive /AS when AT in control

; drive RD and WR for memory space cycles

/RD = /LMAEQ *MEMR*ATBG*/ATBG2*/PAS ; memory read for us
MWR = /LMAEQ *MEMW*/ATBG*/ATBG2*/PAS ; memory write for us
RW.TRST = /ATBG ; drive when AT bus grant
; fully decoded /O read and write strobes
/BIOR = [IOEQ*/IOR*/ATBG*/ATBG2*/PAS » /O read for us

/BIOW = /IOEQ*/IOW*/ATBG*/ATBG2*/PAS

. /O write for us

Note:

In the logic equations in this chapter, */” represents logical negation, **"

presents logical And, and "+ presents logical Inclusive OR.

3-7

UMO014001-1002

Gayle Gamble
UM014001-1002

N2La5

Z16C32 JUSC™
USER'S MANUAL

3.6 ARBITER LOGIC

This consists of the U10 “Arbiter” plus the three high-
speed flip-flops to its right in Figure 3-1 (U11,12). The main
function of these parts is to control when the host proces-
sor can access the RAM, board registers, and IUSCs, as
opposed to when the IUSCs can access RAM.

U10 drives its /SELIU output low whenever one or both
IUSCs is (are) requesting access to RAM via their/BUSREQ
outputs, and the host is not requesting access to the
board. Conversely, it drives /SELAT low when the host is
requesting access, but neither IUSC is. These two outputs
control the U11 flip-flop, which acts as an SR latch. Its
outputs are in turn synchronized to the 16 MHz IUSC clock
by the first stage of U12, and a one-clock-delayed version
is provided by the second stage of U12.

Because the host and the IUSCs operate from indepen-
dent clocks, pulses on /SELIU and /SELAT are subject to
arbitrarily short “runt puises”, and thus the U11 flip-flop is
subject to metastable states. Since U11 can switch based
on the host's timing, the first stage of U12 is also subject to
metastability, though less frequently than U11 is. The
output of the second stage of U12 is not subject to
metastability. U11 and U12 are 74F74 devices because
these are fast and resolve metastability fairly quickly.

The first stage of U12 (ATBG and /ATBG) controls whether
the address bus MA17-MAQ, plus the various control
signals for the RAM and IUSC, are controlled by the host
bus or by the IUSCs. The second stage (/ATBG2) must
match /ATBG before the control signals /RD, /WR, etc., are
activated to begin a data transfer by the host.

Arelated function of U10 is to drive the ISA (AT) bus signal
IOCHRDY low to “wait” the host processor, whenever it is
trying to access RAM, an IUSC, or a board-level register,
and this access can't be performed immediately because
an [USC is accessing RAM.

Similarly, U10 drives one of the /BIN inputs of the IUSCs
whenever /ATBG is high and that IUSC is requesting bus
access. If both IUSCs request access, U10 remembers
which requested first via its (externally unused) output
BR1ST.

Finally, U10 drives the ATDIR and /ATDEN signals that
control the data transceivers U24 and U26, between the
host data lines SD15-SD0 and the on-board address/data
lines AD15-AD0. ATDIR and /ATDEN are generated inU10
only as a matter of convenience, and this logic is not
related to U10's primary function of arbitration.

The equations for U10 are shown in Table 3-7.

UMO014001-1002

Gayle Gamble
UM014001-1002

Z16C32 lUsC™
@ 2“.‘]5 USER'S MANUAL

Table 3-7. Logic Equations for U10 “Arbiter”

; switch ATBG FF toward IUSC's when 1USC request, no AT bus cycle for us
/SELIU = /BRO*ATCY*BLKBG
+ [BR1*ATCY*BLKBG

; wait the host until bus is granted to it

/IOCHRDY = ATBG ; wait if bus is not granted to host
+ ATBG2 . and wait for 1-2 clocks thereafter
IOCHRDY.TRST = /ATCY ; drive this signal whenever cycle is for us

- switch ATBG FF toward AT bus when AT bus cycle for us, no IUSC request
/SELAT = BRO*BR1*/ATCY
; track IUSC BR's for first-come, first-served
/BR1ST = /BR1 *BRO ; remember BR1 without BRO
+ [BR1ST*/BR1 ; once asserted, keep it until IUSC drops RQ
: the above is subject to glitches and metastability, and is acceptable
; only because the IUSCs sample their BG (/BIN) lines twice, two clocks (125 ns}) apart

; grants to the IUSC's

/BGO = /BRO*BR1ST*ATBG ; request from 0, none from 1
/BGt = [BR1*/BRIST*ATBG ; request from 1 was first
; control signals for thé data transceivers
MINIMIZE_OFF
/ATDIR = /RD
+ [BIOR
+ /ATDIR*/ATDEN ; anti-backlash
MINIMIZE_ON
J/ATDEN = /ATBG*/RD*/MAQ
+ JATBG*/RD*/BHE
+ [ATBG*WR*MAO
+ [ATBG*/WR*/BHE
+ /[BIOR
+ [BIOW

3-9
UMO014001-1002

Gayle Gamble
UM014001-1002

N 2La5

216C32 lusc™
USER'S MANUAL

3.7 CHIP SELECT DECODING

U13 “CS" decodes the outputs of the various devices
described in earlier sections, including some of the MA
lines, to provide write strobes for the on-board registers
and chip selects for the RAMs and IUSCs. Italso pulses the
JOCRES line low in an open-drain fashion when software

writes the highest-addressed of the four register locations
the board presents on the ISA (AT) bus, which allows a
software reset via repeated writes to this location. The
equations for U13 are shown in Table 3-8.

Table 3-8. Logic Equations for U13 “CS”

; chip selects for IUSCs

/CSO0 = [ATBG*/LMAEQ*/IUSEL*/MA8 ; A23-18(or 14) match, A17-9 zero,
; not IUDIS, A8=0

/CS1 = [ATBG*/LMAEQ*/IUSEL* MA8 ; A23-18(or 14) match, A17-9 zero,
; not IUDIS, A8=1

; chip selects for RAM

/RAMCSO = ATBG*/MAO ; IUSC in control, even address
+ [ATBG*/LMAEQ*IUSEL*/MAQ ; AT bus control, not IUSC, even ad
/RAMCS1 = ATBG*/BHE ; IUSC in control, word or odd byte

+ /ATBG*/LMAEQ*IUSEL*/BHE

; AT ctrl, not IUSC, word or odd byte

; write strobes for the control registers

WRRO = /BIOW*/MAO*/MA1 ;reg 0
MWRR1 = /BIOW* MAO*/MA1
; write to reg 3 pulses the RC-Reset circuit
; more than one such write is needed to make a Reset
/OCRES = 1 ; open-drain
OCRES.TRST = /BIOW* MAO* MA1 ; drive it on write reg 3

3-10

UMO014001-1002

Gayle Gamble
UM014001-1002

AN 2La5

716C32 Jusc™
USER'S MANUAL

3.8 IUSC HOOKUP

The IUSCs U1 and U2 are wired in paraliel for most of their
“bus side" lines, but the exceptions are significant.

The “serial side” pins are shown on the “outside” edges of
the IUSCs, simply as signal names which can be utilized
for the serial interfaces, on a second page of this sche-
matic that is quite application-specific and so is not pro-
vided here. The one serial-side signal that is connected is
PORTO/CLKO, which is connected to the same 16 MHz
clock that's used for the DMA clock, so that it can be used
for baud-rate generation.

(B/W is a bus-side output signal that ended up on the serial
side of the IUSC symbol for obscure historical reasons.)

MA?7.6 are connected to the S/D and D/C inputs. This
would have had to be MAB,7 except for the synthesis of
AD6 as a byte/word indication by U21 (Addr3) as de-
scribed above. As it is, the DMA channel registers for U1
are addressed as 0-127, the serial controller part of U1 is
addressed as 128-255, the U2 DMA channel registers are
addressed as 256-383, and the U2 serial controller is at
384-511. These ranges are half the size of those described
in Chapter 2.

The /AS, /RD, and /WR pins of the two IUSCs are wired in
parallel, and a pull-up resistor is attached to each signal to
keep it at a valid logic high when the arbitration logic is
maintaining /ATBG high because an I[USC accessed RAM
more recently than the host accessed RAM, an IUSC, or a
boardievel register, but said IUSC is no longer using the
bus nor driving these lines.

The /UAS inputs are similarly wired in parallel, and are
pulled up to keep them at a valid logic high when neither
IUSC is actively using the bus.

The /DS inputs are pulled up separately. If they were
connected together, when one IUSC was operating it
would drive both /DS and either /RD or /WR low, which
would make the other IUSC go into a “pre-reset” state in
which itwould not operate at all, until it was Reset. The pull-
up resistors ensure a valid logic high when the IUSC is not
using the bus.

The /INT pins are connected together and to a pull-up
resistor, and to the Interrupt Requestor U18. More on this
in the next section.

The RW pins are connected together and to a pull-up. The
hostinterface logic uses /RD and WRto communicate with
the 1USCs, not /DS and R/W. The pull-up is included
because floating inputs on a CMOS device tend to in-
crease noise inside the device.

The /INTACK and /IEI pins are wired directly to V..
Interrupt acknowledge cycles are not visible to add-in
cards on the ISA (AT) bus.

The Abort pins are pulied up. The Hardware Abort facility
of the IUSCs is not used in this design.

The WT/RDY pins of the IUSC are pulled up separately.
Each IUSC drives its /WT/RDY pin full-time (totem-pole)
except when it's actively using the bus, at which time the
pull-up assures a valid logic high. The RAMs are fast
enough to operate without wait states to the HUSCs.

The /BUSREQ outputs and /BIN inputs of both IUSCs are
separately connected to the Arbiter logic as described in
an earlier section. The /BOUT outputs are not used.

The /RESET inputs of both IUSCs are driven from the RC
circuit described earlier, and are driven low on power up,
when the ISA (AT) bus RESET line is activated, or when a
series of writes to the highest-addressed board register
location are performed by the software.

Both B/W outputs are wired together and connected to the
U21 Addr3 device as described earlier. No pull-up is used
because U21 masks this signal except when one of the
IUSCs is actively using the bus.

UMO014001-1002

Gayle Gamble
UM014001-1002

216C32 lusC™
USER'S MANUAL

N 2La05

3.9 INTERRUPTS

As noted above, the /INT outputs of the two IUSC are wired
together and pulled up. The “open drain /INT" option
should be programmed in the Bus Configuration Registers
(BCRs) of both 1USCs during initialization. This “wire-
ORed" request is then used by the U21 device IntReq,

together with the level-select code that software programs
into the US register, to request interrupt on one of seven of
the ISA (AT) bus' IRQ lines.

The equations for U21 are shown in Table 3-9.

Table 3-9. Logic Equations for U21 “intReq”

; interrupt the host on any of seven pins

/IRQ3 = IR ;invert of IR line
IRQ3.TRST = /iL2*/IL1* L0 ; only drive the selected pin
/IRQ4 = IR
IRQ4.TRST = /iL2* IL1*/ILO
/IRQ9 = IR
IRQO.TRST = /IL2*IL1*ILO
/IRQ10 = IR
IRQG10.TRST = IL2*ILt¥ILO
fIRQ11 = IR
IRQ11.TRST = IL2*IL1*ILO
/IRQ12 = IR
IRQ12.TRST = IL2* IL1*ILO
/IRQ1S = IR
IRQ15.TRST = IL2*IL1*ILO

3-12
UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLa5

{verview

[o o B - A
Hus terfamn

E

Serial Interfacing n

Serial Modes and Protocols E

Direct Memory Access B3
(DMA) Channels B

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLaB

USER'S MANUAL

CHAPTER 4

Z16C32 1USC™
SERIAL INTERFACING

4.1 INTRODUCTION

The 1USC includes several serial interface options and
features that promote its usefulness in many differentkinds
of applications. It allows a variety of clocking schemes,
and will do serial encoding and decoding for Non-Return-
to-Zero-Inverting (NRZI) and Biphase formats that carry
clocking information with the serial data. The IUSC further
supports such decoding with an on-chip Digital Phase
Locked Loop circuit. It also provides specialized and
general purpose 1/O lines that can be connected to mo-

dem control and status signals, to other control and status
lines related to the serial link, or even to input and/or output
signals that are not related tothe serial link at all. Finally, for
time-division-multiplexed links such as ISDN and Frac-
tional T1 circuits, the IUSC includes separate Time Slot
Assigner modules for the Receiver and Transmitter. Each
“TSA” restricts active operation to a programmable time
window within a cyclic time-multiplexed data stream.

4.2 SERIAL INTERFACE PIN DESCRIPTIONS

RxD. Received Data (input, positive logic). The serial
input.

TxD. Transmit Data (output, positive logic). The serial
output.

/RxC. Receive Clock (input or output). This signal can be
used as a clock input for any of the functional blocks in the
serial controller, or software can program the IUSC so that
this pin is an output carrying any of several receiver or
internal clock signals, a general-purpose input or output,
or an interrupt input.

ITxC. Transmit Clock (input or output). This signal can be
used as a clock input for any of the functional blocks in the
serial controller, or software can program the IUSC so that
this pin is an output carrying any of several transmitter or
internal clock signals, a general-purpose input or output,
or an interrupt input.

MxREQ. Receive DMA Request (input or output). In de-
vice testing or in applications not using the serial and DMA
controller sections together in the usual way, this pin can
carry alow-active DMA Request from the receive FIFO. On
the IUSC this request is internally routed to the on-chip
Receive DMA channel, and itis more typical to use this pin
as a general-purpose input or output or as an interrupt
input.

/TXREQ. Transmit DMA Request (input or output). In
device testing or in applications not using the serial and
DMA controller sections together in the usual way, this pin
can carry a low-active DMA Request from the transmit
FIFO. On the IUSC this request is internally routed to the
on-chip Transmit DMA channel, and it is more typical to
use this pin as a general-purpose input or output or as an
interrupt input.

IDCD. Data Carrier Detect (input or output, active low).
Software can program the IUSC sothat this signal enables/
disables the receiver. In addition or instead, software can
program the device to request interrupts in response to
transitions on this line. The pin can alsobe used as asimple
input or output.

ICTS. Clear to Send (input or output, active low). Software
can program the IUSC so that this signal enables/disables
the transmitter. In addition or instead, software can pro-
gram the device to request interrupts in response to
transitions onthisline. The pin can also be used as a simple
input or output.

PORT7//TxComplete. General-Purpose l/O or Transmit
Complete (input or output). Software can program the
IUSC so that this pin is a general-purpose input or output,
or so that it carries a Transmit Complete signal from the
Transmitter, that can control an external driveron TxD. The
IUSC captures transitions on this pin in internal latches, as
described later in this chapter.

4-1

UMO014001-1002

Gayle Gamble
UM014001-1002

Q2005

21632 [USC™
USER'S MANUAL

4.2 SERIAL INTERFACE PIN DESCRIPTIONS (Continued)

PORT6//FSYNC. General-Purpose I/O or Frame Sync (in-
put or output). Software can program the IUSC so that this
pin is a general-purpose input or output, or a Frame Sync
input for the IUSC's Time Slot Assigner circuits. The IUSC
captures transitions on this pin in internal latches, as
described later in this chapter.

PORTS//RxSYNC. General-Purpose /O or Receive Sync
(input or output). Software can program the IUSC so that
this pin is a general-purpose input or output, or so that it
carries a Receive Sync output from the Receiver. The IUSC
captures transitions on this pin in internal latches, as
described later in this chapter.

PORT4//TxTSA. General-Purpose /O or Transmit Time
Slot Assigner Gate(inputor output). Software can program
the IUSC so that this pin is a general-purpose input or
output, or so that it carries the Gate output of the Transmit
Time Slot Assigner, that can enable an external TxD driver
in time-slotted ISDN or Fractional T1 applications. The
IUSC captures transitions on this pin in internal latches, as
described later in this chapter.

PORT3//MRxTSA. General-Purpose /O or Receive Time
SlotAssigner Gate(input or output). Software can program
the IUSC so that this pin is a general-purpose input or
output, or so that it carries the Gate output of the Receive
Time Slot Assigner. The IUSC captures transitions on this
pin in internal latches, as described later in this chapter.

PORT2//LTTxEnab. General-Purpose /O or LocalTalk
Driver Enable (input or output). Software can program the
IUSC so that this pin is a general-purpose input or output,
or so that it carries low-active enable for an external TxD
driver in a LocalTalk (AppleTalk) application. The IUSC
captures transitions on this pin in internal latches, as
described later in this chapter.

PORT1-0/CLK1-0. General-Purpose I/Os or Reference
Clocks(inputs or outputs). Software can program the IUSC
so that either of these pins is a general-purpose input or
output, or a clock for the Receiver and/or Transmitter. On
the Z16C32, this clock can be used directly as a bit clock
or divided down as a time base. When one of these pins is
a general-purpose |/O, the IUSC captures transitions on it
in internal latches, as described later in this chapter.

4.3 TRANSMIT AND RECEIVE CLOCKING

The IUSC's Receiver and Transmitter logic have separate
internal clock signals, which we will callRxCLK and TxCLK.
In most of the IUSC's operating modes, the Receiver
samples a new bit on RxD once per cycle of RxCLK, and
the Transmitter presents a new bit on TxD for each cycle of
TxCLK. One exception is asynchronous mode, in which
RxCLK and TxCLK run at 16, 32, or 64 times the bit rate on
RxD and TxD respectively. The other exception involves
Biphase-encoded serial data, for which the Receiver
samples RxD on both edges of RxCLK, and the Transmitter
may change TxD on both edges of TXxCLK.

Figure 4-1 shows how RxCLK and TxCLK can be derived
in several differentways. This flexibility is an important part
of the IUSC’s ability to adapt to a wide range of applica-
tions.

In the simplest case, external logic derives clocks indicat-
ing bit boundaries, and software programs the IUSC to
take RxCLK directly from the /RxC pin and TXCLK directly
from the /TXC pin. When an 1USC uses such external
clocking for synchronous operation with “NRZ" data, it
samples a new bit on the RxD pin on each rising edge on
/RxC, and presents each new bit on the TxD pin on the
falling edge of /TxC.

Itis often desirable to vary the bit rates for transmission and
reception by programming the IUSC, rather than by means
of offchip hardware. To provide for this, the IUSC inciudes
various means by which high-speed clocking on one or
more of the /RxC, /TxC. PORT1, or PORTO pins can be
divided down to almost any desired bit rate.

4.3.1 CTRO and CTR1

Two separate 5-bit counters called CTRO and CTR1 com-
prise the first stage of the IUSC'’s clock-generation logic.
Figure 4-2 shows the Clock Mode Control Register. Its
CTROSrcand CTR1Srefields (CMCR13-12and CMCR15-
14 respectively) control whether each cotinter runs and
whether it takes its input from the /RxC, /TxC, PORTO, or
PORT1 pin:

CTRnSRC CTRn Clock Source
00 C7TRn disabled
01 CTRn input = PORTn/CLKn pin
10 CTRn input = /RxC pin
11 CTRn input = /TxC pin

42

UMO014001-1002

Gayle Gamble
UM014001-1002

216C32 IUSC™
USER'S MANUAL

N 2IL05

21607 Bua0id $,2€091Z 343 Jo |SpOR V *L- unbid

& [FiTida
o [
v
oL € L1dNOXL
2 HYHOXL
1
0
2200 | [eeuon | [or-tinon | & LHOND
g] —
9 uﬂadﬂ 300N 3lvy €
S x1 xnw ¢
v » o434 1
xnw Y o
oxd £ ONASXH Tda aj+ J
e HYHOXYH 1
i —
o 0058
59
— P
£-5HOWO XNN 0 =
[wor] [rsuon | |os-tuono Dmmmoo Y1-GLHOWD
7 I I T ouLd
s a 300N P 00 €
S 2 e—] 10 4 xnw 2
on s J1VH Na xnw L xnm Zj—1 % L
W1oxL € d z [T] a l_ i XxnW | — w — w =
z
L Ld/LHLD 2N
0 4
0d/0H1D
ZL-ELHOND
| woor || owuon | | seuomo | [risiuon || s
0-ZdON0 T 1 I 00 €
° 3aon m £r— % Fo—] xam 2
L — xnw E—] b
S JvH NG xow ([
9 Y o xnw 1 |—] o e i
S 4 0548 [ed} ofF—¥°
xon 7 |_ 2
M10xH M X4 110
i
[} =

axd

oo/
L1HOd

1D/
01d40d

oxL
oxd

4-3

UMO014001-1002

Gayle Gamble
UM014001-1002

216C32 [USC™

@ 2L USER'S MANUAL
4.3 TRANSMIT AND RECEIVE CLOCKING (Continued)
CTR1Src CTROSrc BRG1Src BRGOSrc DPLLSrc TxCLKSrc RxCLKSrc
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Figure 4-2. Clock Mode Control Register (CMCR)
CTRODIv %TSF;} CVOK] DDPLLDiv DDPLLMode Reserved |BRG1S|BRG1E| Reserved |BRGOS|BRGOE
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 4-3. Hardware Configuration Register (HCR)

Figure 4-3 shows the Hardware Configuration Register. Its
CTRODiv field (HCR15-14) controls the factor by which
CTRO divides its input to produce its output:

CTRODiv CTRO operation
00 CTRO output = input/32
01 CTRO output = input/16
10 CTRO output = input/8
11 CTRO output = input/4

There were not enough register bits to allow a separate
2-bit “CTR1Div" field. If the CTR1DSel bit in the Hardware
Configuration Register (HCR13) is 0, the CTRODiv field
determines the factor by which both CTR1 and CTRO
divide their inputs to produce their outputs. If CTR1DSel is
1, the DPLLDiv field in the Hardware Configuration Regis-
. ter(HCR11-10) determines the factor by which both CTR1
and the DPLL divide their inputs to produce their outputs.
In either case, the IUSC interprets the selected
2-bit field as shown above for CTRODiv.

4.3.2 Using PORT1-PORTO for Bit Clocking

With the Z16C32, a clock on the PORTO/CLKO and/or
PORT1/CLK1 pin(s) can be used directly as RxCLK and/or
TxCLK, without being divided down by CTR0/ CTR1 re-
spectively. This feature is controlled by the CtrBypass bit
in the Channel Command/Status Register (CCSR5).

When this bit is 0, the outputs of CTRO and CTR1 can be
used directly as RxCLK and/or TxCLK, as inputs to the two
Baud Rate Generators called BRGO and BRG1, and can
be routed to the /RxC or /TxC pin.

When CtrBypass is 1, both Counters are effectively by-
passed. The signals from PORTO and PORT1 can be used
directly as RxCLK and/or TxCLK, as inputs to the Baud
Rate Generators, and can be routed to the /RxC and /TxC
pins. When using this option, always program CTROSrc
and CTR1Src as 00 to save power, because there is no
reason for the Counters to run.

4.3.3 Baud Rate Generators

Two 16-bit down counters called BRGO and BRG 1 formthe
second stage of the IUSC's clock-generation logic. The
BRGOSrc and BRG1Src fields in the Clock Mode Control
Register (CMCR3-8 and CMCR11-10, respectively) con-
trol what the BRGs use as inputs:

BRGNnSRC BRGN clock source
00 CTRO output or PORTO
01 CTR1 output or PORT1
10 /RxC pin
11 /TxC pin

Each of the two Time Constant registers (TCOR and TC1R)
contains a 16-bit starting value for the corresponding BRG
down-counter. Zero in a Time Constant Register makes a
BRG's output clock identical with its input clock; a value of
one makes a BRG divide its input clock by two, and so on
—the all-ones value makes a BRG divide its input clock by
65,536 to produce its output clock. This flexibility of divid-
ing by any value means that an IUSC can derive many
different baud rates from almost any input clock, unlike
some competing devices that constrain the system de-
signer to use specified crystal or oscillator values and
constrain the available speeds to certain commonly-used
baud rates.

4-4

UMO014001-1002

Gayle Gamble
UM014001-1002

P05

Z16C32 UsC™
USER'S MANUAL

The BRGOE and BRG1E bits in the Hardware Configura-
tion Register (HCRO and HCR4 respectively; the “E” in the
names is for “Enable”) control whether each Baud Rate
Generator runs or not. A 0 in one of these bits inhibits/
blocks down-counting by the corresponding BRG, keep-
ing the current value in the down counter unchanged
despite transitions on the selected input clock. A 1inone
of these bits enables the corresponding BRG to count
down in response to input clock transitions.

When a Baud Rate Generator counts down to zero, it sets
the BRGOL/U or BRG1L/U bit in the Miscellaneous Inter-
rupt Status Register (MISR1 or 0). Once one of these bits
is set, it stays set until software writes a 1 to the bit, to
“unlatch” it.”

A BRG may or may not continue to operate after counting
down to zero, depending on the BRGOS or BRG1S bit in
the Hardware Configuration Register (HCR1 or HCRS
respectively; the “S" stands-for “Single cycle”). A 0 in
BRGNS causes BRGn to reload the TCn value automati-
cally and continue operation, while BRGnS=1makes BRGn
stop when it reaches 0.

Software can (re)load the value in the Time Constant
register(s) into one or both BRG counters by writing a Load
TCO, Load TC1, or Load TCO and TC1 command to the
RTCmd field of the Channel Command/Address Register
(CCAR15-11), as described in the 'Commands' section of
Chapter 4. These commands also restart a BRG that is in
Single Cycle mode and has counted down to zero and
stopped.

The TCORSel bit in the Receive Interrupt Control Register
(RICRO) and the TC1RSel bit in the Transmit Interrupt
Control Register (TICRO) control what data the IUSC pro-
vides when software reads the TCORand TC1R addresses.
If a TCnRSel bit is 0, the IUSC returns the time constant
value last written to TCn. At the time thata 1 iswrittento a
TCnRSel bit, the IUSC captures the current value of the
BRGN counter into a special latch, and thereafter returns
the captured value from this latch when software reads the
TCn address. Note that in order to obtain a series of
relatively current values of a running BRGn, software has
to write a 1o the TCnRSel bit just before each time itreads
the TCnR location.

The output of either Baud Rate Generator can be used as
RxCLK and/or TxCLK. It can be used as the reference
clock input to the Digital Phase Locked Loop (DPLL)
circuit, and it can be output on the /RxC or /TxC pin.

When a Baud Rate Generator is not used to make a serial
clock, software can use it for other purposes such as
protocol timeouts, and can program the IUSC to request
an interrupt when it counts down to zero. Chapter 7 covers
interrupts in detail, but to use BRG interrupts software
should write 1's to the BRG1 1A bit and/or BRGO IA bitinthe
Status Interrupt Control Register (SICR1 and/or SICR0), as
well as to the MIE and Misc IE bits in the Interrupt Control
Register (ICR15 and ICRO).

4.3.4 Introduction to the DPLL

A Digital Phase Locked Loop (DPLL}) circuit comprises the
“third stage” of the IUSC's clock-generation logic. The
DPLL is a 5-bit counter with control logic that monitors the
serial data on RxD. The DPLLSrec field of the Clock Mode
Control Register (CMCR7-6) controls which signal the
DPLL uses as its nominal or reference clock:

DPLLSrc DPLL reference clock
00 BRGO output
01 BRG1 output
10 /RxC pin
11 /TxC pin

The DPLLDiIv field of the Hardware Configuration Register
(HCR11-10) determines whether the DPLL divides this
reference clock by 8, 16, or 32 to arrive at its nominal bit
rate, as follows:

DPLLDiv Nominal DPLL Clock
00 reference clock/32
01 reference clock/16
10 reference clock/8
11 Reserved (/4 for CTR1)

The 11 value cannot be used for DPLL operation, but if the
DPLL is not used, software can program this value to-
gether with writing a 1 to the CTR1DSel bit (HCR13) to
operate CTR1 in “divide by four® mode.

A later section describes the operation of the DPLL in
greater detail, but for now it is sufficient to note that it
samples the (typically encoded) data stream on RxD to
produce separate receive and transmit outputs. These
outputs are synchronized to the bit boundaries on RxD,
and can be used as RXCLK and/or TxCLK and/or can be
routed to the /RxC or /TxC pin.

UMO014001-1002

Gayle Gamble
UM014001-1002

N 205

21632 lUSC™
USER'S MANUAL

4.3 TRANSMIT AND RECEIVE CLOCKING (Continued)

4.3.5 TxCLK and RxCLK Selection

The Transmitter can take its TXCLK from any of the sources
described in preceding sections, under control of the
TxCLKSrc field of the Clock Mode Control Register
(CMCRS5-3):

TxCLKSrc Source of TxCLK
000 No clock (transmitter disabled)
001 /RxC pin
010 [TxC pin
o1 Tx output of DPLL
100 BRGO output
101 BRG1 output
110 PORTO or CTRO output
111 PORT1 or CTR1 output

Similarly, the Receiver can take its RxCLK from various
sources, under control of the RxCLKSre field of the Clock
Mode Control Register (CMCR2-0):

RxCLKSrc Source of RxCLK
000 No clock (receiver disabled)
001 /RxC pin
010 [TxC pin
011 Rx output of DPLL
100 BRGO output
101 BRG1 output
110 PORTO or CTRO output
111 PORT1 or CTR1 output

4.3.6 Clocking for Asynchronous Mode

For asynchronous reception, transitions on RxCLK do not
have to have any relationship to transitions on RxD. When
the Receiver is searching for a start bit, it samples RxD in
each cycle of RxCLK, which it divides by 16, 32, or 64 to
determine the bit rate. After the Receiver finds the 1-to-0
transition at the beginning of each start bit, it counts off the
appropriate number of RxCLK cycles to the middle of the
bit cell (8, 16, 32). At this point it samples RxD to validate
the start bit. If RxD has gone back to 1, the Receiver
ignores the prior transition as line noise and goes back to
searching for a start bit. If RxD is still 0, the Receiver
accepts the start bit. Then it counts off 16, 32, or 64 RxCLK
cycles to the middle of each subsequent bit of the charac-
ter, and samples RxD at those times.

For asynchronous transmission, if the Transmitter has
been idle and software then provides it with data and
enables i, it drives TxD from 1 to O for the Start bit at the
falling edge on TxCLK that follows the latter of these two
steps. Itapplies each subsequent bit to TxD after counting
off 16, 32, or 64 TxCLK cycles. When sending successive
async characters, the Transmitter waits for the stop bit
length programmed in the two MS bits of the TxSubMode
field of the Channel Mode Register (CMR15-14), before
driving TxD from 1 to O for a subsequent start bit. If these
bits specify “shaved” operation, the Transmitter adjusts
the stop bit length per the TxShavel field of the Channel
Control Register (CCR11-8).

4.3.7 Synchronous Clocking

Except in asynchronous operation, one cycle on RxCLK
corresponds to one data bit on RxD, and one TxCLK cycle
corresponds to one bit on TxD. In any of the synchronous
modes, the clock used by the receiver to sample the data
must be similar to the one used by the remote transmitter
to send the data.

The simplest way to ensure this is to use a separate wire to
send the clock from one station's transmitter to the other
station’s receiver. But often cost or the nature of the serial
medium prevents this—for example, you can not send a
separate clock over a telephone line. In such cases it is
common practice to encode the data so that serial stream
also includes clocking information. For such applications,
the IUSC can encode transmitted data and decode re-
ceived data in any of several popular formats.

In addition, the IUSC's Digital Phase Locked Loop (DPLL)
module can recover a synchronized RxCLK from the
received data. While the DPLL can source TxCLK as weli,
such operation propagates some of the clock jitter from
this station’s receive path onto its transmit path, which may
increase the error rate.

4.3.8 Stopping the Clocks

CMOS circuits like those in the IUSC draw less power than
older technologies, but their power requirements can be
reduced still further if their clock signals are stopped when
the circuits do not need to operate. Most of this power
savings can be obtained by having the software disable
RxCLK and TxCLK by writing zeroes to the RxCLKSrc and
TxCLKSrc fields (CMCR2-0 and CMCR5-3). Ifthe Counters
and Baud Rate Generators are used, power consumption
is reduced further if software disables them by writing
zeroes to as many as possible among CTROSrc, CTR1Src,

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2L05

21632 IUSC™
USER'S MANUAL

BRGOSrc, and BRG1Src (CMCR13-12, CMCR15-14,
CMCR9-8, and CMCR11-10). The ultimate in serial-side
power savings is obtained by having external logic stop
the input clock(s) on the /RxC, /TxC, andfor PORT/CLK1-
0 pins.

When RxCLK is stopped, previously-received data can be
read from the RxFIFO but RxD is ignored so that no further
data will arrive. A final character will be available to the
software and/or the Receive DMA controller if RxCLK runs
for at least three cycles after its last bit is sampled from

RxD. For HDLC/SDLC this means at least three RxCLKs
after the receiver samples the last bit of a closing Flag. For
Async it means at least three RxCLKs after the receiver
samples the stop bit of the last character.

TxCLK can be stopped after the last desired bit has gone
outon TxD. This is 2 or 3 TXCLKs after the last bit has left
the Transmit shift register (because of the Transmit encod-
ing logic), which in turn occurs 1 or 2 TxCLKs after the
Transmitter sets the TxUnder bit (TCSR1).

4.4 DATA FORMATS AND ENCODING

The IUSC's Transmitter and Receiver can handle data in
any of the eight formats shown in Figure 4-4. The RxDecode
field in the Receive Mode Register (RMR15-13) controls
the format for the Receiver, and the TxEncode field in the
Transmit Mode Register (TMR15-13) controls it for the
Transmitter. The IUSC interprets both fields as follows:

xMR15-13 Data Format
000 NRZ
0.0} NRZB
010 NRZI|-Mark
011 NRZI-Space
100 Biphase-Mark
101 Biphase-Space
110 Biphase-Level
111 Differential Biphase-Level

Non-Return-to-Zero (NRZ) mode does not involve any
encoding: at the start of each bit cell the transmitter makes
TxDlow for a 0 or high for a 1. NRZB mode is similar except
that the transmitter and receiver invert the data: a low is a
1and ahighisaO.

In NRZI-Mark mode, at the start of each bit cell the
transmitter inverts TxD for a 1 but leaves it unchanged for
a 0. In NRZI-Space mode, at the start of each bit cell the
transmitter inverts TxD for a O but leaves it unchanged for
al.

None of these NRZ-type modes, by itself, guarantees
transitions in the data stream. However, if the serial proto-
col can guarantee transitions often enough, then the DPLL
can use these transitions to recover a clock from the data
stream. By some method the protocol must eliminate long
bit sequences without transitions in the data: successive
zeroes for NRZ, NRZB, and NRZI-Mark and successive
ones for NRZ, NRZB, and NRZI|-Space. For example,
NRZI-Space mode matches up weil with HDLC and SDLC
protocols, because the Transmitter inserts a extra zero into
the data stream whenever the transmitted data would
otherwise produce six ones in succession. Thus, there is at
least one transition every seven bit times.

The reliability of clock recovery from any kind of NRZ data
stream depends on guaranteed transitions, on the
transmitter's and receiver’s time bases being reasonably
similar/accurate, and on fairly low phase distortion in the
serial medium. Such schemes have the advantage that
bits can be sent at rates up to the maximum switching rate
(baud rate) of the medium.

The four Biphase modes, on the other hand, provide highly
reliable clock recovery and do not constrain the content of
the data, but they limit the data rate to half the switching
rate (baud rate) of the serial medium.

4-7

UMO014001-1002

Gayle Gamble
UM014001-1002

A 205

716C32 [UsC™
USER'S MANUAL

4.4 DATA FORMATS AND ENCODING (Continued)

See the waveform for Biphase-Mark mode in Figure 4-4.
This encoding scheme is also known as FM1. The transmit-
ter always inverts the data at the start of each bit cell. At the
midpoint of the cell it changes the data again to indicate a
1-bit, but leaves the data unchanged for a zero. In Biphase-
Space mode (FMO) the transmitter always inverts the data
at the start of each bit cell. In the middle of the cell it
changes the data again for a zero-bit but leaves the data

Data Bit:

e
pory

NRZ

NRZB

|

unchanged for a one-bit. In Biphase-Level mode (also
called Manchester encoding), at the start of the bit cell the
transmitter makes TxD High for a 1 and Low for a 0. It
always inverts TxD in the middle of the cell. In Differential
Biphase Level mode, at the start of each bit cell the
transmitter inverts TxD for a zero but leaves it unchanged
for a one. It always inverts TxD in the middle of the cell.

NRZI-Mark

NRZI-Space

Biphase-Mark

Biphase-Space

%

i

Biphase-Level

Differential
Biphase-Level

DPLL TxCLK (All Modes
DPLL RxCLK (NRZ Modes

DPLL RxCLK
(Biphase Modes)

:
‘
ot

i
i

Note: No assumption is made about the starting state of the serial data in this figure.
As a result, those encoding schemes that operate in terms of transitions rather than
levels are shown with dual traces corresponding to their two possible starting states.

Figure 4-4. Data Formats/Encoding

4-8

UMO014001-1002

Gayle Gamble
UM014001-1002

N 205

Z16C32 IUSC™
USER'S MANUAL

4.5 MORE ABOUT THE DPLL

While the Transmitter and Receiver must be programmed
for the particular serial format to be used, the DPLL only
needs to know the general category of encoding on RxD,
in the DPLLMode field of the Hardware Configuration
Register (HCR9-8):

DPLLMode DPLL Operation/Decoding
00 DPLL disabled
01 Any NRZ mode
10 Biphase-Mark or -Space
11 Either Biphase-Level mode

In any of the NRZ modes, transitions on RxD occur only at
the boundaries between bit cells. The DPLL synthesizes a
clock having falling edges at bit cell boundaries and rising
edges in the middle of the cells. The Transmitter changes
TxD on falling edges of TXCLK and the Receiver samples
data on rising edges of RxCLK.

Inthe Biphase-Mark and Biphase-Space encodings, there
is always a transition at the boundaries between active
data bits, and there may or may not be a transition at the
center of each bit cell. The DPLL generates areceive clock
having its falling edge 1/4 of the way through the bit cell,
and its rising edge at the 3/4 point. The Receiver deter-
mines each data bit from the state of RxD at rising edges
of RxCLK and checks for “missing clocks” around falling
edges. The DPLL generates a Transmit clock that is the
same as in NRZ modes. The Transmitter complements the
state of TxD at each falling edge of TxCLK, and may or may
not change TxD at rising edges, depending on the current
data bit.

The DPLL produces clock transitions only when it is "in
sync:* as described below.

In the Biphase-Level and Differential Biphase-lLeve!
encodings, there is always a transition at the midpoint of
each active data bit, and there may or may not be transi-
tions at the boundaries between bit cells. The DPLL gen-
erates clocks as for Biphase-Mark and -Space, but must
know the difference between those modes and these to do
so. The Receiver determines each data bit from the state
of RxD at falling edges of RxCLK and checks for “missing
clocks” around rising edges. The Transmitter may or may
not change TxD at falling edges of TxCLK, depending on
the current data bit. It always inverts TxD at rising edges.

The DPLL does not include logic to track the clock fre-
quency of the remote end in a long-term manner. Rather it
is acounterthatis affected by transitions on RxD, and uses
the reference clock to make bit clocking thatis more or less
synchronized to these transitions. Figure 4-5 shows the
IUSC’s Channe! Command/Status Register. its DPLLEdge
field (CCSR9-8) provides further control over DPLL opera-
tion. Formost applications, this field should be 00, in which
case the DPLL resynchronizes its counter on both rising
and falling edges on RxD.

For NRZ applications in which one kind of edge is signifi-
cantly more precise than the other, software can program
the DPLLEdge field to 10 or 01, to make the DPLL ignore
one kind of transition. One example of such an application
is a serial bus with passive external pull-ups; in such a
application, falling edges are more accurate than rising
edges. ifDPLLEdgeis 11, the DPLL never resynchronizes—
that is, it runs freely like CTRO and CTR1.

Because the blocking of edges by DPLLEdge affects
missing clock detection as well as resynchronization, for
Biphase operation DPLLEdge should always be pro-
grammed as 00.

In any NRZ mode, when the DPLL is in sync, it uses the
selected nominal value (8, 16, or 32 cycles of its input
clock) for counting off the next bit cell if a transition on RxD
falls near the bit cell boundary. If a transition comes early
it uses the nominal value minus 1 for the next cell, while if
a transition comes late it uses the nominal value plus one.
In 16 and 32 modes only, the DPLL uses the nominal value
plus two for the next bit cell if a transition comes very late
in a cell, and the nominal value minus two if a transition
comes very early.

In Biphase-Mark and Biphase-Space modes, when the
DPLL is in sync it ignores “data” transitions in the second
and third quarters of the bit cell, and resynchronizes to
“clock” transitions in the fourth and first quarters of the cell.
If aclock transition falls very close to the cell boundary, the
DPLL uses the nominal value (8, 16, or 32) as the length of
the next bit cell. Otherwise it uses the nominal value minus
one if a clock transition comes early, or the nominal value
plus one if a clock transition is late.

Recr | recr | clear | oPLL | DPLL | DPLL on | Send | cnt)
Ovflo | Avail | RCCF| Sync § 2Miss | 1Miss | DPLLEdge | 160p | Loop |Bypass TxResidue Reserved
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Figure 4-5. Channel Command/Status Register (CCSR)
4-9

UMO014001-1002

Gayle Gamble
UM014001-1002

QN 2iLaB

216C32 IUSC™
USER'S MANUAL

4.5 MORE ABOUT THE DPLL (Continued)

In Biphase-Level and Differential Biphase-Level modes,
when the DPLL is in sync itignores “data” transitions in the
first and fourth quarters of the bit cell, and resynchronizes
to “clock” transitions in the second and third quarters of the
cell. if a clock transition falls close to the middle of the cell,
the DPLL uses the nominal value (8, 16, or 32) as the length
of the next bit cell. Otherwise it uses the nominal value
minus one if a clock transition comes early, or the nominal
value plus one if the transition is late.

Inan NRZ mode, if there's notransition in abit cell the DPLL
uses the nominal value (8, 16, or 32 clocks) as the length
of the next bit cell. It also does this in Biphase modes, if
there is no clock transition in a bit celf when the DPLL is in
sync. In particular, in these cases the DPLL does not
reapply a correction from a previous bit cell.

In Biphase modes, the CVOK bit in the Hardware Control
Register (HCR12) controls whether the Receiver flags a
single code violation as an error. If CVOK = 0, it sets the
DPLL1Miss bit for a single code violation as described
below. If CVOK = 1, it does not report a single code
violation in DPLL 1Miss; use this setting when the protocol
includes single code violations as normal occurrences, as
in the 1533B mode thatis described in Chapter 5. Regard-
less of CVOK, code violations in two consecutive bit cells
set the DPLL2Miss and DPLLDSync L/U bits and de-
synchronize the DPLL.

After software sets up the DPLL, three bits in the Channel
Command/Status Register (CCSR) provide the operating
interface. The logic enters a “Fast Sync mode” when
software writes a 1 to the DPLLSyne bit in the Channel
Command/Status Register (CCSR12), or in a Biphase
mode when it detects two consecutive missing clocks. In
this mode, the next RxD transition (that is allowed by the
DPLLEdge field) resynchronizes the DPLL counter and
puts the DPLL “back in sync.”

The DPLL watches the RxD line for transitions, and classi-
fies them as either clock or data. Depending on the
position of transitions within each bit cell, the logic adjusts
the phase of the DPLL output clock to synchronize the
clock with the bit cell boundaries of the incoming data.
“Fast Sync” tells the DPLL that the NEXT edge it sees isthe
one to synchronize to; otherwise the DPLL has to see “n”
correctedges before becoming “in sync.” This “n" is about

3 for X8 mode, 6 for X16, and 12 for X32.

The time required to get in sync in the worst case is thus a
function of the data encoding method as well as the data
on the line. The key issue is the number of “edges” the
DPLL sees on RxD.

DPLLSync (CCSR12) reads as 1 whenthe DPLL isinsync.
The DPLL2Miss bit (CCSR11) reads as 1if the DPLL is in
a Biphase mode and has detected missing clocks in two
consecutive bit cells. The DPLL1Miss bit (CCSR10) reads
as 1 if the DPLL is in a Biphase mode, the CVOK bit
(HCR12) is 0, and the DPLL has detected a missing clock
in at least one cell. Once DPLL2Miss or DPLL1Miss is 1, it
continues to read that way until software writes a 1 to it.

Writing a Oto any of DPLLSync, DPLL2Miss, or DPLL1Miss
has no effect on the DPLL logic.

The IUSC sets the DPLLDSync L/U bit when it ioses sync
in a Biphase mode. This bit is similar to DPLL2Miss in that
once itis set, it stays that way until software writes a 1 to the
bit to “unlatch” it. Chapter 7 explains how to program the
IUSC so that it interrupts the host processor when it sets
DPLLDSync L/U.

4-10

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2L05

216C32 jUsC™
USER'S MANUAL

4.6 THE RXD AND TXD PINS

In some sense these are the most important pins on an
IUSC. Typically they carry the serial input to the Receiver
and the serial output of the Transmitter respectively. Figure
4-6 shows the I/O Control Register. Its TxDMode field
(IOCR7-6) allows software to control the function of TxD:

TxDMode Function of the TxD pin
00 Totem-pole Transmitter output
01 High-impedance state
10 Low output
11 High output

The RTMode field of the Channel Command/Address
register (CCAR9-8) controls the relationship between the
Transmitter and the Receiver and thus between the TxD
and RxD pins. It is encoded as follows:

RTMode Operation
00 Normal operation: the Transmitter and Re-
ceiver are completely independent.
01 Echo mode: the state of the RxD pin is

copied directly onto the TxD pin. Data from
the Transmitter is ignored.

Software can use the ability to drive TxD low to generate a
Break condition in Asynchronous applications. The dura-
tion of such a Break is fully under software control.

The ability to put the TxD pin in a high-impedance state
allows software to use the IUSC in “serial bus” schemes
that include multiple senders on the same signal line. (But
note that the TxDMode field resets to 00, so that the IUSC
drives TxD after a Reset until the software programs
TxDMode to 01.) The ability for direct programmable
control over the TxD pin allows software to “bit-bang”
unusualfoccasional serial protocol requirements, while
keeping the IUSC'’s full power for more standard and
everyday communications.

10 Pin Controlled Local Loop: the data from
the TxD pin, as determined by the TxDMode
field (IOCR7-6), is routed to the Receiver
rather than the data from RxD. If TxDMode
specs TxD as high impedance, the Re-
ceiver can take its input from a remote
source via TxD rather than RxD.

11 Internal Local Loop: the data from the Trans-
mitter is routed to the Receiver rather than
the data from RxD, regardless of the setting
of the TxDMode field (IOCR7-6).

CTSMode DCDMode TxRMode RxRMode

TxDMode TxCMode RxCMode

15 14 13 12 1" 10 9 8

7 6 5 4 3 2 1]

Figure 4-6. Input/Output Control Register (IOCR)

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLa5

Z16C32 luscC™
USER'S MANUAL

4.7 EDGE DETECTION AND INTERRUPTS

Software can program the IUSC to detect rising andfor
falling edges on the /CTS, /DCD, /TxC, /RxC, /TxREQ, and
/RXREQ pins, and to interrupt when such events occur.
Figure 4-7 shows that the Status Interrupt Control Register
(SICR) includes separate Interrupt Arm (IA) bits for rising
and falling edges on each of these pins. (Chapter 7
describes the IlUSC's interrupt featuresin detail.) A 1inone
ofthese bits makes the IUSC detect thatkind of edge, while
a 0 makes it ignore such edges. This edge detection and
interrupt mechanism operates without regard for whether
the various pins are programmed as inputs or outputs in
the 1/0 Control Register (IOCR).

When the IUSC detects an edge that is enabled in the
SICR, it records the event in an internal “edge detection
latch” for that input. This latch is not directly accessible in
the IUSC's register map. Instead, as shown in Figure 4-8,
the Miscellaneous Interrupt Status Register (MISR) in-
cludes two bits for each of these six pins, one called a
“Latched/Unlatch” or L/U bit, and the other being a “data
bit" that has the same name as the pin itself.

A hardware or software Reset sequence clears all the L/U
bits to zero. While the L/U bit for a pin is 0, the associated
data bit reports and tracks the state of the pin in a
“transparent” fashion, with a 1 indicating a low and a O
indicating a high.

Whenever a pin's L/U bit is 0 and its internal edge-
detection latch is set, the IUSC sets the L/U bitto 1, clears
the detection latch, and sets the I/O Pin Interrupt Pending
(IOP IP) bit. IOP IP can be read and cleared (and if
necessary set) in the Daisy Chain Control Register (DCCR1).
Chapter 7 describes how the /O Pin Enable and Master
Interrupt Enable bits determine whether the IP bit actually
results in an interrupt request to the processor.

While an L/U bitis 1, the state of the associated data bit is
frozen (latched). These two bits remain in this state, re-
gardiess of further transitions on the pin, until software
writes a 1 to the L/U bit. This clears the L/U bit to 0 and
“opens” the data bit to once again report and track the
state of the pin, at least for an “instant”. If one or more
enabled transitions occurred while the L/U bitwas set, then
L/U is set again right after software writes the 1 to it.

Writing a 0to an L/U bithas no effect, and the IUSC ignores
data written to the “data” bits.

One mode in which software can use this logic is to read
the MISR, then immediately write back what it has read.
The software should then look for 1's in any and all
“interesting” L/U bits, and process/handle all such changes
without rereading the MISR. To obtain the current state of
one of these pins, regardless of the L/U bit, software can
write a 1 to the L/U bit and then immediately read back the
MISR.

Rxcon | Axcup | Txcon | Txcup | Rxron | Rxrup | TxaDn | TxAUp |Deobn|ocoup | cTson| cTsup] REE, | SELE | BRa1 | BRGO
vl B BN BT a7 e 7 TN a7 N N T N DS el a | A
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

Figure 4-7. Status Interrupt Control Register (SICR)
rec | opLL

RxCLU| /RxC | TxCLU | /TxC | RxRLU |/RxREQ| TxRLU | /TXREQ

BRG1 | BRGO
w w

DCDWU| /OCD | CTSW| /CTS | Under D?X?c
L

15 14 13 12 1 10 9 8

7 6 5 4 3 2 1 0

Figure 4-8. Miscellaneous Interrupt Status Register (MISR)

4-12

UMO014001-1002

‘

Gayle Gamble
UM014001-1002

216032 JUSC™
@ 2“.‘]5 USER's MANUAL

4.8 THE/DCD PIN

The DCDMode field of the I/O Control Register (IOCR13- ® for HDLC/SDLC mode, /DCD should set up low to the
12) controls the function of this pin: rising edge of RxCLK at which the receiver samples
the ending O of the last Flag before the frame.

DCOMade Function of the /DCD pin DCDMode=01 identifies the /DCD pin as an input from

00 Low-active Rx Carrier input external sync detection logic. Software typically programs
01 Low-active Rx Sync input this value in conjunction with programming the RxMode
10 Low output field of the Channe! Mode Register (CMR3-0) with 0001 for
11 High output External Sync operation or 1001 for 802.3 (Ethernet) op-

eration. For External Sync mode, external logic should
) drive the /DCD pin low so that it sets up to the rising edge
When DCDMode is 00, software can handle the Carrier of RxCLK before the one at which the Receiver should
indication all by itself. Or, the /DCD signal can enable and capture the first data bit. For 802.3 /DCD should go low
disable the Receiver in hardware if software alsoprograms when carrier is detected—a figure in Chapter 5 shows that
the RxEnable field of the Receive Mode Register (RMR1- thg timing relationship to RxD is not critical but /DCD
0)to 11. In the latter case, the Receiver starts assembling should go low no later than six bits into the 64 alternating
a character only when /DCD is iow; if /DCD goes high pjts that precede the frame. The Receiver starts sampling
during areceived character, the Receiver aborts/discards RxD at the same rising edge of RXCLK at which it first
it. Figure 4-9 shows how the required relationship between samples /OCD low. If /DCD goss high during a received
/DCD and RxD varies depends on the Receiver mode: character, the Receiver completes receiving the character
and transfers it to the Receive FIFO before going inactive.

B for Isochronous mode, /DCD should set up low to the
rising edge of RxCLK at which the receiver samples
the start bit on RxD.

m for monosync, bisync, and transparent bisync, /DCD
should set up low to the rising edge of RxCLK that
precedes the one at which the receiver samples the
first bit of the last sync pattern before the message.

/DCD \
RXCLK '
(RxC) :
RxD , 9-Bit ‘ \ Start Bit
(A V/15538 H
RxD (Isochronous) iStart _
Bit
RxD (External Sync) qteit
Received
RxD (Monosync, Bisync,
ranspa¥ent Bis;lnc) &séfn*:: X Rest of Sync Character(s)
RxD (HOLC Last 0 1st Bit
(. 011111t Xof Flag /\ of Frame

Figure 4-9. /DCD Auto-Enabling Timing

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLa5

Z16C32 jusc™
USER'S MANUAL

4.8 THE /DCD PIN (Continued)

Sync conditions generated internal to the IUSC are not
output on this pin as on certain predecessor devices, but
can be output on either the /RxC or PORTS pin as de-
scribed later.

The /DCD pin can alternatively be used as a general-
purpose output. To do this, simply program DCDMode to
10 to make the IUSC drive /DCD low, and to 11 to drive the
pin high. For such an application the designer may want to
connect a pull-up or pull-down resistor to the /DCD pin,
because the IUSC will not drive the pin from the time
/RESET goes low until the software programs DCDMode to
10 or 11.

Software can program the IUSC to interrupt the host
processor on either or both edges on /DCD, as described
in the preceding section. Typically such interrupts would
be used when /DCD is an input, thatis, when DCDMode is
00 or 01. Software should write a 1 to the DCDDn IA bit in
the Status Interrupt Control Register (SICR7) to make the
IUSC detect falling edges on /DCD, and write a 1 to
DCDUp IA (SICR6) to make it detect rising edges.

As described in the preceding section, the DCDL/U bit
(MISR?) is 1 if the IUSC has detected an enabled edge,
until software writes a 1 to the bit to clear it. The /DCD bit
(MISR®6) reflects the state of the /DCD pin transparently
while DCDL/U is O, but is frozen while DCDLMU is 1.
MISR6=0indicates a highonthe pin, and 1indicates a low.

4.9 THE/CTS PIN

The CTSMode field of the I/O Control Register (lOCR15-
14) controls the function of this pin:

CTSMode Function of the /CTS pin
Ox Low-active Clear to Send input
10 Low output
1 High output

When CTSMode is 00 or 01, software can handie the Clear
to Send input all by itself. Alternatively, the /CTS input can
enable and disable the Transmitter in hardware, if software
writes 11 to the TxEnable field of the Transmit Mode
Register (TMR1-0). In the latter case, the Transmitter will
start sending a character only when /CTS is low. As shown
in Figure 4-10, if the Transmitter is otherwise “ready to go”
when /CTS goes low, the first bit active bit on TxD will begin
at the falling edge of TXCLK that is 4.5 clock periods after
the rising edge of TxCLK at which the Transmitter first
samples /CTS low.

if /CTS goes high during a transmitted character in an
asynchronous mode, the Transmitter finishes sending the
character before going inactive. in the same situationin a
synchronous mode, the Transmitter terminates transmis-
sion immediately.

The /CTS pin can alternatively be used as a general-
purpose output. To do this, simply program CTSMode to
10 to make the IUSC drive /CTS low, and to 11 to make it
drive the pin high. For such applications the designer may
want to connect a pull-up or pull-down resistor to the /CTS
pin, because the IUSC won't drive the pin from the time
/RESET goes low until the software programs CTSMode to
10or 11.

Software can program the IUSC to interrupt the host
processor on either or both edges on /CTS, as described
in the earlier section 'Edge Detection and Interrupts'.
Typically such interrupts would be used when /CTS is an
input, that is, when CTSMode is 00 or 01. Software should
write a 1 to the CTSDn IA bit in the Status Interrupt Control
Register (SICR5) to make the IUSC detect falling edges on
JCTS, and write a 1 to CTSUp 1A (SICR4) to make it detect
rising edges.

As described in Edge Detection and Interrupts, the
CTSL/V bit (MISR5) is 1 if the IUSC has detected an
enabled edge, until software writes a 1 to the bit to clear it.
The /CTS bit (MISR4) reflects the state of the /CTS pin
transparently while CTSL/U is O, but is frozen while
CTSWU is 1. MISR4 = 0 indicates a high on the pin, and 1
indicates a low.

4-14

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2La5

21632 lusC™
USER'S MANUAL

/ICTS ‘ \

TXCLK
(TxC)

f¢——————— 4.5 Clocks ————————}

TxD

X 1st Active Bit

Figure 4-10. /CTS Auto-Enable Timing

4.10 THE /RXC AND /TXC PINS

Figure 4-1 (near the start of this chapter) shows the lUSC's
options for the function of its /RxC and /TxC pins. The
RxCMaode field inthe input/Output Control Register (IOCR2-
0) controls the function of /RxC:

RxCMode Function of the /RxC pin
000 /RxC is an input
001 /RxC outputs RxCLK
010 /RxC outputs Rx Character Clock
011 /RxC outputs /RXSYNC
100 /RxC carries the BRGO output
101 /RxC carries the BRG1 output
110 /RxC carries PORTO or CTRO out
111 /RxC carries the DPLL Rx output

while the TxCMode field (IOCRS5-3) controls the function of
the /TxC pin:

TxCMode Function of the /TxC pin
000 [TxC is an input
001 /TxC outputs TxCLK
010 [TxC outputs Tx Character Clock
011 {TxC outputs “Tx Complete”
100 | [TxC carries the BRGO output
101 [TxC carries the BRG1 output
110 /TxC carries PORT1 or CTR1 out
111 [TxC carries the DPLL Tx output

Some of these possible outputs need further description.
An IUSC drives the Receive Character Clock high for one

RxCLK period as it transfers each character from the
Receive shift register to the Receive FIFO. Similarly, it
drives the Transmit Character Clock high for one TxCLK
period each time it transfers a character from the Transmit
FIFO to the Transmit shift register. The /RxSYNC output
goes low for one RxCLK cycle each time the Receiver
recognizes a Sync or Flag sequence. The Tx Complete
output is suitable for controlling a driver on TxD. It is low
from the start of the first active bit of a sequence of one or
more consecutively-transmitted characters, through the
end of the last bit of the sequence. The BRG and CTR
outputs are square waves. The DPLL outputs were shown
earlier in this chapter.

While it is not very useful to use a high-speed free-running
clock as a source of interrupt events, for other uses of /RxC
and /TxC software can program an |USC to interrupt the
host processor on either or both edges on these pins, as
described in the earlier section 'Edge Detection and Inter-
rupts'. Typically such interrupts would be used for an input
pin, that is, when RxCMode or TxCMode is 00 or O1.
Software should write a 1 to the RxCDn |A or TxCDn 1A bit
in the Status Interrupt Control Register (SICR15 or SICR13)
to make an IUSC detect falling edges on /RxC or /TxC, and
write a 1to RxCUp |A or TxCUp IA (SICR14 or SICR13) to
make it detect rising edges.

As described in Edge Detection and Interrupts, the
RxCL/U or TxCL/U bit (MISR15 or MISR13) is 1 if the IUSC
has detected an enabled edge, until software writesa 1 to
the bitto clear it. The /RxC or /TxC bit (MISR14 or MISR12)
reflects the state of the pin transparently while the L/U bit
is 0, but is frozen while the L/U bit is 1. A 0 in MISR14 or
MISR12indicates a high onthe pin, and a 1 indicates a low.

4-15

UMO014001-1002

Gayle Gamble
UM014001-1002

O 2iLa5

216C32 JUSC™
USER'S MANUAL

4.11 THE /RXREQ AND /TXREQ PINS

The predecessor USC device provides separate /RXREQ
and /TxREQ outputs for signaling an off-chip DMA control-
ler when the Transmit and Receive FIFQ's are in a pro-
grammed degree of “readiness” for DMA data transfer. It
also provides /RXACK and /TxACK inputs by which the
external DMA controller could signal that a “flyby” DMA
transfer was occurring.

The IUSC includes internal Request and Acknowledge
connections between its serial controlier and integrated
DMA channels. Therefore there's little need for such pins,
and in fact there are no ACK pins. The /RxREQ and /TXREQ
pins survive for testing reasons, and can be used in
applications as general I/O’s under control of the RxRMode
and TxRMode fields of the I/O Control Register (IOCR3-8
and IOCR11-10 respectively):

XxRMode Function of /XxREQ pin
00 Input pin
01 DMA Request output (or Interrupt Request)
10 Low output
11 High output

Note that software does not have to program these fields
as 01 in order to use the IUSC's DMA channels.

Software can program an IUSC to interrupt the host pro-
cessor on either or both edges on these pins, as described
in the earfier section Edge Detection and Interrupts. Typi-
cally such interrupts would be used for an input pin, that is,
when RxBMode or TxRMode is 00. Software should write
a 1 to the RxRDn IA or TXRDn IA bit in the Status Interrupt
Control Register (SICR11 or SICR9) to make the IUSC
detect falling edges on /RxREQ or /TxREQ, and should
write a 1 to RxRUp |IA or TxRUp IA (SICR10 or SICR8) to
make it detect rising edges.

As described in Edge Detection and Interrupts, the RxR
LU or TxRL/ bit (MISR11 or MISRO}) is 1 if the IUSC has
detected an enabled edge, until software writes a 1 to the
bit to clear it. The /RXR or /TxR bit (MISR10 or MISR9)
reflects the state of the pin transparently while the L/U bit
is 0, but is frozen while the L/U bitis 1. A 0 in MISR10 or
MISR9 indicates a high on the pin, and a 1 indicates a low.

The IUSC does not provide /RXACK and /TXACK pins, and
so its Transmitter and Receiver cannot be used with an
external “flyby” DMA controller. The fields associated with
these pins in predecessor devices, HCR7-6 and HCR3-2,
are not used in the IUSC.

4.12 THE PORT PINS

These eight pins can be individually programmed to be
general-purpose inputs or outputs. Alternatively, seven of
the eight can carry a specific, dedicated input or output
signal. Regardless of the directions and roles of the vari-
ous pins, transitions on all eight are latched by the IUSC.
Host software can read this latched status from the Port
Status Register (PSR). Unlike the pins described in earlier
sections, transitions on PORT7-0 cannot make the IUSC
interrupt the host processor.

Figure 4-11 shows the Port Control Register (PCR). It
includes eight PnMode fields, each of which determines
the use of one PORT pin:

The “dedicated I/O" function differs for each pin:

PORT7 Tx Complete output

PORT6 /FSYNC input

PORT5 /RxSYNC output

PORT4 Tx Time Slot Assigner Gate output
PORT3 Rx Time Slot Assigner Gate output
PORT2 LocalTalk Driver Enable

PORT1 Reference clock input to CTR1
PORTO Reference clock input to CTRO

(Other sections of this chapter or Chapter 5 describe the
utilization of each of these inputs and outputs.)

On the Z16C32, a hardware or software Reset makes all
the PORT pins act as inputs. As noted earlier for
/DCD and /CTS, for Port pins that are outputs, the system
designer may want to connect a pull-up or pull-down
resistor of about 10 Kohms to the pin(s), to assure their
state from when /RESET goes low to the time that software
programs the PCR.

PnMode Function of PORTn pin
00 General-purpose input
01 Dedicated 1/O
10 Low output
11 High output
4-16

UMO014001-1002

Gayle Gamble
UM014001-1002

Q2105

Z16C32 USC™
USER'S MANUAL

Whether the various pins are inputs or outputs, the IUSC
detects and latches transitions on all eight of them, and
host software can read the latched status from the Port
Status Register (PSR}). Figure 4-12 shows how this register
includes two bits for each pin, one called Pnl/V (for
Latched/Unlatch) that can be both written and read back.
The other bit of each pair is called /Pn and can only be
read, which is to say, the IUSC ignores data written to the
/P7-0 bits.

After software writes a 1 to a particular PnlLyU bit, the
PnL/U bit reads back as a 0 and the associated /Pn bit
reflects the state of the corresponding PORTn pin at the
time of the write operation. After a Reset PnL/U is 0 and
/Pn reflects the state of the pin when /RESET went high. A
Oina/P7-0bitcorresponds to a high on the associated pin,
and a 1 corresponds to a low.

The PnL/U bit remains O, and /Pn does not change, until
the IUSC detects a rising or falling transition on the
associated PORTn pin. After such a transition, PniL/U
reads back as 1 and /Pn reads as O for a rising edge and
1 for a falling edge. The two bits remain in this state,
regardless of further transitions on the PORTn pin, until
host software writes a 1 to PnL/U. This clears the Pnl/U
input bitto 0 and “unlatches” the transition detecting logic
for the pin, although the [USC will set the
L/U bit again immediately if one or more transitions oc-
curred while it was set. Writing a 0 to a PnL/U bit has no
effect on the logic for that pin.

One mode in which software can use the Port logic is to
read the PSR and immediately write back what it has read.
Software can then look for 1's in any and all “interesting”
PnL/U bits, and process/handie all such changes without
rereading the PSR. To obtain the current state of a PORTn
pin, software can write a 1 to its Pnl/U bit and then
immediately read the PSR.

P7Mode P6Mode P5Mode PaMode P3Mode P2Mode P1Mode POMode
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Figure 4-11. Port Control Register (PCR)
pru| 7 fpeu| e | Psuf s | Pau] s fPau| 3 [P 2 JPuiu] m1 | Pou] po
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Figure 4-12. Port Status Register (PSR)
417

UMO014001-1002

Gayle Gamble
UM014001-1002

QN 2La5

216C32 IUSC™
USER'S MANUAL

4.13 TIME SLOT ASSIGNERS

In applications such as ISDN and Fractional T1, a set of
independent voice and data streams share a high speed
link by means of time multiplexing. The IUSC can send
and/or receive such a data stream with the aid of its
Transmit and Receive Time Slot Assigner logic (TTSA and
RTSA).

Touse the IUSC in suchan application, externallogic must
find the start point of (or at least a consistent pointin) each
cycle of the total data stream, and signal thelUSC when
this point occurs, using a “Frame Sync” pulse on the
PORT6//FSYNC pin that is low for one period of RxCLK
and/or TxCLK. Both the Receive and Transmit Time Slot
Assigners use this pulse. This means that if both the
Receiver and Transmitter are operating simultaneously in
a Time Slotted application, they must both be operating in
(different parts of) the same overall data stream.

In order to use the Rx Time Slot Assigner, RxCLK must
come directly from the /RxC pin, and in order to use the Tx
Time Siot Assigner TxCLK must come directly from the /
TxC pin. The clocking must be set up this way even though
the two clocks are typically identical.

Figure 4-13 shows how the Time Slot Assigners determine
when to start receiving and/or transmitting in each cycle.
After sensing the /FSYNC pulse, the RTSA waits for a
number of RxCLK cycles (bit times) that is determined by
the RTSASIot and RTSAOffset fields in the Receive
Interrupt Control Register (RICR). Specifically, it waits for
this many RxCLK cycles (bits): eight times the value in
RTSASIot, plus the value in RTSAOffset.

Unless both fields are zero, the RTSA blocks RxCLKs to
the Receiver for this number of bits. Then it allows RxCLK
toreach the Receiver for the number of consecutive bytes/
octets/slots programmed into the RTSACount fieid in
RICR. Thatis, it allows 8{(RTSACount) RxCLKs to reach the
Receiver. Figure 4-14 illustrates these points. (A zero in
the RTSACount field disables the whole RTSA feature.)
Then the RTSA again blocks RxCLKs to the Receiver until
after the next pulse on /FSYNC.

The net resuit of this clock-gating is that the IUSC can
receive up to 15 consecutive bytes/octets out of each
cycle on the serial link. This data can start at any point
within the first 128 octets of each cycle. The TSAs also
allow for possible delays in sensing and signaling the
frame sync.

In ISDN circles it seems to be common parlance to refer
to the octets in each frame as numbered “slots” starting at
0. Given this definition of “slot number" if the frame sync

detection logic is such that /FSYNC will be sampled low in
the bit time before RxD should be sampled for the first bit
of the first slot, then RTSAOffset should be programmed
with zero and RTSAS!Iot should be programmed With the
slot number of the first octet that should be received.

Otherwise, call the “Frame Sync delay” one if [FSYNC will
be sampled low in the same bit time that the first bit of the
first slot is available on RxD, two if /FSYNC is low in the bit
time after the first bitappears on RxD, and so on up through
the maximum value of seven if [FSYNC is low six bit times
after the first bit of the first slot appears on RxD. In these
cases, the first slot cannot be received: program the
RTSAOffset field with eight minus the “Frame Sync delay”,
and program RTSASIot with the slot number of the first
octet that should be received, minus one.

Figure 4-13 applies equally to the transmit side: the TTSA
similarly blocks TxCLKs to the Transmitter for the number
of TxCLK cycles programmed in the TTSASlot and
TTSAOffset fields in the Transmit Interrupt Control Regis-
ter (TICR).

After blocking TxCLKs for 8(TTSASIot) + (TTSAOffset) bits,
the TTSA allows TxCLK to reach the Transmitter for the
number of consecutive bytes/octets/slots programmed
into the TTSACount field in the Transmit interrupt Control
Register (TICR). Thatis, it allows 8(TTSACount) TXCLKs to
reach the Transmitter, as shown in Figure 4-14. (As for the
receive side, zero in the TTSACount field disables the
whole TTSA feature.) Then the TTSA again blocks TxCLKs
to the Transmitter untit after the next pulse on /FSYNC.

Thus, symmetrically with the receive side, the IUSC can
transmit up to 15 consecutive bytes/octets/slots in each
cycle on the serial link. This data can start at any point
within the (first) 128 octets of each cycle, and the TTSA
allows for possible delays in sensing and signaling the
frame sync.

Since the IUSC maintains output drive on TxD throughout
each cycle on the serial link, this kind of time-multiplexed
environment requires an external driver with an enable/
disable input. The IUSC can provide the required “Trans-
mit Gate" signal on the PORT4 pin. Figure 4-14 shows how
this signal goes low while the TTSA is enabling the Trans-
mitter in each frame. There is also a similar facility by which
the RTSA's low-active Receive Gate sighal can be output
on the PORT3 pin, but the application of this signal is less
obvious. As already noted in the section on the PORT pins,
the P4Mode and/or P3Mode fields of the Port Control
Register (PCR9-8 and/or PCR7-6 respectively) should be
01 to enable these options.

4-18

UMO014001-1002

Gayle Gamble
UM014001-1002

216632 [USC™

@ Zij USER'S MANUAL
RxCLK or
TxCLK
/FSYNC (PORTS6)
XTSA Offset = 0, 1st Bit Revd
xTSASlot=0 or Xmitted
RxD .
or (XTSAOffset) Bits
TxD: xTSAOffset=0, 1st Bit Revd
xTSASlot=0 or Xmitted

XTSA Offset = 0,
xTSASlot =0

XTSA Offset = 0,
XTSA Slot=0

8* (XTSAOffset) Bits
() Vy 1st Bit Revd

A

N or Xmitted

(xTSAOffset) Bits 8" (xTSAOffset) Bits
< > oY 1st Bit Revd

I\ O Xmitted

Figure 4-13. Start of Received or Transmitted Data in a TSA Application

RxCLK or
TxCLK

/FSYNC
(PORTS)

A

RxD
or
TxD

Xmit Gate (PORT4) or — " \
Rcv Gate (PORT3) J

/S

8*(xTSA Count) Bits)

%

or Xmitted

£
First Bit Rovd W LastBit Rewd
or Xmitted £

4

Figure 4-14. Length of Recelved or Transmitted Data in a TSA Application

4-19
UMO014001-1002

Gayle Gamble
UM014001-1002

N 205

Z16C32 lusc™
USER'S MANUAL

4.13.1 Programming the Time Slot
Assigners

There is an intentional vagueness in the preceding de-
scription of the Time Slot Assigner control fields as being
“in" the Receive and Transmit Interrupt Control Registers
(RICR and TICR). These two registers are somewhat more
complexthan other IUSC registers—this section describes

how to access the TSA fields.

Figure 4-15 shows how the less-significant byte of both the
RICR and TICR contains fixed data, but any of five different
internal registers can be selected as the more-significant
byte of each register. Atthe firstlevel of data structure, four
of the commands that can be written to the RCmd field of
the Receive Command/Status Register (RCSR15-12) se-
lect the contents of RICR15-8. Similarly, four of the com-
mands that can be written to the TCmd field of the Transmit
Command/Status Register (TCSR15-12) select the con-
tents of TICR15-8. The encoding of both sets of commands
is the same:

xCmd Contents of xICR15-xICR8
0100 xTSA data

0101 Current xFIFO Level

0110 xFIFO Level for interrupt

0111 xFIFO Level for DMA Request

{where "x" stands for either “R" or “T"). The other options
will be discussed in subsequent chapters. For our pur-
poses it is sufficient to note that “TSA data” can be read
and written as xICR15-xICR8 if the 0100 command has
been written to xSCR15-xSCR12 more recently than 0101,
0110,0r0111. The lUSCresets toreading the Current FIFO
level in both the RICR and TICR.

Figure 4-14 also shows how a second level of data struc-
turing determines the meaning of “TSA data”. For write
operations, the bit written in the “bit 8" position selects the
destination of the data:

xICR8 value Destination of xICR15-9
0 xICR15-9 —> xTSASlot
1 xICR15-13 —> xTSAOffset
1 xICR12-9 —> xTSACount

Reading “TSA data” from RICR or TICR always yields the
XTSASIotvalue, with the LS bit of the MS byte equal to zero.

In summary, to set up xTSA, first write the 0100 command
to the xCmd field of the xSCR. Then write the xTSASIot
value to the MS byte of xICR with the LS bit of the byte equal
to O. Finally, write the xTSAOftset and xTSACount values to
the MS byte of xICR with the LS bit of the byte equal to 1.

Itis good programming practice to follow the writing of TSA
data with writing a "Select RICRHi=FIFO Status” command
to the RCSR, and/or a “Select TICRHi=FIFO Status” com-
mand to the TCSR as applicable, to protect the TSA data
from inadvertent modification when other parts of the
software change the !A bits in the LS byte of the RICR or
TICR.

Code that writes or reads “TSA data” must ensure that no
interrupts will occur between the time it writes the “Select
xICRHi=TSA Data" command to the TCSR or RCSR, and
when it finishes writing or reading the TSA data in the TICR
or RICR, if such interrupts can lead to other code writing a
different Select command (for a FIFO Fill level or threshold)
to the same Command/Status Register.

4-20

UMO014001-1002

Gayle Gamble
UM014001-1002

716C32 JUSC™
RICR or TICR

USER'S MANUAL

If the last value in the range
0100-0111, written to the "command"
field of the RSCR or TSCR was:

A
The the following data can be accessed
in the MS byte of RICR or TICR:
0100
0101

Read or Write "TSA data”

Read the number of empty entries in the TxFIFO,
or the number of received bytes in the RxFIFO
T
0110

1
Read or Write the number of empty TxFIFO entries

1
or the number of received characters in the RxFIFQO
at which to request interrupt
1
o1

v
Read or Write the number of empty TxFIFO entries,
or the number of received characters in the RxFIFO,
at which to request a DMA transfer
1

If the LSB of the
"TSA data" written is:

! Then the rest of the “TSA data”
: written should be as follows:
o |

RTSA Slot or TTSA Slot
1

RTSA Offset or
TTSA Oftset

14

0

RTSA Count or
TTSA Count

11 10 9 8
Reading "TSA data" always yields this byte

Figure 4-15. Structure of the RICR and TICR

15

1
13

12

UMO014001-1002

4-21

Gayle Gamble
UM014001-1002

A 2155

Z16C32 lusc™
USER'S MANUAL

4.14 THE LOCALTALK (APPLETALK) INTERFACE

Withthe IUSC, Zilog customers can implement a LocalTalk
interface with far less time-critical software attention than
is needed with other devices, including Zilog’s own SCC
family. LocalTalk (with its close relative Farallon PhoneNet)
is the commonest and lowest-cost physical and link layer
used in AppleTalk networks.

If software programs the P2Mode field in the Port Configu-
ration Register (PCR5-PCR4) to 01, IUSCs will output a
signal on the PORT2 //LTTxEnab pin that is suitable for
enabling an external RS-422 driver in a LocalTalk network.

The PORT2 pin is connected to the active low output
enable input of the RS-422 driver, and the TxD pin to its
data input. Software should program other register fields
as follows:

TxMode (CMR11-8) and RxMode (CMR3-0)
TxEncode (TMR15-13) and RxDecode (RMR15-13)
DPLLMode (HCR9-8)

RxClkSrc (CMCR2-0)

Txldle (TCSR10-8)

TxPreL (CCR11-10)

TxPrePat (CCR9-8)

FlagPreamble (CCR12)

= 0110 : HDLC/SDLC

= 101: Biphase-Space (FMO0)

= 10 (Biphase-Space)

= 011 (Rx clock from DPLL)

= 011 (idle = continuous encoded ones)
= 10 (16-bit Preamble pattern)

= 10 (Preamble ones or Flags)

= 1 (Preamble = Flags)

Whenthe Transmitter wants to send a frame, asit sends the
first of the two “preamble Flags” it enables the external
driver for its first bit, then disables it for the next four bits,
and then enables it throughout the rest of the first Flag, the
two subsequent Flags, the frame itself, the closing Flag,
and the following 16 bit times during which it sends “idle”

ones. All this is as specified by Apple for LocalTalk,
including the resultant encoding violations in the first Flag,
and the Abort sequence after the closing Flag. Best of all,
it is all done automatically by the IUSC, with no need for
software intervention.

4-22

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLas

Overview fyl

Bus interfaring ¥

Sampie Application

Serial Interfacing (.

Serial Modes and Protocols B

Direct Memory Access
(DMA) Channels

interrupts &

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLa

USER'S MANUAL

CHAPTER 5

216€32 |USC™
SERIAL MODES AND PROTOCOLS

5.1 INTRODUCTION

The main advantage of USC family members is that they
can communicate in many different modes and serial
protocols. This, in turn, makes for more flexible and ca-
pable products for Zilog's customers. This chapter de-

scribes how to setup and use the lUSC inits various modes
of serial operation. These modes can be classified into
three major categories: asynchronous, character oriented
synchronous, and bit-oriented synchronous protocols.

5.2 ASYNCHRONOUS MODES

These protocols date back to when the first teletypewriters
were succeeding Morse code, although there have been
various changes since. Figure 5-1 shows how a "start bit*
precedes each character in async communications, and
that so-called stop bits separate characters. A start bit is
a period of space/zero that is the same length as each
following data bit. Each stop bit is a period of mark/one that
is more than half a bit time long with a typical minimum
duration of one bit time. (The IUSC and other devices offer
the ability to “shave” stop bits to less than a bit time.) In
most forms of async, the falling edge between a stop bit
and the next start bit can come any time after this minimum
stop bit duration. In other words, the length of the stop bit
does not have to be any particular multiple of the nominal
bit time.

Start 5 to 8 Data Bits,

To handle this variability in the length of stop bits, asyn-
chronous receivers “oversample” the received serial data
atsome muttiple of the nominal bit frequency. Software can
setup the IUSC to dothis at 16, 32, or 64 samples/bit. When
aReceiver is waiting for a start bit and successive samples
reveal a falling edge, it typically samples again one-half bit
time later, to validate the start bit. If the serial data is still
space/zero, the receiver then samples the foliowing data
bits and stop bit at their nominal centers after that. If the
hardware samples the stop bit as space/zero, the associ-
ated character is invalid or at least highly suspect.

Stop Start

Bit Plus Optional Parity Bit Bit Bit

Minimum 1 Bit Time

_\ / X X X X X / (except for"Shavmg)_L_

[}

1/2 Bit Time j—
Receiver detects I P P P P P
Falling Edge '|‘ '|‘ | '|‘ '|‘
Receiver Samgles Data
(and Parity?) Bits

Receiver validates
Start Bit

All 1 Bit Time

Receiver checks
Stop Bit

Figure 5-1. Asynchronous Data

5-1

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLa5

Z16C32 lUSC™
USER'S MANUAL

5.2 ASYNCHRONOUS MODES (Continued)

Some async protocols check further for serial link errors by
including a parity bit with each character. The transmitter
generates such a bit so that the total number of 1-bits in the
character is odd or even. The receiving station checks
each parity bit. If it finds an incorrect one, it discards the
character andj/or notifies the operator(s) of the receiving
and/or transmitting machine(s). But a single parity bitis not
a very reliable checking method—it can be easily de-
ceived by errors that affect more than one bit. Few async
applications actually check parity nowadays, although
they may generate it in case they find themselves talking
to equipment that does. Where protection against line
errors is important, some async applications may use
block-oriented checking as described below for synchro-
nous protocols.

The IUSC can handle a variety of options within “classic”
async operation, plus several unique variants. In Isochro-
nous mode, the data format is similar to classic async, but
external hardware supplies a bit-synchronized 1X clock
instead of a 16X, 32X, or 64X clock. In Nine-Bit mode, an
extra bit differentiates between “address” characters that
select a particular destination on a multi-station link, and
subsequent data characters. .

5.3 CHARACTER ORIENTED SYNCHRONOUS MODES

These protocols came into use after async, in an effort to
get better line utilization by eliminating start and stop bits.
In sync modes, characters follow one another directly on
the serial link, each consisting of an agreed-upon number
of bits and each bit having the same nominal length. Since
bits and characters occur atregular intervals, the datacom
hardware can typically handle higher bit rates because it
does not have to oversample as in typical async applica-
tions. This effect combines with having fewer bits per
character, to make synchronous operation substantially
faster than async.

In sync modes, “special” characters divide the data into
“messages.” Figure 5-2 shows how the transmitter sends
some minimum number of agreed-upon “sync characters”
between messages. When a synchronous receiver begins
toreceive a message, it typically starts in a “search mode”
inwhich itsamples successive bits into its serial-to-paraile!
shift register. It does this until the last N bits match a
defined sync pattern. Then the Receiver enters a mode in
which it simply captures each succeeding group of bits as
a character.

LC
I {C
1

UL

SYN SYN 8TX ETX
-+~ Data -~ 03

(16) (16) 02)

May be SYNs, Mark, SYN
CRC Space, or Not Driven " (1) ™" (ley

Figure 5-2. Character Oriented Synchronous Data

5-2

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLa5

Z16C32 lUSC™
USER'S MANUAL

Most sync protocols require the receiving station to vali-
date the sync pattern match. It can do this by checking
whether the next character is another sync, an agreed-
upon “start of message” character, or perhaps one of a
small set of such characters. This validation can be done
by software or by hardware.

Almost all character-oriented synchronous protocols also
define one or more characters, or sequences of charac-
ters, to mark the end of a message. Instead of (or some-
times besides) parity checking on each character, syn-
chronous protocols will typically include a checking code
covering most or all the characters in each message. The
transmitter accumulates and sends this code before or
after the end-of-message character or sequence. Early
sync protocols used a Longitudinal Redundancy Charac-
ter (LRC) that was simply the parallel Exclusive Or of the
characters in the message. Newer protocols use various
kinds of Cyclic Redundancy Checking (CRC), which offer
greater reliability in exchange for a somewhat more in-
volved method of computation. Either kind of message
checking can be computed by either hardware or software
at the Transmitter and Receiver. The IUSC hardware can
automatically generate and check various kinds of CRCs
in synchronous modes.

Synchronous applications vary considerably in terms of
the line state between messages. In half-duplex operation,
each station typically stops driving the line after the end of
amessage. The other side then starts driving it to “turn the
line around.” In full-duplex point-to-point environments, a
transmitter may send a stream of repeated Sync or Idle
characters between messages. This maintains synchroni-
zation between itself and the remote receiver as to charac-
ter boundaries. This avoids the need to send several sync
characters before the start of the next message, when it
becomes available for transmission. In other full-duplex
environments, the line may be maintained at a constant
Mark or Space between messages.

While many modes have several variants, the top level of
the IUSC's control hierarchy includes the following character
oriented synchronous modes. In Monosync mode, the
hardware transmits or matches a sync character of eight
bits or less. Software must handle further receive-sync
validation. In Bisync mode the hardware transmits or
matches a minimum of two sync characters. The two can
be the same or different codes, each of eight bits or less.
Transparent Bisync mode is similar to Bisync mode except
that the prefix character Data Link Escape (DLE) precedes
control characters. This allows the transmission of arbi-
trary "binary” data without conflict with the various controf
characters. Slaved Monosync mode applies only to the
Transmitter, making it operate in conformance with the
X.21 standard, such that it sends characters in byte-
synchronism with those received. External Sync mode
applies only to the Receiver, and leaves all sync-detection
and framing control to external circuitry. An input signal
simply enables the Receiver to assemble characters from
the RxD line.

The final character-oriented synchronous mode of the
IUSC provides basic facilities for IEEE 802.3 (Ethernet)
operation. At the start of a frame, the Transmitter gener-
ates, and the Receiver detects, a preamble consisting of
alternating 0 and 1 bits ending with two 1's in succession.
Biphase-level data encoding must be selected in the
Transmit and Receiver Mode Registers (TMR and RMR),

" as described in Chapter 4. External hardware must be

provided to detect collisions and to signal the Transmitter
when they occur. External hardware also must signal the
Receiver whenaframe ends based on loss of carrier. Upon
collision detection, “back-off" timing must be determined
by external hardware or host processor software.

5-3

UMO014001-1002

Gayle Gamble
UM014001-1002

N 205

216C32 IUSC™
USER'S MANUAL

5.4 BIT ORIENTED SYNCHRONOUS MODES

As character-oriented synchronous protocols came into
wider use in the 1960’s and 70's, the number of characters
having special significance for the hardware kept increas-
ing. Hand in hand with this, the complexity of the required
hardware processing and state machines rose drastically.
Particularly troublesome was data “transparency,” the
ability to transmit any kind of “binary” data without conflict
with the various control characters used in these protocols.

These problems might be less severe were they occurring
today. But given the technology available inthe 1960's, the
proliferation of sync protocols was making it harder and
harder to build general purpose datacom hardware. In-
stead, one had to build dedicated communications con-
trollers for each protocol

Bit oriented synchronous protocols were a response to
these problems. IBM's SDL.C was the first one widely used;
subsequent standardization efforts added several refine-
ments in defining HDLC. These protocols simultaneously
minimized the amount of required hardware support, while
lifting all restrictions on the content of the data transmitted.
Figure 5-3 shows how in bit-oriented modes, a 'frame" is a
group of sequential characters, ending witha CRC code to
verify its correctness as in character-oriented protocols.
The difference lies in the Flag sequences used to begin,
end, and separate frames.

When a bit-oriented synchronous Receiver starts to re-
ceive a frame, it looks for a Flag sequence (01111110} just
as a character-oriented synchronous Receiver looks for its
sync character. While sending a frame, a bit-oriented
synchronous Transmitter continually checks whether any
sequence of data bits could look like a Flag. It does this
without regard for character boundaries. Whenever the
data presented to a Transmitter includes a zero followed
by five ones, the Transmitter adds an extra zero-bit after
the fifth one-bit. Correspondingly, a bit-oriented synchro-
nous Receiver monitors the serial data stream within a
frame; any time it sees 0111110, regardless of character
boundaries, it deletes the trailing zero

This relatively simple technique allows transmission of any
kind of data and assures uniqueness of the Flag sequence
within the data stream. (Uniqueness is assured as long as
line errors do not occur.) This makes for simpler hardware
than with some character-oriented synchronous proto-
cols, in that the hardware only has to recognize a few bit
sequences. They include 0111111 for zero-bit-stuffing by
a Transmitter, 0111110 for bit removal by a Receiver, a
Flag sequence, and finally an Abort sequence. An Abort is
a zero followed by more consecutive ones than in a Flag
(e.g., seven or more ones).

5-4

UMO014001-1002

Gayle Gamble
UM014001-1002

N 205

216C32 [USC™
USER'S MANUAL

As mentioned in the previous chapter, SDLC/HDLC proto-
cols match up well with NRZI-Space encoding to ensure
data transitions for clock resynchronization. This is be-
cause the Transmitter inverts NRZ|-space data for every
0-bit and there are never more than five 1-bits in succes-
sion within a frame.

Finally, since the Flag-matching hardware operates with-
outregard for character boundaries, bit-oriented synchro-
nous protocols can handle frames that are any number of
bits in length. (In character-oriented synchronous proto-
cols, messages must be composed of an integral number
of characters.)

- Frame

The IUSC can handle most variations of SDLC and HDLC
protocols, since it leaves the details of almost all such
variations to the host software. One variation with hardware
significance is Loop mode. In this mode, the Transmitter
can forward received data from the “preceding” station in
a loop of stations to the “next” one in the loop. When this
station has a frame to send, host software can load the start
of the frame into the TxFIFO and then enable the Transmit-
ter. The Transmitter then waits until it detects the transmit-
permission token called Go Ahead, which is the same as
the short-Abortsequence 01111111inHDLC/SDLC mode.
The Transmitter then changes this character to a Flag and
begins transmitting.

{5
10N \I - II
{f

U | U

Flay > > Fla < May be Flags, Mark, Fla -
78 Data Q‘ a8 Space, or Not Driven @ Data
o
Suppose that the Data presented to the Transmitter includes:
1110%00¢
yy100111
The Data actually sent will include:
x01111101001y
Extra 0-bit inserted by Transmitter,
deleted by Receiver
Figure 5-3. HDLC/SDLC Data
5-5

UMO014001-1002

Gayle Gamble
UM014001-1002

N 205

216C32 IUSC™
USER'S MANUAL

5.5 THE MODE REGISTERS (CMR, TMR AND RMR)

Three Mode registers control the basic operation and
serial protocol of the IUSC's Transmitter and Receiver.

The Channel Mode Register (CMR) selects among the
various communication protocols mentioned in the pre-
ceding sections. Figure 5-4 shows that the MS byte con-
trols the mode of the Transmitter, while the LS byte controls
that of the Receiver. Software can select the modes of the
two modules independently by writing bytes tothe CMR or,
ona 16-bit bus, it can set both modes simultaneously using
a 16-bit write.

Within each byte, the four LS bits select the major commu-
nications protocol. The coding for these fields is simitar but
not identical because some modes apply only to the
Transmitter while others apply only to the Receiver:

Zilog reserves values shown above as “—" for use in future
USC family members; they should not be programmed in
the indicated field.

Later sections describe each of these modes and proto-
cols individually, including the significance of the Tx and
RxSubMode bits (CMR15-12 and CMR7-4 respectively) in
each case. The various major modes use the SubMode
bits differently, to control protocol variations and options
that are specific to each mode. (Sometimes the same
SubMode option applies to two or more related major
modes.)

The TxMode field shouid be changed only while the
Transmitter is disabled inthe TMR, as described in the next
section. Similarly, the RxMode field should be changed
only while the Receiver is disabled in the RMR. While it is
possible to change the TxSubMode or RxSubMode fields
while the Transmitter or Receiver is operating, the options
provided by these fields are typically static in nature and
the need to change them should seldom arise.

The Transmit and Receive Mode Registers (TMR and
RMR) contain basic control information for the Transmitter
and Receiver, including the serial format and data-integ-
rity checking. Figures 5-5 and 5-6 show the TMR and RMR
respectively.

TxMode RxMode
Value (CMR11-8) (CMR3-0)
0000 Asynchronous Asynchronous
0001 — External Sync
0010 Isochronous Isochronous
0011 Async w/Code V. Async w/Code V.
0100 Monosync Monosync
0101 Bisync Bisync
0110 HDLC/SDLC HDLC/SDLC
0111 Transp. Bisync Transp. Bisync
1000 Nine-Bit Nine-Bit
1001 802.3 (Ethernet) 802.3 (Ethernet)
1010 — —
1011 — —
1100 Slaved Monosync —
1101 — —
1110 HDLC/SDLC Loop —
1111 — —

5-6

UMO014001-1002

Gayle Gamble
UM014001-1002

2T Z16C32 lUsC™
@ USER'S MANUAL
TxSubMode TxRMode RAxSubMode RxMode
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1]
Figure 5-4. The Channel Mode Register (CMR)
TxEncode TxCRCType Tgcml:!tc T!)E(S:bc Ta’:gsdc TxParType E’:‘F;i' TxLength TxEnable
15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0
Figure 5-5. The Transmit Mode Register (TMR)
RxDecode RXCRCType Ré%ﬁc RESS,C QAbort| RxParType Fé’[‘:;%’ RxLength RxEnable
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

Figure 5-6. The Receive Mode Register (RMR)

5.5.1 Enabling and Disabling the Receiver
and Transmitter

The TxEnable and RxEnable fields (TMR1-0 and RMR1-
0) enable and disable the Transmitter and Receiver to
send and receive serial data. 00 in TxEnable disables the
Transmitter, sothatit keeps its outputinactive and does not
transfer characters from the TxFIFO to its shift register.
Assuming that the TxDMode field (IOCR7-6) is 00 to
propagate the Transmitter’s output onto TxD, the pin is a
constant Mark/MHighif the MS bit of the TxIdle field (TCSR10)
is 1 and/or the TxEncode field (TMR15-14) is 000 indicat-
ing NRZ data. If TxDMode is 00, TCSR10is 0, and TxEncode
is non-zero, the TxD pin carries encoded ones.

If software changes TxEnable to 00 while the Transmitter is
sending a character, it discards the character and dis-
ables its output immediately. Similarly, 00 in RxEnable
disables the Receiver: it ignores the RxD pin and does not
assemble characters. If software changes this field to 00
while the Receiver is assembling a character, it discards
the partial character.

01 in TxEnable or RxEnable disables the Transmitter or
Receiver in a more “graceful” way than 00. If software
changes TxEnable to 01 while the Transmitter is sending
asynchronous data, it finishes sending the current charac-
ter before going inactive. If software changes TxEnable to
01 while the Transmitter is sending synchronous data, it
finishes sending the current frame or message before
going inactive. If software changes RxEnable to 01 while

the Receiver is receiving asynchronous data, it finishes
assembling the current character before going inactive. If
software changes RxEnable to 01 while the Receiver is
receiving synchronous data, it finishes receiving the cur-
rent frame or message before going inactive.

10 in TxEnable or RxEnable enables the Transmitter or
Receiver unconditionaily.

11in TxEnable places the Transmitter under the control of
the /CTS pin. /CTS should be programmed as an input in
the CTSMode field of the Input/Output Control Register
(IOCR15-14). In this case, the Transmitter only starts
sending a character when /CTS is low. If /CTS goes high
while the Transmitter is sending a character in an async
mode, it finishes sending the character before going
inactive. In any synchronous mode, /CTS high summarily
disables the Transmitter. In either case, sooner or later,
{CTS high forces TxD to Mark or ones as described above
for TxEnable=00.

11in RxEnable places the Receiver under the control of the
/DCD pin. /DCD should be programmed as an input in the
DCDMode field of the Input/Output Control Register
(IOCR13-12). The Receiver ignores the RxD pin and does
not assemble characters when /DCD is high. If /DCD goes
high while the Receiver is assembling a character in
External Sync mode or 802.3 (Ethernet) mode, it finishes
assembling the character and places it in the RxFIFO
before going inactive. In any other mode the Receiver
discards any partial character when /DCD goes high.

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLaB

Z16C32 lUSC™
USER'S MANUAL

5.5.2 Character Length

The TxLength and RxLength fields (TMR4-2 and RMR4-
2) control how many bits the Transmitter sends and the
Receiver assembles in each character. The {USC inter-
prets both fields as follows:

xMR4-2 Character Length
000 8 bits
001 1 bit
010 2 bits
011 3 bits
100 4 bits
101 5 bits
110 6 Dits
111 7 bits

When TxLength specifies less than eight bits, the Transmit-
ter discards/ignores one or more of the more-significant
bits of each byte that it takes from the TxFIFO.

When RxLength specifies less than eight bits, the Receiver
replicates the most significant received bit in the more
significant bits of each byte it places in the RxFIFO. For
Async mode, itincludes areceived Parity bit, if any, in each
data byte. If RxLength, plus the Parity bit if any, is less than
eight bits, the Receiver fills out the more-significant bits of
each byte with the Stop bit, which is 1 except when there
is a Framing Error.

When RxLength is less than eight in synchronous modes
including HDLC/SDLC, the Receiver fills out the more
significant bits of each byte with the last received bit (the
parity bit if one is used), except in three cases:

1. In Monosync and Bisync modes, when CMR4 is 1 so
that sync characters are 8 or 16 bits long, but data
characters contain less than eight bits, each data
character is left-justified in its byte.

2. |nHDLC/SDLC mode, when CMR5-4 are non-zero so
that address and control characters are eight bits long
but subsequent characters are less than eight bits
long, each subsequent character is left-justified in its
byte.

3. In HDLC/SDLC mode, if the frame does not end on a
character boundary, its final data bits are left-justified
within the (right-justified) number of bits specified by
RxLength, unless case 2 aiso applies, in which case
they are left-justified in the last byte. (The number of
bits in the last character of each HDLC/SDLC frame is
always indicated in the RxResidue field of the RCSR.)

In any of these three cases of left-justified data, the less-
significant bits are left over from the previous character.

If software enables parity checking in an asynchronous
mode, the Transmitter and Receiver handle the parity bit
as an additional bit after the number of bits defined by
TxLength and RxLength. If software selects parity check-
ing in a synchronous mode, the Transmitter and Receiver
handle the parity bit as the last of the number of bits
specified by TxLength and RxLength.

Software should reprogram RxLength only while the Re-
ceiver is either disabled, in Hunt state in a synchronous
mode, or between characters in an asynchronous mode.
Software can reprogram TxLength at any time, but a new
length takes effect only when the Transmitter loads the
next character into its shift register.

5.5.3 Parity, CRC, Serial Encoding

Alater section of this chapter, 'Parity Checking', discusses
how bits 7-5 of the TMR and 8-5 of the RMR control parity
checking. Similarly, the later section 'Cyclic Redundancy
Checking' describes how bits 12-8 of the TMR and bits 12-
9 of the RMR control CRC checking.

The TxEncode and RxDecode fields (TMR15-13 and
RMR15-13) specify how the Transmitter encodes serial
dataonthe TxD pin and how the Receiver decodesitonthe
RxD pin. See Chapter 4 for a full description of the following
encodings:

xMR15-13 Data Format
000 NRZ
001 NRZB
010 NRZI-Mark
011 NRZI-Space
100 Biphase-Mark
101 Biphase-Space
110 Biphase-Level
111 Differential Biphase-Level

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2La5

Z16C32 Jusc™
USER'S MANUAL

5.6 ASYNCHRONOUS MODE

Software can select classic asynchronous operation for
both the Transmitter and the Receiver, by programming
the TxMode and RxMode fields (CMR11-CMR8 and CMR3-
CMRO respectively) to 0000. The eariier Figure 5-1 shows
how a “0" Start bit precedes each character and a "Stop
bit" follows each, the latter being a “1” condition that is
more than 1/2 bit time long. The idle state of the line is 1,
and the Transmitter and Receiver divide their input clocks
by 16, 32, or 64 to arrive at the nominal bit time.

Software can make the Transmitter calculate and send a
parity bit with each character and can make the Receiver
check such parity bits, as described in the later section
‘Parity Checking'.

The two more significant TxSubMode bits (CMR15-14)
control the minimum number of Stop bits that the Transmit-
ter sends between consecutive characters. The Transmit-
ter interprets them as follows:

CMR15-14 Minimum Length of Tx Stop
00 One bit time
01 Two bit times
10 One, “shaved” per CCR11-8
11 Two, “shaved” per CCR11-8

When CMR15 is 1 in this mode, the TxShavel field of the
Channel Control Register (CCR11-8) controls the exact
length of the minimum Stop bit(s). If the 4-bit value in
TxShavel is “n,” then the length of the shaved stop bit is
(n+1)/16 bit times. The following table summarizes the
stop bit possibilities afforded by CMR15-14 and CCR11-
8:

CMR15-14 CCR11-8 Minimum Length of Tx Stop

00 XXX 1 bit time

o1 XXXX 2 bit times

10 0000-0111 1/2 or less: DO NOT USE
10 1000 9/16

10 1001 5/8

10 .1010-1110 11/16 1o 15/16

10 1111 1 (as with CMR15-14=00)

11 0000 17/16
11 0001 9/8
11 0010-1110 19/16t0 31/16

1 11 2 (as with CMR15-14=01)

The two LS bits of the Tx and RxSubMode fields (CMR 13-
12 and 6-4) control the factors by which the Transmitter
and Receiver divide their TXCLK and RxCLK inputs to
arrive at the nominal bit length. The 1USC interprets both
fields as follows:

CMR13-12
& CMR5-4 Nominat Bit Length
00 TxClock or RxClock/16
01 TxClock or RxClock/32
10 TxClock or RxClock/64
11 Reserved, do not program

For the Receiver, choosing a larger divisor makes itsample
the data on RxD more often. This may result in a slightly
better error rate in marginal circumstances. For the Trans-
mitter there is no significance to the divisor chosen, other
than the convenience of choosing the same value as for the
Receiver, so that the same source can be used for both
RxCLK and TxCLK. (See Chapter 4 for more information
about clock selection.)

Zilog reserves the two MS bits of the RxSubMode field
(CMR7-6) in Asynchronous mode for use in future prod-
ucts. They should always be programmed as 00.

There is no such thing as a “received stop length” param-
eter: the Receiver does not expect or check for a particular
stop bit length. It simply samples the received data at the
nominal midpoint of a single Stop bit, and loads a corre-
sponding Framing Error bit into the RxFIFO with each
character. This bit migrates through the FIFO with its
associated character and eventually appears as the CRCE/
FE bit in the Receive Command/Status Register (RCSR3).
Note that RCSR3 can represent the status at the time that
a character marked with RxBound status was read from
the RxFIFO, or the status of the oldest one or two charac-
ters that are still inthe RxFIFO, as described later in 'Status
Reporting'.

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLaB

216C32 |USC™
USER'S MANUAL

5.6 ASYNCHRONOUS MODE (Continued)

5.6.1 Break Conditions

A Break condition is a period of Space (zero) state on an
Async line, that is longer than the length of a character.
Such a sequence traditionally signals an exceptional con-
dition or a desire to stop transmission in the opposite
direction. Alternatively, a Break may meanthatthe switched
or physical connection with the other station is broken. The
Receiver detects a Break condition when it samples a
supposed Stop bit as Space/zero (a Framing Error) and all
the data bits were also Space/zero. In this case the
Receiver does not place the all-zero character in the
RxFIFO, butinstead sets the Break/Abort bit in the Receive
Command/Status Register (RCSR5). This bit can be en-
abled to cause an interrupt at the start of a Break. If it is
necessary to have an interrupt at the end of a Break,
software can put the receiver in Monosync mode, looking
for an all-ones sync character and Arm the Exited Hunt
condition to flag the end of the Break. After the interrupt,

software has to switch back to async mode and purge the
FIFO. Alternatively, software can tell when the Break ends
by polling the Break/Abort bit. The bit does not go back to
0 until software has written a 1 to the bit to “unlatch” it, and
RxD has gone back to 1/High/Mark.

Software can send a Break by programming the TxDMode
field of the Input/Output Control Register (IOCR7-6) to 10
to force TxD to low/space. Then it can use whatever kind
of timing resources it has available to measure the desired
duration of the Break. After this, it can program TxDMode
back to 11 to force TxD to high/mark or to 00 to resume
normal operation. Chapter 4 describes the lUSC's Counters
and Baud Rate Generators that may be useful intiming the
length of a transmitted Break. While most modern serial
controllers will detect a Break that is only slightly longer
than a character, older conventions required a Break to be
mugch longer: 200 milliseconds or more.

5.7 ISOCHRONOUS MODE

Software can select Isochronous operation for the Trans-
mitter and the Receiver, by programming the TxMode and
RxMode fields (CMR11-8 and CMR3-0 respectively) to
- 0010. This mode is similar to Asynchronous mode as
described above, except that the Transmitter and Re-
ceiver use 1X instead of 16X, 32X, or 64X clocking. This
typically means that an external bit clock must be pro-
vided. Itis possible to use the DPLL to recover a 1X clock,
but this is a lot like what the Receiver does in Async mode

anyway.

Of the options available in the Channel Mode Register for
Async mode, the only one that applies in Isochronous

mode is CMR14. This controls whether the Transmitter
sends one or two stop bits:

CMR14 Length of Tx Stop
0 1 bit time
1 2 bit times

The IUSC does not use the other three bits of the TxSubMode
field in Isochronous mode, nor any of the RxSubMode bits,
but Zilog reserves these bits for functional extensions in
future products. Software should always program them
with zeroes in Isochronous mode on an IUSC.

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2La5

216C32 lusC™
USER'S MANUAL

5.8 NINE-BIT MODE

This mode is compatible with various equipment including
some Intel single-chip microcontrollers. In some contexts
it is called “address wake-up mode.” Software can select
it for the Transmitter and the Receiver by programming the
TxMode and RxMode fields (CMR11-8 and CMR3-0 re-
spectively) to 1000. Operation on the line is similar to
Async mode, using a single stop bit and either eight data
bits or seven data bits plus a parity bit. Following the eighth
(MS) data bit or the Parity bit, an additional bit differentiates
normal data characters from “destination address” char-
acters. Address characters identify which of several sta-
tions on the link should receive the following data charac-
ters. In effect, Nine Bit mode is like a Local Area Network
using asynchronous hardware.

The Transmitter saves TxSubMode bit 3 (CMR15) with
each character as it goes into the TxFIFO, and sends this
bit as that character's address/data bit. By conventiona 0
signifies “data” and a 1 signifies “address.” As software or
the Transmit DMA channel writes each character into the
TxFIFO, the IUSC saves the state of CMR15 with it. This bit
accompanies the character through the FIFO and out onto
the link.

TxSubMode bit 2 (CMR14) selects between eight data bits
or seven data bits plus parity:

CMR14 Data Bits
0 Eight
1 Seven plus parity

The TxParEnab bit in the Transmit Mode Register (TMRS)
must be set to the same value as CMR14.

Typically, Nine Bit receivers check the parity of received
address bytes. This means that when software selects
eight data bits, it must calculate its own parity bit in the MS
bit of addresses.

RxSubMode bit 2 (CMRS6) similiarly controls parity. check-
ing in the Receiver. The RxParEnab bit in the Receive
Mode Register (RMR5) must be set to the same value as
CMR6. As 0O disables parity checking on data bytes,
allowing all 8 bits to be used for data. A 1 enables parity
checking on data bytes. Address bytes are always parity
checked.

Asin Async mode, the two LS bits of the Tx and RxSubMode
fields (CMR13-12 and CMR5-4) control whether the Trans-
mitter and Receiver divide their TxCLK and RxCLK inputs
by 16X, 32X, or 64X to arrive at the nominal bit length. See
the preceding Async section for the field encodings and a
discussion of the significance of this choice.

The Receiver sets the RxBound status bit for a received
address character, that is, a character that has its ninth bit
equal to 1. This bit accompanies the character through the
RxFIFO and ends up in the Receive Command/Status
Register (RCSR4). Note that this mode uses the RxBound
indicator quite a bit differently from other modes, in that it
marks the start of each received block rather than the end.
Because of this, some of the mechanisms associated with
RxBound, that are described in later sections, are not of
much use in Nine-Bit mode. For example, you probably
would not want to store a Receive Status Block for an
address character.

The IUSC does not use the MSbit of the RxSubMode field
(CMR7-6) in Nine Bit mode, but Zilog reserves this bit for
future enhancements and software should program them
as 00 in this mode.

UMO014001-1002

Gayle Gamble
UM014001-1002

N 205

71632 USC™
USER'S MANUAL

5.9 EXTERNAL SYNC MODE

Software can select this mode only for the Receiver, by
programming the RxMode field of the Channel Mode
Register (CMR30) as 0001. This value is not defined for the
TxMode field (CMR11-CMR8).

This is the most primitive synchronous mode. To use it,
software must program the DCDMode field of the Input/
Output Control Register (IOCR13-12) to 01, to specify that
the /DCD pin carries a Sync input. External hardware must
provide a low-active signal on this pin, that controls when
the Receiver should capture data. When the external
hardware establishes synchronization and/or data valid-
ity, it should drive /DCD low. The timing should be such that
the IUSC first samples /DCD low at the rising edge of
RxCLK before the one at which it should capture the first
data bit. (Typically RxCLK comes directly from the /RxC
pin in this mode.)

While /DCD stays low the Receiver samples RxD on each
rising edge of RxCLK. Ideally, the external hardware
should negate /DCD such that the [USC samples it high on
the rising RxCLK edge after the one on which it samples
the last bit of the last character. But if /DCD goes high while
the Receiver is in the midst of assembling a received

character, it continues on to sample the remaining bits of
the character and place the character in the RxFIFO.
Because of this, it is OK for /DCD to go high during the last
character, at any time after a hoid time after the RxCLK
edge at which the Receiver samples the first bit of the
character.

Software can make the Receiver check a parity bitin each
character as described in the following section Parity
Checking. Besides or instead of character parity, software
can make the Receiver check a CRC code as described in
the Cyclic Redundancy Checking section.

The IUSC does not use the RxSubMode field (CMR7-4) in
External Sync mode, but Zilog reserves this field for future
enhancements and software should program it as 0000 in
this mode.

UMO014001-1002

Gayle Gamble
UM014001-1002�

AN 2iLaB

Z16C32 UsC™
USER'S MANUAL

5.10 MONOSYNC AND BISYNC MODES

The Binary Synchronous Communications protocol put
forth by the IBM Corporation in the 1960's is often abbre-
viated as "Bisync.” But we will use the latter term more
generally, to mean an IlUSC mode in which the Transmitter
sends, and the Receiver searches or “hunts” for, a Sync
pattern composed of two characters totaling 16 bits or
less. By contrast, we'll use the term “Monosync” to mean
a mode in which the Transmitter sends, and the Receiver
matches, a sync pattern of eight bits or less. Use of Bisync
mode with the two sync characters equal represents a
middle ground, having the advantage that the two-charac-
ter pattern match by the Receiver is more reliable and
secure than the sync match in Monosync mode.

Software can select these modes for the Transmitter and/
or the Receiver, by programming the value 0100 (for
Monosync) or 0101 (for Bisync) into the TxMode and/or
RxMode fields of the Channel Mode Register (CMR11-8
and CMR3-0).

Software can make the Transmitter calculate and send a
parity bit with each character and can make the Receiver
check such parity bits, as described in the 'Parity Check-
ing' section.

In such character-oriented synchronous modes, blocks of
consecutive characters are called "'messages.* Besides or
instead of character parity, software can make the Trans-
mitter calculate and send a Cyclic Redundancy Check
(CRC) code for each message and can make the Receiver
check a CRC in each message, as described later in
'‘Cyclic Redundancy Checking'.

On the transmit side, the Transmitter “concludes a mes-
sage” in either of two situations: when it underruns or after
it sends a character marked with “EOF/EOM" status. The
Transmitter underruns when the TxFIFO is empty and the
transmit shift register needs a new character. Software can
mark a character as the last one of a message directly,
using a command in the Transmit Command/Status Reg-
ister (TCSR), or more automatically by using the Transmit
Character Counter as described in a later section.

The MS bit of the TxSubMode field (CMR15) determines
whether the Transmitter sends a CRC when it concludes a
message because of an Underrun condition. The
TxCRCatEnd bit in the Transmit Mode Register (TMR8)
determines whether it does so when it concludes a mes-
sage because of a character marked as End Of Message.
If CMR15 or TMR8 (as applicable) is 1, the Transmitter
sends the CRC code that it has accumulated while send-
ing the message. If CMR15 or TMR8 is 0, it does not send
a CRC code; if there is any message-ievel checking, it
must be sent like normal data.

After the CRC, or immediately if CMR15 or TMR8 is 0, in
Monosync mode the Transmitter sends the Sync character
in the LS byte of the Transmit Sync Register (TSR7-0). In
Bisync mode it sends the “SYN1” character in TSR15-8 if
CMR14 is 0, while if CMR14 is 1 it sends one or more
character pairs. The Transmitter takes the first character of
each such pair from TSR7-0; by convention it is called
“SYNO." The second character of each pair comes from
TSR15-8 and is called "SYN1."

After sending this closing Sync character or pair, iffwhile
software does not present another message, the Transmit-
ter maintains the TxD signal in the “idle line state” defined
By the TxIdle field of the Transmit Command/Status Reg-
ister (TCSR10-8). If this field is 000, it continues to send
more of the same Sync character or pair that it sent to
terminate the message. Other TxIdle values select con-
stant or alternating-bit patterns, as described later in
'‘Between Frames, Messages, or Characters'.

If the CMR13 bit in the TxSubMode field is 1, the Transmit-
ter sends a “Preamble” before the “opening” sync charac-
ter that precedes each message. Software can select the
length and content of the Preamble in the Channel Control
Register (CCR118). A typical use of the Preamble is to
send a square-wave pattern for bit rate determination by a
phase locked loop.

The Transmitter always sends at least one “opening” Sync
pattern before the first data character of a message (after
the Preambie if any). In Monosync mode it sends one
character from TSR15-8, while in Bisync mode it sends the
“SYNQ” character from TSR7-0 followed by “SYN1" from
TSR15-8. (In Bisync mode an opening Sync sequence is
always a character pair, regardless of CMR14.)

The LS bits of the TxSubMode and RxSubMode fields
(CMR12 and CMR4 respectively) specify the length of the
Sync characters that the Transmitter sends before and
after each message and between messages, and for
which the Receiver hunts. If CMR12 or CMR4 is 1, sync
characters have the same length as data characters,
namely the length specified by the TxLength field in the
Transmit Mode Register (TMR4-2) or the RxLength field of
the Receive Mode Register (RMR4-2). If sync characters
are less than 8 bits long, they must be programmed in the
least significant bits of TSR15-8, RSR7-0 and, for Bisync,
TSR7-0 and RSR15-8. Furthermore, to guarantee that the
Receiver matches such Sync characters, the “unused” MS
bits among RSR7-0 (and for Bisync RSR15-8) must be
programmed equal to the MS active bit.

IfCMR12 0or CMR4 is 0, Sync characters are eight bits fong
regardless of the length of data characters.

UMO014001-1002

5-13

Gayle Gamble
UM014001-1002

N 2\La5

216C32 jusc™
USER'S MANUAL

5.10 MONOSYNC AND BISYNC MODES (Continued)

Ontherecelve side, the CMRS bit of the RxSubMode field
determines what the Receiver does with Sync characters.
InCMR5 is 1, the Receiver strips characters that match the
character in RSR15-8, and neither places them in the
RxFIFO nor includes theminits CRC calculation. (In Bisync
mode, aside from the initial sync match the Receiver treats
characters that match “SYNO” in RSR7-0, but do not match
“SYN1" in RSR15-8, as normal data.) If CMRS5 is 0, the
Receiver places all Sync characters inside a message in
the RxFIFO and includes them in the CRC calculation.

The IUSC does not use the two MS bits of the RxSubMode
field (CMR7-5)inMonosync and Bisync modes, nor CMR14
inthe TxSubMode field in Monosync mode. Zilog reserves
these bits for future enhancements, and software should
always program these bits with zeroes in these modes.

5.11 TRANSPARENT BISYNC MODE

This mode is more specific to the Transparent Mode option
of IBM Corp.’s Binary Synchronous Communications pro-
tocol than is the Bisync mode described above. Software
can select this mode for the Transmitter and the Receiver,
by programming the TxMode and RxMode fields of the
Channel Mode Register (CMR11-8 and CMR3-0) to 0111.

In Monosync and Bisync modes the Sync characters are
programmable, but in this mode the IUSC uses the fixed
characters “DLE" for the first of a sync pair, and “SYN" for
the second of a pair. (Software can make the Transmitter
send only SYNs for closing and idle Syncs.) The LS bits of
the TxSubMode and RxSubMode fields (CMR12and CMR4)
control whether the Transmitter and Receiver use the
ASClI or EBCDIC codes for control characters, with a 1
specifying EBCDIC.

Besides using DLE before an opening and possibly a
closing SYN, the Transmitter can check whether each data
character coming out of the TxFIFQ is a DLE and insert
another DLE if so. This feature allows any kind of data to be
sent “transparently.” The Transmitter does not include
such an inserted DLE in its CRC calculation. Software can
selectively enable and disable this function using the
Enable DLE Insertion and Disable DLE Insertion com-
mands, as described later in the ‘Commands' section. In
general software should enable DLE insertion for sending
data and disable it for sending a control sequence that
starts with DLE. The IUSC routes the state controlied by
these commands through the TxFIFO with each character,
so that software can change the state as needed.

Similarly, in Transparent Bisync mode the Receiver checks
whether each character coming out of its shift register is a
DLE. If so, it sets a state bit. If the next character is also a
DLE, the Receiver does not include it in the RxFIFO nor in
the CRC calculation.

Ifthe character aftera DLE isa SYN, the Receiver excludes
both the DLE and the SYN from the CRC calculation, but
places both characters in the FIFO so that they will appear
in the received data stream.

If the character after a DLE is any of the terminating codes
“ITB," “ETX," “ETB,” "EOT," or “ENQ," the Receiver places
the terminating character in the RxFIFO marked with
RxBound status. As described in later sections, this mark-
ing may set the Received Data Interrupt Pending bit and
thus force aninterruptrequest on the /INT pin, and/or it may
force a DMA request on the /RXREQ pin.

The first “DLE-SOH" or “DLE-STX" inamessage makes the
Receiver enable its CRC generator for subsequent data.
Therefore, the CRC in Transparent Bisync mode covers all
the data after the first DLE-SOH or DLE-STX.

The Receiver does not take any other special action based
on received DLE's.

A Transmitter in Transparent Bisync mode sends a DLE-
SYN pair at the start of a message, but a Receiver in this
mode syncs up to SYN-SYN. This is so that software can
determine “transparency” separately for each message,
by testing whether the first character of the message in the
RxFIFO is a DLE.

The following table shows the ASCII and EBCDIC codes
that a IUSC recognizes in this mode:

ASCIl EBCDIC
Character Code,, Code,,

DLE 10 10
ENQ 05 2D
EOT 04 37
ETB 17 26
ETX 03 03
T8 . 1F 1F
SOH 01 01
STX 02 02
SYN 16 32

5-14

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLa5

716C32 lUSC™
USER'S MANUAL

Given the dedicated nature of the Sync characters, the
Transmitter interprets the three MS bits of the TxSubMode
field similarly to the way it does so in Bisync mode. If
CMR15is 1, it sends a CRC when a Tx Underrun condition
occurs. if CMR14 is 1, the Transmitter sends one or more
DLE-SYN pairs after a message, else it just sends SYNs. If
CMR13 is 1, it sends a Preamble sequence before the
opening Sync at the start of each message.

The same data checking options apply to this mode as in
Monosync and Bisync, but since we're quite protocol-
specific here, we can say that character parity is typically
not used while CRC-16 checking is. While the Receiver

can detect the end of the frame in Transparent Bisync
mode, the Receive Status Block feature can not be used to
capture the CRC Error status of the frame, for reasons
discussed later in the Cyclic Redundancy Checking sec-
tion. But the selective inclusionfexclusion of received data
in the CRC calculation, that is typical of this mode, pre-
cludes the kind of automatic reception that the RSB feature
allows in modes like HDLC/SDLC anyway.

The IUSC does not use the three MS bits of the RxSubMode
field (CMR7-5) in Transparent Bisync mode, but Zilog
reserves these bits for future enhancements and software
should always program them as 000 in this mode.

5.12 SLAVED MONOSYNC MODE

This mode applies only to the Transmitter. Software can
select it by programming 1100 in the TxMode field of the
Channel Mode Register (CMR11-8), while programming
0100 in the RxMode field (CMR3-0) to select Monosync
mode for the Receiver.

The mode is intended to implement the X.21 standard and
similar schemes in which character boundaries on TxD
must align with those on RxD. For this to be meaningful,
RxCLK and TxCLK typically come from the same source,
as described in Chapter 4.

Most of the setup and operation in this mode is the same
as in Monosync mode, which was described in an earlier
section. CMR15 determines whether the Transmitter sends
a CRC in an Underrun condition. CMR12 selects whether
sync characters are the same length as data characters,
or are 8 bits long.

CMR13 controls the major operating option in Slaved
Monosync mode. (In regular Monosync mode this bit
controls whether the Transmitter sends a Preamble before
each message; in this mode it can not send one.)

The Transmitter will not go from an inactive to an active
state while CMR13 is 0. If CMR13 is 1 when the Receiver
signals that ithas matched a Sync character, the Transmit-
ter sets the OnLoop bit in the Channel Command/Status
Register (CCSR7) and becomes active. That is to say, the
Transmitter can go active at any received Sync character,
notjust one that makes the Receiver exit from “Huntmode."

Once the Transmitter starts, operation is identical with
Monosync mode. The Transmitter sends the Sync charac-
ter from TSR7-0. Then it sends data from the TxFIFO, until
the TxFIFO underruns or until it sends a character marked
as End of Message. Then the Transmitter sends the CRC
if software has programmed that it should do so for this
kind of termination. Finally it sends a Sync character and
checks the CMR13 bit again.

If CMR13 is still 1, the Transmitter waits, sending the
programmed Idle line condition, untif the software triggers
it to send another message. If, however, software cleared
CMR13 to 0 during the message just concluded, or if it
does so while the IUSC is sending the Idle condition, the
Transmitter goes inactive but it leaves OnLoop (CCSR7)
set. In the inactive state it sends continuous ones until
software programs CMR13 back to 1 again, and the
Receiver signals Sync detection.

If all the transmitted and received sync and data charac-
ters are the same length, and the same clock is used for
both the Transmitter and Receiver, this method of starting
transmission assures that transmitted characters startand
end simultaneously with received characters, as required
by X.21.

The IUSC does not use CMR14 in the TxSubMode field in
Slaved Monosync mode, but Zilog reserves this bit for
future enhancements and software should always pro-
gram it as zero in this mode.

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLaB

Z16C32 IUSC™
USER'S MANUAL

5.13 IEEE 802.3 (ETHERNET) MODE

Software can select this mode for the Transmitter and the
Receiver, by programming 1001 into the TxMode and
RxMode fields of the Channel Mode Register (CMR11-8
and CMR3-0).

The IUSC’s capabilities for handtling Ethernet communica-
tions are less comprehensive than those offered by various
dedicated Ethernet controflers. In particular, external hard-
ware must detect collisions and generate the pseudo-
random “backoff” timing when a collision occurs.

In Ethernet parlance, blocks of consecutive characters are
called frames rather than messages.

Since Ethernet is a relatively specific, well-defined proto-
col we can define the proper settings for many of the
IUSC's register fields and options. We can specify the
exact values that software shouid program into the Trans-
mit Mode Register (D703,,) and Receive Mode Register
(D603,,). These values specify Biphase-Level encoding, a
32-bit CRC sent at End of Frame, no parity, and 8-bit
characters, all according to Ethernet practice and IEEE
802.3. In addition, the two LS bits specify auto-enabling
based on signals from external hardware on /CTS and
/DCD.

Onthetransmitside, software should program the TxPrel
and TxPrePatfields of the Channel Control Register (CCR11-
8) to 1110. This value makes the Transmitter send the 64-
bit Preamble pattern 1010... before each frame. In 802.3
mode the Transmitter automatically changes the 64th bit
from O to 1 to act as the “start bit.”

Furthermore, software should program the TxIdle field of

the Transmit Command/Status Register (TCSR10-8)to 110
or 111. These values select an Idie line condition of

/DCD '\

constant Space or Mark. This condition, in turn, allows
external logic to detect the missing clock transition in the
first bit after the end of the CRC, and turn off its transmit line
driver. (In a low-cost variant, such an Idle state can simply
disable an open-collector or similar unipolar driver.) An-
other alternative is to use the Tx Complete output on /TxC
or PORT?7 to control the driver.

External logic must detect collisions that may occur while
the IUSC is sending, and signal the Transmitter by driving
the /CTS pin high when this occurs. Besides the auto-
enable already noted for TMR1-0, software should write
the CTSMode field of the Input/Output Control Register
(IOCR15-14) as Ox to support this use of /CTS.

As in other synchronous modes, the MS bit of the
TxSubMode field (CMR15) controls whether the Transmit-
ter sends its accumutated CRC code ifa Transmit Underrun
condition occurs.

Onthe receive side, external logic should monitor the fink
and drive the /DCD pin low when it detects carrier. Figure
5-7 shows the relationship between an Ethernet frame on
RxD and the signal on /DCD. Besides the auto-enable
already noted for RMR1-0, software should program the
DCDMode field of the Input/Output Control Register
(IOCR13-12) as 01 to select the mode of the /DCD pin.

After /DCD goes low, the Receiver hardware hunts for 58
alternating bits of preamble, with the final 0 changed to a
1 as a “start bit.” When it finds this sequence it starts
assembling data and may check the Destination Address
in the frame as described below.

\VaVaV,V.
001 0 1 1.

1 0 1 Qseed

A

el

At least 58 16- or 48-Bit Source Address, Length, 32-Bit
Alternating Bits Destination Information CRC
Address
Carrier Start Bit Carrier

Detection

Loss

Figure 5-7. Carrier Detection for a Recelved Ethernet Frame

5-16

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2La5

216C32 lusc™
USER'S MANUAL

After a frame, the external hardware should drive /OCD
high sothat it sets up to the rising RxCLK edge after the one
atwhich it samples the last bit of the CRC. In this mode and
External Sync mode only among synchronous modes, if
/DCD goes high while the Receiver is in the midst of
assembling a character, it continues on to sample the
remaining bits of the character and place the character in
the RxFIFO.

The receiver marks the character that was partially or
completely assembled when /DCD went high with RxBound
status in the RxFIFO. As described in later sections, this
marking may set the Received Data Interrupt Pending bit
and thus force an interrupt request on the /INT pin, and/or
it may force a DMA request on the /BxREQ pin.

The LS bitof the RxSubMode field (CMR4) controls whether
the Receiver checks an Address field at the start of each
frame. If CMR4 is 0, the Receiver places all received
frames in the RxFIFO and leaves address-checking to the
software. (Some contexts call this “promiscuous mode.”) If
CMR4 is 1, the Receiver compares the first two characters

(16 bits) of each frame to the contents of the Receive Sync
Register (RSR). It compares RSRO to the first bit received,
and RSR15 to the last bit, regardless of any “Select Serial
Data MSB First” commands that the software may have
written to the RTCmd field (CCAR15-11). The Receiver
ignores the frame unless the address matches, or unless
the first 16 bits are all ones, which indicates a frame that
should be received by all stations. The Receiver places the
address in the RxFIFO so that the software can differenti-
ate “locally addressed” frames from “global” ones.

Except in the CRC, characters (“octets”) are sent LS bit
first. The Length field that follows the Destination and
Source Address fields is sent MS byte-first. IEEE 802.3
does not include any other byte ordering information.

The IUSC does not use the three LS bits of the TxSubMode
field (CMR14-CMR 12} in 802.3 mode, nor the three MS bits
of RxSubMode (CMR7-CMR5), but Zilog reserves these
bits for future enhancements. Software shouid always
program them with zeros in this mode.

5.14 HDLC/SDLC MODE

Software can select this mode for both the Transmitter and
the Receiver, by writing 0110 to the TxMode and RxMode
fields of the Channel Mode Register (CMR11-CMR8 and
CMR3-CMRO).

In some sense this is the mostimportant mode of the IUSC,
at least for new designs. It is similar to character-oriented
synchronous modes in that data characters follow one
another on the serial medium without any extrafoverhead
bits, and are organized into blocks of data with CRC
checking applied to the block as a whole.

For HDLC and SDLC, the blocks of data are called *frames".
Uniquely recognizable 8-bit sequences called ‘Flags’,
consisting of 01111110, precede and follow each frame.
HDLC/SDLC protocols ensure the uniqueness of Flags,
without imposing any restrictions on the data that can be
transmitted, by having the Transmitter insert an extra O bit
whenever the last six bits it has sent are 011111. A
Receiver, inturn, removes such an inserted zero bit when-
ever it has sampled 0111110 in the last seven bit times.

Besides Flags, HDLC and SDLC define another uniquely
recognizable bit sequence called an "Abort", consisting of

a zero followed by seven or more consecutive ones.
Depending on the exact dialect of HDLC or SDLC, and the
security desired in communicating an Abort, software can
program the Transmitter to send Aborts consisting of a
zero followed by either seven or 15 consecutive ones.

On the Transmit slde, the two MS bits of the TxSubMode
field (CMR15-CMR14) control what the Transmitter does if
a Transmit Underrun condition occurs, that is, if it needs
another character to send but the TxFIFO is empty:

CMR15-CMR14 Underrun Response
00 Send an Abort consisting of
o1111111
[0} Send an Abort consisting of a zero
followed by 15 consecutive ones
10 Send a Flag
i1 Send the accumulated CRC

followed by a Flag, that is, make
the data transmitted so far into a
proper frame.

UMO014001-1002

Gayle Gamble
UM014001-1002

O 205

Z16C32 lusC™
USER'S MANUAL

5.14 HDLC/SDLC MODE (Continued)

After sending the sequence specified by this field, the
Transmitter sends the next frame if software or the Transmit
DMA channel has placed new data in the TxFIFO. Other-
wise it sends the Idle line condition specified by the TxIdle
field of the Transmit Command/Status Register (TCSR10-
TCSR8), asdescribed later in'Between Messages, Frames,
or Characters'. That section also describes the conditions
under which the Transmitter will combine the closing Flag
of one frame, and the opening Flag of the next, into a single
8-bit instance. Furthermore, the same section describes
the feature of a Z16C32 whereby software can ensure that
a programmable minimum number of Flags is sent be-
tween frames.

Software can make the Transmitter send an Abort se-
quence at any time, by writing the “Send Abort" command
to the TCmd field of the Transmit Command/Status Regis-
ter (TCSR15-12). If CMR15-14 is 01 as described above,
the Transmitter sends an extended Abort when software
issues this command; otherwise it sends the shorter Abort
sequence.

If CMR13 is 1, the Transmitter sends the Preamble se-
quence defined by the TxPrel and TxPrePat fields of the
Channel Control Register (CCR11-8), before it sends the
opening Flag of each frame.

if the TxIdle field (TCSR10-8) is 000 to select Flags as the
idle line condition, CMR12 selects whether consecutive
idle Flags share a single intervening 0. If CMR12 s 1, the
idle pattern is 011111101111110..., while if CMR12is O it
is 01111110 01111110... A Flag that opens or closes a
frame never shares a zero with an idle-line Flag, even if
CMR12is 1.

On the Receive side, when the receiver detects the
closing Flag of a frame, it marks the preceding (partial or
complete) character with RxBound status in the RxFIFO.
As described in later sections, this marking may set the
Received Data Interrupt Pending bit and thus force an
interrupt request onthe /INT pin, and/or it may force a DMA
request on the /RxREQ pin.

The receiver automatically copes with single Flags be-
tween frames, and with shared zeroes between Flags, as
described above for the transmit side.

5.14.1 Received Address and Control Field
Handling

The RxSubMode field in the Channel Mode Register (CMR7-
4) determines how the Receiver processes the start of
each frame, i.e., whether it handles Address and/or Con-
trol fields. To the extent that the Receiver handles Address
or Control field(s), it does so in multipies of 8 bits. Thereaf-
ter it divides data into characters of the length specified by
the RxLength field of the Receive Mode Register (RMR4-
2). The Receiver interprets this field as described below.

un

(An “x" in a bit position means the bit does not matter.)

CMR7-4 Address/Control Processing

xx00 The Receiver does not handle an Address or
Control field. It simply divides all the data in
received frames into characters per RxLength

and places them in the RxFIFO.

The Receiver checks the first eight bits of each
frame as an address. Ifthey are allones or if they
match the contents of the LS byte of the Receive
Sync Register (RSR7-0), the Receiver receives
the frame into the RxFIFO, otherwise it ignores
the frame through the next Flag. After placing
the first 16 bits of the frame in the FIFO as two 8-
bit bytes, it divides the rest of the frame into
characters per RxLength.

The Receiver checks an 8-bit address as de-
scribed above. If these bits are all ones or if they
match RSR7-0, the Receiver places the first 24
bits of the frame in the RxFIFO as three 8-bit
bytes, before shifting to dividing characters
according to RxLength.

The Recsiver checks an 8-bit address as de-
scribed above. If these bits are allones or if they
match RSR7-0, the Receiver places the first 32
bits of the frame in the RxFIFO as four 8-bit
bytes, before shifting to dividing characters
according to RxLength.

xx01

x010

x110

5-18

UMO014001-1002

Gayle Gamble
UM014001-1002

N 25La5

21632 [USC™
USER'S MANUAL

CMR7-4 Address/Control Processing
0011

The Receiver processes an Extended Address at
the start of each frame. First it checks_the first
eight bits of the frame as described above. If
these bits are all onesor if they match RSR7-0, as
the Receiver places each eight bits of the ad-
dress into the RxFIFQ, it checks the LS bit. If the
LS bitis 0, it goes on to put the next eight bits into
the RxFIFO as partof the address as well, through
an address byte that has its LS bit 1. Then, the
Receiver places the next 16 bits of the frame into
the RxFIFO as two 8-bit bytes, before shifting to
dividing characters according to RxLength.

The Receiver processes an Extended Address

as described for 0011. If the first eight bits of the -
address are all ones or if they match RSR7-0, the

Receiver places the 24 bits after the extended

address into the RxFIFO as three 8-bit bytes,

before shifting to dividing characters per

RxLength.

The Receiver processes an Extended Address
as described for 0011, and then an “Extended
Control field.” If the first eight bits of the address
are ali ones or if they match RSR7-0, the Receiver
places the next eight bits after the extended
address inthe RxFIFO without examination. Then,
as it stores each subsequent eight bits in the
RxFIFO, the Receiver checks the MS bit. If the MS
bit is 1, it continues to receive more 8-bit bytes,
through one that has its MS bit 0. Thereafter the
Receiver places one more 8-bit byte into the
RxFIFO, before shifting to dividing characters
per RxLength.

This mode differs from that described above for
1011 only in that the Receiver places the 16 bits
after the extended address in the RxFIFO without
examination, before starting to check MS bits for
the end of the “extended Control field.”

0111

1011

111

Note that even though the Receiver can scan through an
Extended Address, it will still only match its first byte. Note
alsothatit matches RSRO against the first bit received, and
RSRY7 against the last bit, regardiess of whether software
has written a “Select Serial Data MSB First” command to
RTCmd (CCAR15-11).

If the RxSubMode field specifies some degree of Address
and Controf checking, that is, if it is not xx00, and a frame
ends before the end of the Address and possibly the
Control field specified by the RxSubMode value, the Re-
ceiver sets a Short Frame bit in the status for the last
character of the frame. This bit migrates through the
RxFIFO with the last character, eventually appearing as

the ShortF/CVType bit in the Receive Command/Status
Register (RCSR8). Note that this bit can represent the
status atthe time that an RxBound character was read from
the RxFIFO, or the status of the oldest one or two charac-
ters that are still in the RxFIFO, as described in a later
section, Status Reporting. Note, however, that this length
checking does not report a problem if a frame ends within
a CRC that follows an address and control field.

If RxLength (RMR4-2) is 000, specifying eight bits per
character, all RxSubMode (CMR7-4) values except xx00
are equivalent aside from short-frame checking.

5.14.2 Frame Length Residuals

The Receiver detects and strips inserted zeroes, Flags,
and Aborts before any other processing, and does not
include these bits/sequences in the RxFIFO nor in CRC
calculations. if the Receiver has assembled a partial
character when it detects a Flag or Abort, it stores the
partial character left-justified in an RxFIFO entry. (That is,
in the MS bits of the byte, regardless of RxLength.) The
Receiver saves the number of bits received in the last byte
in the RxResidue field of the Receive Command/Status
Register (RCSR11-8). RxResidue remains available until
the end of the next received frame. Software can use the
Receive Status Block feature as described in a later
section, to store the RCSR in memory, which reduces
processing requirements still further.

Conversely, to send a frame that does not contain an
integral number of characters, software must ensure that
the number of bits in the last character of the frame is
written into the TxResidue field of the Channel Command/
Status Register (CCSR4-2). This must happen before the
Transmitter takes the last character out of the TxFIFO.

Figure 5-9 shows the CCSR. The Transmit Control Biock
feature can be used to set the TxResidue value for each
block under DMA control, without intervention by proces-
sor software. The active bits of a partial character must be
right-justified, that is, they must be the LS bits of the last
character. If the TxParEnab bit in the Transmit Command/
Status Register (TCSRS5) is 1 specifying parity generation,
for a partial character the Transmitter sends the parity bit
after the number of bits specified by TxResidue, while in
other characters the parity bit is the last one of the charac-
ter length specified by TxLength (TMR4-TMR2).

The encoding of RxResidue and TxResidue is as for
RxLength and TxLength: 000 specifies that the last char-
acter contains eight bits, while 001-111 specify one to
seven bits respectively.

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLa5

216C32 JusC™
USER'S MANUAL

5.14.3 Handling a Received Abort

The Z16C32 can report a received Abort sequence to
software in two separate ways. The later section ‘Status
Handling' will note that the IUSC sets the Break/Abort bit
in the Receive Command/Status Register (RCSRS5) when it
recognizes an Abort sequence. This notification is not tied
to a specific point in the received data stream.

The same section will also note that, if the QAbort bit in the
Receive Mode Register (RMR8) is 1, the Z16C32 queues
Abort conditions through the RxFIFO. From there, they
eventually appear as the Abort/PE bit (RCSR2) of the last
character of the frame—the one that has RxBound (RCSR4)
setto 1. (If QAbortis 0, the IUSC uses this bit in the RxFIFO
and RCSR for Parity Error indication.)

With other devices, software typically handles Abort con-
ditions by enabling an interrupt when one is detected, and
atthat pointignoring/purging all received data and forcing
the receiver into Hunt mode for the next frame.

With the Z16C32, software can handle Aborts more effi-
ciently/elegantly by setting QAbort to 1 and using the
Receive Status Block feature to store the RCSR status in
memory for each frame, as described in the later section
'‘Receive Status Blocks'. Software can then examine this
status word for each “frame”; any one that has Abort/PE set
is not a proper frame in that it ended with an Abort
sequence rather than a Flag.

5.15 HDLC/SDLC LOOP MODE

This mode applies only to the Transmitter. Software can
select it by programming the TxMode field of the Channel
Mode Register (CMR11-CMR8) as 1110 while program-
ming the RxMode field (CMR3-CMRO0) as 0110 to select
HDLC/SDLC mode.

Loop mode is useful in networks in which the nodes or
stations form a physical loop. Except for one station that
actsin a “Primary” or Supervisory role, each must pass the
data it receives from the “preceding"” station to the “follow-
ing” one. The only time that a secondary station can break
out of this echoing mode is when it receives a special
sequence called a “Go Ahead" and it has something to
send.

Again, this is a specific protocol and we can define how
certain other register fields should be programmed for its
intended application. For IBM SDLC Loop compatibility,
software should program the Transmit Mode Register
(TMR) with 6702, .. This enables the Transmitter with NRZI-
Space encoding, 16-bit CCITT CRC, no parity, and 8-bit
characters. Software also should program the Txldle field
in the Transmit Command/Status Register (TCSR10-8)
with 000 to select Flags as the idle line state, and the Ciock
Mode Control Register (CMCR5-0) to select the same
clock source for both TxCLK and RxCLK.

The two MS bits of the TxSubMode field (CMR15-14)
control what the Transmitter does if an Underrun condition
occurs, that is, if it needs a character to send but the
TxFIFO is empty. The available choices are similar to those
in normal HDLC/SDLC mode but the Transmitter has a
wider range of subsequent actions:

CMR15-14

00 The Transmitter sends an Abort (“Go
Ahead”) sequence consisting of a zero
followed by seven consecutive ones, and
then stops sending and reverts to echoing
the data it receives. Zilog does not recom-
mend this option in 1BM SDLC Loop appli-
cations because only the Primary station
should issue a “Go Ahead"sequence (and
aprimary station should be inregular HDLC/
SDLC mode).

o1 Like 00 except that the Abort includes 15
ones.

Response to Underrun

5-20

UMO014001-1002

Gayle Gamble
UM014001-1002

216C32 |USC™

@ 2ilaL USER'S MANUAL
IfCMR13is 0, the IUSC just keeps repeating data, inciud-

CMR15-14 Response to Underrun ing the “GA." If CMR13 is 1 when the Receiver detects
10 The Transmitter sends Flagsonan Underrun, another “Go Ahead,” the Transmitter changes the last bit
until another frame is ready or until software ~ ofthe GAfrom 110 0 (makingita Flag), sets the LoopSend

clears CMR13to O. bit (CCSR6) and proceeds to start sending data. (If there

1 The Transmitter sends its accumulated CRC IS No data available in the TxFIFQ it keeps sending Flags,

followed by Flags on an Underrun, until
another frame is ready to transmit or until
software clears CMR13 to 0. Zilog does not
recommend this option either, because the
frame format probably has not been met
when there is an underrun.

The CMR13 bit plays a different role when the Transmitter
is first being enabled to “insert this station into the loop,” as
compared to normal operation thereafter. Before software
programs the Channel Mode Register for SDLC Loop
mode and enables the Transmitter, the TxD pin carries
continuous ones. If software initially enables the Transmit-
ter with CMR13 being 0, the part continues to output ones
on TxD. When CMR13 is 1 after software first enables the
Transmitter, the IUSC sends zeroes on TxD until the
Receiver detects a “Go Ahead” sequence (01111111). At
this point the IUSC starts passing data from RxD to TxD
with a 4-bit defay, and sets the OnlL.oop bit in the Channel
Command/ Status Register (CCSR7; see Figure 5-8).

The four-bit-time delay for repeating data includes one
each for the RxD data decoder, the Receiver, the Transmit-
ter, and the TxD data encoder.

OnlLoop remains 1 unless the part is reset or software
programs the TxMode field to a different value. Once
OnLoop is 1 and the IUSC is repeating data from RxD to
TxD, CMR13 controls what the Transmitter does when it
receives a Go Ahead sequence.

otherwise it sends the data in the TxFIFQ.)

When the Transmitter has been sending data and encoun-
ters either a character marked as “EOF/EOM,” or an
underrun condition when CMR15=1, CMR13 determines
how it proceeds. If CMR13 is 1 in either of these situations,
the Transmitter stays active and sends Flags or additional
frames as they become available in the TxFIFO.

If CMR13 is O after the IUSC has sent a closing Flag or an
idle Flag, it clears the LoopSend (CCSR6) bit and returns
to repeating data from RxD onto TxD. Because the Primary
station sends ones between the time it sends the original
GA (Abort) and when it receives a GA (Abort) back, and
any and all intervening stations are repeating these ones,
the repeated ones, combined with the last zero of the last
closing or Idle Flag, constitute a Go Ahead (Abort) to the
next station in the loop.

CMR12 controls whether the Transmitter sends idle Flags
with shared zero bits, as described for normal HDLC/
SDLC mode.

RCCF | RCCF | Clear | DPLL | DPLL | OPLL on | Loop | o
Oviio | Aval | RCCF | Sync | 2Miss | tMiss | PPLLEdSe | oop | Send |Bypass TxResidue Reserved
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Figure 5-8. The Channel Command/Status Reglster (CCSR)
5-21

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLaB

21632 lUSC™
USER'S MANUAL

5.16 CYCLIC REDUNDANCY CHECKING (CRC)

The IUSC will send and check CRC codes only in synchro-
nous modes, namely External Sync, Monosync, Slaved
Monosync, Bisync, Transparent Bisync, HDLC/SDLC,
HDLC/SDLC Loop, and 802.3 modes.

The TxCRCType and RxCRCType fields in the Transmit
and Receive Mode Registers (TMR12-11 and RMR12-11)
control how the Transmitter and Receiver accumulate
CRC codes.

A Q0 in either field selects the 16-bit CRC-CCITT polyno-
mial x'®*+x'2+x5+ 1. INnHDLC, HDLC Loop, and 802.3 modes,
the Transmitter inverts each CRC before sending it, the
Receiver checks for remainders of FOB8,,, and the
TxCRCStart and RxCRCStart bits should be programmed
as 1 to start the CRC generators with all ones. In other
synchronous modes the Transmitter sends accumulated
CRCs normally and the Receiver checks for all-zero re-
mainders.

A 01 in either field selects the CRC-16 polynomial x'6+
x"%+x2+1. The Transmitter sends accumulated CRCs nor-
mally and the Receiver checks for all-zero remainders.
This choice is not compatible with HDLC, HDLC Loop, and
802.3 protocols, and in these modes CRC-16 will not
operate correctly even between USC family Transmitters
and Receivers.

A 10 in TxCRCType or RXxCRCType selects the 32-bit
Ethernet polynomial x324+x26+x24+x224x04x24+x"1+x104
X84 x4+ x5+ x44+x2+x4+1. In HDLC, HDLC Loop, and 802.3
modes, the Transmitter inverts each CRC before transmit-
ting it, the Receiver checks for remainders equal to
C704DD78B,,, and the TxCRCStart and RxCRCStart bits
should be programmed as 1 to start the CRC generators
with all ones. In other synchronous modes the Transmitter
sends CRCs normally and the Receiver checks for all-zero
remainders.

Zilog reserves the value 11 in TxCRCType or RxCRCType
for future product enhancements; it should not be pro-
grammed.

The TxCRCStart and RxCRCStart bits (TMR12 and
RMR12) control the starting value of the Transmit and
Receive CRC generators for each frame or message. AQ

in this bit selects an all-zero starting value and a 1 selects
avalueofallones. INnHDLC, HDLC Loop, and 802.3modes
these bits should be 1.

The Transmitter and Receiver automatically clear their
CRC generators to the state selected by these CRCStart
bits at the start of each frame. The Transmitter does this
after it sends an opening Sync or Flag sequence. The
Receiver does so each time it recognizes a Sync or Flag
sequence (it may be the last one before the first character
of the frame or message). For special CRC requirements,
the Clear Rx CRC and Clear Tx CRC commands give
software the ability to clear the CRC generators atany time.
See the later section Commands for a full description of
these operations.

The TxCRCEnab and RxCRCEnab bits (TMR10 and
RMR10) control whether the IUSC processes transmitted -
and received characters through the respective CRC
generators. A O excludes characters from the CRC while a
1 includes them. The Transmitter captures the state of
TxCRCEnab with each character as it is written into the
TxFIFO, so that software can change the bit dynamically
for different characters.

If the TxCRCatEnd bit (TMR8) is 1 and the TxMode field
(CMR11-8) specifies a synchronous mode, the Transmitter
sends the contents of its CRC generator after sending a
character marked as EOF/EOM. If TxCRCatEnd is O the
Transmitter does not send a CRC after such a character.
(A character can be marked as EOF/EOM if software writes
a command to the Transmit Command/Status Register
(TCSR), or when the Transmit DMA channel or software
writes one or two characters to the TxFIFO so that the
Transmit Character Counter decrements to zero.) Whether
or not it sends a CRC, the Transmitter then sends a Sync
or Flag sequence, depending on the protocol.

In synchronous modes, the MS one or two bits of the
TxSubMode field (CMR15 and in some modes also CMR14)
control whether the Transmitter sends the contents of its
CRC generator if it encounters a Transmit Underrun con-
dition, thatis, if it needs a character to send but the TxFIFO
is empty. Whether or not it sends a CRC, the Transmitter
then sends a Sync or Flag sequence, depending on the
protocol.

5-22

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLaB

Z16C32 Jusc™
USER'S MANUAL

On the receive side, in synchronous modes other than
HDLC/SDLC, HDLC/SDLC Loop, and 802.3, there is a two
character delay between the time the Receiver places
each received character in the RxFIFO and when it pro-
cesses (or does not process) the character through the
CRC generator. Therefore, software can examine each
received character and set RxCRCEnab appropriately to
exclude certain characters from CRC checking, if it can do
so before the next one arrives. The Receiver does not
introduce this delay in HDLC/SDLC, HDLC/SDLC Loop, or
802.3 mode, because in these modes all characters in
each frame should be included in the CRC calculation.

Figure 5-9 shows how a Receiver routes data to the
Receive CRC generator differently in HDLC/SDLC, HDLC/
SDLC Loop, and 802.3 modes than in other synchronous
modes. In these modes, the Receiver shifts each bit from
RxD into the CRC generator when it shifts the bit into its
main shift register. In other sync modes, the Receiver
passes the data through a second shift register located
between the main shift register and the CRC generator.
This second shift register is effectively (RxLength) bits
long, and gives the software time to decide whether to
include each received character in the CRC calculation.

The Receive CRC generator constantly checks whether its
contents are “correct” according to the kind of CRC
specified by the RxCRCType field (RMR12-11). In some
modes this simply means whether it contains an all-zero
value. The CRC generator provides a corresponding Error
output that the Receiver captures in the RxFIFO with each
received character. This bit migrates through the RxFIFO
with each character and eventually appears as the CRCE/
FE bit in the Receive Command/Status Register (RCSR3).
Software should ignore this bit for all characters except the
one associated with the end of each message or frame (it
is almost always 1).

The CRCE bit that is important is the one that reflects the
output of the CRC generator after the Receiver has shifted
the last bit of the CRC into it. But the operating difference
described above affects which character this bit is asso-
ciated with. The Receiver always places the CRC code
itself in the RxFIFO; if RxLength calls for 8-bit characters
the CRC represents either two or four characters. InHDLC/
SDLC or 802.3mode, the CRCE bit associated with the last

character of the CRC is the one that shows the CRC-
correctness of the frame. But in the other synchronous
modes, the CRCE bit of interest is the one with the second
character after the last character of the CRC. This means
that the Receive Status Block feature can not be used to
capture the CRC correctness of received messages in
Transparent Bisync mode.

Note that the CRCE/FE bit can represent the status at the
time that an RxBound character was read from the RxFIFO,
or the status of the oldest one or two characters that are still
in the RxFIFO, as described later in 'Status Reporting'.

Because the Receiver places all the bits of each received
CRC in the RxFIFOQ, the IUSC can be used for CRC-pass-
through applications. This is not true of all serial control-
lers.

RxFIFO
Data In
A A
PO
~ (RxLength)-bit .
St Shift Register S0
(RxLength)-bit |
15" shit Rgtgister SO
i M R
- x CRC
" ¥1718' Generator ET[-
Used in HDLG/SDLC _Used in all
and 802.3 Modes Other Sync modes
\.“;r—
1M
(g =
Flag/Abort X
RxD »] S| Detect Logic, SO}
Inc. Shift Register

o’
.
I

Used in HDLC/
SDLC Mode

Figure 5-9. A Model of the Receive Datapath

5-23

UMO014001-1002

Gayle Gamble
UM014001-1002

0N 2ILaG

Z16C32 IUSC™
USER'S MANUAL

5.17 PARITY CHECKING

The IUSC can handle a Parity bitin each character in either
asynchronous or synchronous modes, although many
synchronous protocols use CRC checking only.

Ifthe TxParEnab bit in the Transmit Mode Register (TMR5)
is 1, the Transmitter creates a parity bit as specified by the
TxParType field (TMR7-6) and sends it with each charac-
ter. Similarly, if the RxParEnab bit (RMRS5) is 1, the Re-
ceiver checks a parity bit in each received character,
according to the RxParType field (RMR7-6).

The IUSC interprets TxParType and RxParType as foliows:

xMR7-6 Type of Parity
00 Even
01 Odd
10 Zero
11 One

For unencoded data, 10/Zero is the same as “Space
parity” and 11/One is the same as “Mark parity.”

TxParEnab and TxParType are “global states” in that the
IUSC does not carry these bits through the TxFIFO with
each character.

In asynchronous modes, the Transmitter and Receiver
handie the parity bit as an additional bit after the number
of bits specified by the TxLength and RxLength fields
(TMR4-2 and RMR4-2). In synchronous modes they handle
the parity bit as the last (most significant) bit of that
number. The Receiver includes a parity bit in the data
characters in the RxFIFO and Receive Data Register
(RDR), except in asynchronous modes with 8-bit data.

inHDLC/SDLC protocolsthe Z16C32's Receiver can queue
either a Parity Error or an Abort indication through the
RxFIFO, but not both. Regardless of the protocol, in order
to have the Receiver check parity, the QAbort bit in the
Receive Mode Register (RMR8) must be 0.

If QAbort is 0, RxParEnab is 1, and the Receiver finds that
the parity bit of a received character is not as specified by
RxParType, it sets a Parity Error bit. This bit accompanies
the character through the RxFIFO, eventually appearing
as the Abort/PE bit in the Receive Command/Status Reg-
ister (RCSR2). The Abort/PE bit can represent a tatched
interrupt bit, or the status at the time that an RxBound
character was read from the RxFIFO, or the status of the
oldest one or two characters that are still in the RxFIFO, as
described in the next section.

5.18 STATUS REPORTING

The mostimportant status reported by the Transmitter and
Receiver is available in the LS bytes of the Transmit and
Receive Command/Status Registers {TCSR and RCSR).
Figures 5-12 and 5-13 show the format of these registers.
It will be helpful to describe some common characteristics
of these status bits before discussing each individually.

When software writes and reads transmit and received
data directly to and from a serial controller, it can read and
write status and control registers as needed to handle the
overall communications process. But the IUSC's inte-
grated DMA channels often handle the data without soft-
ware/processor intervention. Because of this, software
needs other means of controlling the transmit and receive
processes and tracking their status. These means include
the Transmit and Receive Character Counters and the
Transmit Control Block and Receive Status Block features.
Later sections describe these features in considerable
detail. For now we just note that Receive Status Blocks
allow the Receive DMA channel to store a version of the
RCSRinmemory, either with the received data or with DMA
control information. Such stored status differs slightly from
the status in the RCSR.

Software can program the {USC to assert its Interrupt
Request output (/INT) based on certain bits in the TCSR
and RCSR. Chapter 7 covers interrupts in detail; for now
we'll just note that the IUSC typically sets one of these bits
when a specified event occurs or a specified condition
starts. Such a bit typically remains 1 until host software
clears or “unlatches” it by writing a 1 to it. This means that
the IUSC will not request another interrupt for the same
condition until software has written a 1 to the bit. For the two
interrupts that reflect the start of an ongoing condition,
IdleRcved and the “break” sense of Break/Abort, the
Receiver does not clear the RCSR bit until the software has
written a 1 to unlatch the bit, and the condition has ended.

Five of the bits in the RCSR (ShortF/CVType, RxBound,
CRCE/FE, Abort/PE, and RxOver) are associated with
particular received characters. The Receiver queuesthese
bits through the RxFIFO with the characters. The corre-
sponding bits in the RCSR may reflect the status of the
oldest character(s) in the FIFO, or that of the character last
read out of the FIFO, as described in the next few para-
graphs.

5-24

UMO014001-1002

Gayle Gamble
UM014001-1002

Q205

Z16C32 JUsC™
USER'S MANUAL

In order for these queued interrupt features to operate
property, software should set the WordStatus bit in the
Receive Interrupt Control Register (RICR3)to 1 before it (or
the Rx DMA channel) reads data from the RxFIFO/RDR 16
bits at a time, and to 0 before it (or the Rx DMA channel)
reads data eight bits at a time. Note that it is essential for
software to keep WordStatus in the right state, when
changing the |A bits in the LSbyte of the RICR, or when
writing DMA or interrupt threshold values to the MSbyte.

The RxBound, Abort/PE, and RxOver bits actually operate
differently in the RCSR depending on whether software
has enabled each to act as a source of interrupts. If the
Interrupt Arm (lA) bit in the Receive Interrupt Control
Register (RICR) for one of these bits is 1, the IUSC sets the
RCSR bit to 1 when a character having the subject status
becomes the oldest one in the RxFIFO, or the second-
oldest with WordStatus=1, and once one of these bits is 1,
it stays that way until software writes a 1 to it. (The IUSC
does not actually set the Receive Status IP bit torequestan
interrupt for one of these bits, until software or the Receive
DMA channel reads the associated character from RDR.)

For ShortF/CVType and CRCE/FE, and for RxBound, Abort/
PE, and RxOver when the associated 1A bitis O, if the last
time that software or the Receive DMA channel read the
RxFIFO via the RDR, the 1USC provided a character

marked with RxBound status, then these RCSR bits reflect
the status of that character. This is true only until software
reads the (MS byte of the) RCSR, or the Receive DMA
channel stores it in the Receive Status Block, or until
software or the Receive DMA channel reads the RDR
again.

For ShortF/CVType and CRCE/FE, and for RxBound, Abort/
PE, and RxOver when the associated IA bit is O, if the last
time that software or the Receive DMA channel read the
RxFIFQO via the RDR, the character returned (both of the
characters returned) had RxBound=0, or if software has
read the (MS byte of the) RCSR or the Receive DMA
channel has stored it in a Receive Status Block since the
last time either one read the RDR, then the RCSR bit
reflects the status of the oldest character(s) in the RxFIFO,
if any. In this latter case, if the RxFIFO is empty the status
bit is not defined. If the WordStatus bit is 1 in the Receive
interrupt Control Register (RICR3) and there are two or
more characters in the FIFO, the status bit is the inclusive
OR of the status of the oldest two characters in the FIFO.
Otherwise the bit reflects the status of the oldest character
in the FIFO.

Just in case that was not perfectly clear, the flowchart of
Figure 5-11 presents the same information.

5-25

UMO014001-1002

Gayle Gamble
UM014001-1002

. 216C32 IUSc™
N 2iLa5 o

USER'S MANUAL

5.18 STATUS REPORTING (Continued)

Start for RxBound,
Abort/PE, or RxOver.

Provide the state of a latch

; that is set when a character
cor\rlggggl:dti:e A 1 | with this condition becomes
bit in the RICR? > the oldest in the RxFIFO

(or the 2nd-oldest with
WordStatus=1), and is cleared
when SW writes a 1 to this bit.

Start for Short Frame/
CVType or CRCE/FE:

Did the last read
from the RDR have
RxBound = 1?

Has the (MSByte
of the) RCSR been
read since then?

Provide the saved
status of the
RxBound character

None How many
characters are in

the RxFIFO??

What is the
WordStatus bit
(RICR3)?

(The bit is not
defined.)

One

Provide the inclusive
OR of the status of the
two oldest characters
in the RxFIFO

Provide the status of

the oldest character
in the RxFIFO

Figure 5-10. How the IUSC Provides the “Queued” Status Bits in the RCSR

EOQF/
Under Pre Idie | Abort CRC All Tx Tx
TCmd Wait Txidle Sent | Sent | Sent Egﬁ't‘ Sent | Sent]| Under | Empty
15 14 13 12 1" 10 9 8 7 6 5 4 3 2 1 0

Figure 5-11. The Transmit Command/Status Register (TCSR)

5-26

UMO014001-1002

Gayle Gamble
UM014001-1002

QA 2La5

21632 JUsC™
USER'S MANUAL

5.18.1 Detailed Status in the TCSR

PreSent: the Transmitter sets this bit (TCSR7) in a syn-
chronous mode, when it has finished sending the Pre-
amble specified in the TxPrel. and TxPrePat fields of the
Channel Control Register (CCR). The lUSC canrequestan
interrupt when this bit goes from 0 to 1 if the PreSent |A bit
in the Transmit Interrupt Controt Register (TICR7) is 1.
Software must write a 1 to PreSent to unlatch and clear it,
and to allow further interrupts if TICR7 is 1; writing a O to
PreSent has no effect. See the later section Between
Frames, Messages, or Characters for more information on
Preambles.

IdieSent: the Transmitter sets this bit (TCSR6) in any
mode, when it has finished sending “one unit" of the Idle
line condition specified in the TxIdle field in the MS byte of
this TCSR. If the Idle condition is Syncs or Flags as
described later in Between Frames, Messages, or Charac-
ters, the unitis one character or sequence and the flag and
interrupt can recur for each one sent. For any other ldle
condition, the Transmitter sets the flag and interrupt only
once, when it has sent the first bit of the condition. The
IUSC can request an interrupt when this bit goes from 0 to
1 it the IdieSent IA bit in the Transmit Interrupt Control
Register (TICR6) is 1. Software must write a 1 to IdleSent
to unlatch and clear it, and to allow further interrupts if
TICRG is 1; writing a 0 to IdleSent has no effect.

AbortSent: the Transmitter sets this bit (TCSR5) in HDLC/
SDLC or HDLC/SDLC Loop mode, when it has finished
sending an Abort sequence. The IUSC can request an
interrupt when this bit goes from O to 1 if the AbortSent 1A
bit in the Transmit Interrupt Control Register (TICRS) is 1.
Software must write a 1 to AbortSent to unlatch and clear
it, and to allow further interrupts if TICRS is 1; writinga O to
AbortSent has no effect. See the earlier sections HDLC/
SDLC Mode and HDLC/SDLC Loop Mode for more infor-
mation on Abort sequences.

EOF/EOM Sent: the Transmitter sets this bit (TCSR4)in a
synchronous mode, when it has finished sending a closing
Flag or Sync sequence. The IUSC can request an interrupt
when this bit goes from 0 to 1 if the EOF/EOM Sent |A bit in
the Transmit Interrupt Control Register (TICR4) is 1. Soft-
ware must write a 1 to EOF/EOM Sent to unlatch and clear
it, and to allow further interrupts if TICR4 is 1; writing aOhas
no effect. See the later section Between Frames, Mes-
sages, or Charactersfor more information on closing Flags
and Syncs.

CRCSent: the Transmitter sets this bit (TCSR3) in a syn-
chronous mode, when it has finished sending a Cyclic
Redundancy Check sequence. The IUSC can request an
interrupt when this bit goes from O to 1 if the CRC Sent IA
bit in the Transmit Interrupt Controt Register (TICR3) is 1.
Software must write a 1 to CRCSent to unlatch and clear it,
and to allow further interrupts if TICR3 is 1; writing a 0 to
CRCSent has no effect. See the section Cyclic Redun-
dancy Checking for more information on CRC's.

AllSent: this read-only bit (TCSR2) is 0 in asynchronous
modes, white the Transmitter is sending a character.
Software can use this bit to figure out when the last
character of an async transmission has madeg it out onto
TxD, before changing the mode of the Transmitter.

TxUnder: the Transmitter sets this bit (TCSR1) in any
mode, when it needs another character to send but the
TxFIFOis empty. It does this even in asynchronous modes.
The IUSC can request an interrupt when this bit goes from
Oto 1if the TxUnder IA bit in the Transmit Interrupt Control
Register (TICR1}is 1. The Transmitter sets TxUnder one or
two clocks before the current character is completely sent
on TxD. See 'Handling Overruns and Underruns’ fater in
this chapter for further details on how to handle this
condition.

TxEmpty: this read-only bit(TCSRO} is 1 when the TxFIFO
is empty, and 0 when it contains one or more characters.

5-27

UMO014001-1002

Gayle Gamble
UM014001-1002

216C32 USC™

@ il USER'S MANUAL
5.18 STATUS REPORTING (Continued)
ACmd (WO) AxRosidus shortr/| Exited | 1die | Break | Ax [cmcef abort { Ax | Rx
ondBE 1stBE CVType] Hunt | Rcved] /Abort | Bound | /FE /PE Over } Avail
15 14 13 12 1 .10 9 8 7 6 5 4 3 2 1 0

Figure 5-12. The Receive Command/Status Register (RCSR)

5.18.2 Detailed Status in the RCSR

2ndBE: the IUSC sets this read-only bit (RCSR15) to 1
when software or the Receive DMA channel reads data
from the RDR, there are two or more characters in the
RxFIFO, and the Receiver marked the second-oldest one
with one or more of RxBound, Abort/PE, or RxOver status.
(The bit is name stands for Second Byte Exception.) The
IUSC clears this bit to 0 when software or the Receive DMA
channel reads data from the RxFIFO/RDR, there are two or
more characters in the RxFIFO, and the Receiver did not
mark the second-oldest one with any of these three condi-
tions. If software or the Receive DMA channel reads data
from the RDR when there is only one character in it, this bit
is undefined until the next time one of them reads RDR.

1stBE: the |USC sets this read-only bit (RCSR14) to 1
when software or the Receive DMA channel reads data
from the RDR, and the Receiver marked the oldest charac-
ter read with one or more of RxBound, Abort/PE, or RxOver
status. (The bit's name stands for First Byte Exception.)
The IUSC clears this bit to 0 when software or the Receive
DMA channel reads data from the RDR, and the Receiver
did not mark the oldest character with any of these three
conditions.

ShortF/CVType: the Receiver queues this bit through the
RxFIFO with each character. RCSR8 may reflect the status
at the time that an RxBound character was read from the
RxFIFO, or the status associated with the oldest one or two
character(s) still in the RxFIFO, as described earlier in this
Status Reporting section. In a stored Receive Status Block
it always represents the status of the preceding RxBound
character.

This bit wilt be 1 only in HDLC/SDLC and only for charac-
ters that the Receiver also marks with RxBound=1. When
the RxSubMode field (CMR7-4) specifies Address and
possibly Control field processing in HDLC/SDLC mode,
the Receiver sets this bit for the last character of a frame if
it has not come to the end of the specified field(s) by the
end of the frame.

ExitedHunt: the Receiver sets this bit (RCSR7) in any
mode, when it leaves its Hunt state. In Async modes this
happens right after software enables the Receiver. In
External Sync mode, the Receiver leaves Hunt state when
the Enable/Sync signal on /DCD goes from high to low. In
Monosync, Bisync, or Transparent Bisync mode the Re-
ceiver leaves Hunt state when it recognizes a Sync se-
quence. In HDLC/SDLC mode the Receiver leaves Hunt
state when it recognizes a Flag. In 802.3 (Ethernet) mode,
if software has enabled address checking the Receiver
leaves Hunt state when it matches the Address at the start
of a frame, otherwise it does so after detecting the start bit
at the end of the Preamble.

The {USC can request an interrupt when this bit goes from
0Oto 1ifthe ExitedHunt 1A bitin the Receive Interrupt Control
Register (RICR7)is 1. Software must write a 1 to ExitedHunt
to unlatch and clear it, and allow further interrupts if RICR7
is 1; writing a 0 to ExitedHunt has no effect.

IdleRcved: the Receiver sets this bit (RCSR6) when it
samples RxD as one for 15 consecutive RxCLKs in HDLC/
SDLC mode, or for 16 consecutive RxCLKs in any other
mode. The IUSC can request an interrupt when this bit
goes from 0 to 1 if the IdieRcved IA bit in the Receive
Interrupt Control Register (RICR6) is 1. Software must write
a 1toldleRcved to unlatch it, and to allow further interrupts
if RICRG is 1; writing a 0 has no effect. The IUSC does not
actually clear RCSR6 until software has written a 1 to
unlatch it, and RxD has gone to 0 to end the idie condition.
(IdleRcved is not useful in Async modes that use a 16X,
32X, or 64X clock. In these cases, keep RICR6 = 0 to avoid
interrupts, and ignore RCSR6.)

Brealk/Abort: the Receiver sets this bit (RCSR5) in an
asynchronous mode when it detects a Break condition,
thatis, when it samples the Stop bit of a character as 0, and
all the preceding data bits (and the parity bit if any) have
also been 0. It sets the bit in HDLC/SDLC mode when it
detects seven consecutive ones, i.e., an Abort or Go
Ahead sequence.

5-28

UMO014001-1002

Gayle Gamble
UM014001-1002

AY=Ne =

Z16C32 JUSC™
USER'S MANUAL

Break/Abort is not associated with a particuiar point in the
received data stream, for either the Break or Abort condi-
tion. (But see the description of “Abort/PE" below for an
Abort indication that is queued with received data.)

The IUSC can request an interrupt when this bit goes from
0 to 1 if the Break/Abort IA bit in the Receive Interrupt
Control Register (RICR5) is 1. Software must write a 1 to
Break/Abort to unlatch it, and to allow further interrupts if
RICRS is 1; writing a O has no effect. In async modes, the
JUSC does not actually clear RCSR5 until software has
written a 1 to unlatch it, and RxD has gone to 1 to end the
break condition.

RxBound: the Receiver queues this bitthrough the RxFIFO
with each received character. It sets the bit with a charac-
ter that represents the boundary of a logical grouping of
data, but this indication is not visible to software until the
character is the oldest one in the RxFIFO (or the second-
oldest with Word Status = 1).

As described earlier in this Status Reporting section,
RCSR4 may represent an interrupt bit, or the status asso-
ciated with the oldest one or two character(s) still in the
RxFIFO; or may be 1 if a RxBound character was just read
from the RxFIFO. Since the Receive Status Block feature
stores the RCSR in memory after each character that the
Receiver marks with this bit set, a Receive Status Biock
always shows RxBound as 1.

In HDLC/SDLC mode the Receiver sets RxBound for the
last complete or partial character before an ending Flag or
Abort. In Transparent Bisync mode it sets this bit for an
ENQ, EOT, ETB, ETX, or iTB character that follows a DLE.
In External Sync or 802.3 (Ethernet) mode the Receiver
sets this bit for the character just completed or partially
assembled when the /DCD pin went High. In Nine-Bit
mode it sets this bit for an address character. Note that the
Receiver never sets this bit in other modes, including
Monosync and Bisync modes.

The IUSC can request an interrupt when software or the Rx
DMA channel reads a character from the RDR that has this
bit set, if the RxBound IA bitin the Receive Interrupt Control
Register (RICR4) is 1. In this case software must write a 1
to RxBound to unlatch it and allow further interrupts; writing
a 0 has no effect.

CRCE/FE: the Receiver queues this bit through the RxFIFO
with each received character. RCSR3 may represent the
status at the time that a RxBound character was read from
the RxFIFQ, or the status associated with the oldest one or

two character(s) still in the RxFIFO, as described eartier in
this ‘Status Reporting' section. In a stored Receive Status
Block it represents the status from the previous character,
which in turn represents the CRC correctness of the frame
in 802.3 and HDLC/SDLC modes.

In synchronous modes the Receiver makes CRCE/FE O if
its CRC checking logic showed “correct” status when it
stored the character in the RxFIFO, or 1 if the CRC
generator was not correct. See the earlier section ‘Cyclic
Redundancy Checking' for more information. In asynchro-
nous, Isochronous, or Nine-Bit mode, the Receiver makes
this bit 1 to show a Framing Error if it samples the associ-
ated character’s Stop bit as 0.

Abort/PE: the Receiver queues this bitthrough the RxFIFO
with each received character. RCSR2 may represent an
interrupt bit, or the status at the time that a RxBound
character was read from the RxFIFO, or the status associ-
ated with the oldest one or two character(s) still in the
RxFIFO, as described earlier in this 'Status Reporting’
section. In a stored Receive Status Block it may represent
an interrupt bit or the status of the previous one or two
character(s).

If the QAbort bit in the Receive Mode Register (RMR8) is
0, the Receiver sets this bit to show a Parity Error for a
character if RxParEnab (RMR5) is 1 and the character’s
parity bit does not match the condition specified by the
RxParType field. See the earlier section 'Parity Checking’
for more information.

in HDLC/SLDC mode with the QAbort bit 1, the Receiver
sets this bit (along with RxBound) for a character that was
followed by an Abort sequence.

The 1USC can request an interrupt when software or the
Receive DMA channel reads a character from the RDR that
has this bit set, if the Abort/PE |A bitin the Receive Interrupt
Control Register (RICR2) is 1. in this case software must
write a 110 Abort/PE (RCSR2) to unlatch it and allow further
interrupts; writing a 0 to RCSR2 has no effect.

RxOver: the Receiver queues this bit through the RxFIFO
with each received character. It sets the bit to indicate a
Receive FIFO overrun, but the overrun is not visible to
software until the character that caused it is the oldest one
in the RxFIFO (or the second-oldest with Word Status = 1).

5-29

UMO014001-1002

Gayle Gamble
UM014001-1002

N\ 2ia5

216C32 USC™
USER'S MANUAL

5.18 STATUS REPORTING (Continued)

As described earlier in this Status Reporting section,
RCSR1 may represent an interrupt bit, or the status at the
time a RxBound character was read from the RxFIFO, or
the status associated with the oldest one or two character(s)
still in the RxFIFQ. In a stored Receive Status Block this bit
may represent an interrupt bit or the status of the previous
character.

The Receiver sets this bit to 1 for the Tirst character for
which there was noroom, whichis held in a holding register
between the shifter and the RxFIFO. Once this happens,

the Receiver does not store any more received characters
in the RxFIFO, until software responds as described in
‘Handling Overruns and Underruns’ later in this chapter.

The IUSC can request an interrupt when software or the Rx
DMA channelreads a character from the RDR that has this
bit set, if the RxOver 1A bit in the Receive Interrupt Control
Register (RICR1) is 1. In this case, software must write a 1
to RxOver to unlatch it and allow further interrupts; writing
a 0 has no effect.

RxAvall: this read-only bit (RCSRQ) is 1 if the RxFIFO
contains 1 or more characters, or O if it is empty.

5.19 DMA SUPPORT FEATURES

When software writes and reads all the data to and from a
serial controller, it can maintain its own counters and
length-tracking mechanisms, and can use them to tell
when to read status and issue commands. But in DMA
applications we would like to “decouple” the processor
and its software from such intimate and real-time involve-
ment with the transmit and receive processes. This is only
possible if we include features in the serial and/or DMA
controllers, by which software can figure out the length and
correctness of frames or messages long after they are
received, and by which the hardware can change param-
eters and save status information at appropriate points
with as littie processor software involvement as possible.

The IUSC features that support such operation include the
Receive and Transmit Character Counters, the RCC FIFO
that stores the length of received frames, the Transmit
Control Block feature that allows the Tx DMA channel to
fetch control information for each frame from memory, and
the Receive Status Block feature that allows the Rx DMA
channel to store status for each frame in memory. The
following subsections describe these features.

5.19.1 The Character Counters

The Transmitter includes a 16-bit Transmit Character
Counter (TCC) that software can use to control the length
of transmitted frames and messages in DMA applications.
The Receiverincludes a similar Receive Character Counter
(RCC) that software can use to record and save the length
of frames and messages in DMA applications. Software
can also use the RCC to cause an interrupt if a frame
exceeds a certain length.

While most of this section describes these features in
terms of the length of frames and messages in synchro-
nous protocols, they may be useful in asynchronous work
as well.

Figures 5-14 and 5-15 show the structure of the TCC and
RCC features, respectively. Software can write the 16-bit
Transmit Count Limit Register (TCLR) atany time, to define
the length of the next transmitted message(s) or frame(s).
Simitarly, it can write the 16-bit Receive Count Limit Reg-
ister (RCLRY) at any time, to define the length of future
received messages and frames at which the Receiver will
interrupt. Software can aiso use the Transmit Control Block
feature to make the IUSC automatically fetch a new value
for the TCLR and TCC from memory before each block of
characters. The TCLR and RCLR can be read back at any
time. The device never changes their values except to
clear them to zero at reset time, and when it loads TCLR
from a 32-bit Transmit Controf Block.

Writing the TCLR or RCLR does not have any immediate
effecton the TCC or RCC feature. Only when one of several
events occurs does the 1USC load the value from TCLR or
RCLR into the actual 16-bit character counter. if the value
in TCLR or RCLR is zero at that time, the device disables
the TCC or RCC feature, while if the value is non-zero it
enables the feature.

The IUSC loads the value from the TCLR into the Transmit
Character Counter, and enables or disables the TCC
accordingly, when one of the following occurs:

1. software writes the Trigger Tx DMA (or Trigger Tx and
Rx DMA) command to the RTCmd fieid of the Channel
Command/Address Register (CCAR15-11), or

5-30

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iL05

216032 IUSC™
USER'S MANUAL

2. software writes the Load TCC (or Load RCC and TCC)
command to RTCmd in the CCAR, or

3. software writes the Purge TxFIFO (or Purge Tx and Rx
FIFO) command to RTCmd in CCAR, or

4. the TxCtriBlk field in the Channel Control Register
(CCR15-14) is 10, specifying a two-word Transmit
Control Block, and the Transmit DMA channel fetches
(the second byte of) the second word containing the
new character count. Whichis to say, the lUSC fetches
the count “through” the TCLR.

The IUSC loads the value from the RCLR into the Receive
Character Counter, and enables or disables the RCC
feature, when any of the following occur:

1. software writes the Trigger Rx DMA (or Trigger Tx and
Rx DMA) command to the RTCmd field of the Channel
Command/Address Register (CCAR15-CCAR11), or

2. software writes the Load RCC (or Load RCC and TCC)
command to RTCmd in the CCAR, or

3. software writes the Purge Rx FIFO (or Purge Tx and Rx
FIFO) command to RTCmd in CCAR, or

4. the Receiver detects an opening Flag or Sync charac-
ter.

Once the IUSC has loaded the TCC or RCC with anon-zero
value (which enables the feature) it decrements the counter
for each character/byte written into the associated FIFO.
Thatis, the Transmitter decrements the TCC by one or two
when software or the Transmit DMA channel loads transmit
data into the TxFIFO. The Receiver decrements the RCC
by 1 for each character/byte that it transfers from its shift
register into the RxFIFO.

A non-zero TCLR value should represent the number of
characters to send, not including any Transmit Control
Block information, nor a CRC that the Transmitter gener-
ates. A non-zero RCLR value can be either all ones, or the
number of characters/bytes in a message or frame, above
which the Receiver should interrupt, including any CRC
butnotincluding any Receive Status Blockinformation. For
frame or message-oriented applications in which there is
no particular maximum received frame or message length,
the all-ones value simplifies computing the length of each
frame or message slightly. This value allows software to
obtain the frame length by simply ones-complementing
the value read from RCCR or from a Receive Status Block
in memory, rather than by subtracting it from the starting
value.

On the Transmit side, software can read the value in the
TCC at any time from the Transmit Character Count Reg-
ister (TCCR), but writing the TCCR address has no effect.
Figure 5-13 shows a decoder that detects when the counter
contains 0001. When software or the Transmit DMA chan-
nel writes enough data into the TxFIFO so that the TCC
counts down to 0, the IUSC marks the character that
corresponds to decrementing from 11to 0 as End of Frame/
End of Message (EOF/EOM). When this character gets to
the other end of the FIFO, the marking makes the Transmit-
ter conclude the frame appropriately. (Typically, it sends a
CRC and aclosing Flag or Sync character after the marked
character.)

If software or the Transmit DMA channel writes 16 bits to
the TDR while the TCC contains 0001, the serial controller
only puts the character on the IUSC's internal D7-D0 lines
into the TxFIFO—itignores the data on the D15-D8 lines. In
a system in which even-addressed bytes fall on D7-DO
(e.g., a system based on a Zilog Z380™ or an Inte
processor) this is not a problem. On the other hand, in
systems in which even-addressed bytes reside on D15-D8
(e.g., a system based on a Zilog Z8000™ or Z16COx or a
Motorola 680x0) it can cause problems.

Chapter 6 describes a feature of the Z16C32's Tx DMA
channel that helps alleviate this problem. If the Tx DMA
channel is reading the data in a frame 16 bits ata time, and
it decrements its Transmit Byte Count Register (TBCR) to
1, it next signals the memory for a byte read, and ensures
that the data from the proper half of the data bus (accord-
ing to “Select D15-D8 First” or “Select D7-DO First” com-
mands) is driven onto the internat D7-D0 lines for the serial
controller.

Assuming that:
1. the Tx DMA channel is used,

2. the end of a transmitted frame always corresponds to
the end of a memory buffer, and

3. the TBCR is programmed to reflect the number of
transmit characters in the buffer, rather thanrelying on
the Early Termination feature to terminate the buffer,

then this feature eliminates an unfortunate requirement
that previous USC family members imposed on host soft-
ware in Big-Endian systems. This requirement still applies
when these assumptions are not met: if the last character
of a frame falls at an even address in a Big-Endian system,
software must copy the last character into the subsequent
odd address as well, before presenting the frame to the Tx
DMA channel.

5-31

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLas

Z16C32 JUSC™
USER'S MANUAL

5.19 DMA SUPPORT FEATURES (Continued)

The Transmitter suppresses its DMA request from the time
the Transmit DMA channel places the EOF/EOM character
in the TXFIFO until the Transmitter sends it. When software
uses the Transmit Control Block feature, this procedure
ensures that the Transmit DMA channel does not load the
control information for the next frame or message, while the
Transmitter still needs the values for the current one.

On the Receive side, software cannot directly read the
RCC (exceptperhaps by using test modes that are beyond
the scope of this section). Instead, when the Receiver
detects an end-of-frame situation, it captures the
decremented value in the counter into a four-entry RCC
FIFO and in a register called RCHR. (It may do this when
it receives a Flag or Sync character, or, in External Sync
and 802.3 modes only, when the /DCD pin goes false.) It

thenreloads the RCC from RCLR in preparation for the next
frame. If software enables two-word Receive Status Blocks,
the IUSC stores the captured RCC value as the second
word of the RSB. The IUSC taks the RCC value in a 32-bit
RSB from the RCC FIFO.

Note: IUSCs that do not bear the 16C32 SL1660 topmarking
used a hidden register called RCHR to hold the RCC value
for a 32-bit RSB.

A k)
D15-D0 @ ‘,} v
TCLR (From
Driven
Logic)
Non-Zero
Detect
FD_ | Enable TCC
See
‘VV
—LD
L Counter (TCCR)
i DN <y
| E— EOF/
s 0
TxFIFO
0001 ’
Detect
.

Figure 5-13. A Model of the Transmit Character Counter Feature

5-32

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLa5

216C32 [USC™
USER'S MANUAL

Besides recording the length of received frames/mes-
sages, the RCC feature can help detect frames or mes-
sages that are longer than a maximum length defined by
the serial protocol. This typically happens because the
Flag, terminating character or Sync character(s) separat-
ing two frames or messages gets corrupted on the serial
link. This makes the two frames or messages look like a
single continuous one to the Receiver. The usual strategy
in such a case is to ignore (or possibly “NAK") the entire
process.

If the IUSC decrements the RCC to 0 and then receives
another character as part of the same frame/ message, it
sets the RCCUnder L/U bit in the Miscellaneous Interrupt
Status Register (MISR3). To use this feature to check for
overly long frames or messages, program the RCLR with

the maximum number of characters that a frame or mes-
sage can validly have. This value should include any CRC
characters but exclude any Receive Status Block informa-
tion. Also, arm the RCC Underflow interrupt by setting the
RCCUnder IA bit in the Status Interrupt Control Register
(SICRB), as described in Chapter 7.

If the 1USC ever sets RCCUnder L/U and interrupts, clear
the condition by writing a 1 to the L/U bit, write the “Enter
Hunt Mode" command to the RCmd field of the Receive
Command/Status Register (RCSR15-12), discard the data
received for the frame(s) by purging the RxFIFO, repro-
gram the Receive DMA channel if it is being used, and do
whatever else is necessary to clean up the situation.

A
D15-D0 <= ﬁ —~ T_ =
RCLR
Non-Zero
Detect
i: Enable TCC
(Ses | |
Text) P
10
(lilr?l Counter
RxFIFO
Rx Char) Rx
Cik 0000 Bound
Detect
—
— Interrupt Rx Shifter Incl/
Logic Flag/Sync Detect
—
= 1

Lo LD RcHR

RCC FIFO
CR Only used in IUSCs &__
Re that do not bear the
| { 16C32 SL1660 topmarking.

Figure 5-14. A Model of the Receive Character Counter Feature

5-33

UMO014001-1002

Gayle Gamble
UM014001-1002

o 2ILars

216C32 IUsC™
USER'S. MANUAL

5.19.2 The RCC FIFO

Figure 5-14 shows the RCC FIFO. When software has
enabled the Receive Character Counter, the FIFO cap-
tures the contents of the RCC at the end of each frame or
message in External Sync, Transparent Bisync, 802.3, and
HDLC/SDLC modes. (The previous section described how
the Receiver decrements the RCC by one for each charac-
ter it receives.)

The RCC FIFO can hoid up to four 16-bit entries. Figure 5-
15 shows the Channel Command/Status Register (CCSR),
the 3 MS bits of which allow software to monitor and control
the RCC FIFO. The RCCFAvail bit (CCSR14)is 1ifthe RCC
FIFO contains at least one entry, or is 0 if the RCC FIFQ is
empty.

When software selects 32-bit Receive Status Blocks as
described in a later section, The IUSC automatically re-
moves an entry from the RCC FIFO as they store the
second word of an RSB. In other applications, software
can monitor RCCFAvail to know when to read the RCC
FIFO: when RCCFAvail is 1 software can read the oldest
entry in the RCC FIFO from the Receive Character Count
Register (RCCR). Whether the RCC residual is obtained
from an RSB or by reading RCCR, software can then
compute the length of the frame or message by subtract-
ing this ending value from the starting value that came from
the Receive Count Limit Register (RCLR). (Or, if the start-
ing value was all ones, software can simply one’s comple-
ment the value from RCCR.) Reading the RCCR removes
the oldest entry from the RCC FIFQ.

For internal synchronization reasons a Z16C32 does not
set RCCFAvail, nor certain other status related to an End of
Frame condition, until one bit time after it places an
RxBound character in the RxFIFO. The Z16C32 delays
forcing anRx Data interruptand/or an Rx DMA requestuntil
the same RxCLK rising edge at which it sets RCCFAvail, so
that an Rx Data service routine can rely on the RCC FIFO
and its status flags being current.

If software has enabled the RCC, and a frame or message
ends when the RCC FIFQ is already full, the new value
overwritesits predecessor, and the three oldest entries are
notaffected. The [USC remembers this event in a status bit
that it routes through the RCC FIFO (much like it routes
other status bits through the RxFIFO). When software
reads the preceding entries so that an overwriting/over-
written entry becomes the oldest one in the RCC FIFO, the
IUSC sets the RCCFOvflo bit in the Channel Command/
Status Register (CCSR15). Once RCCFOVfio is set, the
only way to clear it {other than to Reset the whole serial
controller) is to write a 1 to the ClearRCCF bit (CCSR13),
or by writing a Purge Rx command to the RTCmd field
(CCAR15-11). Either of these actions also empties the
RCC FIFO and clears the RCCFAvail bit.

Writing to the RCCFOvflo and RCCFAvail bits has no
effect, nor does writing a Oto the ClearRCCF bit. ClearRCCF
always reads as 0.

RreoF | rocr | ciear | oRLL | opLL | DPLL on | Loop | ot :
Ovfio | Avall | RCCF | Sync | 2Miss | 1miss | OPLLEdge | o0 | Send |eypass TxResidue Reserved
5 14 138 12 1 10 9 8 7 6 5 4 3 2 1 0

Figure 8-15. The Channel Command/Status Register (CCSR)

5-34

UMO014001-1002

Gayle Gamble
UM014001-1002

216632 JUSC™

@ p=d| W] USER'S MANUAL
Wait4 | Flag Async:TxShavelL Wait4
TxCtrBlk Tx Pre- RxStatBlk Tx Reserved (0)

Trig | amble | Sync:TxPreL Sync:TxPrePat Trig

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 5-16. The Channel Control Register (CCR)
TxSubMode Reserved (0) TxResidue Reserved (0)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 5-17. The First (or Only) 16 bits of a Transmit Control Block

5.19.3 Transmit Control Blocks

Figure 5-16 shows the Channe! Control Register. Its
TxCtriBIk field (CCR15-14) controls what the Transmitter
does with the initial data that the Transmit DMA channel or
software writes to the TDR at the start of a frame or
message. (While software can use Transmit Control Blocks
when it fills the TxFIFO, there is no obvious reason to do so,
compared to just writing the various control registers
directly.) The Transmitter interprets TxCtriBik as follows:

TxCtriBlk Kind of TCB'’s used
00 No Transmit Control Block
10 32-bit Transmit Control Block
11 Reserved; do not program

When TxCtriBIk is 10, the IUSC treats the next 32 bits that
the Transmit DMA channel or software writestothe TDR, as
a Transmit Control Block after any of following happen:

1. after software writes a Trigger Tx DMA (or Trigger Tx
and Rx DMA) command to the RTCmd field of the
Channel Command/Address Register (CCAR15-11),
or

2. after software writes a Load TCC (or Load RCC and
TCC) command to RTCmd, or

3. after software writes a Purge TxFIFO (or Purge Tx and
Rx FIFO) command to RTCmd, or

4. after the Transmit DMA channel (or software) writes

data into the TxFIFO that decrements the TCC to zero.
As noted in an earlier subsection, the Transmitter
drops its DMA request from the time the DMA channel
fetches the last character of a frame, until after it
transfers the character toits serial shiftregister. lt does
this so that the DMA channel does not fetch the
Transmit Control Block for the next frame or message,
while the Transmitter still needs the control information
for the current frame.

Note that this list does not include hardware or software -
Reset. This means that after either kind of Reset, the
Transmitter is not expecting a TCB. Software must issue
one of the commands listed above to condition it toreceive
the TCB for the first transmit frame after a Reset.

Chapter 6 describes how the Z16C32's Transmit DMA
channel can fetch a Transmit Control Block from either of
two locations in memory. The first method is USC-compat-
ible: the channel fetches the TCB from the memory data
buffer, before fetching the first characters of the frame or
message. The other method is new with the Z16C32, and
applies only when the Tx DMA channel is in “Array mode”
or “Linked List mode.” With this method, the channel
fetches a TCB from the Array or Linked List entry for a
buffer, if its start aligns with the start of a frame. For the
transmit side the choice between these methods should
be based on which is a better fit with the software 1/0
architecture.

5-35

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2105

Z16C32 lusc™
USER'S MANUAL

5.19 DMA SUPPORT FEATURES (Continued)

When the Tx DMA channel reaches the end of an array or
linked list that contains TCBs, it sends the “TCB words”
from the terminating entry to the Transmitter before it
recognizes the zero byte count in the entry and stops. This
takes the Transmitter out of the state of expecting a TCB for
the next frame. To overcome this potential problem, soft-
ware must write one of the commands described in the
preceding list (typically "Load TCC") to the CCAR, before
restarting a Tx DMA channel in Array or Linked List mode
with TCBs in the array/list entries.

IUSCs manufactured before August of 1992 did not fetch
a TCB from the first entry of an array or linked list. For
applications that might encounter such early devices,
software can tell whether a given device fetches the first
TCB as described in the ‘Determining the Device Revision
Level' section of Chapter 8.

Figure 5-17 shows the format of the first word of a 32-bit
TCB or the only word of a 16-bit TCB. Its most significant
four bits define a new TxSubMode value for the following
transmit data. When the Transmit DMA channel or software
writes this word to the TDR, the IUSC copies these four bits
into the TxSubMode field of its Channel Mode Register
(CMR15-12) without changing the rest of the CMR. Bits 4-
2, of the first or only word, define the TxResidue value for
the following frame in HDLC/SDLC or HDLC/SDLC Loop
mode. The IUSC similarly copies these bits into the
TxResidue field of the Channe! Command/Status Register
(CCSR4-2) without affecting the rest of the CCSR. The
device ignores bits 11-5 and 1-0 of the first or only word of
a TCB, but Zilog reserves these bits for future enhance-
ments and software should ensure that they are all zero.

For most protocols, the second word of a 32-bit TCB
should contain the number of characters/bytes in this
frame or message. The IUSC writes this word through the
Transmit Count Limit Register (TCLR) and into the Transmit
Character Counter (TCCR). As noted in the earlier section
on the Transmit Character Counter, the TCC is loaded from
the TCLR only when software writes one of three com-
mands to the device, or when the second word of the 32-
bit TCB is fetched. This means that if software wants the
hardware to handle multiple frame transmissions without
software intervention, 16-bit TCBs are not useful.

Chapter 6 describes and shows the various cases of TCB
placement in memory in DMA applications.

5.19.4 Receive Status Blocks

The Receiver sets the RxBound bit in the RxFIFO to
indicate the end of a frame, messagse, or word, in External
Sync, Transparent Bisync, 802.3, and HDLC/SDLC. In
these modes the Receiver can provide summary/status
information after the frame or message. The RxStatBlk
field of the Channet Control Register (CCR7-6) controls
whether it does this. The IUSC interprets it as foliows:

RxStatBlk Kind of RSB's used
00 No Receive Status Block
01 16-bit Receive Status Block
10 32-bit Receive Status Block
11 Reserved; do not program

If this field is either 01 or 10, the Receiver stores frame
status as the first word of a 32-bit Receive Status Block, or
the only word of a 16-bit RSB. Figure 5-18 shows this word,
which is similar to but not identical with the contents of the
Receive Command/Status Register (RCSR). The differ-
ences include:

1. ThelUSCforcesthe bits that correspond to ExitedHunt
and ldleRcved in the RCCR to 0. These are “global”
rather than “queued” status bits, and must be handled
by software on a more or less real-time basis.

2. Bit5 of the RSB status is a copy of the RCCF Ovflo bit
thatis otherwise accessible as CCSR15. (Older IUSCs
always store this bit as 0.) (Note: IUSCs that do not
bear the 16C32 SL1660 topmarking always store this
bit as 0.) Because RCCF Ovflo does not become 1
until an overwritten RCC residual value has come to
the top of the RCC FIFQ, a 1 in this bitindicates that the
associated RCC residual value is not valid.

When RCCF Ovflo is 1, if software has an alternative
means of determining the length of the current frame,
such as an embedded length field or fixed-length
frames, it should use this alternative means to process
the frame. Otherwise it must discard the frame as
being unprocessable.

3. The LS bit of the first word of an RSB is a copy of the
LS bit of the RCC at the end of the frame, rather than
the RxAvail bit that is in the RCCR. This bit is also
available in the RCC FIFO and in the second word of
a 32-bit RSB, but for 16-bit DMA operation it may be
handy to have it here, especially in a 16-bit RSB.

5-36

UMO014001-1002

Gayle Gamble
UM014001-1002

QA 205

Z16C32 JUSC™
UsER's MANUAL

The CRCE/FE bit in an RSB reflects the CRC-correctness
of the frame in 802.3 and HDLC/SDLC modes, but not in
Transparent Bisync mode.

A 10 in RxStatBlk makes the IUSC also store the ending
value of the Receive Character Counter in a second 16-bit
word after the frame status word. This value indicates the
length of the frame.

The IUSC takes the RCC value in a 32-bit RSB from the four-
entry RCC FIFO, which with older IUSCs was only used by
software. This allows up to four (short) frames to reside in
the RxFIFO, without loss of information.

Note: Figure 5-14 illustrates that IUSCs that do not bear the
16C32 SL1660 topmarking save this RCC value in a 16-bit
latch called RCHR, that is not directly accessible to soft-
ware. Unfortunately this latch does not provide much
buffering capacity when successive short frames are
received. To write software that is compatible with both
kinds of devices, either enable 32-bit RSBs or read the
RCC FIFO, but not both!

5.19.5 Storing the RSB

Chapter 6 describes how the Receive DMA channel can
store a Receive Status Block in memory in two different
ways. With the USC-compatible method, the DMA channel
does not handle the RSB in any special way, it simply
stores it in the memory buffer after the RxBound character,
and decrements its Receive Byte Count Register (RBCR)
as for serial data.

The other method is new with the Z16C32, and assumes
the following circumstances:

1. the Receive DMA channel is in Array or Linked List
mode, and either

2a. the channel's Early Termination feature is enabled, or

2b. theline protocol uses afixed frame length and memory
buffers are of this length as well.

With this method, when an Rx frame ends the Receive DMA
channel stores the RSB in the Array or List entry for the
terminated buffer, before going on to the next one. The
channel does not decrement its byte count as it transfers
this data.

The problem with the USC-compatible method is that
software has to know how long each received frame is, in
order to find its RSB. To obtain these lengths it has to read
the RCC FIFO in a sufficiently timely manner to prevent
overflows. For four or more successive frames each com-
posed of, say, 4-6 characters, the four-entry depth of the
RCC FIFO may impose interrupt-response requirements
that can not be met in the worst case. Since the [USC
obtains the second word of a 32-bit RSB from the RCC
FIFO, applications that use the IUSC's Rx DMA channel
can only use 16-bit RSBs with this method.

By contrast, storing the RSB's in Array or Linked List entries
allows software to ignore the receive process for longer
periods, these being limited only by the extent of the Array
or List structures it sets up, and/or by response timeouts
imposed by the serial protocol.

2ndBE | 1stBE 00 RxResidue Shone| 000 RGP | Aways | CRCE | Abart | e, | Reco
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Figure 5-18. The First (or Only) 16 Bits of a Receive Status Block
5-37

UMO014001-1002

Gayle Gamble
UM014001-1002

N 25

Z16C32 lusc™
USER'S MANUAL

5.19.6 Finding the End of a Received Frame

When software or the Receive DMA channel reads 16 bits
from the RDR, and the Receiver has marked the oldest
character in the RxFIFO with RxBound status, the 1USC
only takes that one character out of the RxFIFQO. When the
Receive DMA channel is doing 16-bit transfers, software
has to figure out whether the 16 bits preceding the RSB
contain one or two characters/bytes, as follows:

1. Compute the length of the frame or message, by
subtracting the ending RCC value in the RCC FIFO or
the second word of the RSB, from the starting RCC
value that the hardware took from RCLR. (If the starting
value was all ones, software can just ones-comple-
ment the ending value.)

2. If the frame or message occupies more than one
buffer, subtract from the frame length, the length of all
of the buffers except the last one.

3. Totheresultfrom 10or2, addthe starting address of the
last buffer.

If the resultis odd there is one character in the 16-bit word
that precedes the RSB, while if it is even there are two
characters in the word.

Another method applies only when bits 2-1 of the first word
of the RSB, namely Abort/PE and RxQver, are both 0. The
usual handling for a receive overrun condition in synchro-
nous modes includes forcing the receiver into Hunt mode
for the start of the next frame or message, which means
that an RSB would never be stored for a frame that
encountered an overrun. When Abort/PE and RxQver are
both zero, if bit 14 of the first word of the RSB (1stBE) is 1,
there is one character in the preceding word, while if bit 14
is 0 there are two characters in the word.

Chapter 6 describes the various ways in which the Receive
DMA channel can store an RSB in memory.

RT Chan
RTCmd Reset RTMode Coad | BIW RegAddr u/n
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

Figure 5-19. The Channel Command/Address Register (CCAR)

5-38

UMO014001-1002

Gayle Gamble
UM014001-1002

Q205

716C32 IlUSC™
USER'S MANUAL

5.20 COMMANDS

Commands are encoded values that software writes to a
register field to change the state of the IUSC or make it
perform some action. Typically commands do not take any
software-perceptible time to perform. 1USC command
fields are write-only; reading them back may yield zeroes,
or some unrelated status item.

Often commands represent a more compact and efficient
way to provide control features than dedicated register
bits. In fact, commands are so popular that the IUSC
includes three separate encoded command fields in its
serial section and one in its DMA section! Figure 5-20
shows the Channel Command/Address Register. Soft-
ware can write various commands that affect the Transmit-
ter and/or the Receiver to its RTCmd field (CCAR15-11). In
addition, software can write commands that affect the
Transmitter to the TCmd field in the Transmit Command/
Status Register (TCSR15-TCSR12), and can write com-
mands that affect the Receiver to the RCmd field in the
Receive Command/Status Register (RCSR15-12). Chap-
ter 6 describes the commands for the [USC’s DMA chan-
nels that software can write to the DMA Command/Ad-
dress Register.

Writing all zeroes to any of the command fields does
nothing, which can be useful when the intent is to write to
other fields of the register. Zilog reserves other values not
fisted below for future extensions to the USC family; such
values should not be written to the subject field.

RTCmd
Value Function
00010 Reset Highest Serial IUS
00100 Trigger Channel Load DMA
00101 Trigger Rx DMA
00110 Trigger Tx DMA
00111 Trigger Rx and Tx DMA
01001 Purge Rx FIFO
01010 Purge TxFIFO
01011 Purge Rx and TxFIFO
01101 Load RCC
01110 Load TCC
01111 Load RCC and TCC
10001 Load TCO
10010 Load TC1
10011 Load TCO and TC1
10100 Select Serial LS Bit First
10101 Select Serial MS Bit First
10110 Select D15-D8 First
10111 Select D7-DO First
11001 Purge Rx

TCmd
Value Function
0010 Clear Tx CRC Generator
0100 Select TICRHi=TTSA Data
0101 Select TICRHi=FIFO Status
0110 Select TICRHi=/INT Level
0111 Select TICRHi=/TxREQ Level
1000 Send Frame/Message
1001 Send Abort
1100 Enable DLE Insertion
1101 Disable DLE Insertion
1110 Clear EOF/EOM
1111 Set EOF/EOM
RCmd
Value Function
0010 Clear Rx CRC Generator
0011 Enter Hunt Mode
0100 Select RICRHi=RTSA Data
0101 Select RICRHi=FIFO Status
0110 Select RICRHIi=/INT Level
0111 Select RICRHi=/RxREQ Level

A description of each command follows, in alphabetical
order. Some of them include references to other chapters
or sections, which provide more information that is impor-
tant to fully understanding the command.

Clear EOF/EOM (TCmd:=1110): this command condi-
tions the 1USC so that it does not mark the next character,
that software or the Transmit DMA channel writes to the
Transmit Data Register, as End of Frame/End of Message.
Since the IUSC assumes this state after each write to the
TDR, and after a hardware or programmed Reset, software
will need this command only if it “changes its mind” about
where the frame ends, between issuing a Set EOF/EOM
command and writing the TDR.

Clear Rx or Tx CRC Generator (RCmd or TCmd:= 0010):
these commands force the Receive or Transmit CRC
Generator to all zeroes or all ones, depending on the
RxCRCStart bit in the Receive Mode Register (RMR10) or
the TXCRCStartbitin the TransmitMode Register (TMR10).
Software will seldom need these commands because the
Receiver and Transmitter automatically clear their CRC
generators at the start of each frame.

5-39

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2ILa5

216C32 lusc™
USER'S ManuaL

5.20 COMMANDS (Continued)

Disable DLE Insertion (TCmd:=1101): this command
applies only to Transparent Bisync mode. It conditions the
IUSC so that it does not check subsequent characters
written to the Transmit Data Register (TDR) for DLE char-
acters, and so that it does not add any DLE characters to
the transmitted data stream. Software should use this
command before writing a two-character control sequence
that starts with DLE to the TDR. DLE insertion remains
disabled until software issues an 'Enable DLE Insertion’
command or until a hardware or software Reset. The IUSC
queues the state that is affected by this and the following
command through its TXFIFO with each character, so that
software can change the state as needed.

Enable DLE Insertion (TCmd:=1100): this command ap-
plies only to Transparent Bisync mode. It conditions the
IUSC so that it checks subsequent characters written to
the Transmit Data Register (TDR) for DLE characters, and
adds another DLE for each DLE written to the TDR. Soft-
ware should use this command before writing normal data
to the TDR. DLE insertion remains enabled until software
issues a Disable DLE Insertion command. The IUSC queues
the state that is affected by this and the preceding com-
mand through its TxFIFO with each character, so that
software can change it as needed.

Enter Hunt Mode (RCmd:=0011): this command forces
the Receiver into “Hunt Mode" immediately, regardless of
its previous state. In synchronous modes, this means that
the Receiver starts searching for a Sync or Flag sequence.
Inasynchronous modes it starts searching for a start bit. In
any mode, the Receiver discards any partial character that
was in progress when software issued the command.

Load RCC and/or TCC (RTCmd:=01101-01111): these
commands load the Receive and/or Transmit Character
Counter from the Receive and/or Transmit Count Limit
Register (RCC from RCLR and/or TCC from TCLR). This
may enable or disable character counting. If software has
enabled the Transmit Control Block feature in the TxCtrIBlk
field of the Channel Control Register (CCR15-14=01 or
10), a Load TCC or Load RCC and TCC command also
conditions the Transmitter to treat the next data written to
the Transmit Data Register as a TCB.

Load TCO and/or TC1 (RTCmd:=10001-10011): these
commands load the counter in Baud Rate Generator O
and/or 1 from the Time Constant 0 and/or 1 Register (BRGO
from TCOR and/or BRG1 from TC1R). If software has
programmed a BRG for single cycle mode (HCR1=1 for
BRGO or HCR5=1 for BRG1) and it has stopped after
counting down to zero, loading a BRG via one of these
commands also enabies it to count. See Chapter 4 for more
information about the BRG's.

Purge Rx (RTCmd:=11001): on IUSCs manufactured after
February 1994, this command purges (clears, empties)
both the main RxFIFO and the RCC FIFO described in an
earlier section. [tcombines the functions of the ClearRCCF
bit in the Channel Command/Status Register (CCSR13)
and the Purge RxFIFO command described below, includ-
ing the latter command’s function of reloading the RCC.
This command is intended to be used after an Enter Hunt
mode command in handling an Rx Overrun condition, and
ensures that the two FIFOs are synchronized with respect
to End-Of-Frame conditions.

Software can use the device-identification features de-
scribed in ‘Determining the Device Revision Level' in
Chapter 8, to determine whether it can issue this com-
mand, or whether it has to issue the two separate com-
mands noted above.

Purge Rx and/or TxFIFO (RTCmd:=01001-01011): these
commands remove all entries from the RxFIFO and/for
TxFIFO. They also reload the Receive andjor Transmit
Character Counter from the Receive and/or Transmit Count
Limit Register (RCC from RCLR and/or TCC from TCLR).
This may enable or disable character counting. If software
has enabled the Transmit Control Block feature in the
TxCtrIBlk field of the Channel Control Register (CCR15-14
=01o0r 10), a Purge TxFIFO command also conditions the
Transmitter to treat the next data written to the Transmit
Data Register as a TCB. If software is using the Transmit
DMA channel, a Purge TxFIFO command may cause the
[TxREQ pin to be asserted immediately, while if it is using
Transmit Data interrupts, the command may cause the
/INT pin to be asserted immediately. (The previous two
sentences also apply to a Purge Rx and TxFIFO com-
mand.)

On IUSCs that do not bear the 16C32 SL1660 topmarking
the Purge Rx FIFO and Purge Rx and Tx FIFO commands
did not clear a hidden “holding register” that stands
between the Rx shift register and the RxFIFO. This caused
problems if a very fast processor responded to an HDLC
Abortinterrupt and performed a Purge Rx FIFO command
before the final character before the Abort was transferred
from the holding register to the RxFIFO. In this case, this
character would then go into the RxFIFO and finally emerge
as an extraneous 1-character “frame”. |USCs with the
SL1660 topmarking deals with this problem in two sepa-
rate ways: 1) they do not set the Break/Abort flag untit after
the character before the Abort s in the RxFIFO, and 2) they
clear the holding register as aresult of either this command
or a Purge Rx command. Thus they will never produce
such a 1-character frame, regardiess of how fast the
processor may be.

5-40

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLaB

Z16C32 JUSC™
USER'S MANUAL

Reset Highest Serial IUS (RTCmd:=00010): Chapter 7
describes how this command clears the highest-priority
Interrupt Under Service latch in the serial controller section
that is currently set (if any).

Select D15-D8 or D7-DO First (RTCmd:=10110-10111):
these commands control which of the two characters in a
16-bit write to the TDR/TxFIFO the Transmitter sends first.
They also control how the IUSC arranges the oldest and
second-oldest characters in the RxFIFO when software or
the Receive DMA channel reads 16 bits from the Receive
Data Register. “D15-D8 First” is the default value after
either a hardware or programmed reset, and is compatible
with the Zilog Z8000™ Zilog Z16C0x and Motorola 680x0
processors. “D7-D0 First” should be programmed for the
Zilog Z380™ and most Intel processors. The IUSC applies
this option only during a 16-bit transfer, between the
TxFIFO or RxFIFO and the AD15-ADO0 pins. However, if the
Transmit Character Counter contains 0001 and the Trans-
mit DMA channel writes 16 bits to the TxFIFO, the IUSC
only puts the character froni AD7-ADO in the TxFIFO,
regardless of these commands. In a “D7-DO0 First” system
this is not a problem. But if the tast character of a frame or
message falls at an even address when using the Transmit
DMA channel in a “D15-D8 First” system, software must
copy the last character into the subsequent odd address
as well.

Select RICRHi=/INT Level (RCmd:=0110): this command
conditions the IUSC so that subsequent accesses to the
MSbyte of the Receive Interrupt Control Register (RICR15-
8) read or write the number of received characters atwhich
the IUSC starts requesting a Receive Data interrupt, as
described in Chapter 7. If software uses the Receive DMA
channel to store data in memory, it should disable Receive
Data interrupts.

Select RICRHi=/RxREQ Level (RCmd:=0111): this com-
mand conditions the IUSC sothat subsequentaccesses to
the MSbyte of the Receive Interrupt Control Register
(RICR15-8) read or write the number of received charac-
ters at which the Receiver asserts /RXREQ to the Receive
DMA channel, as described in Chapter 6.

Select RICRHi=FIFO Status (RCmd:=0101): this com-
mand conditions the IUSC so that reading the MSbyte of
the Receive Interrupt Control Register (RICR15-8) yields
the number of characters in its RxFIFO. This is described
more fully in The Data Registers and the FIFOs later in this
chapter.

Select RICRHi=RTSA Data (RCmd:=0100): this com-
mand conditions the IUSC so that subsequentaccesses to
the MSbyte of the Receive Interrupt Control Register
(RICR15-8) read or write Receive Time Slot Assigner data.
This is described more fully in Programming the Time Slot
Assigners in Chapter 4.

Select Serial Data LSB or MSB First (RTCmd:= 10100-
10101): these commands control whether the IUSC trans-
mits and assembles serial data with the Least Significant
or Most Significant bit going first on the line. "LSB first” is
the default after either a hardware or programmed reset,
and is the method used in most traditional data communi-
cations schemes. The IUSC appilies this option as it trans-
fers data between the AD pins and the FIFOs. Because of
this, these commands do not affect functions like matching
addresses and sync characters and sending syncs. This,
in turn, means that software must program such values
“backward" in the TSR and RSR for “MSB first" applica-
tions.

Select TICRHI=/INT Level (TCmd:=0110): this command
conditions the IUSC so that subsequent accesses to the
MSbyte of its Transmit Interrupt Control Register (TICR15-
8) read or write the number of empty TxFIFO entries at
which the Transmitter starts requesting a Transmit Data
interrupt, as described in Chapter 7. If software uses the
Transmit DMA channel to fetch data from memory, it
should disable Transmit Data interrupts.

Select TICRHi=/TxREQ Level (TCmd:=0111). This com-
mand conditions the IUSC so that subsequent accesses to
the MSbyte of the Transmit Interrupt Control Register
(RICR15-8) read or write the number of empty TxFIFO
entries at which the Transmitter asserts /TxREQ to the
Transmit DMA channel, as described in Chapter 6.

Select TICRHi=FIFO Status (TCmd:=0101): this com-
mand conditions the IUSC so that reading the MSbyte of
the Transmit Interrupt Control Register (TICR15-8) yields
the number of empty entries in its TXFIFO. This is described
more fully in The Data Registers and the FIFOs later in this
chapter.

Select TICRHi=TTSA Data(TCmd:=0100): this command
conditions the IUSC so that subsequent accesses to the
MSbyte of the Transmit Interrupt Control Register (TICR15-
8) read or write Transmit Time Slot Assigner data. This is
described more fully in Programming the Time Slot Assign-
ers in Chapter 4.

Send Abort (TCmd:=1001): this command is valid only in
HDLC/SDLC mode and makes the Transmitter send an
Abort (Go Ahead) sequence. !f the two MS bits of the
TxSubMode field of the Channel Mode Register (CMR15-
14) are 01, the Abort consists of a 0 followed by 15
consecutive ones. Otherwise it consists of a 0 followed by
seven ones. After sending the Abort, the Transmitter oper-
ates as it would have after sending a closing Flag. That is,
if Wait2Send (TICR2) is 0 and there is data in the TxFIFO,
it starts a new frame, otherwise it sends the ldle condition
defined by the TxlIdle field (TCSR10-8).

5-41

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLa5

Z16C32 IUSC™
USER'S MANUAL

5.20 COMMANDS (Continued)

Send Frame/Message (TCmd:=1000): if the Wait2Send
bitin the Transmit Interrupt Control Register (TICR2) is 1,
the Transmitter waits between frames, sending the Idle
pattern defined by the Txidle field of the Transmit Com-
mand/Status Register (TCSR10-8), until software issues
this command. The later section Synchronizing Frames/
Messages with Software Response describes how this
feature differs from the one controlled by the Wait4TxTrig
bitin the Channel Control Register and the Trigger Tx DMA
command in RTCmd.

This command also releases the interlock that occurs if
software sets the UnderWait bit (TCSR11) to 1, and a Tx
Underrun condition occurs. See the section 'Handling
Overruns and Underruns' later in this chapter.

In any case, this command releases an interlock that is
established after frame transmission, and is never needed
before the first frame after a Reset.

Set EOF/EOM (TCmd:=1111): this command conditions
the IUSC so that it marks the next character, that software
or the Transmit DMA channel writes to the Transmit Data
Register (TDR), as End of Frame/End of Message. This
marking makes the Transmitter perform the appropriate
closing actions after sending the character. (For example,
in HDLC/SDLC mode it sends a CRC and then a closing
Flag.} Typically, after issuing this command, software
should write the last character of the frame or message to
the LSbyte of the Transmit Data Register (TDR7-0). The
IUSC automatically clears the state set by this command
when software (or the Transmit DMA channel) writes to the
TDR. Therefore this command applies to at most one
character.

Trigger Channel Load DMA (RTCmd:=00100): Chapter 8
will describe how this command puts the serial controller
section of the IUSC in a special mode, in which the
Transmit DMA channel can initialize all the registers in the

serial controller. Software must program and set up the
Transmit DMA channel as for transmitting data, before it
issues this command. This operation can not initialize any
of the registers in the IUSC's DMA section.

Trigger Rx and/or Tx DMA (RTCmd:=00101-00111): if
one of the Wait4xxTrig bits in the Channe! Control Register
(CCR13 for Tx, CCR5 for Rx) is 1, the serial controller
section of the IUSC stops requesting that kind of DMA
transfer after the end of each frame. When this happens,
software should use one of these commands to re-enable
requests toone or both DMA channel(s), for the next frame.
These commands also load the Receive and/or Transmit
Character Counter from the Receive and/for Transmit Count
Limit Register (RCC from RCLR andjor TCC from TCLR).
This may enable or disable character counting. If software
has enabled the Transmit Control Block feature in the
TxCtriBlk field of the Channel Control Register (CCR15-
14=01 or 10), a Trigger Tx DMA or Trigger Tx and Rx DMA
command also conditions the Transmitter to treat the next
160r 32 bits written to the Transmit Data Register asa TCB.
The later section Synchronizing Frames/Messages with
Software Response describes how this feature differs from
the one controlled by the Wait2Send bit in the Transmit
Interrupt Control Register and the “Send Frame/Message”
command in TCmd.

The two commands above release interlocks that occur at
the end of a frame, and are never needed before the first
frame after a Reset.

5-42

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2ILa5

21632 JUSC™
USER'S MANUAL

5.21 RESETTING THE SERIAL CONTROLLER

Figure 5-20 shows the RTReset bit in the Channel Com-
mand/Address Register (CCAR10). Software can use this
bit to reset the serial controller section of the IUSC to a
known and inactive state like that produced by driving the
/RESET pin low. (The most significant difference is that the
IUSC requires software to write the Bus Configuration
Register (BCR) after a hardware reset, but not after this
kind of “software Reset.")

To software-reset the serial controller on a 16-bit data bus:
1. Write CCAR (or its MS byte) with RTReset=1.
2. Write a 16-bit zero to CCAR.

To software-reset the serial controlier on an 8-bit bus:
1. Write the MS byte of CCAR with RTReset=1.

2. Write the LS byte of CCAR with an 8-bit zero.

3. Write the MS byte of CCAR with an 8-bit zero.

The way this “software reset” works is that the 1 state of
RTReset conditions the serial controller's register address
decoding logic so that the subsequent write operation
actually writes data into all the registers in the serial
controller. Between the time that software writes RTReset
as 1, and whenitwritesitback to 0, the IUSC does not drive
1/O pins, it either tri-states output pins or holds them in their
inactive state, but register bits that do not directly affect
these pins are unchanged/undefined.

Leaving the RTReset bit setis acommon mistake made
by first-time users of a USC family member.

5.22 THE DATA REGISTERS AND THE FIFOS

When the RxFIFO contains received characters, software
can read the “oldest” one or two characters in it from the
Receive Data Register (RDR). When software uses the
Receive DMA channel, the channel takes care of taking
data out of the RxFIFQ, in a “flyby” fashion using an internal
“RXACK" signal. The Mode Registers: Character Length,
earlier in this Chapter, describes how the Receiver aligns
characters and fills out bytes in the RDR/RxFIFO when
characters are less than eight bits long.

Similarly, when the TxFIFQO is not full software can write one
or two characters to the Transmit Data Register (TDR), or
the Transmit DMA channel can write the TxFIFO in a flyby
fashion using an internal “TxACK" signal.

5-43

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2La5

21632 lusc™
USER'S MANUAL

5.22.1 Accessing the TDR and RDR

Chapter 2 describes how software can access the TDR
and RDR using a register address that may be 1) multi-
plexed on the ADB-ADQ pins, 2) full-time on AD13-AD8 if
only AD7-ADO carry data, or 3) written into the Channel
Command/Address Register (CCARG-0).

Two other features of the IUSC make it easier for software
to access these registers when the AD lines do not carry
multiplexed addresses and the data bus is 16 bits wide.
Host processor write cycles to the IUSC, with the S//D and
D//C pin both high, always write the TDR. Similarly, host
processor read cycles from the IUSC, with S//D and D//C
both high, always read the RDR. A system designer can
connect S//D and D//C to processor address lines, such as
A2 and A1 for a non-multiplexed 16-bit bus, or A8 and A7
for a multiplexed bus. (If an application wants to have the
IUSC drive cycle-type status onto S//D and D//C when itis
the bus master as described in Chapters 2 and 6, external
tri-state gates are needed to drive address bits onto these
pins only when the IUSC is not in control of the bus.)

Chapter 2 also describes how to write the Bus Configura-
tion Register to configure the IUSC for a 16-bit data bus.
With a 16-bit data bus, software can write two characters
atonce to the TDR, or the Transmit DMA channel can read
two characters out of memory at once. Similarly, software
can read two characters at a time from the RDR, or the
Receive DMA channel canwrite two characters intomemory
in each bus cycle. The earlier section Commands de-
scribes how the “Select D15-D8 First” and “Select D7-D0
First” commands allow the two characters, in each 16-bit
transfertothe TDR or from the RDR, to be arranged in either
order. This is important because available microproces-
sors differ about the order.

With a 16-bit data bus, software can read or write most
IUSC registers as a 16-bit word, or can read or write either
their "more significant” byte (bits 15-8) or “less significant”
byte (bits 7-0). The TDR and RDR are different in this
regard: software should never read or write their more
significant bytes alone, only as part of a 16-bit fransfer. On
a Zilog Z8000™ or Z16C0Ox or Motorola 680x0 based
system this means that software should write bytes to the
TDR and read bytes from the RDR at odd addresses. On
a Zilog Z380™ or Intel 80x86 processor, software should
write bytes to the TDR and read bytes fromthe RDR ateven
addresses.

On a 16-bit bus there is no way for software to read single
characters from the RDR, or write single characters to the
TDR, using an address that makes D//C high. To do this,
software must either address the LSbyte of the TDR/RDR
directly, or it must write the address of the LSbyte to the
CCAR.

5.22.2 TxFIFO and RxFIFO Operation

The TxFIFO and RxFIFO have a maximum capacity of 32
characters (bytes) each. The I[USC empties them of all
data when external hardware drives the /RESET pin low,
when software resets the serial controller via the RTReset
bit (CCAR10), and when software writes a “Purge Rx" or
"Purge Rx and/or TxFIFO" command to the RTCmd field
(CCAR15-11),

The RxFIFO becomes one byte more full for each charac-
ter received on the serial link, and one or two bytes less full
each time software reads data from it via the RDR or the Rx
DMA channel writes data into memory. The TxFIFO be-
comes one or two bytes more full each time software writes
data to the TDR or the Tx DMA channel reads data from
memory, and one byte less full each time the Transmitter
moves a character into its output shift register.

One further point about RxFIFO operation applies only in
HDLC/SDLC, HDLC/SDLC Loop, 802.3, and Transparent
Bisync. In one of these modes, if software or the Rx DMA
channe! reads 16 bits from the RDR when the oldest
character in the RxFIFO is the last one of a frame (i.e., itis
marked with RxBound status), the IUSC removes only that
one character from the RxFIFO.

5.22.3 Fill Levels

The IUSC maintains a “Fill Level” counter for each FIFO that
reflects its current contents. Software can read the number
of received characters/bytes that are currently in the
RxFIFO. To do this, it may first have to write the “Select
RICRHi=FIFO Status" command to the RCmd field of the
Receive Command/Status Register (RCSR15-12). Then
software can read the MSbyte of the Receive Interrupt .
Status Register (RICR15-8). The resulting 8-bit value rep-
resents the number of received characters in the RxFIFO.
It ranges from O for an empty RxFIFO to 32 for a full one.
Software can skip the step of writing the Select command
if it has not written any of the other “Select RICRHi=...”
commands to the RCSR since the last time it issued this
command.

Similarly, software can read the number of entries that are
currently empty in the TxFIFO. It may first have to write the
“Select TICRHi=FIFO Status” command to the TCmd field
of the Transmit Command/Status Register (TCSR15-12).
Then software should read the MSbyte of the Transmit
Interrupt Status Register (TICR15-8). The resulting 8-bit
value represents the number of empty positions in the
TxFIFO. ltranges from O for a full TxFIFO to 32 for an empty
one. As on the Receiver side, software can skip the step of
writing the Select command if it has not written any of the
other “Select TICRHi" commands to the TCSR since the
last time it issued this command.

5-44

UMO014001-1002

Gayle Gamble
UM014001-1002

AN 2L05

216C32 [USC™
USER'S MANUAL

Code that reads a FIFO Fill level must ensure that no
interrupts will occur between the time it writes the “Select
xICRHi=FIFQ Status” command to the TCSR or RCSR, and
when it reads the value from the TICR or RICR, if such
interrupts can lead to other code writing a different Select
command (for a Time Slot Assigner or threshold) to the
same Command/Status Register.

Large values of the FIFO Fill Levels indicate exceptional
conditions. 33,,(21,,)inthe Rx Fill Level indicates that data
has been lost because of a Receive Overrun condition. Rx
Fill Level values above that, particularly 63, (3F,,), indi-
cate that software read more data from the RxFIFO than
was received. Tx Fill Levels between 33, (21 ;) and 63,
(3F,,) inclusive indicate that software wrote more data to
the TxFIFO than there was room for. All of these situations
should be handled by issuing a Purge FIFO command,
although receive software may want to handle an Overrun
by reading out the FIFO first, to salvage data received
before the problem occurred.

5.22.4 DMA and Interrupt Request Levels

The IUSC continually compares the contents of the Fill
Level counters against two “threshold” levels for each.
Chapter 6 describes how the “Tx DMA Request Level”
determines how empty the TxFIFO must get before the
Transmitter starts requesting that the Transmit DMA chan-
nel should read more data from memory. Once the Trans-
mitter has started to request DMA transfer, it typically
keeps doing so until the DMA channel has filled the TxFIFO
or until the Transmit Character Counter has counted down
to zero.

Chapter 6 also describes how the “Receive DMA Request
Level” controls how full the RxFIFO should get before the
Receiver starts requesting that the Receive DMA channel
should move data to memory. Once the Receiver has
started to request DMA transfer, it typically keeps doing so
until the DMA channel has emptied the RxFIFO, or until it
has stored the last character of a frame or message.

Chapter 7 describes how, if software enables “Transmit
Data” interrupts, the “Transmit /INT Level” controls how
empty the TxFIFO should get before the Transmitter starts
requesting such an interrupt. It also describes how, if
software enables “Receive Data” interrupts, the “Receive
/INT Level” controls how full the RxFIFO should get before
the Receiver starts requesting such an interrupt. Software

does not use these kinds of interrupts in most IUSC
applications, because the Transmit and Receive DMA
channels handle the data. But if software does use data
interrupts, the interrupt service routine shoutd fill the TxFIFO
or empty the RxFIFO completely each time it executes. (As
a minimum the ISR should transfer enough data to bring
the FIFO status below the threshold level, or should raise
the threshold level to accomplish the same thing.)

5.22.5 Fill Level Correctness and Reliability

With the Z16C31 and other older members of the USC
family, certain worst-case interarrivals of serial clocking
and bus timing could result in transient states in which the
RxFIFO and TxFIFO counts were incorrect. When software
read these counts and transferred data to the TDR or from
the RDR, it could work around such problems by the
classic data-acquisition technique of reading a count until
two successive readings agreed. The Z16C32 includes
logical interlocks so that these counts will always be
correct and need only be read once.

These interlocks have also eliminated a related problem of
earlier USC family members, wherein areceived character
was completed just as the Receiver was deciding to
withdraw its Receive DMA request because the Rx DMA
Channel had emptied the RxFIFO. Under worst-case
interarrivals, the logic would maintain the request on a 16-
bit bus even though the RxFIFO contained only the single
newly-received character. The DMA channel would then
doa 16-bit transfer, so that the observable symptom of the
problem was that occasionally, “extra characters” would
appear inthe received frame inmemory. Such phenomena
will not occur with the Z16C32.

5-45

UMO014001-1002

Gayle Gamble
UM014001-1002

o 21La5s

Z16C32 [usC™
USER'S MANUAL

5.23 HANDLING OVERRUNS AND UNDERRUNS

In general, both the Tx Underrun condition in the TCSR and
the Rx Overrun condition in the RCSR should be enabled
and armed for interrupt. While the IUSC can handle most
things that can arise in normal operation in a fairly auto-
matic fashion, these two conditions represent a break-
down in the relationship between the IUSC and its environ-
ment, namely insufficient granting of access to the bus and
memory. Software should respond to them quickly to
minimize further loss of received data and to prevent
erroneous transmission.

5.23.1 Tx Underruns

Allrevisions of the IUSC will deal with a Transmit Underrun
condition in synchronous modes by setting the TxUnder bit
in the TCSR, and by concluding the current frame or
message as specified in the TxSubMode field of the
Channel Mode Register (CMR), which may have been set
from a Transmit Control Block.

But if the Tx DMA channel then belatedly responds to the
Transmitter's DMA Request and puts more data in the
TxFIFO, before software can respond to the Underrun
condition, the Transmitter can begin sending a new frame,
typically starting with data that was meant to be in the
middle of a frame.

If an application is subject to Tx Underruns and has
response latency to the Underrun condition that allows
such a subsequent frame to be started out onto the serial
link, the only practical way to avoid this behavior is to set
the Wait2Send bit (TICR2) and have software issue a Send
Frame/Message command to allow each Tx frame out onto
the link. This procedure may degrade transmit perfor-
mance.

Software can avoid both the problem and the performance
degradation associated with the workaround described
above, by setting the UnderWait bit in the Transmit Com-
mand/Status Register (TCSR11), which was Reserved in
previous revisions. When UnderWait is set, the IUSC's
Transmitter will wait after dealing with a Transmit Underrun
condition, sending the Idle condition specified in the
TCSR, until software recognizes the Underrun condition
and deals with it.

The recommended software response is to:
1. write the "Pause Tx DMA" command to the DCAR,
2. write the “Purge Tx FIFO" command to the CCAR,

3. reprogramthe Tx DMA channelto the start of the frame
in which the underrun occurred,

4. write the "Start Tx DMA" or “Start/Init Tx DMA" com-
mand to the DCAR,

5. write the “Send Frame/Message” command (plus the
UnderWait bit) to the TCSR. This command releases
the interlock caused by the underrun condition with
UnderWait=1.

6. Ifthe Underrun condition is armed for interrupt, write a
1 to TCSR1 to clear the status bit.

7. If Underrun and other conditions are armed to cause
Transmit Status interrupts, clear all the |A bits in the
TICR and then restore the ones you want.

When 32-bit Transmit Control Blocks are used, setting
UnderWait to 1 has a further effect that helps minimize the
occurrence of Tx Underrun conditions. When the TxCtriBlk
field (CCSR15-14) is 10 and UnderWait (TCSR11)is 1, the
Transmitter will delay starting to send a frame until either
the TxFIFQ is full or an entire Tx frame has been placed in
the TxFIFO.

Using UnderWait with 32-bit TCBs helps minimize Tx
underruns in situations such as when the Rx DMA channel
has pre-emptive priority over the Tx DMA channel, and it
seizes control of the bus just after the channel has placed
the first one or two characters of a new Tx frame in the
TxFIFO.

5-46

UMO014001-1002

Gayle Gamble
UM014001-1002

AN 2iLa5s

Z16C32 JUSC™
USER'S MANUAL

5.23.2 Rx Overruns

If the external processor or arbiter doesn't grant the bus to
an IUSC sufficiently soonfoften, the 32-character RxFIFO
mavy fill up. If another character arrives while the RxFIFO is
full, the Receiver saves this character in a holding register
between the Rx shift register and the RxFIFO. When the Rx
DMA gets around to reading from the RxFIFO again, the
Receiver places this “overrun character” in the RxFIFO
with a status bit that accompanies it through the FIFO.
When the Rx DMA channel stores the overrun character in
memory, the IUSC sets the RxOver bit in the RCSR and
requests an interrupt if the RxOver IA bit in the RICR and
the RSIE and MIE bits in the ICR are all 1.

Once an overflow has occurred, the Receiver doesn't put
any more received data in the RxFIFO (even if the external
processor/arbiter grants the bus and the Rx DMA channel
stores some or all of the data from the FIFO into memory)
until software responds. The proper software response is
to:

1. Write a "Pause Rx DMA” command to the DCAR
2. Write an “Enter Hunt Mode” command to the RCSR

3. Write a “Purge Rx” command to the CCAR. [USCs that
do not bear 16C32 SL1660 topmarking always store
this bit as 0) write a “Purge Rx FIFO” command to the
CCAR and a 1 to the “Clear RCCF” bit in the CCSR.

4. Reprogram the Rx DMA channel to point to the first
buffer for the frame in which the overrun occurred.

5. Write a “Start Rx DMA” or “Start/Init Rx DMA” com-
mand to the DCAR

6. If the Overrun condition is armed for interrupt, write a
1 to RCSR1 to clear the status bit.

7. If Overrun and other conditions are armed to cause
Receive Status interrupts, clear all the IA bits in the
RICR and then restore the ones you want.

5.23.3 Rx Overrun Scribbling

IUSCs that do not bear the 16C32 SL1660 topmarking
have a special problem with Rx Overruns. When the end of
aframe or message arrives, the IUSC sets an internal state
that forces the Rx DMA request to store the end of the
frame. Normally, this state is cleared when the Rx DMA
channel stores the last character of the frame in memory.
However, if the frame ends while the Receiver is overrun,
the logic sets the internal state as usual, but there's
nowhere to store the EOF character that will clear this state.
The result is that the Rx DMA channel keeps storing the
entire contents of the RxFIFO again and again in memory,
until it runs out of buffers or until software detects the
overrun condition and stops the scribbling by the steps
described above.

However, the scribbling activity itself handicaps the pro-
cessor from executing the interrupt service routine effi-
ciently until the Rx DMA channel runs out of buffers. If it's
important to stop the scribbling ASAP:

1. Use the Burst/Dwell Control Register (BDCR) to limit
the IUSC's activity in each period of bus control.

2. Set the MinOff39 bit (DCR5) to keep the IUSC from re-
requesting the bus quickly.

3. Give interrupts from the 1USC the highest possible
priority.

The first two steps should allow the processor enough
bandwidth to slowly execute the ISR and terminate the
scribbling.

5-47

UMO014001-1002

Gayle Gamble
UM014001-1002

AN 2iLa5

216C32 {USC™
USER'S MANUAL

5.24 BETWEEN FRAMES, MESSAGES, OR CHARACTERS

5.24.1 Synchronous Transmission

When software issues a “Set EOF/EOM" command and
then writes data to the TDR, or when the TCC is enabled
and software or the Transmit DMA channel fetches enough
data so that it counts down to zero, the IUSC flags the last
character of the message or frame in the TxFIFO. After this
last character passes through the TxFIFO and out onto the
serial link, the Transmitter terminates the frame or mes-
sage. The Transmitter also terminates a frame or message
if it needs a character from the TxFIFO but it is empty (an
“underrun” condition). The IUSC's exact actions at these
points depend on the serial mode/protocot and possibly
on certain programmed options.

If the TxCRCatEnd bit in the Transmit Mode Register
(TMR8) is 1, the Transmitter sends the CRC code it has
accumulated during the frame, after a character marked
as the end of a frame or message. If the TxSubMode field
says to do so, the Transmitter sends its accumuiated CRC
inanunderrun situation. The CRC canbe 16 or 32 bitslong.

After sending a CRC for either reason, or right after the last
character from the TxFIFO if it does not send the CRC,
except in 802.3 (Ethernet) mode the Transmitter sends a
closing Sync or Flag sequence as determined by the
TxMode and sometimes the TxSubMode, as follows:

TxMode Closing Sequence:
Monosync (TSR15-8)

Slaved Monosync (TSR15-8)

Bisync (TSR15-8) if CMR14=0

(TSR7-0}(TSR15-8) if CMR14=1
SYNif CMR14=0

DLE-SYN if CMR14=1

(ASCII or EBCDIC per CMR12)

Transparent Bisync

802.3 (Ethernet) None
HDLC/SDLC Flag (01111110)
HDLC/SDLC Loop Flag (01111110)

Then, or right after sending the CRC in 802.3 (Ethernet)
mode, the Transmitter decides whether to send another
frame or message immediately or not. In HDLC/SDLC
Loop mode only, when it sends a closing or idle Flag the
Transmitter checks whether software has cleared the
CMR13 bit to signal the end of sending activity. If so, it
returns to repeating data from RxD onto TxD. in any other
mode, and in Loop mode if CMR13 is 1, the Transmitter
commits to sending a new message or frame when:

1a. The UnderWait bit (CCSR11) is 0 and/or the TxCtriBlk
field (CCR15-14) is Ox, and there is at least 1 charac-
ter in the TxFIFO, or

1b. UnderWaitis 1 and TxCtriBik is 10, and the TxFIFO is
full or a complete frame has been placed in the
TxFIFO, and

2a. Either the Wait2Send bit in the Transmit Interrupt
Control Register (TICR2) is 0, or

2b. Software haswrittenthe “Send Frame/Message” com-
mand to the TCmd field of the Transmit Command/
Status Register (TCSR15-12) since the end of the last
frame.

If these conditions are not met, the Transmitter sends the
“Idle line condition” specified by the Txldle field of the
Transmit Command/Status Register (TCSR10-8). This field
also determines what the Transmitter sends between char-
acters in async modes. The Transmitter interprets TxIdle
as follows:

Txldle idle Line Condition

000 The idle line condition is the default for the
mode/protocol defined by TxMode:

e All ones in 802.3 and all async
modes.

¢ Flags in HDLC/SDLC and
HDLC/SDLC Loop.

¢ Sync sequences in Monosync,
Slaved Monosync, Bisync, and
Transparent Bisync. (In the Bisync
modes these are like closing Syncs:
they may be single characters or

pairs based on CMR14.)
001 Alternating zeroes and ones
010 Continuous zeroes
on Continuous ones

100 Reserved; do not program

101 Alternating Mark and Space
110 Continuous Space (TxD low)
111 Continuous Mark (TxD high)

UMO014001-1002

Gayle Gamble
UM014001-1002

A 2ILa5

Z16C32 [USC™
USER'S ManuaL

With choices 000-011, the Transmitter encodes the Idle
condition as specified by the TxEncode field of the Trans-
mit Mode Register (TMR15-13), while for choices 101-111
it does not encode the condition. Software can use these
idle-condition options to keep Phase Locked Loop and
decoding circuits atthe remote receiver “in sync” between
messages, frames, or async characters. Consider the
sections of Chapter 4 that deal with data encoding and the
DPLL, and whatever standards or specifications apply to
your application, in selecting how to program TxIdle.

In sync modes, once the conditions to start sending a
message or frame (described above) are met, the Trans-
mitter may send a bit sequence called a Preamble. A
Preamble can be used to synchronize Phase Locked Loop
and decoding circuits at the remote receiver, or, with the
Z16C32, to guarantee a minimum number of Flags be-
tween HDLC/SDLC frames. Whether the Transmitter sends
aPreamble is a function of the TxMode and sometimes the
TxSubMode, as follows:

TxMode Preamble sent?
Monosync If CMR13=1
Slaved Monosync Never

Bisync If CMR13=1
Transparent Bisync If CMR13=1
802.3 (Ethernet) Always
HDLC/SDLC If CMR13=1
HDLC/SDLC Loop Never

If the Transmitter sends a Preamble, the TxPreL and
TxPrePat fields of the Channe! Control Register (CCR11-
10 and CCR9-8) control its length and content:

TxPrel Length of Preamble Sent

00 eight bits
01 16 bits
10 32 bits
11 64 bits

TxPrePat Preamble Pattern Sent
00 All zeroes
01 All ones, or Flags
10 101010
11 010101

For HDLC/SDLC mode, if TxPrePat is 01 and the
FlagPreamble bitin the Channel Control Register (CCR12,
see Figure 5-17) is 1, the Z16C32 sends 1, 2, 4, or 8 Flags
as the Preamble. Including the opening and closing Flags,
this guarantees a minimum of 3, 4, 6, or 10 Flags between
frames respectively. This is useful when sending to certain
kinds of equipment that can not handle less Flags, or as a
means of slowing down the gross frame rate slightly.

FlagPreamble should be 0 in all other modes. For 802.3
(Ethernet) mode, program TxPrelL.=11 and TxPrePat=10;
the Transmitter automatically modifies the last {64th) bit
froma 0 to a 1 to act as the “start bit." For other modes,
consider the sections of Chapter 4 that deal with data
encoding and the DPLL, and whatever standards or speci-
fications apply to your application, in deciding whether to
use a preamble and if so what kind.

After sending the Preamble, or when the conditions for
starting a frame have been met if there is no Preamble,
except in 802.3 (Ethernet) mode the Transmitter sends an
opening Ftag or Sync sequence. In the two Bisync modes
this may differ from the closing sequence:

TxMode Opening Sequence:
Monosync (TSR15-8)
Slaved Monosync (TSR15-8)
Bisync (TSR7-0)(TSR15-8)
Transparent Bisync DLE-SYN

(ASCII or EBCDIC per CMR12)
802.3 (Ethernet) None
HDLC/SDLC Flag (01111110)
HDLC/SDLC Loop Flag (01111110)

Inthe HDLC/SDLC and HDLC/SDLC Loop modes only, the
Transmitter will combine the closing and opening Flags
into a single instance if software has not selected sending
a Preamble (CMR13=0); this does not apply in Loop
mode), and the conditions for starting a frame (described
earlier in this section) are met as the Flag is going out.

As described in the earlier section Status Reporting, soft-
ware can use four of the bits in the Transmit Command/
Status Register (TCSR) to track the progress of the Trans-
mitter through these inter-frame activities. They occur in
the time order CRCSent, then EOF/EOM Sent, IdleSent,
and finally PreSent. Chapter 7 describes how software can
enable any or all of these conditions to cause an interrupt.

5-49

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2ILa5

216C32 [USC™
USER'S MANUAL

5.24.2 Async Transmission

As described in the previous section, the TxIdle field of the
Transmit Command/Status Register (TCSR10-8) controls
what kind of idle line condition the Transmitter sends
between characters (or words) in asynchronous modes.
The bits in the Channel Command Register that define the
Preambile in sync modes (CCR11-8) can be used in Async
mode to “shave” the length of transmitted Stop bits.

5.24.3 Synchronous Reception

Between the end of one message or frame and the start of
the next, the Receiver goes through states that are similar
to the inter-message or inter-frame activities that are de-
scribed above for the Transmitter. As covered in the earlier
section Status Reporting, software can use some or all of

the following status bits to track these state changes:
RxBound (RCSR4), CRCE/FE (RCSR3), IdleRcved
(RCSR6), and ExitedHunt (RCSR7). If the DPLL is used,
Chapter 4 describes the DPLLSync bit in the Channel
Command/ Status Register (CCSR12) which bears a cer-
tain symmetry with the PreSent bit on the Transmit side.
Chapter 7 describes how software can enable the RxBound,
IdleRcved, and/or Exited Hunt conditions to cause an
interrupt.

The IdleRcved logic is not as flexible as the corresponding
Txldle logic in the Transmitter, in that it only detects an Idle
condition consisting of 15 or 16 consecutive ones.

In HDLC/SDLC mode the Receiver automatically copes
with single Flags between frames and with shared zeroes
between Flags (011111101111110).

5.25 SYNCHRONIZING FRAMES/MESSAGES WITH SOFTWARE RESPONSE

In some applications, software can simply set up DMA
buffers for multiple frames or messages, and set the
IUSC’s Transmitter and/or Receiver and DMA channei(s)
into operation to send and/or receive all of them. In other
applications, software has to interact with and supervise
the communications process more closely. (The extreme
case is when software has to check status register bits for
each character that it transfers to the TxFIFO or from the
RxFIFO.)

The IUSC provides two alternatives for interlocking the
start of transmission of a frame or message with software
response, and one similar interlock on the receive side.
Note that all three of these interlocks apply only after the
end of a frame, not before the first frame sent or received.

if the Wait2Send bit in the Transmit Interrupt Contro!
Register (TICR2) is 1, then each time the Transmitter
finishes sending a frame and before it sends the next, it
waits for software to write the Send Frame/Message com-
mand to the TCmd field of the Transmit Command/Status
Register (TCSR15-12). Depending on the programmed
mode the Transmitter may then go on to send the Preamble
or the opening Sync or Flag. This kind of interlock allows
the software to reprogram global Transmitter parameters
that may need to change between frames or messages. It
allows the Transmit DMA channel (or software) to fill the
TxFIFO in preparation for the next frame or message,
before software issues the Send Frame/Message com-
mand. One use for this interiock would be to change the
TxCRCatEnd bit in the Transmit Mode Register (TMR8)
between frames, in an application in which the Transmitter
should calculate a CRC in some messages or frames but
not in others.

If the WaitdTxTrig bit in the Channel Control Register
(CCR13) is 1, then each time the Transmitter finishes
sending a frame and before it sends the next, it waits for
software to issue the Trigger Tx DMA (or Trigger Rx and Tx
DMA) command before it requests DMA operation. This is
a “more stringent” interlock than the preceding one, in that
the Transmit DMA channel will not fil the TxFIFO in prepa-
ration for the next frame, until software issues the com-
mand. This kind of interlock is useful if DMA-related para-
meters, or parameters that go through the TxFIFO with the
data, need to be changed between frames. The most
obvious example is reprogramming the buffer location and
length in the Transmit DMA channel, although the DMA
section provides three different modes that do this more
efficiently.

On the Receive side, if the Walit4RxTrig bit in the Channel
Control Register (CCRS5) is 1, then after the Receive DMA
channel has written a character marked as RxBound to
memory (and after it has written the Receive Status Block
if software has enabled this feature), the Receiver does not
assert /RXREQ to the Receive DMA channel again until
software writes the Trigger Rx DMA (or Trigger Rx and Tx
DMA) command to the RTCmd field of the Channel Com-
mand/Status Register (CCAR15-11). Software can use this
interlock to reprogram the Receive DMA channel between
frames.

5-50

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLas

Dverview

SUS nleriacin

sample Application 1
Serial interfacing 4

Serial Modes and Protocols B

Direct Memory Access
(DMA) Ghannels

interrupls 7

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLas

USER's MANUAL

CHAPTER 6

DIRECT MEMORY ACCESS
(DMA) CHANNELS

6.1 INTRODUCTION

The main advantage of the IUSC, compared to predeces-
sor devices like the Z16C3x MUSC, is the inclusion of
Transmit and Receive DMA channels. These allow the
IUSC to fetch its own transmit data from memory and store
its received data in memory. This chapter describes the
various operating modes of these DMA channels and how
to program them.

The IUSC's Receiver and Transmitter can be handled via
DMA or programmed transfers. Software can even mix
DMA and programmed transfers for the Receiver or the
Transmitter.

For example, software could use the Wait4RxTrig bit
(CCR13) to inhibit DMA transfers at the start of each
received frame, so that it can read the first few characters
of the frame from the RxFIFO itself. Software can then
determine the kind of frame from examining the first char-
acters, optionally program the Rx DMA controller accord-
ingly, and then write the “Trigger Rx DMA" command to the
RTCmd field of the Channel Command/Address Register
(CCAR15-CCAR11). The DMA controller can then transfer
the rest of the frame into memory without further software
intervention.

6.2 DMA FUNDAMENTALS

Each channel can operate in any of four main operating
modes. Figure 6-1 shows the format of the Transmit and
Receive DMA Mode Registers (TDMR and RDMR). The
DMAMode fields of these registers control the main mode
of each channel, and are encoded as follows:

DMAMode Basic DMA Mode
00 Single Buffer
01 Pipelined
10 Array
11 Linked List

Later sections will describe each of these modes in detail,
butfirst it is worthwhile to present some characteristics that
are common to all the modes.

6.2.1 Addresses and Byte Counts

Before the Transmit DMA channel can transfer data froma
memory buffer to the TxFIFO, and before the Receive DMA
channel can transfer data from the RxFIFO to a memory
buffer, software and/or hardware (depending on the mode)
has to load the data buffer's starting address into the
Transmit or Receive Address Register (TAR or RAR).
The same software/hardware mechanism has to load the
number of bytes to be read out of the buffer into the

Transmit Byte Count Register (TBCR), or load the (maxi-
mum) number of bytes to be written into the buffer into the
Receive Byte Count Register (RBCR). The TAR and RAR
are 32-bit registers, allowing the IUSC to address up to a
4-Gbyte linear address space, while the TBCR and RBCR
are 16-bit registers, allowing a channe! to transfer up to
65,535 bytes to or from each buffer. (In Single-Buffer and
Pipelined modes, a zero byte count makes a channel do
nothing, while in Array and Linked List modes, a zero byte
count indicates that the last buffer of the array or list has
been completed.) In any mode, a block of data longer than
65,535 bytes can be easily transferred, by treating it as two
or more consecutively-addressed buffers.

The 32-bit TAR and RAR are each divided into two 16-bit
registers, with the less significant half being called Lower
(TARL, RARL) and the more significant half being called
Upper (TARU, RARU), In Single-Buffer and Pipelined
modes, software must program address registers directly;
they are arranged with the Lower register at the lower
register address, which sounds right but is in fact the
natural order only for Little-Endian systems (Z80 family or
8086 family processors). On Big-Endian machines, includ-
ing Z8000 and 680x0 processors, software should not
program an address register using an instruction that
moves 32-bit data, but rather by means of two separate
instructions each transferring 16 bits.

6-1

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLars

Z16C32 lUSC™
USER'S MANUAL

6.2 DMA FUNDAMENTALS (Continued)

Aside from certain “overhead” operations in Array and
Linked List modes, each DMA channel actually transfers
data only when the serial Receiver or Transmitter requests
thatitdo so, using aninternal request signal. Programming

the DMA Request Levels, later in this chapter, describes
how software can program the number of received charac-
ters in the RxFIFO at which the Receiver requests DMA
transfer, and the number of empty slots in the TxFIFO at
which the Transmitter does so.

TCB
DMAMode [/RSB | Clear | aqarmode | Terme | 8/16 | conT | aLink | Busy | iInTa | EQA | eoB | Havor | sabort
ina/L | Count EOL
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

Figure 6-1. The DMA Mode Registers (TDMR and RDMR)

6.2.2 Data Width and Byte Ordering

If “16-bit” in the Bus Configuration Register (BCR2) is 0,
indicating an 8-bit external data bus, and/or if the 8/16 bit
in a channel's DMA Mode Register (TDMR8 or RDOMRS) is
1, the channel does only 8-bit transfers with memory,
including data buffer transfers and “array” and “list" ac-
cesses in Array and Linked List modes. The channel
decrements its Byte Count Register (TBCR or RBCR) by 1
for each transfer to or from a data buffer. Typically it also
increments its address register by 1 for each byte transfer,
although software can program a channe! to keep a data
buffer address constant, or decrement it. If 16-bit is 0, the
IUSC transfers all bytes on the AD7-ADO lines. If 16-bit and
8/16 are both 1, and address incrementing or decrement-
ing is enabled, the Transmit DMA channel provides each
byte on both halves of the data bus, while the Receive DMA
channel alternates between taking a byte from AD15-ADS8
and from AD7-ADQ, as determined by bit O of its address
register. Chapter 5 describes the “Select D15-D8 First” or
“Select D7-DO First” commands that software can write to
the CCAR; these affecthowthe channel relates address bit
0 to AD15-AD8 and AD7-ADO.

If 16-bitis 1 and 8/16 is 0, a Z16C32 DMA channel will do
16-bit transfers whenever it can. This includes all array and
list transfers in Array and Linked List modes, and all
transfers to and from data buffers when the address in TAR
or RARis even and TBCR or RBCR contains 0002 or more.
Ifthe address in TAR or RAR is odd, and/or if the byte count
in TBCR or RBCR is 0001, the Z16C32 will do a byte
transfer with memory. (This can happen only for the first
byte andiast byte of a buffer.) In such transfers the Receive
channel will take the byte from AD15-AD8 or AD7-ADO
according to bit O of its address register, interpreted
according to any “Select D15-D8 First” or “Select D7-D0
First” command that software has written to the CCAR.

When an IUSC does a 16-bit transfer to or from a memory
buffer it decrements TBCR or RBCR by 2, and typically
increments its address register by 2. For serial data, the
IUSC arranges the oldest and second-oldest characters
from the RxFIFO on the AD15-ADO lines, or routes the two
characters on these lines into the TxFIFO, according to any
“Select D15-D8 First" or “Select D7-DO First” command
that software has written to the CCAR.

There is one other feature of the Z16C32's byte/word
switching mechanism that software needs to know about.
When a channelis programmed for 16-bit transfers and for
Early Termination as described in the next section, and the
last character of a frame falls at an even memory address,
the serial controller signals the DMA channel that the
current transfer includes the last character of a frame, but
it does not indicate whether this character is the first or
second of the two characters in the transfer. That is, it does
not tell the DMA channel whether or not to force a byte
transfer. On the receive side this is not a big problem,
because if such an end-of-frame character is the oldest
one in the RxFIFO, the IUSC provides it on the “even-
addressed” half of the data bus. On the transmit side this
is not a problem in a Little-Endian system, because when
the TCC contains 0001 the TxFIFO logic always takes the
last byte from AD7-ADO, which is the even-addressed
location in such systems. On the Transmit side in a Big-
Endian system, software can avoid this situation by not
programming the Transmit DMA channel for Early Termi-
nation, but rather setting the byte count for the last buffer
of the frame to match the frame length used in the TCC.

6-2

UMO014001-1002

Gayle Gamble
UM014001-1002

N 205

Z16C32 IUSC™
USER'S MaNUAL

6.2.3 Buffer Termination

A DMA channel transfers data from memory to the TxFIFO
as the Transmitter requests it, or from the RxFIFO to
memory as the Receiver requests such transfer, until one
of the following occurs:

1. the channel decrementsthe countin TBCRor RBCRto
zero, or

2. if the TermE bit in the DMA Mode Register (TDMR9 or
RDMR9) is 1, and the serial controller signals for a
“buffer termination,” or

3. external hardware asserts the /ABORT input during a
DMA transfer, or

4. host software writes one of the following commands to
the DMA Command/Status Register (DCAR):

“Reset This Channel”,
“Pause This Channel”,
“Abort This Channel”,
“Reset All Channels”,
“Pause All Channels”, or
“Abort All Channels”.

When a channel stops because of item 3 or 4 above, it does
so summarily, without any further actions. But when a
channel terminates a buffer for reason 1 or 2, it attempts to
go on to another buffer, except in Single Buffer Mode. In
Pipelined mode, if software has provided the address and
byte count of the next buffer, the channel continues on to
transter that buffer; otherwise it stops. In Array or Linked
List, the channel tries to fetch the address and byte count

of the next buffer from the array or list in memory; if it finds
them it continues on to transfer that buffer, otherwise it
stops.

Point 2 above notes that if the TermE bit in a DMA Mode
Register (TDMR9 or RDMR9) is 1, the channel will termi-
nate a memory buffer before it decrements its byte count
(in TBCR or RBCR) to zero, iffwhen the serial controller
asserts a termination signal. (if TermE is 0, the channel
ignores the signal.)

The serial controller asserts the internal termination signal
to the Transmit DMA channel only in synchronous modes.
It does so as the DMA channel writes 1 or 2 characters into
the TxFIFQ, so that the Transmit Character Counter (TCC)
is decremented to O.

On the receive side, the Receiver forces the Request
signal True to the Receive DMA channel, as/after it places
an RxBound character in the RxFIFO in HDLC/SDLC,
Ethernet/802.3 or Transparent Bisync mode. It does this to
force the DMA channel to store the end of the frame or
message, even though the number of received characters
inthe FIFQ is less than the programmed threshold for DMA
Requesting. The serial controller then maintains the re-
questuntilthe DMA channel stores the RxBound character
(and the Receive Status Block if it is enabled) in memory.
The serial controller asserts buffer termination as the DMA
channel stores these last bytes. (Early termination signal-
ing on the receive side is actually more complex than we
need to know about at this point. The full story is told later
in Storing Receive Status Blocks.)

The Receive Character Counter (RCC) feature can neither
cause early buffer termination nor forcing of the internal
DMA Request.

6-3

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLa5

Z16C32 lUsc™
USER'S MANUAL

6.3 SINGLE BUFFER MODE

Figure 6-2 illustrates Single Buffer mode, which is the most
basic of the IUSC DMA channels’ major modes. Software
loads the starting address of each memory buffer contain-
ing data to be transmitted into the Transmit Address
Register (TAR). Similarly, it loads the starting address of
each memory area, into which received data should be
stored, into the Receive Address Register (RAR). The
software also loads the number of characters to be trans-
mitted from each memory area into the Transmit Byte
Count Register (TBCR). Similarly, it loads the maximum
number of received characters to be stored ineach memory
area into the Receive Byte Count Register (RBCR).

Then the host processor software enables the DMA chan-
nel for operation by writing a "Start This Channel” com-
mand to the DMA Command/Address Register (DCAR).
Thereafter the DMA channel moves the data from memory
to the TxFIFO or from the RxFIFO into memory, as de-
scribed in DMA Fundamentals above.

Software can program the IUSC to request severat kinds of
interrupts at the end of the buffer. ADMA channelinterrupt,
an interrupt request from the serial controller, or both can
be used to trigger host software response at appropriate
points in the serial data stream. Alternatively, host software
can periodically poll the DMA channel status in the DMA
Mode Register (TDMR or RDMR) and/or the serial channel
status to determine when the DMA transfer is over.

Note that for transmitting, the DMA channel completes its
operation before the serial Transmitter has finished send-
ing all the data in the block. For reception the serial
Receiver may know about an end-of-block situation before
the Receive DMA channel! has finished transferring the
data into memory.

When an interrupt or polled status has informed the host
software that a DMA block transfer is over, the software can
read back the ending contents of the TAR or TBCRto figure
out whether all of the bytes to be sent actually were sent.
Similarly, software can read back the ending contents of
the RAR or RBCR to determine how many bytes the
channel stored in memory. Note that software can read
similar information from the RCC FIFQ in the serial control-
ler, or can have the IUSC store it in memory in a Receive
Status Block.

Particularly for receiving, host software will typically want
to reprogram the RAR and RBCR, or TAR and TBCR, and
restart the channel for the next buffer of data, as soon as
possible after the DMA channel finishes with each buffer.

Inmany applications, data from two or more memory areas
must be sent without interruption on the serial link (e.g., in
the same frame). The corresponding characteristic on the
receive side is almost always required, namely that re-
ceived data not be lost while the host software responds to
a buffer-complete condition, reprograms the channet for
the next buffer, and restarts the channel.

While the IUSC’s deep FIFOs provide some assurance of
continuous transmission and protection against loss of
receive data, above a certain bit rate these characteristics
can only be assured by using Pipelined, Array, or Linked
List mode. The actual rate at which Single-Buffer mode is
no longer sufficient is a fairly complex matter involving
processor speed and system architecture.

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2La5

Z16C32 lusc™
USER'S MANUAL

(1) Host Software Sets Up the Channel

TAR or RAR

Data to Transmit, or Empty for Receive

Host Data Butfer In Memory

Buffer Length ~ i ;
- | A
TBCR or RBCR _/

DCAR

(2) The Channel Transfers Data ()’

Channel
. Address —

in Buffer
Addr Data

TAR or RAR Transmitted or Data to Transmit,
Received Data | or Empty for Receive
Data Buffer in Memory
Remaining Length
TBCR or RBCR
(3) Buffer Complete Host Interrupt

Channel

Host TAR or RAR Transmitted or Received Data

/— e .
-

0000 Data Butfer In Memory

TBCR or RBCR

Figure 6-2. Single Buffer Mode DMA Operation

UMO014001-1002

6-5

Gayle Gamble
UM014001-1002

N 2iLaB

716C32 lUSC™
USER'S MANUAL

6.4 PIPELINED MODE

In this mode the IUSC employs two additional registers for
each channel, called the Next Transmit Address Register
(NTAR), the Next Transmit Byte Count Register (NTBCR),
the Next Receive Address Register (NRAR), and the Next
Receive Byte Count Register (NRBCR). Figure 6-3 illus-
trates Pipelined mode, in which software can write the
starting address and byte count for the next data bufferinto
these registers, while the DMA channel is using the TAR
and TBCR, or RAR and RBCR, to transfer the preceding
buffer.

After programming a Channel Mode Register for Pipelined
mode, the host software can start the channel in one of two
ways. It can program the address and length of the first
buffer into the TAR and TBCR, or RAR and RBCR, and then
write the “Start This Channel” command to the DCAR.
Alternatively, software can also write the address and
length of the second buffer into the NTAR and NTBCR, or
NRAR and NRBCR, and then write the “Start/Continue This
Channel” command to the DCAR. The latter command
differs from the former in that, in addition to setting the
BUSY bitin the channel's DMA Mode Register (TDMRS or
RDMRS), it also sets the CONT bit (TDMR7 or RDMR7).

Whichever way software starts the channel, it then trans-
fers from the data buffer indicated by TAR and TBCR, or
into the buffer indicated by RAR and RBCR, as described
earlier in DMA Fundamentals.

If a new transmit buffer is available in Pipelined mode and
the CONT bitis zero, while the Transmit DMA channelis stil!
transferring an earlier buffer, software should write the
address and byte count of the new buffer into the NTAR
and the NTBCR, and then write a “Start/Continue This
Channel” command for the Transmit DMA channel into the
DCAR. If it accomplishes these things before the DMA
channel finishes transferring the preceding buffer from
memory to the TxFIFO, then when the channel finishes with
the preceding buffer, it automatically transfers the con-

tents of the NTAR and NTBCR to the TAR and TBCR
respectively, and continues sending the data in the new
buffer.

Similarly, if an empty receive buffer is available and the
CONT bit is zero, while the Receive DMA channel is still
transferring an earlier buffer, software should write the
address and byte count for the buffer into the NRAR and
the NRBCR, and then write the “Start/Continue This Chan-
nel” command for the Receive DMA channel into the
DCAR. If it accomplishes these steps before the channel
finishes transferring the preceding buffer from the RxFIFO
to memory, then when the DMA channel finishes with the
preceding buffer, it automatically transfers the contents of
the NRAR and NRBCR to the RAR and RBCR respectively,
and goes on to receive data into the new buffer.

In Pipelined mode, a DMA channel tries to advance to the
next buffer when it has decremented the TBCR or RBCR to
0, and/or if software enables the early buffer termination
feature and the serial controller signals for termination. In
either case the channel does so only if the CONT bit in its
DMA Mode Register (TDMR7 or RDMR7}is 1. The channel
sets the CONT bit when software writes a “Start/Continue”
command to the DCAR, and clears the bit each time it
advances to a new buffer.

A DMA channel will not advance to the next buffer in
response to assertion of the /ABORT signal during a
transfer. Nor will it advance to the next buffer in response
to any software commands.

As in Single Buffer mode, software can program the IUSC
to request a DMA channel interrupt and/or a serial control-
ler interrupt as these modules finish with each buffer.
Alternatively, host software can periodically poll the DMA
channel status and/or the serial channel status to track the
progress of DMA transfer.

UMO014001-1002

Gayle Gamble
UM014001-1002

216C32 JUSC™

@ Z'Lm USER'S MANUAL
(1) Host Software Sets Up the Flrst Buffer
e Buffer 1 —
Address \
TAR or RAR Data to Transmit, or Empty for Receive
Host Buffer 1 Length :I- | Data Buffer "1" In Memory I
[1
TBCR or RBCR _/
(Last) *Start"
Command |
DCAR
(2) Host Sets Up the Next Buffer while the Channel Transfers Data @ @
- - (or)
. Bufter2 1 | . Addressin] L
Address S Channel
NTAR or NRAR TAR or RAR Addr Y, Data
- = Transmitted or Data to Transmit,
Host Buffer 2 Length - Remaining Length - Recelved Data | or Empty for Receive
= ~ Data Buffer "1" in Memory
NTBCR or NRBCR TBCR or RBCR
(as0 Cammand | .
ke Data to Transmit, or Empty for Receive
DCAR -
E Data Buffer “2" in Memory
CONT 4 |
(TDCMR7 or RDCMR?)

(3) The Channel Moves to the Next Buffer

Host

(TDCMR7 or RDCMR?)
e Buffer 2 Buffer 2
Address Address
NTAR or NRAR TAR or RAR
Buffer 2 Length Buffer 2 Length
NTBCR or NRBCR TBCR or RBCR

Interrupt

Transmitted or Received Data

Request

Data Buffer "1" in Memory

Data

+{ Channel

Data to Transmit, or Empty for Receive

Data Buffer “2" in Memory

Y

- [

Figure 6-3. Pipelined Mode DMA Operation

UMO014001-1002

6-7

Gayle Gamble
UM014001-1002

. 216C32 fusc™
N 2iLank UsER's MANUAL
6.4.1 Avoiding Problems with the CONT Flag

Software must take care not to write a “Start/Continue”
command to an operating channel while the channel is
testing the CONT bit after completing a buffer. This is
because, if the command occurs just after the channel has
tested CONT as 0 and therefore cleared BUSY, the com-

Provide Next Buffer
to Channel x (x=R/T)

mand restarts the channeito reuse the buffer described by Wiite Buffer Address
TAR and TBCR, or RAR and RBCR, a second time. to NxQ)RNE ceRCount
The performance and interrupt-response characteristics ‘

of the processor and total system, considered in the

context of the line protocol, may guarantee that software Clear MBRE
will always write the Start/Continue command for a buffer (DCARS) to 0
before the channelfinishes with the previous one. But if this

is not so, software should approach “notifying” the channel

of a new buffer as shown in Figure 6-4. First, clear the

Master Bus Request Enable bit (MBRE; DCARS) and then Test BUSY Write Buffer Address
test the BUSY bit (xDMRS). if BUSY is 1, write the register (xDMRS) to xAltao.E ceHCount
address and length to NxAR and NxBCR and then issue

the “Start/Continue This Channel” command. If itis 0, write

the address and length to xAR and xBCR and then issue

the “Start This Channel!” command. Be sure to set MBRE Write Start/Continue Write Start
when wrmng_ either command, so that the channel(s) can con\llr;ntgnhg Bt% ED=C1AR, con‘;vr'rt!hanbg Btg EDSAR,
operate again.

One drawback of Pipelined mode (as well as Array and “ ‘

Linked List modes), compared to Single-Buffer mode, is

that host software can not read back the ending address

and byte count to figure out the exact completion status of Figure 6-4. Posting a New Buffer (Pipelined Mode)
the buffer. For receiving, similar information can be ob-

tained by using the Receive Status Block feature of the

serial controller.

6-8

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLars

Z16C32 USC™
USER'S MANUAL

6.5 ARRAY MODE

In Array mode, host processor software sets up an arbi-
trarity long array or table of buffer addresses and byte
counts in memory. Then it sets the DMA channel into
operation to send all the data in all the buffers, or to receive
data into all of them in turn.

The Array and Linked List modes differ from Pipelined
mode in that software does not write the address of a data
buffer into the Next Transmit Address Register (NTAR) or
Next Receive Address Register (NRAR). Instead, in Array
mode, it writes NTAR or NRAR with the address of the start
of an array in memory, that contains the addresses and
lengths of each of a whole set of data buffers.

Figure 6-5 illustrates Array mode operation. Each entry in
the array may be six or 12 bytes long, as described in the
later sections Fetching Transmit Status Blocks and Storing
Receive Status Blocks; the Figure shows 6-byte entries to
keep it as simple as possible. With either entry format, the
first four bytes of each entry are the 32-bit buffer address
and the next two bytes are the 16-bit byte count for the
buffer.

Software can program the order in which the channel
fetches the two halves of the address to match the charac-
teristics of the host processor, as described later in Format
of Binary Values in Arrays and Lists. If 16-bit (BCR2) is 0
andfor the 8/16 bit (TDMR8 or RDMR8) is 1, this parameter
defines the order in which the channel fetches the four
bytes of the address and the two bytes of the count.

After programming a Channel Mode Register for Array
mode, software should start the channel by programming
NTAR or NRAR to point to the array at the address of the
first buffer to be used, and then writing a “Start/Init This
Channel” command to the DCAR. This command differs
from a “Start This Channel” command in that it set the
INITG bit in the channel’s DMA Mode Register (TDMR4 or
RDMR4) as well as the BUSY bit (TDMRS or RDMRS), so
that the channel fetches the first array entry before starting
DMA data transfer.

In array mode, the DMA channels treat two values of the
byte count in each array entry as having special signifi-
cance: zero indicates the end of the array, while one
indicates a special “link entry” which does not describe a
buffer, but rather provides a “link address” to another part
of the array. This link address directly follows the byte
count if Transmit Control Blocks or Receive Status Blocks

are not included in array entries, else it follows the “un-
used” word that follows the TCB or RSB. In other words, in
an array entry that includes a byte count of 0001, the link
address is located in the same place as itis in a Linked List
entry, and the IUSC ignores all other information in the
entry.

This “array chaining” facility provides many of the benefits
of the Linked List mode described in the next section,
withoutthe overhead of having tofetch a link address at the
end of each entry. On the other hand, the overhead of
fetching an entire entry just to get a link address may be
worse than that of fetching a link address from each entry,
in terms of worst-case timing.

For an array entry in which the byte count is 2 or more, if the
ClearCount bit in the channel's DMA mode register
(TDMR12 or RDMR12) is 1, the channel clears the byte
count field of the entry, by writing zero to it. (Software can
use this feature to track the DMA channel's progress
through the array, but the main purpose of the feature is in
Linked List mode.)

OntheTransmitside, if the channel's TCBInA/L bit(TDMR13)
is 1, the channel next reads the last six bytes of the entry.
For the first entry in an array, and if a subsequent entry in
the array aligns with the start of aframe, the IUSC interprets
the first four of these six bytes as a Transmit Control Block.
It always discardsfignores the last two bytes.

1USCs with a datecode of 9239 or earlier did not fetch a
TCB from the first entry of an array. See Fetching Transmit
Control Blocks later in this chapter for further details.

After fetching an array entry, if and when the internal
Request signal from the Transmitter or Receiver is true, the
DMA channel begins transferring data to or from the first
buffer in memory, as described earlier in DMA Fundamen-
tals. (On the Transmit side, if TCBInA/L is O but Transmit
Control Blocks are enabled, the Transmitter will interpret
the first four bytes from the buffer as a TCB.)

As in other modes, a DMA channel typically finishes a
buffer when it has decremented the buffer's byte count to
zero, and/or if the TermE bit in the channel's DMA Mode
Register (TDMR9 or RDMR9) is 1 to enable the Early Buffer
Termination feature and the serial controller signals that
the current transfer includes the last character of a frame
or message.

6-9

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iILa5

Z16C32 lusc™
USER'S MANUAL

6.5 ARRAY MODE (Continued)

(1) Host Software Sets Up the Array and Starts the Channel, which Fetches the First Entry

(Initial)

| Add f l__ Buffert Buffer 1
Start ?(s:n?ay } A:,‘dfe'ss Addraerss Channel
Host NTAR or NRAR Suter 1 Longh TAR or RAR Addr 4" Data
\ Data to Transmit, or Empty for Recetve
(Ther) aninft Buffer 1 Length
Command | :&% [suterz Data Buffer *1* in Memory
DCAR TBCR or RBCR } } |
0000
(2) The Channel Moves to Buffer 2
- Buffer 1 Transmitted or Recsived Data
Address
Data Buffer "1" in Memory
Buffer 1 Length
(or)
Buffer 2
l— Address . Add Ed”ggsi — :]» Channel
in Array
NTAR or NRAR Bulr2Longth |\ TAR or RAR
Data to Transmit, or Empty for Receive
" @ Buffer 2 Length
(Qtter [® Data Buffer '2' in Memory
Fetch) TBCR or RBCR |
0000
(3) The Channel Reaches the End of the Array
Host
A A wwrmpt
o = Fequest
Channel
Address of ..
End of Array — - — -
NTAR or NRAR 0000 TAR or RAR Transmitted or Received Data
(Final) 0000 Last Data Buffer in Memory
TBCR or RBCR

Figure 6-5. Array Mode DMA Operation

6-10

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2La5

216C32 lUsC™
USER'S MANUAL

Onthe Receive side, if Receive Status Blocks are enabled
as described in Chapter 5, after the Receive DMA channel
stores a character marked with RxBound status, the Re-
ceiver maintains its request to the DMA channel until the
latter has read outthe 2- or 4-byte RSB. (The Receiver does
this whether or not Early Termination is enabled.) if the
RSBinA/L bit inthe Receive DMA Mode Register (RDMR13)
is 0, the channel writes the RSB into the data buffer after the
last character of the frame. If RSBinA/L is 1, the channel
writes the RSB into the array entry after the byte count, and
then writes zero to the next two or four bytes.

The DMA channel then tries to advance to the next buffer
in the array, reading the next address and byte count as it
did for the first buffer. When the channel fetches a zero
byte count from an array entry, it goes to an inactive state,
in which case the software must reprogram the channel
and restart it before it can perform further DMA transfers.

In Array mode a channel uses NTBCR or NRBCR only as
atemporary holding register, so software does not have to
setup this register. In particular, NxBCR does NOT specify
the length of the array—rather, a zero in the byte countfield
of an entry signals the end of the array.

Software can program the {USC to interrupt when the DMA
channel and/or the serial controller completes each data
buffer, and/or when the DMA channel reaches the end of
the array. Host software can track the channel's progress
through the array by reading back the address inthe NTAR
or NRAR.

in Array mode a DMA channel becomes more autonomous
and independent of processor response than in Pipelined
mode. In general, this mode is less dependent on proces-
sor action than is Pipelined mode. This is particularly
important when several short frames arrive and must be
placed into consecutive buffers

But in one way Array mode is more dependent on host
processor response than is Pipelined mode. When the
DMA channel comes to the zero buffer length that signals
the end of the array, it becomes inactive and waits for host
processor software action, just as in Single Buffer mode.
Presumably on the transmit side, each array can be made
to end at the end of a message or frame, so that this
characteristic should not cause any problems. But, on the
receive side, the serial controller may be subject to FIFO
overruns and lost data if the host processor software does
notreprogram the DMA channel with anew array in atimely
manner.

6-11

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLa5

216C32 [UsC™
USER'S MANUAL

6.6 LINKED LIST MODE

This mode is similar to Array mode, particularly in its
capability to switch buffers rapidly for each of multiple
successive short frames, but it adds a capability for
dynamic updating as in Pipelined mode.

In Linked List mode the DMA channel fetches a buffer
address and a byte count from the first six bytes of a list
entry for each buffer, just as in Array mode, but in Linked
List mode these entries do not have to follow one another
in memory. The difference between array entries and list
entries is that each list entry includes the 32-bit address of
the next entry. As in array mode, a zero in the byte count
field of an entry signals the end of the list, and the other
fields in such a final entry do not matter.

List entries can be ten bytes long or 16 bytes long,
depending on whether they include a Transmit Control
Block or Receive Status Block, as described in the later
sections Fetching TCBs and Storing RSBs. (Figure 6-6
shows 10-byte entries to keep it as simple as possible.)
With either entry format, the first four bytes of each entry are
the 32-bit buffer address and the next two bytes are the 16-
bit byte count for the buffer.

As in Array mode, software can control the order in which
the channel fetches the two halves of each address. When
achannelis restricted to byte transfers, this option controis
the order in which it fetches the four bytes of the address
and the two bytes of the byte count.

After programming a Channel Mode Register for Linked
List mode, host software typically starts the channel by
programming NTAR or NRAR to point to the linked list at the
address of the first buffer to be used, and then writing a
“Start/Init This Channel” command to the DCAR. This
command differs from “Start This Channel" in that it set the
INITG bit in the channel's DMA Mode Register (TDMR4 or
RDMR4) as well as the BUSY bit (TDMRS or RDMRS),
which makes the DMA channel fetch the first list entry
before beginning DMA data transfer.

After the channel fetches a buffer's address and byte
count, and verifies that the byte count is non-zero, if the
ClearCount bit in the channel's DMA Mode Register
(TDMR12 or RDMR12) is 1, the channel clears the byte
count field of the entry, by writing zero to it. This feature is
especially valuable when software arranges the linked list
in a “ring” structure, as described later.

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iILa5

Z16C32 USC™
USER'S MANUAL

(1) Host Software Sets Up the Linked List and Starts the Channel, which Fetches the First Entry and then Clears the Byte Count.

(Initial)
. StartAddress Buffer1 Butter 1 —
in Linked List Address Address
Host NTAR or NRAR Butfer “ Length TAR or RAR
(Them\y “starvinit \ "
Command Butfer 1 Langth
| Addrbssof o)
DCAR Butter Entry TBCR or RBCR
e Buffer 2 p—
r~ . Egggsi - 0000 Address
0000 Buffer 2 Length
Address of
| Addressof] -
Butfer t Entry Buffer 3 Entry

(Being filled or emptied by software)}

Data Butfer "3" In Memory

(2) Software Finishes Filling or Emptying Buffer #3 and Sets its Length

b Addressof ..}
Buffer 1 Entry

Data to Transmit, or Empty for Receive

Data Buffer “3" in Memory

le
L

@

GO

Data to Transmit, or Empty for Receive

l

Data Buffer "1" In Memory
N

>

- Addrsssoii p_—
Buffer 3 Entry

Data to Transmit, or Empty for Receive

Data Buffer “2" in Memory
le 4

I

Address in o Buter t Address —
[Linked List Addrass in Butfer 1 —Wam‘
NTAR or NRAR 0000 TAR or RAR Addr 4, Data
Transwnmeg or DEm to fme“h
Remaining Langth]— ata | or Empty °
| Addressof o Data Buffer “1* In Memory
Butfer 2 Entry TBCR or RBCR
- Buffer 2 pu—
— Sderd Address
Buffer 3 Length Butfer 2 Length
Data to Transmit, or Empty for Receive

Data Buffer "2" in Memory
le N »l

f—

Figure 6-6a. Linked List DMA Mode with a Three-Buffer Ring (1 of 2)

UMO014001-1002

Gayle Gamble
UM014001-1002

N2Las

Z16C32 lusC™
USER'S MANUAL

6.6 LINKED LIST MODE (Continued)

(3) The Channel Moves to Buffer 2, and Requests a Host Interrupt

L)

I Transmitted or Received Data]

Data Buffer 1" in Memory

Interrupt
Request

Address in | - Buffer 1 p—
Linked List Address
NTAR or NRAR 0000
| Addressof] |
Buffer 2 Entry
J
— M
ress
Buffer 2
[Address
Buffer 3 Length
BufferfLongm
l— Addressof __l
Butfer 1 Entry | Addresyof |
Butfer 3 Bgtry

\ Buffer 2 Length

Data to Transmit, or Empty for Receive]

Data Buffer 3" in Memory 0000
I M { 1
f >

TAR or RAR

Buffer 2 —
Address

[Data to Transmit, or Empty for Receive |

TBCR or RBCR L Data Buffer "2" in Memory

I~)

Figure 6-6b. Linked List DMA Mode with a Fixed Three-Buffer Ring (2 of 2)

Onthe Transmitside, if the channel's TCBInA/L bit(TDMR13)
is 1, the channel then reads the next six bytes of the entry.
For the first entry of a list, or if a subsequent entry aligns
with the start of a frame, the IUSC interprets the first four
bytes as a Transmit Control Block. It always ignores/
discards the last two bytes.

After fetching this much of a list entry, when the internal
Request signal from the Transmitter or Receiver is true, the
DMA channel transfers data to or from the first buffer in
memory, as described earlier in DMA Fundamentals. (On
the Transmit side, if TCBInA/L is O but Transmit Control
Blocks are enabled, the Transmitter will interpret the first
four bytes from the buffer as a TCB.)

As in other modes, a DMA channel typically finishes a
buffer when it has decremented a buffer's byte count to
zero, and/or if the TermE bit in the channel's DMA Mode
Register (TDMR9 or RDMR9) is 1 to enable the Early Buffer
Termination feature, and the serial controller signals that
the current transfer includes the last character of a frame
or message.

On the Receive side, if Receive Status Blocks are enabled
as described in Chapter 5, after the Receive DMA channel
stores a character marked with RxBound status, the Re-
ceiver maintains its DMA request until the channel has
read out the 16- or 32-bit RSB. (It does this whether or not
Early Termination is enabled.) If the RSBInA/L bit in the
Receive DMA Mode Register (RDMR13) is 0, the channel
writes the RSB into the data buffer after the last character
of the frame. If RSBInA/L is 1, the channel writes the RSB
into the list entry after the byte count, and then writes
zeroes to the next two or four bytes.

The DMA channel then tries to advance to the next buffer
inthe list, by first fetching the address of the next entry (this
address follows the byte count if the TCBIinA/L or RSBinA/
Lbitis O, otherwise it follows the lastunused byte). Then the
DMA channel fetches the buffer address and byte count
from the next entry.

6-14

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLa5

Z16C32 lusc™
USER'S MANUAL

if the next byte count is non-zero, the channel continues to
transfer data to or from the new buffer. If the byte count is
zero, the channel goes to an inactive state, in which case
software must reprogram and restart the channel before it
can transfer any more data.

Software can program the IUSC to interrupt the processor
when the DMA channel and/or serial controller completes
each data buffer, and/or when the DMA channel reaches
the end of the linked list. Host software can track the
channel's progress through the list by reading back the
address in the NTAR or NRAR.

6.6.1 Using Linked List Mode to Create a
Buffer Ring

Figure 6-6 illustrates operation in Linked List mode. In the
application shown, DMA transfers and software process-
ing of the data rotate among afixed set of three buffer areas
in memory. The next-entry addresses in their list entries
configure the list as a “circutar ring". This is the kind of
application for which the ClearCount bits are provided on
the Z16C32.

In the first part of the Figure, software starts the DMA
channel, to transfer data into or out of buffer “1". The host
processor (or another hardware element) is putting new
transmit data into buffer “3", or is taking received data out
of “3". While it is doing so, the byte count field for buffer 3
remains zero.

As described earlier, when a channel's ClearCount bit
(TDMR120r RDMR12)is 1, the channel writes zero into the
byte count field of each buffer's list entry, after it has read
the count and found it to be non-zero. This zero byte count
prevents the DMA channel from circling around the ring
and reusing the buffer again, before the software has filled
or emptied the buffer and then “refreshed” the byte count.

In the second part of the Figure, software (or whatever)

finishes filling or emptying buffer “3", and software places”
anon-zero byte countin its listentry. It needs to do this with

care to avoid problems if the DMA channel accesses the

end of the list at (more or less) the same time. The following

procedure is recommended:

1a. On a 16-bit bus, store the byte count using a 16-bit
write operation, OR

1b. on an 8-bit bus, write the Master Bus Request Enable
Bit (MBRE, DCARS) to 0, then write the two halves of
the byte count, then write MBRE back to 1.

2. In systems that use the MaxXfers andfor MaxCLKs
fields of the Burst/Dwell Control Register (BDCR) to
“throttle” the 1USC's DMA activity (as described in a
later section), add a few “No-ops” or a short timing
loop at this point. The delay should cover the case
when the IUSC fetches a zero byte count, but then
gives up the bus because of the BDCR throttiing,
before it fetches the rest of the terminating entry and
clears the BUSY bit.

3. Readthe TDMR or RDMR and test the DMA channel's
BUSY bit. If it is 0, the channel fetched the byte count
as zero before we stored the new value, and must be
restarted—go to aroutine that does this. If BUSY is still
1, the newly filled or emptied buffer has been suc-
cessfully added to the list and will be handled by the
DMA channel.

In the third part of the Figure, the channel finishes sending
data from buffer “1” or receiving data into it. It requests an
interrupt on the host processor, and goes on to buffer “2”,
clearing its byte count. The interrupt triggers the software
to empty or fill buffer “1” and then set its new byte count.

UMO014001-1002

Gayle Gamble
UM014001-1002

QN 2La5

216C32 usC™
USER'S MANUAL

6.6.2 Adding a Buffer to the End of a List

On other systems, buffers are not arranged in a ring, but
are passed from one software routine to another as they
are filled and emptied. In such systems, software may set
the ClearCount bit for progress-tracking reasons, but does
notneed to do so. Inthis case, the procedure that software
needs to perform carefully is that of adding a buffer to the
end of a linked list for an operating DMA channel. It should
do so as follows:

1.

4a.

Create a list entry for the new buffer—often one exists
and simply needs its buffer address and/or byte count
“refreshed”. Place the address and count in the entry,
along with the TCB for a transmit buffer if this feature
is used.

Place the address of an “end of list” entry (one that
includes a zero byte count} in the next entry address
field of the new list entry.

Locate the list entry for the previous last buffer in the
list. (This entry will also have its "next entry address”
pointing to an “end-of-list” entry.)

If the processor and system bus are both 32 bits wide,
or it it can be otherwise ensured that the software can
write a 32-bit address into memory without interfer-
ence from Z16C32 activity, software can simply write
the address of the new entry into the next entry
address field of the entry for the previously last buffer.

4b. Otherwise, software should write the Master Bus Re-

quest Enable bit (MBRE; DCARB) to 0, then write the
address of the new entry into the next entry address
field of the entry for the previously last buffer, and then
set MBRE back to 1 again.

In systems that use the MaxXfers or MaxCLKs fields of
the Burst/Dwell Control Register (BDCR) to “throttle”
the DMA activity of the Z16C32 (as described in a later
section), it might be a good practice to include a few
“No-ops” at this point. There shouid be enough NOPs
to eliminate the case in which the DMA channel
fetches the link address to the "end of list” entry from
the previously-last entry, before we store the new one
instep 4, butthenreleasesthe bus for a while because
of this throttling, before it fetches the zero byte count.

Read the TDMR or RDMR and test the DMA channel's
BUSY bit. If it is O, the channel got to the end-of-list
before our new link address could prevent this, and
the channel must be restarted—go to a routine that
does this. If BUSY is stili 1, the new buffer has been
successfully added to the list and will be handled by
the DMA channel.

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2La5

216C32 IUSC™
USER'S MANUAL

6.7 FETCHING TRANSMIT CONTROL BLOCKS

In Array and Linked-List modes, if software enables the
Transmit Control Block feature of the serial controller (see
DMA Support Features: Transmit Control Blocks in Chap-
ter 5 for more information about this feature), the Transmit
DMA channel can fetch the TCBs in two ways.

The TCBInA/L bit in the Transmit DMA Mode Register
(TDMR13) controls whether the channel fetches TCBs
from Array and Linked List entries. This bit also controls the
length of the entries. If TCBINA/L is 0, Array entries are six
bytes long, Linked List entries are ten bytes long, and the
channel handies TCBs the same way that it does in Single
Buffer or Pipelined mode. That is, it fetches a 32-bit TCB
from the data buffer just before it fetches the first character
of each frame. In this case, the length of the TCB is
included in the Byte Count of the buffer (but not in the
length of the frame for the TCC).

If TCBInA/L is 1, Array entries are 12 bytes long and Linked
List entries are 16 bytes long. The channel fetches TCBs
from the first array or list entry, and from the subsequent
entries, if the start of their buffers aligns with the startof a
frame. For such entries, the channel fetches the four bytes
of the TCB after it has read (and if the ClearCount bit is 1
written zero back to) the byte count in the array or list entry,
and then reads and discards the next two bytes. For a
subsequent entry that does not align with the start of a
frame, the channel simply reads and discards the six bytes
that follow the byte count.

1USCs with a datecode of 9239 or earlier did not fetch a
TCB from the first entry of an array or linked list. For
applications that might run on such early devices, software
can tell whether a given device fetches the first TCB as
described in Determining the Device Revision Level in
Chapter 8.

Figures 6-7a and 6-7b show two examples of TCBs with
TCBinA/L=1.

The length of a TCB in an Array/List entry is not included in
the DMA channel's byte counts nor in the frame length
values for the TCC.

With either kind of TCB placement, the DMA and serial
controllers operate fairly independently, without a lot of
context-signaling between them, and it is important that
software do what is needed to keep them co-ordinated and
synchronized. These measures include:

1. With TCBInA/L=0, aliow six bytes for each array entry
or ten bytes for each list entry, ptace the 32-bit TCB
before the start of each frame, and include the length
of TCBs in the byte counts of the buffers in which they
are included.

2. With TCBinA/L=1, allow 12 bytes for each array entry
or 16 bytes for each list entry, and place the TCB in the
7ththrough 10th bytes of each entry that starts a frame.
(The Z16C32 ignores these locations in entries for
subsequent buffers within an ongoing frame.)

3. With TCBinA/L=1, either ensure that a frame never
starts in the middle of a buffer, or else place aTCB in
the buffer before the start of each frame that does (as
when TCBInA/L=0). In a Little-Endian system or with
an 8-bit data bus, it is acceptable to use the Early
Buffer Termination feature (described later) as asimple
way to ensure that a frame never startsin the middle of
a buffer.

Butfor a 16-bitor wider bus ina Big-Endian system, the
DMA channel is only guaranteed to access the final
byte of a frame correctly if software programs the Byte
Count of the last buffer of the frame correctly, to match
the TCC frame length. (in this case, there is no reason
to enable Early Termination.)

4, With either kind of TCB placement, write a *Load TCC"
command to the CCAR before restarting the Transmit
DMA channel. This is necessary because when the
Transmit DMA channel fetches the terminating entry of
an array or linked list, it presents the TCB information
from the entry to the Transmitter before it checks
whether the Byte Count is zero. This conditions the
Transmitter to interpret the next transfers done by the
channel as serial data. The "Load TCC' command
makes the Transmitter interpret the next transfer(s)
done by the DMA channel as a TCB.

6-17

UMO014001-1002

Gayle Gamble
UM014001-1002

N2Las

216C32 JUSC™
USER'S MANUAL

6.7 FETCHING TRANSMIT CONTROL BLOCKS (Continued)

Buffer
Address 2

Byte Count 1

Frame 1 control word

Frame 1 TCC word

not used

Buffer

Address 2

Byte Count 2

not used

Buffer
Address 3

Byte Count 3

Frame 2 control word

Frame 2 TCC word

1
o e

not used

(etc.)

Figure 6-7a. Array Mode Transmit Control Blocks with TCBIinA/L=1

e "

T

Transmit Data
for the first part
of the first Frame

Transmit Data
for the second part
of the first Frame

Transmit Data
for the
second Frame

UMO014001-1002

Gayle Gamble
UM014001-1002

H 716C32 lUsC™
N2ILa5B USER'S MANUAL

Buffer -]
Address 1 Transmit Data
for the first part
of the first Frame
Byte Count 1

Frame 1 control word

Frame 1 TCC word :l—

not used
Address of
Entry 2
. Buffer —
Address 2 Transmit Data
for the second part
of the first Frame
Byte Count 2
- - L Buffer —
Address 3
not used
Byte Count 3
| Addressof | Frame 2 control word Transmit Data
Entry 3 for the
Frame 2 TCC word sacond Frame
not used
Address of
Entry 4

Figure 6-7b. Linked List Transmit Control Blocks with TCBInA/L=1

6-19
UMO014001-1002

Gayle Gamble
UM014001-1002

N 2)La5

21632 [UsC™
USER'S MANUAL

6.8 STORING RECEIVE STATUS BLOCKS

Similarly, if software enables the Receive Status Block
feature as described in Chapter 5, in Array or Linked List
mode a Receive DMA channel can store RSBs in two ways
as shown in Figure 6-8.

If the RSBINA/L bit in the Receive DMA Mode Register
(RDMR13) is 0, the channel handles RSBs as it does in
Single Buffer and Pipelined modes. Array entries are 6
bytes tong, Linked List entries are 10 bytes long, and the
channel stores the RSB after the last byte of each frame. In
these cases, software should allow for the length of RSBs
in the byte counts of the buffers in which they are stored.
(RCC residual values never reflect RSB bytes.)

ButwhenRSB's are stored in the data buffers, software has
toread the RCC FIFO to determine the length of each frame
received, so that it can find the RSB's. (Because of this,
there's no reason to ever use a 32-bit RSB in this mode.)
Since the RCC FIFO is only four deep, software must read
it in a reasonably timely manner. In Array and Linked List
modes, this software response requirement can be eased
by programming 32-bit RSBs and the RSBInA/L bit 1.

When RSBIinA/L is 1, Array entries are 12 bytes long,
Linked List entries are 16 bytes long, and the DMA channel
stores an RSB in the (7th-8th or) 7th-10th bytes of the last
array or listentry for each frame, after it has placed the last
character of the frame in the buffer. When RSBinA/L is 1,
software can ignore the RCC FIFO, and need not respond
to IUSC interrupts as promptly. After the Rx DMA channel
has stored the RSB in the array or list entry, it writes 2 (or
4) zero bytes to skip over that many “extra” bytes in the
entry. These extra bytes maintain 32-bit boundary align-
ment of the addresses in the array or list entries, as
required by some processors.

Software MUST NOT read the RCC FIFO when using 32-bit
RSBs, because the hardware takes the RCC residual value
in the RSB from the RCC FIFO.

When RSBIinA/L is 1, the length of the RSB is not included
in either the DMA channel’s byte counts nor in the RCC
residual values.

As on the Transmit side, software has to take certain steps
to ensure that the Receiver and the DMA channel work
together:

1. With RSBinA/L=0, allow six bytes for each array entry
or ten bytes for each list entry, and allow for Receive
Status Blocks in the byte counts of buffers in which
they are stored.

2. With RSBIinA/L=0, read the RCC FIFO once for each
frame and use these RCC residual values as de-
scribed in Chapter 5, to determine the length of each
frame. Knowing the frame lengths, software can then
find the RSBs, which follow the last character of each
frame.

3. WithRSBinA/L=1, always programthe TermE bit in the
Receive DMA Mode Register (RDMR9) to 1 to enable
the Early Buffer Termination feature.

4. With RSBinA/L=1, allow 12 bytes for each array entry
or 16 bytes for each listentry. The length of RSB's need
not be included in buffer byte counts for the DMA
channel, nor in a maximum frame length value for the
RCC.

With RSBinA/L=1, the channel stores an RSB in the 7th-
10th (or 7th-8th) bytes of the array or list entry for each
buffer in which it stores a character marked with RxBound
status. It zeroes these locations in array or list entries for
preceding buffers within the same frame, that is, those that
it fills before the frame ends.

Zilog guarantees that all versions of the IUSC will always
store bit 13 of the first word of an RSB as zero. Thus, with
RSBinA/L=1, software can initialize such status word loca-
tions to hex 2000, and can test bit 13 to see when an IUSC
has finished with a buffer. When it encounters an entry with
bit 13 cleared, software should next check the RxBound bit
(bit 3); those in which this bit is 1 represent buffers that
include the end of a frame.

6-20

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2La5

216C32 lusC™
USER'S MANUAL

On the Receive side, there are actually two internal termi-
nation signals that the serial controller asserts to the
Receive DMA channel. [The DMA channel honors these
signals only when its TermE bit (RDMR9) is 1.] The serial
controller asserts one of these signals as the DMA channel
takes a byte marked with RxBound status out of the
RxFIFO. If software hasn't enabled the Receive Status
Block (RSB)feature in the Channe! Control Register (CCR7-
6), the serial controller asserts the other signal at the same
time, otherwise it asserts the other termination signal when

the DMA channel stores the last of the two or four bytes of
the RSB. If the DMA channelis in Array or Linked List mode
and has been programmed to store RSB's in the array or
list, it uses the first signal to shift from storing in the data
buffer to storing in the array or list, and uses the second
signal to shift from storing in the array or list to fetching
information for the next buffer. In all other modes, the
channel simply uses the second signal to know when it has
stored all the information for the current buffer.

A 16-bit RSB in the Data Buffer

T RCC FIFO (RCCR)
g
[suter o —] Ending RCC Value
Address Received Data
Byte Count } Compute:
1 i e
i - ing value
iddre::ao; ,'f,"o’é'eao","“l'l RSB Status Word - (# characters in previous
Next Entry in List mode buffers of this frame)
unchanged
X

A 32-bit RSB in an Array or Linked List Entry

- Buffer —
Address

Byte Count

RSB Status Word

Ending RCC Value

not used

Address of Next Buffer in
= Array mode or ==
Next Entry in List mode

Received Data

unchanged

Compute:
(Starting RCG value)
- (Ending RCC value)

- (# characters in previous

buffers of this frame)

Figure 6-8. Receive Status Blocks

6-21

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2La5

216C32 IUSC™
USER'S MANUAL

6.9 CHANNEL STATUS

The earlier Figure 6-1 shows the less significant byte of
each DMA Mode Register (TDMR or RDMR), which con-
tains eight bits indicating the status of that channel. A
channet clears these bits to 0 in response to a hardware
Reset or when software writes a Reset command to the
DMA Command/Address Register (DCAR). Allofthem can
be set and/or cleared by the DMA channel. Some of them
are affected by commands other than Reset, and/or when
software reads the (LS byte of the) register.

Some of these bits exist solely for the information of host
software. The DMA channel uses many of them as part of
its internal state.

CONT (TDMR7 or RDMR?7): this bitis used only in Pipelined
mode. In this mode the IUSC sets it to 1 when software
writes a “Start/Continue This Channel” command to the MS
byte of the DCAR. A channel checks CONT when it has
decremented its Byte Count Register (TBCR or RBCR) to
zero, or, if software has enabled early buffer termination, if/
when the serial controller signals for such a termination. If
CONT is O at this time, the channel clears the BUSY bit
(xDMRS5) and stops. Otherwise, the channel clears CONT
to 0 and continues operating. It transfers the contents of its
Next Address Register to its Address register (NTAR to
TAR, or NRARto RAR) and transfers the contents of its Next
Byte Count Register to its Byte Count Register (NTBCR to
TBCR, or NRBCR to RBCR). Then it resumes transferring
serial data to or from the new buffer, as requested by the
serial controller.

Software may need to take special precautions to avoid
issuing the “Start/Continue” command while the channel is
testing the CONT bit, as described in the earlier section,
Pipelined Mode.

GLInk (TDMR6 or RDMRS): this bit can only be 1in Linked
List mode, while the channel is reading the address of the
next list entry from memory. GLink stays set if the channel

clears BUSY (xDMRS5) while reading the link address,
because of a command or a hardware Abort. In this case
software must clear GLink by issuing a “Reset This Chan-
nel” command before it restarts the channel.

BUSY (TDMRS or RDMRS): this bit is set to 1 by any of the
Start commands, and remains 1 while the channel is stili
operating in response to the command. Itis Oif the channel
has stopped and will need software attention (including
another Start command) before it can resume operation.
The channel sets BUSY when host software writes a Start,
Start/Init, or Start/Continue command (for one or all chan-
nels) to the DCAR. The channel clears BUSY when one of
the following occurs:

1. ahardware Reset,

2. aReset, Pause, or Abort command, for this channel or
all channels,

3. ifexternal hardware assertsthe /ABORT pin low during
a transfer by the channel,

4. readinga zero byte countin Array or Linked Listmode,

5. decrementing the byte count (TBCR or RBCR) to zero
in Single Buffer mode,

6. if software has enabled early buffer termination in
Single Buffer mode, and the serial channel signats for
such a termination, or

7. if the channel tests the CONT bit as zero in Pipelined
mode, after it has decremented the Byte Count Regis-
ter to zero, or, if software has enabled early buffer
termination, after the serial channel has signaled for
such a termination.

6-22

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2La5

216C32 IUSC™
USER'S MANUAL

INITG (TDMR4 or RDMR4). this bitis used only in Array and
Linked List modes. It indicates whether the channel is
reading from the array or list. The channel sets INITG to 1
when software issues a Start/Init command, and/or when
the channel decrements its byte count (TBCR or RBCR) to
zero, and/or if software has enabled the early termination
feature and the serial controller signals for buffer termina-
tion. The channel clears INITG to O after it has read the
address and byte count of the next buffer from memory.

INITG stays set if a channel clears the BUSY bit while
reading array or list information, due to a zero byte count
or some other reason. In this case software should clear
the bit using a “Reset This Channel” command, before
restarting the channel using a Start This Channel com-
mand. (There's no need to clear INITG before a Start/Init.)

EOAJEOL End Of Array/End Of List(TOMR3 or RDMR3). a
channel set this bit to 1 in Array or Linked List mode after
it has read a zero byte count from the array or list in
memory. A channel clears EOA/EOL to O inresponse to a
hardware or software Reset, and when software reads the
bitas 1.

EOB End Of Buffer(TDMR2 or RDMR2): a channel sets this
bit to 1 in any mode when it decrements its Byte Count
Register to zero. It also sets EOB if software has enabled
the early termination feature and the serial controller sig-
nals for buffer termination. A channel clears EOB to 0 in
response to a hardware or software Reset, and when
software reads the bit as 1.

HAbort (TDMR1 or RDMR1): a channel ciears BUSY and
sets this bit to 1 in any mode, if external hardware asserts
the /ABORT pin low during a bus cycle by the channel. A
channel clears HAbort to O in response to a hardware or
software Reset, and when software reads the bit as 1.

SAbort (TDMRO or RDMRO): a channel clears BUSY and
sets this bit to 1 in any mode, if host software writes an
Abort command for this channel (or all channels) to the
DCAR. A channel clears SAbort to O in response to a
hardware or software Reset, and when software reads it as
1.

Chapter 7 describes how each of the EOA/EOL, EOB,
HAbort, and SAbort bits has a corresponding Interrupt
Arm (IA) bit in the channel's DMA Interrupt Arm Register
(TDIAR or RDIAR). If a status bit's corresponding A bit is
1,the IUSC canrequest an interrupt when the channel sets
the status bitto 1.

Since the channel clears the EOA/EQOL, EOB, HAbort, and
SAbort bits each time software reads the LS byte of its
Channel Mode Register, software should take care when
reading this register so that important events are not
inadvertently lost. Specifically, any time software reads the
LS byte of TDMR or RDMR, it should check and handle any
and all of these four conditions/bits that are possible and
significant.

6-23

UMO014001-1002

Gayle Gamble
UM014001-1002

N 205

Z16C32 JUSC™
USER'S MANUAL

6.10 COMMANDS AND /BUSREQ ENABLE

The DMA Command/Address Register (DCAR), shown in
Figure 6-9, is a “shareable register”, meaning that there's
only one DCAR and that its contents apply to both of the
IUSC's DMA channels. Software can use the LS byte of the
DCAR for indirect register addressing, as described in
Chapter 2, and can write commands for the DMA channels
to the MS byte. Such commands can be directed to a
specific channel or to all channels. The MS byte also
contains one bit that enables or disables all operation of
the DMA channels, by allowing or blocking assertion of the
IUSC's /BUSREQ output.

The MS byte of the DCAR can be viewed as including a
four-bit DCmd field in DCAR15-12 and the Rx/Tx Reg bit
in DCARS. For commands that affect one channel, the
latter bit selects whether the command is for the Transmit
or Receive channel. For other commands the IUSC ignores
the Channel Select bit. Since there are only two channels
and only six channel-specific commands, it is probably
simpler to regard DCAR15-9 as a 7-bit field encoded as
follows:

DCAR15-9 Command
0000000 Null (no operation)
0001000 Reset Tx Channel
0001001 Reset Rx Channel
0010000 Start Tx Channel
0010001 Start Rx Channel
0011000 Start/Continue Tx Channel
0011001 Start/Continue Rx Channel
0100000 Pause Tx Channel
0100001 Pause Rx Channel
0101000 Abort Tx Channel
0101001 Abort Rx Channel
0111000 Start/Init Tx Channel
0111001 Start/Init Rx Channel
1000000 Reset Highest IUS
1001000 Reset All Channels
1010000 Start All Channels
1011000 Start/Continue All Channels
1100000 Pause All Channels
1101000 Abort All Channels
1111000 Start/Init All Channels

Other combinations of the DCAR15-9 bits are reserved by
Zilog and should not be written to the DCAR.

The Master Bus Request Enable bit (MBRE/DCARS)
controls whether the DMA channels can assert the
/BUSREQ output to request control of the external bus from
the host processor or central arbiter. Carrying the integra-
tion of the MS byte value one step further, note that the
{USC always captures a new state for MBRE whenever
software writes the MS byte of DCAR. Note also that there
is a strong link between certain commands and a particu-
lar state of MBRE. The following table gives typical full-byte
hexadecimal values that can be written to the MS byte of
DCAR to accomplish various operations. For commands
that deactivate one channel, the table includes two values.
The first applies to full-duplex operation in which the two

‘channels operate independently, while the second ap-

plies to half-duplex operation in which only one channel is
active at a time.

DCAR15-8 Operation
00 Disable /BUSREQ (no other
effect on the Channels)
01 Enable /BUSREQ (no other
effect on the Channels)
11/10 Reset Tx Channel
13/12 Reset Rx Channet
21 Start Tx Channel
28 Start Rx Channel
31 Start/Continue Tx Channel
33 Start/Continue Rx Channel
41/40 Pause Tx Channel
43/42 Pause Rx Channel
51/50 Abort Tx Channel
53/52 Abort Rx Channel
71 Start/Init Tx Channel
73 Start/Init Rx Channel
81 Reset Highest DMA 1US
(enable/BUSREQ)
90 Reset All Channels
Al Start All Channels
B1 Start/Continue All Channels
Co Pause All Channels
Do Abort All Channels
F1 Start/Init All Channels

6-24

UMO014001-1002

Gayle Gamble
UM014001-1002

N 205

216C32 lUSC™
USER'S MANUAL

A Reset command to a channel clears ali the status bits in
the LS byte of its DMA Mode Register, including BUSY,
thus disabling the channel. it also clears the register bits
associated with interrupts from the channel, namely the |E,
IP, and IUS bits, as described in Chapter 7.

A Start command to a channel sets the BUSY bit (xDMR5),
which enables the DMA channel to operate when the
Transmitter requests that its FIFO be filled, or when the
Receiver requests that its FIFO be emptied. A Start com-
mand can be usedtoinitially start up a channel, or torestart
one after a Pause command.

A Start/Continue command operates identically to Start in
Single Buffer, Array, and Linked List Modes. In Pipelined
mode, it sets both the BUSY and CONT bits (xDMR7 and
5), so that after the buffer described by the xAR and xBCR,
the channel goes on to another buffer that's described by
NxAR and NxBCR. The channel does this by transferring
the contents of NXAR to xAR, transferring the contents of
NxBCR to xBCR, and clearing CONT but keeping BUSY
set.

In Pipelined mode, software can use this command to start
up a channel, after writing the xAR, xBCR, NxAR, and
NxBCR, or to provide a subsequent buffer to a channel
after writing just NxAR and NxBCR. In the latter case,
software may need to take special precautions to avoid
issuing the Start/Continue command while the channel is

testing the CONT bit, as described in the earlier section,
Pipelined Mode.

A Star¥Init command operates identically to Startin Single
Buffer and Pipelined modes. In Array and Linked List
modes, Start/init sets both the BUSY and INITG bits (xDMR5
and 4), so that the channel! starts by loading the address
and length of the initia! buffer from the first entry in the array
or list. Thereafter the channel transfers data as requested
by the Transmitter or Receiver based on its FIFO status,
just as for a Start command. Start/Init is intended only for
starting an inactive channel in a new buffer.

A Pause command to a channe! clears the BUSY bit
(xDMRS5), making the channel inactive until software re-
starts it by means of a Start command.

An Abort command to a channel similarly clears BUSY
(xDMRS5), but it also sets the SAbort bit (xDMRO), which
can cause an interrupt if enabled. Software can use this
command (instead of Pause) to stop a DMA channel when
the channel will not be restarted to continue operation in
the current buffer.

A Reset Highest DMA 1US command clears the IUS bit of
the highest priority DMA channel that has the bit set (if any).
See Chapter 7 for complete information on IUSC interrupt
facilities.

bCmd Reserved (0) | TX | mBRE R,;‘Q‘ BW RegAddr UL
1 14 13 12N 10 9 8 7 8 5 4 3 2 1 0
Figure 6-9. The DMA Command/Address Register (DCAR)
6-25

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLa5

216C32 IUSC™
USER'S MANUAL

6.11 ADDRESS SEQUENCING

The AddrMode field of each DMA Mode Register (TDMR11-
10 and RDMR11-10) controls how the channel sequences
the buffer address from one data cycle to the next:

channels. Its AddrSeg field (DCR1-0) controls how far the
DMA channels wilt propagate a carry when incrementing
or decrementing a memory address:

AddrMode Address Sequencing AddrSeg Address Incr/Decr Range
00 Channel increments xAR 00 All 32 bits are affected
01 Channel decrements xAR 01 Reserved: do not program
10 XAR stays the same 10 The LS 16 bits are affected;
11 Reserved; do not program A31-A16 are fixed
11 The LS 24 bits are affected,;

The “increment” mode is the most commonly used. The
“decrement” mode is included primarily to match the
capabilities of other DMA channels that were used for
applications such as magnetic tape that could be read
backward. The “fixed” mode is useful to transfer data to
and from external FIFO devices, although the only hand-
shaking provided for such applications is via the /WAIT/
/RDY line.

Figure 6-10 shows the shareable DMA Control Register
(DCR), the fields of which may affect one or both DMA

A31-A24 are fixed

This field applies to the incrementing and decrementing of
addressesin data buffersand, forthe Array and Linked List
modes, to the incrementing of /addresses while reading
from arrays and lists. It applies to both the receive and
transmit channels. In the latter two cases, if a channel
attempts to increment or decrement an address over the
implied boundary, the address instead wraps around to
the opposite end of the same 64 Kbyte block (for 10) or the
same 16 Mbyte block (for 11).

ChanPri Ef;gt ALBVO| ReAwTime | Reserved (0) | Resarved (0) | M | OSSP | 1wait | UAS | Addrseg
15 14 13 12 1" 10 9 8 7 6 5 4 3 2 1 0

Figure 6-10. The DMA Control Register (DCR)

6.12 BINARY FORMAT IN ARRAYS AND LISTS

In Array and Linked List modes the IUSC DMA channels
can fetch addresses and byte counts from memory in
either of the two ways that different microprocessors may
store them. The ALBVO bit in the DMA Control Register
(DCR12; the name stands for Array/List Binary Value
Order) controls how the DMA channels fetch binary values
from memory. If ALBVO is 0, they fetch the less-significant
portions of binary values from lower-addressed memory
locations, which is compatible with the Zilog Z80 and most
Intel processors. If ALBVO is 1, the channeis fetch the

more significant portions of binary values from lower-
addressed locations, which is compatible with the Zilog
Z8000 and most Motorola processors. The channelfetches
these values using 16-bittransfers if 16-bit(BCR2)is 1 and
8/16 (TDMR8 or RDMRS8) is 0, or using 8-bit transfers if 16-
bitisOandfor 8/16is 1. Figures 6-11a and 6-11b show how
the IUSC expects the 32-bit addresses and 16-bit counts
to appear on the AD pins for the various ALBVO options,
data widths, and TCB/RSB locations.

6-26

UMO014001-1002

Gayle Gamble
UM014001-1002

Q‘Q 25 Z16C32 UsC™

USER'S MANUAL
ALBVO (DCR12) = 0 (little-endian) ALBVO (DCR12) = 1 (big-endian)
16BIT (BCR2) = 1 and 8/16 (xDMR8) = 0 16BIT (BCR2) = 1 and 8/16 (xDMR8) = 0
TCBInA/L or RSBInA/L (xDMR13) = 0 TCBInA/L or RSBInA/L (xDMR13) =0
Address AD15 ADO Address AD15 ADOQ
N Buffer Address 15-0 N Buffer Address 31-16
N+2 Buffer Address 31-16 N+2 Buffer Address 15-0
N+4 Byte Count N+4 Byte Count
N+6 Next Buffer or Link Address 15-0 N+6 Next Buffer or Link Address 31-16
N4+8 Next Buffer or Link Address 31-16 N+8 Next Buffer or Link Address 15-0
ALBVO (DCR12) = 0 (little-endlan) ALBVO (DCR12) = 1 (big-endian)
16BIT (BCR2) = 0 and/or 8/16 (xDMR8) = 1 16BIT (BCR2) = 0 and/or 8/16 (xDMR8) = 1
TCBInA/L or RSBINA/L (xDMR13) = 0 TCBInA/L or RSBINA/L (xDMR13) =0
Address AD15/7 ADB/0 Address AD15/7 AD8/0
N Buffer Address 7-0 N Buffer Address 31-24
N+1 Buffer Address 15-8 N+1 Buffer Address 23-16
N+2 Buffer Address 23-16 N+2 Buffer Address 15-8
N+3 Buffer Address 31-24 N+3 Buffer Address 7-0
N+4 Byte Count 7-0 N+4 Byte Count 15-8
N+5 Byte Count 15-8 N+5 Byte Count 7-0
N+6 Next/Link Address 7-0 N+6 Next/Link Address 31-24
N+7 Next/Link Address 15-8 N+7 Next/Link Address 23-16
N+8 Next/Link Address 23-16 N+8 Next/Link Address 15-8
N+9 Next/Link Address 31-24 N+9 Next/Link Address 7-0
Figure 6-11a. The Order of Binary Values in Arrays and Linked Lists
6-27

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLa5

216C32 JUSC™
USER'S MANUAL

6.12 BINARY FORMAT IN ARRAYS AND LISTS (Continued)

ALBVO (DCR12) = 0 (little-endian)
16BIT (BCR2) = 1 and 8/16 (xOMR8) = 0
TCBInA/L or RSBInAL (xDMR13) = 1

Address AD15 ADO
N Buffer Address 15-0

N+2 Buffer Address 31-16

N+4 Byte Count

N+6 TCB Control or RSB Status

N+8 TCC Length, RCC Residual, or not used
N+10 not used
N+12 Next Buffer or Link Address 15-0
N+14 Next Buffer or Link Address 31-16

ALBVO (DCR12) = 0 (little-ondian)
16BIT (BCR2) = 0 and/or 8/16 (XDMRS) = 1
TCBINA/L or RSBInANL (xDMR13) = 1

Address AD15/7 ADS8/0
N Buffer Address 7-0

N+1 Buffer Address 15-8
N+2 Buffer Address 23-16
N+3 Buffer Address 31-24
N+4 Byte Count 7-0

N+5 Byte Count 15-8

N+6 Control or Status 7-0
N+7 Control or Status 15-8

N+8 TCC/RCC 7-0 or not used
N+9 TCC/RCC 15-8 or not used
N+10 not used

N+11 not used

N+12 Next/Link Address 7-0
N+13 Next/Link Address 15-8
N+14 Next/Link Address 23-16

N+15 Next/Link Address 31-24

ALBVO (DCR12) = 1 (big-endian)
16BIT (BCR2) = 1 and 8/16 (XDMRS) = 0
TCBINA/L or RSBInA/L (XDMR13) = 1

Address AD15 ADO
N Buffer Address 31-16
N+2 Buffer Address 15-0
N+4 Byte Count
N+6 TCB Control or RSB Status
N+8 TCC Length, RCC Residual, or not used
N+10 not used
N+12 Next Buffer or Link Address 31-16
N+14 Next Buffer or Link Address 15-0

ALBVO (DCR12) = 1 (big-endian)
16BIT (BCR2) = 0 and/or 8/16 (xDMRS) = 1
TCBINAL or RSBINAL (XDMR13) = 1

Address AD15/7 AD8/0

N Buffer Address 31-24

N+1 Buffer Address 23-16

N+2 Buffer Address 15-8

N+3 Buffer Address 7-0

N+4 Byte Count 15-8

N+5 Byte Count 7-0

N+6 Control or Status 15-8

N+7 Control or Status 7-0

N+8 TCC/RCC 15-8 or not used
N+9 TCC/RCC 7-0 or not used
N+10 not used

N+11 not used

N+12 Next/Link Address 31-24
N+13 Next/Link Address 23-16
N+14 Next/Link Address 15-8
N+15 NextLink Address 7-0

Figure 6-11b. The Order of Binary Values in Arrays and Linked Lists

6-28

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLdB

Z16C32 IusC™
USER'S MANUAL

6.13 CONDITIONS FOR DMA OPERATION

Several conditions must be met before the IUSC will
request use of the host bus and then operate asa DMA bus
master:

1. The Master Bus Request Enable bit (MBRE) in the
DMA Command/Address Register (DCAR8) must be
1, and

2. the BUSY bit (xDMRS) of one or both of the DMA
channels must be set due to a Start command, and

3a. the Receiver or Transmitter, associated with a Busy
channel, must be requesting DMA transfer, OR

3b. aBusy channel must be in Array or Linked List mode
with its INITG bit (xDMR4) set, either because of a
Start/Init command or because of the termination of
the previous buffer, and

4a. the BRQTP bit in the Bus Configuration Register
(BCR3) must be 1, indicating that this IUSC should
drive the /BUSREQ signal full-time, OR

4b. /BUSREQ must be high, and
5. the minimum time between bus requests must have

elapsed. The MinOff39 bit (DCR5) controls the exact
minimum time.

Once the IUSC has driven /BUSREQ low because these
conditions are met, it continues to do so until one of the
following occurs:

the duration of this period of bus mastership exceeds
either of the two programmable limits in the Burst/
Dwell Control Register (BDCR), or

one channel runs out of things to do, for example,
because the serial controller negates its request be-
cause the TxFIFO becomes full or the RxFIFO be-
comes empty, and the other channel s not requesting
to use the bus, or

a channel clears its BUSY bit, for any of the reasons
giveninan earlier section, and the other channel is not
requesting to use the bus, or

software clears MBRE to 0, or
the external hardware negates the /BIN input after

asserting it for at least three CLK cycles in response
to this bus request.

The following sections cover various aspects of the condi-
tions described above.

6-29

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLaB

21632 {USC™
USER'S MANUAL

6.14 DMA REQUESTS BY THE RECEIVER AND TRANSMITTER

Aside from fetching addresses and counts from array and
linked lists, the IUSC's DMA channels will only transfer
data when the serial controlier requests that they do so.

The Transmitter asserts its internal DMA Request to the
transmit channel when:

1a. the Transmitter is enabled (in TMR1-0), and

1b. the Transmitter is not sending the end of a frame,
as described below, and

1c. the transmitter is not waiting for a Trigger command,
as described below, and either

1d1. the number of empty character positions in the
TxFIFO is larger than the DMA Request Level value
programmed into TICR15-8 after a “Select
TICRhi = TxREQ Level" command, or

1d2. the USC channel is already asserting its internal Tx
DMA Request and the TxFIFQO is not full, or

2, from the time software writes a Trigger Channel
Load DMA command to the Channel Command/
Address register (CCAR), until a DMA transfer into
CCAR clears the ChanlLoad bit (CCAR7).

Point 1breflects the fact that, in HDLC/SDLC, HDLC,SDLC
Loop, 802.3, Transparent Bisync, the Transmitter stops
requesting further DMA transfers after the Transmit DMA
channel fetches the last character of one frame, untit it has
sent that character and terminated the frame or message.
The Transmitter does this so that the possible loading of
the TCB information for a new frame does not affect
sending the end of the preceding frame.

Point 1c above applies when the Wait4TxTrig bit in the
Channel Control Register (CCR13) is 1 in HDLC/SDLC,
HDLC/SDLC Loop, 802.3, Transparent Bisync. In this
case, after sending the end of a message or frame (and
thus leaving the “sending the end of a frame" state noted
in 1b), the Transmitter does not assert its internal Tx DMA
Request until software writes a “Trigger Tx DMA” com-
mand to the RTCmd field of the Channel Command/
Address Register (CCAR15-11).

The Receiver asserts its internal DMA request to the Rx
DMA channel when:

1. the Receiver is enabled (in.RMR1-0), and

2. the Receiver is not waiting for a Trigger command as
described below, and either

3a. the Receiver is forcing out completed frame(s) as
described below, or

3b. the number of received characters in the RxFIFO is
larger than the DMA Request Levelvalue programmed
into RICR15-8 after a “Select RICRhi = TxREQ Level”
command, or

3c. the Receiver is already asserting its internal Rx DMA
Request, it did not just complete forcing out a frame,
and the RxFIFO still has at least two charactersin it on
a 16-bit bus, or at least one character in it on an 8-bit
bus.

“Forcing out a frame” in item 3a above applies only in
HDLC/SDLC, HDLC/SDLC Loop, 802.3, Transparent
Bisync, or 1553B mode, and operates differently on [USC
revisions. On the 16C32s without the SL1660 topmarking
the Receiver sets a state that forces the internal Rx DMA
requestto be asserted whenthe end of aframe is received,
and clears this state whenever the Rx DMA controller
reads out the last character of a frame. The SL1660
product operates similarly when no Receive Status Blocks
or 16-bit RSBs are enabled, except that they also clear the
state when the Rx DMA channel reads out a character with
Overrun status. (The latter avoids a problem called “scrib-
bling” wherein the Receiver kept requesting DMA transfer
constantly if the end of a frame arrived while the Receiver
was Overrun.)

In either of the above cases, the Receiver maintains an
EOF-forcing internal Rx DMA Request until the Rx DMA
channel reads out a complete Receive Status Block if
RSBs are enabled, else until it reads out the last received
character of a frame (which is typically part of a CRC).

6-30

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLaB

21632 USC™
USER'S MANUAL

When 32-bit RSBs are enabled, the IUSC asserts the
internal Rx DMA Request whenever the RCC FIFO is not
empty, that is, when the RCCFAuvail bit (CCSR14) is 1.
Since these devices take the second word of a 32-bit RSB
from the RCC FIFO, this approach represents a frame-
forcing mechanism that operates optimally even when
more than one end-of-frame character is in the RxFIFO at
the same time.

“Waiting for a Trigger command” (in item 2 above) occurs
only when the Wait4RxTrig bit in the Channel Control
Register (CCRS5) is 1 in HDLC/SDLC, HDLC/SDLC Loop,
802.3, or Transparent Bisync. In this case, after the Rx
DMA channel reads out the end of a message or frame
including the RSB if any (thus clearing the EOF-forcing
state of 3a above), the Receiver negates the internal Rx
DMA Request and does not assert it again until software
writes a "Trigger Rx DMA” command to the RTCmd field of
the Channel Command/Address Register (CCAR15-11).
This interlock can be used to reprogram the Rx DMA
channel for the next frame.

The Receive Character Counter feature cannot force the
internal DMA Request nor early buffer termination.

6.14.1 Programming the DMA Request
Levels

As noted in other chapters, the MS bytes of the Transmit
and Receive Interrupt Control Registers (TICR and RICR)
may each represent any of several registers. The content
of each MS byte depends on which of several selection
commands was most recently written to the Transmit or
Receive Command Status Register (TCSR or RCSR), re-
spectively. The selections for the Transmitter and Receiver
are independent.

To program or read back a DMA Request Level, software
must first write the “Select RICRHi=/RxREQ Level” or
“Select TICRHi=/TxREQ Level" command (0111) to the
TCmd or RCmd field of the Transmit or Receive Command/
Status Register (TCSR15-12 or RCSR15-12). This step can

be omitted if it is known that none of the commands 0100-
0110 have been written to TCSR or RCSR since the last
time 0111 was written there. The DMA Request Level value
can then be read or written as the MSbyte of the TICR or
RICR.

The Transmit DMA Request Level should be programmed
with one less than the number of empty TxFIFO positions,
at which the Transmitter should start asserting its internal
Request to the Transmit DMA channel. The Receive DMA
Request Level should be programmed with one less than
the number of received characters in the RxFIFO, at which
the Receiver should start asserting its internal Request to
the Receive DMA channel. For example, if the Receiver
should request DMA operation when its 32-byte RxFIFO is
3/4 full, software should write hex 70to RCSR15-8 to select
the DMA Request Level as RICR15-8, and then write
decimal 23 (hex 17) to RICR15-8.

Both DMA Request Levels must be programmed to
at least 1 when using 16 bit DMA transfers.

It is good programming practice to follow the writing of
Request Level(s) with writing a "Select RICRHi=FIFO Sta-
tus” command to the RCSR, and/for a “Select TICRHi=FIFO
Status” command to the TCSR as applicable, to protectthe
Request Level(s) from inadvertentmodification when other
parts of the software change the |A bits in the LSbyte of the
RICR or TICR.

Code that writes or reads a DMA Request threshold must
ensure that no interrupts will occur between the time it
writes the “Select xICRHi=REQ Level” command to the
TCSR or RCSR, and when it writes or reads the value in the
TICR or RICR, if such interrupts can lead to other code
writing a different Select command (for TSA data, the FIFO
Fill level, or interrupt threshold) to the same Command/
Status Register.

Note that a Purge Tx FIFO (or Purge Rx and Tx FIFQO)
command can make the Transmitter immediately assertits
DMA request.

6-31

UMO014001-1002

Gayle Gamble
UM014001-1002

AN 2La5

216C32 IUSC™
USER'S MANUAL

6.15 INTER-CHANNEL OPERATION AND PRIORITY

Iffwhen both DMA channels are active, three fields in the
DMA Control Register (DCR) control how they share use of
the external bus.

The ChanPri field (DCR15-14) selects the relative priority
of the two channels for use of the bus, that is, which one
gets to use the bus first if both are requesting at the time of
a bus grant:

ChanPri Channel Priority
00 Transmit channel has priority
01 Receive channel has priority
10 Alternating: whichever channel uses
the bus firstin one bus grant, has the will
lower priority in the next one.
1 Reserved; do not program

The PreEmpt bit (DCR13) selects whether the higher-
priority channel (as defined by the ChanPeri field) can take
over control of the bus if it starts requesting control while
the lower-priority one is using the bus. If PreEmptis 0, once
achannel starts using the bus it continues to do so untilone
of four events occurs:

1. it fills or empties its FIFO, or

2. it reaches the time limit for use of the bus, or

3. it clears its BUSY bit, or

4. software clears MBRE.

If PreEmptis 1, the lower-priority channel relinquishes bus
control to the higher one, after it completes any bus cycle

that was in progress when the higher-priority channe!
started requesting.

Software should avoid programming pre-emptive receive
channel priority unless it (1) uses 32-bit TCBs, (2) is
running on an IUSC with the SL.1660 topmarking and (3)
sets the UnderWait bit in the Transmit Command/Status
Register (TCSR11) to 1. The latter combination makes the
Transmitter delay starting to send a frame until either the
TxFIFQ is full or an entire Tx frame has been placed in the
TxFIFO.

PreEmpt=1and ChanPri=01 will allow the Rx DMA channel
to seize control of the bus right after the Tx channel has
placed the first one or two characters of a new Tx frame in
the TxFIFO. Unless UnderWait is 1 and 32-bit TCBs are
used on the IUSC this make the Transmitter start sending
the frame. If the Rx DMA channel is doing a lengthy
operation like fetching a new array or list entry followed by
storing a full RxFIFO, the Transmitter will encounter an
Underrun condition before the Rx DMA channel is done.

When PreEmpt s 0, the ReArbTime field (DCR11-DCR10)
determines when the IUSC reselects which channel is
using the bus:

ReArbTime Channel Re-arbitration Time

00 The IUSC reselects the active channel
at the start of each bus grant, and one
channel can use the bus after the other
within the same period of bus control.

Ot Once a DMA channel has started using
the bus, it continues to do so until its
part of the serial controller request has
released its request, even if this takes
several periods of bus control. How-
ever, once this occurs, the other chan-
nel can use this bus for the duration of
the same period of bus control.

1x Reserved; do not program

When PreEmpt is 1, ReArbTime must be programmed as
00.

6-32

UM014001-1002

Gayle Gamble
UM014001-1002

N 2iLa5

Z16C32 [UsC™
USER'S MANUAL

6.16 BUS ACQUISITION AND RELEASE TIMING

Figure 6-12 shows typical bus acquisition and release
sequences. If the IUSC is asserting /BUSREQ when it first
samples /BIN low at a rising edge of CLK, it starts prepar-
ing to take control of the bus, otherwise it drives /BOUT low.
Two CLK cycles after first sampling /BIN low with /BUSREQ
low, the IUSC samples /BIN again. If /BIN is still low, then
from the next rising edge the IUSC places the more-
significant half of the initial memory address on the AD
lines, and starts driving /UAS, /AS, /DS, R/W, /RD, WR,
plus S//D and D//C if the DCSDOut bit in the DMA Control
Register (DCR4) is 1. From the next rising edge of CLK, it
drives /UAS to low. There is one more CLK period of
address setup between the AD lines and the first rising
edge of /UAS after bus acquisition, than there is for
subsequent /UAS pulses (if any) within the same period of
bus control.

The IUSC will release control of the bus if the bus grant on
/BIN goes false/high while it is using the bus. A following
section, 'Master Bus Cycles', shows the timing for the
withdrawal of /BIN.

Typically, the IUSC makes the decision to release the bus
during a bus cycle, which is the case shown in the latter
part of Figure 6-12. It drives or releases /BUSREQ to high
from the rising CLK edge that is 4.5 CLK periods after the
falling edge from which it drives /DS and (/RD or /WR) to
High. It also releases the /UAS, /AS, /DS, R/W, /RD, and
/MR lines, and if necessary the AD lines, S//D, and D//C,
from the same rising edge.

If the IUSC makes the decision to release the bus later than
is needed to achieve the timing shown in Figure 6-12, it still
drives or releases /BUSREQ to high from the same rising
edge on CLK at which it releases the various other bus
signals.

AXD : /_\‘
E E fe———— 45 CLks Min ————»]
musreQ "\ | :
‘ H
BIN \ E E
i E o
AD15-0 A [15t Address 31-16 X] ‘3?,’: | X r—
i Il N
UAS / N
DS __
> V-
mo{ﬁnﬁ@{é __/
Figure 6-12. Bus Acquisition and Release
6-33

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2SLa5

216C32 JUsc™
USER'S MANUAL

6.17 BUS CYCLE OPTIONS

Three bits in the shareable DMA Control Register (DCR;
see Figure 6-10) affect how the DMA channels operate as
bus masters—that is, how they act once they have control
of the bus. This information is presented both here and in
Chapter 2, Bus Interfacing.

6.17.1 D//C, S//D Status Output

The DCSDOut bit (DCR4) controls whsther the 1USC
drives the S//D and D//C pins when it is the bus master. If
DCSDOut is 1, the IUSC drives S//D Low for Tx channel
operations and High for Rx channel cycles, and drives
D//C High during transfers of serial data and Low during
array or linked-list fetching. When this bit is 1, on a
multiplexed bus S//D and D//C cannot be connected
directly to any of the address/data lines with the AD pins,
and external drive on the S//D and D//C pins must be tri-
stated (released) while the IUSC is the bus master.

If neither external logic nor monitoring equipment (like a
logic state analyzer) has any use for the information de-
scribed above, software can program DCSDOut as 0. In
this case the IUSC never drives S//D and D//C, and these
pins can be connected directly to AD lines on a multi-
plexed bus, or can be driven full-time by external drivers on
a non-multiplexed bus.

6.17.2 Wait Insertion

if the 1Wait bit (DCR3) is 1, the IUSC extends the data
portion of each master bus cycle by 1 CLK period. This
allows use of slower memories for a given CLK frequency,
or use of a faster CLK frequency with a particular memory
type. Signaling on /WAIT//RDY can be used to extend
master bus cycles regardless of the state of this bit. When
1Wait is 1 the IUSC starts actively sampling /WAIT//RDY
one CLK period later than when it is .

6.17.3 /UAS Frequency

Since the DMA channels maintain 32-bit addresses but
have only a 16-bit external bus, they present each address
in two parts. They signal the availability of the more
significant half of an address with a strobe on the /UAS pin,
and signalthe LS half of each address with a strobe on /AS.
The UASAII bit (DCR2) controls how often the channels
present the more-significant half of the address. If UASA
is 1, every master bus cycle includes presentation of the
more-significant half of the address on the AD15-AD0 pins,
with a low-going pulse on /UAS. This means that every bus
cycle takes at least four cycles of CLK.

If UASAIl is O, the IUSC includes a /JUAS sequence only in
cycles that meet one or more of the foliowing criteria:

1. in the first cycle after taking control of the bus from
another master, or

2. inthefirst cycle after switching from one channelto the
other, or

3. inPipelinedmode, inthe first cycle after switching from
one buffer to the next, or

4. inArray or Linked Listmode, in the first data cycle after
switching between data buffer accesses and array/list
accesses, or vice-versa, or

5. inthefirst cycle after incrementing a memory address
results in a carry out from A15, even if the AddrSeg
field (DCR1DCRO) is 10 so that the carry is blocked.

When the IUSC includes a /UAS sequence in a bus cycle,
the cycle is atleast 4 CLK periods long, while if it does not,
the bus cycle can be as short as three CLKs.

UASAIl should be programmed as 1 only if required by
unusual external hardware. For example, if the IUSC and
another bus master share an upper-address latch and the
other bus master can insert cycles between IUSC cycles
within the same bus grant, UASAIl would want to be 1.

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLa15

Z16C32 lusc™
USER'S MANUAL

6.18 MASTER BUS CYCLES

Figures 6-13 and 6-14 show DMA Read and Write cycles
with the IUSC as bus master and the UASAIl bit (DCR2) set
to 0. In each case two cycles are shown. The first includes
a JUAS strobe and is four CLK periods long. The second
does notinclude a /UAS and is three CLK periods long. In
both cases, to achieve these minimum bus-cycle times,
the /WAIT//RDY signal should setup and hold inthe “ready”
state, around the falling edge of CLK that follows the rising
edge of /AS. As noted in the preceding section, if the tWait
bit in the DMA Control Register (DCR3) is 1, the 1USC
delays its first sampling of /WAIT/RDY by one CLK period.
In this case, bus cycles that include a /UAS strobe are at
least five CLK periods long, and those that do not are at
least four CLKs long. For each falling edge of CLK at which
the IUSC samples /WAIT//RDY as “Not Ready", it extends
the length of the cycle by one CLK period.

As shown in the Figures, the “ready” state is High for “Wait"
signaling and Low for “Acknowledge” signaling. The kind
of signaling on /WAIT//RDY depends on whether the S//D
pin was High or Low at the time that software wrote the Bus
Configuration Register (BCR) after the last Reset.

Note also that in DMA Read operations, read data from
memory should set up and hold around the rising edge of
the /DS and /RD lines. This gives the memory subsystem
some extra access time as compared to having to set up
tothe falling CLK edge fromwhich the IUSC drives /DS and
/RD to high, but this characteristic must be considered in
the memory design and the /WAIT//RDY logic. Given that
the Figures assume the UASAIl bit (DCR2) is 0, the “pos-
sibly low” states at start of the /DS and /RD or /WR traces
in the Figures illustrate the inter-cycle timing when there is
a carry out of A15 during address incrementing (that is,

when address “X” has 16 low-order zeroes). When UASAI
is 0, this is the only case in which a cycle that includes a
JUAS will directly follow another cycle. The other occasions
that force a JUAS strobe in the middie of a period of bus
control all involve several CLK period delays for internal
“housekeeping” functions, between the preceding cycle
and the cycle that includes the /UAS, as follows. (All of the
values above are in addition to the one CLK cycle needed
for the /UAS sequence itself.)

Condition Number of extra CLK periods
Forcing /JUAS: before the /UAS cycle
Inter-channel switch 4

Pipelined mode 8

buffer switch

Serial Data Transfer 8

to Array or List Fetch

Array or List Fetch to 8

Serial Data Transfer

The last two signals in Figures 6-13 and 6-14 iilustrate the
timing of the /ABORT and /BIN inputs. Both inputs are
effective at the rising edge of CLK that immediately pre-
cedes the falling edge of CLK at which the IUSC samples
/WAIT//RDY “ready”. If DMA operation is to be aborted in
the bus cycle shown for “address X+1 or 2°, then /ABORT
must set up and hold Low around that edge. To force the
1USC to give up bus control after the bus cycle shown for
“address X+1 or 2", /BIN must set up High to that edge.

6-35

UMO014001-1002

Gayle Gamble
UM014001-1002

216032 JUsC™
USER'S MANUAL

N 2iLa5

6.18 MASTER BUS CYCLES (Continued)

CLK

..... 4--.--.

Xo

3w

<
..... P

7

35

<

o

>

's)

9

[a]

<

/UAS

B//W, S/ID,
D//C, (Note 1)

T

lllllllllll

/AS

RIW
/08
/RD

MWR

MWAIT//RDY
(as Wait)
/WAIT//RDY
{as Ack)

\i/

/ABORT
/BIN

Note 1: S//D and D//C are driven only if the DCSDOut bit in the DMA Control Register (DCR4) is 1.

Figure 6-13. Master Read Cycles

6-36

UMO014001-1002

Gayle Gamble
UM014001-1002

216C32 IUSC™
USER'S MANUAL

N 205

CLK

X

Write Data

52
-0
e
WA
8
[=]
P
£
3

A

d
1

Addr "X
15-0 «

Addr *
31-16

A

- - 4

AD15-0

/UAS

B//W, S//D,
D//C, (Note 1)

/AS

|||||||||||||||||||||

RIW
/DS
/RD

MWR

\

\i/
\i/

7

/WAIT/RDY
(as Wait)

WAIT/RDY
(as Ack)
/ABORT

/BIN

Note 1: S//D and D//C are driven only if the DCSDOUt bit in the DMA Control Register (DCR4) is 1.

Figure 6-14. Master Write Cycles

6-37

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2056

Z16C32 JUSC™
USER'S MANUAL

6.19 BUS OCCUPANCY THROTTLING

In some systems it may be necessary or desirable to limit
the IUSC's use of the host bus. For example, in a dedicated
control system it may be necessary to guarantee a maxi-
mum interrupt response time, and IUSC DMA activity may
be a factor in the interrupt response time of the host
processor. As well as responding to an external withdrawal
of its bus grant as described in the preceding section, the
|IUSC allows its DMA activity to be programmatically lim-
ited. This can be done in terms of the maximum duration
that the part willuse the bus for each bus grant. Bus activity
can also be limited in terms of the minimum time that the
IUSC will stay off the bus before requesting it again.

The MinOff39 bit in the DMA Control Register (DCRS5)
controls the minimumtime that the IUSC will keep /BUSREQ
inactive/high. If MinOff39 is 0, this minimum is seven CLK
periods, while if MinOff39 is 1, the IUSC will not “rerequest”
the bus for at least 39 CLKs.

The shareable Burst/Dwell Control Register (BDCR) con-
trols the maximum duration for which the IUSC will use the
bus, per bus grant. Figure 6-15 shows the BDCR. If the
MaxXfers field (BDCR15-8) is non-zero, the IUSC treats its
contents as the largest number of bus transactions it willdo
inresponse toone bus grant. If the MaxCLKs field (BDCR7-
0)is non-zero, the IUSC will use the bus for up to eight times
that number of CLK periods, in response to each grant. If
both values are zero (as they are after Reset), for each bus
grant the IUSC will use the bus until it runs out of things to
do, e.g., until the RxFIFO is empty and/or the TxFIFO is full.
If both values are non-zero, the IUSC limits its bus usage
according to whichever one expires first.

Reaching one of these limits never terminates a cycle in
progress; a limit takes effect only after a cycle is over. If a
time-out on the length of a cycle is desired, for example to
detect an access to a non-existent memory address, it
must be implemented externally using the /ABORT pin.

MaxXfers

MaxCLKs

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Figure 6-15. The Burst/Dwell Control Register (BDCR)

6-38

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLaB

Z16C32 {USC™
USER'S MANUAL

6.20 OPERATING FLOWCHARTS

The three parts of Figure 6-16 show the complete operat-
ing sequence of an IUSC DMA channel, as a function of its
various operating modes. These flowcharts rely on certain
assumptions to simplify them:

1. Theydonotshow individual byte vs 16-bitaccesses to
array and linked-list entries. For example, fetching a
buffer address from an array or linked list is shown as
asingle operation, while in rea! life it may consist of two
16-bit cycles or four 8-bit cycles. On the other hand,
the difference between byte and 16-bit accesses to
data buffers is shown explicitly, because the differ-
ence between these two alternatives can be impor-
tant.

2. They do not show the process of requesting the bus by
asserting /BUSREQ and then waiting for /BIN to be
asserted.

3. They do not shown the effects of bus occupancy
throttling by means of the BDCR, nor the effects of
revoking /BIN nor asserting /ABORT, nor those of any
software commands other than Start and Start/init.

4, They assume that all TCBs are 32 bits long. The 16 bit
option is of little or no use.

5. They assume the AddrMode field is 00 so that memory
addresses are incremented.

The Figures show how long the IUSC takes to perform the
various major steps shown, as “N1” through “N14” cycles
of the CLK pin. Since the flowcharts are meant to show

“whatachannel does”, three kinds of delays are not shown
therein: the time to get on and off the bus nor the time to
switch between the DMA channels within the same period
of bus occupancy.

The symbol "extW" stands for wait states imposed by
external signalling on the /WAIT//RDY line, over and above
the automatic ones imposed if the “1Wait" bit (DCR3) is set
to 1.

Number of CLK cycles to perform the
step on a 16-bit bus with the 8/16 bit=0

N1 7 (+2if 1Wait) (+1 if UASAII} + 2"extW
N2 3 (+1if 1Wait) (+1 if UASAIl) + extW
N3 3 (+1if 1Wait) (+1 if UASAII) + extW
N4 6 (+2 if 1Wait) (+2 if UASAIl) + 2"extW
N5 3 (+1if 1Wait) (+1 if UASAII) + extW
N6 8
N7 4 (+1 if TWait) + extW for st access to
buffer or first of bus occupancy period
else 3 (+1if 1Wait) (+1 if UASAII) + extW
N8 8
N9 8
N10 4 (+1 if 1Wait) + extW
N11 3 (+1if 1Wait) (+1 if UASAII) + extW
N12 3 (+1if 1Wait) (+1 if UASAIl} + extW
N13 3 (+1if 1Wait) (+1 if UASAII) + extW
N14 3 (+1if 1Wait) (+1 if UASAII) + extW
if Rx channel and RSBInA/L = 1
else 4 (+1if tWait) + extW

6-39

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLaB

216C32 lUSC™
USER'S MANUAL

6.20 OPERATING FLOWCHARTS (Continued)

Start/Init
Command

SetBUSY
(RDMR5
or TOMRS)

—®

Fetch 32-Bit
Address from
Memory at (NRAR}
or (NTAR)

Advance NRAR
orNTAR +4

Load Address into
RAR or TAR

!

Fetch 16-Bit
Byte Count
from Memory
at (NRAR) or (NTAR)

Load Byte Count
into RBCR or TBCR

Write 16-bit
Zero back to
Memory at (NRAR)
or (NTAR)

!

(InAmay or
Linked List Mode)

Tx Channel
and TCBin AL

{N1Clocks)

(N2 Clocks)

(TDMR13)= 12

{Note: Tx DMA Channel
handles TCBs as Data in
Single Buffer or Pipelined
Mode, or when TCB

Advance NRAR
orNTAR +2

inAL=0)

Fetch 32-Bit Transmit (16-Bit TCB case
Control Block from ignored as not useful)
Memory at (NRAR)

of (NTAR) (N Clocks)
Advance NRAR o
orNTAR +4 (I!Traqsmmer isnt
pecting a TCB,
Load TCB Words it will send these
to TDR as for Data words as data.)
Fetch 16 Bits from
Memory at (NRAR}
or (NTAR)
Advance NRAR (N5 Clocks)
orNTAR +2
Discard the Data

(N3 Clocks)

RBCRor
TBCR=0

Set EONEOL

Clear BUSY

(RDMR3 or TOMR3)

(RDMRS or TOMRS)

@ore)

Figure 6-16a. DMA Channel Operation Flowchart (1 of 3)

6-40

UMO014001-1002

Gayle Gamble
UM014001-1002

Z216C32 USC™

@ Zle USER'S MANUAL
Single Buffer or
Start (Sing
Pipelinad Mode,
Command orin Amay or Linked
] List Mode o Restart
a Paused Channal.)
Set BUSY SAw:ac;\ nf-r;tm
RDMRS
o(rTDMRS) accassingto | (N6 Clocks)
Data Butfer
accessing

]

168IT
(BCR2) =0 0r 816 s:f:ofyiyt‘am
(TOMR8 or RDMRS) YestoAny Load to TORT-0.
=1 or Address of These oadto increment [Assuming Addr Mode
is Odd (TARLO or RARLO or »1 TARorRAR (TDMR11-10 or
=1) or (TBCR or RBCR) Get Byte from +1 RDMR11-10) is 00]
=0001 RDR7-0, Write it l
? to Memory
RAR
S(RAR) Decrement
NotoAll (N7 Clocks) TBCRorRBCR
of These. -1
Read 16 Bits from
Memory at (TAR),
Load fo ROR15-0 (N7 Clocks) Did
o Seral Rxor Tx
Get 16 Bits from signal 'End of Frame'
RDR15-0, during last Cycle?
Write them to
Memory at (RAR)
l Yos Yes
{Assuming
Increment AddrMode
TARor RAR (TDMR11-10
+2 of ROMR11-10)
‘ 1500]
Decrement
TBCRor RBCR
2

Figure 6-16b. DMA Channel Operation Flowchart (2 of 3)

6-41

UMO014001-1002

Gayle Gamble
UM014001-1002

N 205

Z16C32 lUsC™
USER'S MANUAL

6.20 OPERATING FLOWCHARTS (Continued)

Yes

Set EOB (TOMR2
or RDMR2)

Pipelined
Mode ?

Switch from
Data Buffer

accessing to
Aray/List
accessing

Rx Channel

and RSBINAL No

Clear BUSY (TOMR5
or RDMRS)

{N9 Clocks)

CONT
(TDMR7 or
ROMR?)
set?

Load (NTAR or NRAR)
into (TAR or RAR)

Set EOB
(TOMR2
or ROMR2)

Load (NTBCR or NRBCR) N
into (TBCR or RBCR)

Clear CONT
(TOMR?7 or ROMR7)

(N8 Clocks)

(ROMR13) =17

Yes

Get Status word
from RDR, Stora in
Memoryat (NRAR) | (N10

Increment
NRAR +2

Clocks)

(Note: Rx DMA handles RSBs
as data in Single Buffer and
Pipelined Modes, or when
RSBInAL=0)

Store 16-Bit Zero
Is Serial P; inMermory at (NRAR)
r
32-BitRSB? Increment
NRAR+2
(N12 Clocks)
G;x%%:z'g,?' Store 16-Bit Zero
i ' in Mamory at (NRAR)
in Memory at (NRAR)
Increment
Increment
NRAR +2 NRAR +2
(N11 Clocks) (N13 Clocks)

{Array Mode)

Fetch 32-Bit
Address from
Memory at
(NRAR or NTAR)

Load into
NRAR or NTAR

Figure 6-16c. DMA Channel Operation Flowchart (3 of 3)

6-42

UMO014001-1002

Gayle Gamble
UM014001-1002

N 25

716C32 lusc™
USER'S MANUAL

6.21 ARRAY AND LINKED LIST FETCHING STATUS

In Array and Linked List modes, the INITG and GLink bits
in the TDMR or RDMR provide a first level of information by
which software can read the state of a channel that is
fetching information from an array or linked list. More
detailed status about array and linked-list fetching is
available in the shareable DMA Array Count Register
(DACR). Figure 6-17 shows the DACR, which contains
separate RALCnt and TALCnt fields (DACR7-DACR4
and DACR3-DACRO respectively) for the two channels.

The DMA channels sequence these fields from all ones
downward as they go through the steps of fetching array
and list entries and transferring data to or from the buffers
that the entries describe.

In Linked List mode a channel sequences TALCnt or
RALCnt with GLink=0 while fetching the buffer address

and count, and then goes through further states with
GLink=1 while fetching the next entry address.

A Z16C32 DMA channel will use 16-bit transfers to access
the array or linked-list if 16-bit (BCR2) is 1 and 8/16
(TDMR8 or RDMR8) is 0. if 16-bit=0 and/or 8/16=1, the
channel will use 8-bit transfers and will thus go through
more states.

The TCBInA/L (TDMR13), RSBinA/L (RDMR13), and
ClearCount(TDMR12 or RDMR12) bits also affect the state
sequence that the DMA channels follow and show in
TALCnt and RALCnt.

Table 6-1 shows all the values that TALCnt and RALCnt
can assume, and their meaning, with notes indicating in
which contexts each state can occur.

Reserved (0)

RALCnt TALCnt

7 6 5 4 3 2 1 0

Figure 6-17. The DMA Array Count Register (DACR)

6-43

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2La5

Z16C32 lusc™
USER'S MANUAL

6.21 ARRAY AND LINKED LIST FETCHING STATUS (Continued)

Table 6-1. States of a DMA Channel

This State Can Occur For:
INITG | GLink ;ﬁﬁ State of the Channel Widin | Mods g’:-.% REBINAL
0 0 0000 Single Buffer or Pipelined Mode 8/16 | SB/P | (na) (na)
Array fetch pending, A
1 | o | 1111 | Fisstiistfetch pending, or g6l L | on | on
Link Address fetched L
1 0 1110 1st byte of Buffer Address fetched 8 AL | on on
1 0 1101 1st half of Buffer Address fetched 8/16 | AL | o 0/1
1 0 1100 3rd byte of Buffer Address fetched 8 AL | on /1
1 0 1011 Buffer Address fetched 8/16 | AL | on 0/1
1 0 1010 1st byte of Byte Count fetched 8 AL | o/t on
1 0 1001 Byte Count fetched 8/16 | AL | oN 0/1
0 0 1001 Receiving into data buffer, or as | AL 0 (4]
Transmitting from data buffer 0 0
] 0 1000 1st byte of Byte Count cleared to zero 8 AL 1 01
1 0 0111 Byte Count cleared to zero 8/16 | AL 1 on
0 0 0111 Receiving into data buffer, or as | AL 1 0/1
Transmitting from data buffer 1 0
o fono | e o mfon |
TCB control word fetchedm, or
1 0 0101 | RSB status word (or zero) stored 816 | AL | 01 1
3rd byte of TCB fetched (ignored if 16-bit TCB) or
1 Y 0100 | 3rd byte of RSB (or zero) stored 8 | AL | on 1
TCC frame length fetched (ignored if 16-bit TCB) or
1 0 0011 | RCC residual (or zero) stored 816 | AL | on 1
[o [oon | tmpe ey medma o [|
6th word of entry read/ignored (Tx), or
1 0 0001 6th word of entry cleared to zero (Rx) 816 | AL | oit 1
0 0 0001 Transmitting from data buffer 8/16 | AL o 1
1 1 1111 Link Address Fetch Pending 8/16 L (4l on
1 1 1110 1st byte of Link Address fetched 8 L on o/
1 1 1101 1st half of Link Address fetched 8/16 L 01 01
1 1 1100 3rd byte of Link Address fetched 8 L 01 0/1

6-44

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLa5

Interrupts

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLa5

USER's MANUAL

CHAPTER 7
INTERRUPTS

7.1 INTRODUCTION

The interrupt subsystem of the IUSC derives from Zilog's
long experience in providing the most advanced interrupt
capabilities in the microprocessor field. These capabilities
can be used to their best advantage in a system including
aZilog processor and other Zilog peripherals, butitis easy
to interface the 1USC to interrupt other processors as well.
This chapter describes the IUSC's interrupt capabilities
and how to use them in various system applications.

The IUSC dedicates four pins to interrupts. It uses the /INT
output to request an interrupt on the host processor. The
/INTACK input signals that the processor is acknowledg-
ing aninterrupt, in different ways for use with differentkinds

of host microprocessors. (For applications in which inter-
rupt acknowledge cycles cannot be detected at the IUSC,
software can simulate such cycles.)

The Interrupt Enable In (IEI) and Out (IEO) pins allow
systems including several Zilog-compatible peripherals to
use an interrupt acknowledge daisy chain to select how
multiple interrupting devices should be serviced. This can
eliminate the need for a separate interrupt controller as in
other approaches. Alternatively, external interrupt control
logic can process interrupt requests in a round-robin or
dynamic-priority fashion among one or more IUSCs and/or
other peripheral devices.

7.2 INTERRUPT ACKNOWLEDGE DAISY CHAINS

Figure 7-1 shows an interrupt acknowledge daisy chain.
The highest-priority (or only) daisy-chainable device that
can request an interrupt has its 1E! pin tied High. Because
of this, it can always request an interrupt, and it “has first
claim at” providing an interrupt vector in answer to an
interrupt acknowledge cycle. Unless the IUSC is the only
daisy-chainable device that can request an interrupt, the
IEO pin of the highest-priority device is connected tothe IE!
pin of the next-higher-priority device. This daisy chaining
of IEO outputs to IEI inputs continues until the lowest-
priority (or only) daisy-chainable interrupting device, which
has its IEQ pin left unconnected.

With the IUSC as with all Zilog-compatible devices except
Z80 family members, the IACK daisy chain serves two
separatefunctions. During aninterrupt acknowledge cycle,

the daisy chain acts to select the highest-priority request-
ing device as the one to return an interrupt vector. After
that, until the resulting interrupt service routine is over, the
daisy chain serves to block interrupt requests from de-
vices having a lower priority than that of the one currently
being serviced, while allowing them from higher-priority
devices.

This daisy-chain structure allows nesting of interrupt ser-
vice routines. Nesting can greatly improve worst-case
interrupt response times for critical real-time applications
as well as /O-intensive computing systems. Whether or
not host software uses nested interrupts, the IUSC's inter-
rupt subsystem provides the most efficient interrupt han-
dling possible.

7-1

UMO014001-1002

Gayle Gamble
UM014001-1002

H Z16C32 lusc™
R 205 s aa
7.2 INTERRUPT ACKNOWLEDGE DAISY CHAINS (Continued)
vCC
< y y %
Host
MPU
/INT /INTACK /INT /INTACK /INT /INTACK
VCC — IEl IEO — IEI IEO — IEI IEO] (NC)
Peripheral "A* IUSC Peripheral "C*

Figure 7-1. An Interrupt Daisy Chain

7.3 EXTERNAL INTERRUPT CONTROL LOGIC

There are two valid reasons why a system designer might
choose not to use an interrupt acknowledge daisy chain
(plus the less valid one of not being familiar with them).
First, in a system that includes many IUSCs all having
similar baud rates and seria! traffic, the strict priority that is
inherent in a daisy chain might endanger proper interrupt
servicing for the device(s) at the low-priority end of the
chain. In such cases, interrupt service requirements may
be more easily guaranteed by using a central interrupt
controller that distributes interrupt acknowledgments
among the devices on a round-robin (rotating-priority)
basis. Such schemes target “fairness” rather than priority
in interrupt servicing among the devices.

A second reason not to use a simple/wired interrupt daisy
chain would be in a system in which data rates vary over
a considerable range among several IUSCs, and are
determined dynamically rather than being known as the
system is being programmed. (An IUSC's interrupt servic-
ing requirements typically vary directly with its serial data
rate.) In such a system, external interrupt logic can distrib-
ute interrupt acknowledge cycles using a dynamic priority
determined by each IUSC's data rate.

Both rotating-priority and dynamic-priority systems can be
arranged as shown in Figure 7-2. The interrupt control
logic maintains the IEl inputs of the IUSCs high most or all
of the time, so that they can assert their /INT outputs. The
logic may simply OR the /INT outputs of the various {USCs
to make the interrupt request to the processor. Alterna-
tively, in a dynamic-priority system with a processor that
supports multiple leveis of interrupts, the control logic may
assign different IUSCs to different processor levels.

Processor
Interrupt Control Logic
ANT IEIA /NTACK
lUsc Other Devices

Figure 7-2. External Interrupt Control

UMO014001-1002

Gayle Gamble
UM014001-1002

AN 2iLa5

216C32 JusC™
USER'S MANUAL

Regardless of how the interrupt control logic derives the
processor request, when the processor does an interrupt
acknowledge cycle, the logic must select a particular
device from among those requesting an interrupt, to “re-
ceive” the cycle. The control logic can implement this
choice in one of two ways. First, it can negate the IEl inputs

of all but one device, and then wait for the specified setup
time before presenting the cycle to all of them using the
/INTACK signal and possibly other bus control signals. Or,
it can simply present the cycle only to the selected IUSC,
typically using a single pulse on /INTACK.

7.4 MEGACELLS, TYPES, AND SOURCES

Internally, the IUSC uses a daisy-chaining scheme much
like that described eariier. Thus its benefits are available,
to some extent, even in systems that do not include any
other Zilog-compatible peripherals. At the first level, the
1USC's serial and DMA sections (“megacells”) have sepa-
rate interrupt subsystems. Their request lines are logically
OR'ed to make the /INT output. The IUSC's IEl pin is
connected to the IE! input of the serial controller; the serial
controller's IEQ output is internally connected to the DMA
controller's IEl input, and the DMA controller's IEO output
is routed to the IUSC's IEQO pin. This arrangement means
that serial controiler interrupts have higher priority than
DMA controller interrupts. The two sections also have fully
independent interrupt vectors.

The IUSC carries interrupt daisy-chaining further, to a
second level ofinternal resolution. Each section ormegacell
includes several interrupt “types” — six for the serial
controller and two for the DMA section. The various types
in each megacell are arranged in a fixed priority order on
an internal daisy-chain. Many of the types include several
separate interrupt stimuli or “sources”.

Figure 7-3 shows all of the interrupt types and sources in
the 1USC, arranged with the highest priority types at the
top.

7-3

UMO014001-1002

Gayle Gamble
UM014001-1002

2N 2105

216C32 JUsC™
USER'S MaNuAL

7.4 MEGACELLS, TYPES, AND SOURCES (Continued)

Sources Types Megaceils Device
Exhed Frunt | |
A
e Racelved 1E! Pin
1A Highest Priocity
mi Rx Statua
["[ETETus
A
‘AbortPartty Eror
]
Rx Ovemm
I j]
RXFIFO Fill Level —» Rx Data
sen]] RxintThreshold —s-[iETIPTIUS
1A
Icke Sent
1A
Abort Sent
m [_Txswmme
OF/EOM Sent 1E [1P J s
W
CRC Sent
"]
Tx Underrun
[a] J TFIFOFi Lovet —» Tx Data
ToSFa]] TxintTheehod —[E]P]iUS
W
/RxC Rise
(@]
TxC Fall
[n]]
TTC Rise [MiE] Vector |
]
/RREQ Fall
]
/RAAEQ Rise
A [VO Pine
TXREQ Falt “LEe] e Jus
A
/TXREQ Rise
]
/DCO Fal
A
0CD Rise g
1A
TS Fal §
(] 2
TS Rise g
TI -
RCC Undediow
]
DPLL Desync
[a] [Wiecetanecue
BRG1 Zero LE] P flus J
(A |
BRQO Zerw
(x] R
Fix End of Bufier] |
7y
Rx End of Amny
fEnd of List [Rxoma
Rox HW Abort -} LEjwr]ius
1A
Rx SW Abort
] i
Tx End of Bufier] | [ME] Vecto -
A
'x End of Array
] fEnd of Liat Tx DVA
_lrx HW Abort [E] P Jius]
W
Lowest Priority
Tx SW Abort
nl| IEO Pin

Figure 7-3. The IUSC Interrupt Subsystem

7-4

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLa5

Z16C32 USC™
USER'S MANUAL

7.5 INTERNAL INTERRUPT OPERATION

Figure 7-4 presents a model of the typical internal structure
of the interrupt subsystem, for a source “s" that is of type
“t". Note that the Figure represents a model of the IUSC’s
interrupt logic rather than the exact logic; itis included only
as an aid to understanding the interrupt subsystem.

Each individual source has an associated register bit that
we will call its Interrupt Arm or 1A bit. (Previous Zilog
documents called this bit an Interrupt Enable or IE bit, but
also used the same term for another bit that applies to the
entire type. To distinguish between these two kinds of
register bits, this description will call the one that applies
to the individual sources “IA".)

IA bits are fully under software control. When anlAbitis 1,
the associated source can cause an interrupt.

The sources are typically readable as register bits them-
selves, and may be derived from various kinds of logic,
such as logic that compares the fullness of a FIFO with a
threshold level at which to interrupt, or logic that detects
transitions of another register bit.

Each source and its IA bit are logically ANDed. A rising
edge on the logical OR of these terms, for all the sources
in the type, sets an “Interrupt Pending” (IP) bit for the type.
For the IUSC and other USC family members, IP bits are set
independently of the state of the associated IUS bits, and
are cleared to 0 only by software (or by Reset).

A close examination of Figure 7-4 will show that setting of
IP is delayed if an “armed” source comes true during an
interrupt acknowledge cycle, but that is not particularly
important for understanding the IUSC's interrupt sub-
system.

A second register bit associated with each type is the
interrupt Enable or |E bit. This bit is under full software
control. When an IE bit is 1, an interrupt can be requested
when the type’s IP bit is 1. Note that an [P bit can be set
while its associated |E bit is O; if software sets IE when the
associated IP bit is set, an immediate interrupt can result.

There is one more register bit for each type, called the
Interrupt Under Service or IUS bit. The interrupt logic sets
the 1US bit for a type to 1 during an interrupt acknowledge
cycle, if the daisy chain shows that it is the highest-priority
typethatis currently requesting aninterrupt. (This includes
types in higher-priority external devices and higher-prior-
ity types within the IUSC.) Aside from a hardware or
software Reset, an IUS bit can only be reset to O by
software. This is typically done near the end of an interrupt
service routine for that type. During the execution of the
interrupt service routine for a given type, the type's 1US bit
blocks interrupt requests from lower-priority types.

The And gate near the top of Figure 7-4 shows the actual
conditions for atype torequestaninterrupt. Atype's {P and
IE bits must both be 1, its IUS bit must be 0, and its
incoming “IEI” signatmust be true. IEl true indicates that no
higher-priority type (on-chip or external) has its IUS bit set.
Finally, a Master Interrupt Enable (MIE) register bit for the
megacell must be set to 1.

UMO014001-1002

Gayle Gamble
UM014001-1002

Z16(32 USC™

N 2iLas USER'S MANUAL
7.5 INTERNAL INTERRUPT OPERATION (Continued)
From IEi pin, or
Next-Higher-Priority
Type From Other
From Other Megaceli(s) ANT
Y Types @—
MIE —
ADnb D Q tIE — :)_0
RUS
WRREGb ———> /Q SWopc
CLR l
Reset — 1 Logict —{ SET P
D Q D Q
Source "s" \ \
ADna D oAl | g EN
From Other CLR r
Reset
Sources SWopd 3__'
SWope
WRREGa ——> /Q
CLR
Roset — | SWopt |
1
SET
‘ D Qr-
/IACKcy > Q
l Reset el
SWopg 3 >—]
SWoph
bLe <D || s
P U
Jack Read ‘ Drive Vector
Y
To IEO or
Next-Lower-Priority
Type
Figure 7-4. A Model of the Interrupt Logic for Source “s” and Type “t”
7-6

UMO014001-1002

Gayle Gamble
UM014001-1002

AN 2iLa5

21632 lusC™
USER'S MANUAL

7.6 DETAILS OF THE MODEL

The IA and IE bits appear near the left side of Figure 7-4,
as D-type flip-flops that capture the state of an AD line
when software writes a specific register. The IP bitappears
as a D-type flip-flop and a latch that are set “by hardware”
as described above; software can set and clear the latch.
The signal labeled /IACKcy is Low for the duration of an
interrupt acknowledge sequence. The IUS bit appears as
a D-type flip-flop that can be set through its clock and D
inputs at the end of an acknowledge cycle; again, software
can set or clear IUS.

The various signals named “SW op x", that set and clear IP
and IUS, represent software operations. These may reflect
the writing of a “1" bit to a certain register bit position, or
may represent the writing of an encoded command to a
register. Since software always has to try to clear IP during
an interrupt service routine, and typically also has to clear
1US, there are often several ways to clear these bits, as
shown by the multiple "SW op” signals for these functions
in the Figure. One thing not shown in Figure 7-4 is how the
typical command "Reset Highest IUS” is implemented—
including this function would have considerably increased
the compilexity of the logic.

The two downward-pointing gates in Figure 7-4 form the
type's “IEQO" output. They assert this output only if the
type's incoming IEl is High and its IUS bitis 0. There is a

register bit “Disable Lower Chain"(DLC)in each megacell;
iffwhen DLC is 1 the megacell's IEO output is forced false/
low. The downward-pointing OR gate reflects the func-
tional shift of the daisy-chain during interrupt-acknowl-
edge cycles. Its output is High except during IACK cycles,
at which time it allows IEO to be asserted High only if this
type is not requesting an interrupt.

Finally, the signal labeled “Drive Vector” controls when the
megacel! places an interrupt vector on the data bus during
an interrupt acknowledge cycle. There is a register bit No
Vector (NV) in each megacell; NV=1 prevents driving a
vector. The bus interface logic derives the signal “IACK
Read"” from R//W and /DS, /RD, or /INTACK, depending in
parton a field in the Bus Configuration Register (BCR) that
specifies how /INTACK works. Typically IACK Read is true
during the latter part of the time that /IACKcy is true. The
megacell provides a vector on AD7-ADO while IACK Read
is true, if NV is 0 and any of the types in the megacell is the
highest priority interrupting type.

To keep its complexity reasonable, Figure 7-4 does not
include the mechanism by which the content of a returned
interrupt vector can reflect the identity of the highest-
priority interrupting type within the megacell.

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLa5

216€32 lUSC™
USER'S MANUAL

7.7 INTERRUPT OPTIONS IN THE BCR

Two fields in the Bus Configuration Register (BCR) affect
the interrupt subsystem. The following is also presented in
Chapter 2, Bus Interfacing.

The IAckMode field (BCR5-BCR4) tells the IUSC how the
host processor drives the /INTACK pin. 00 makes the IUSC
capture the state of /INTACK at the start of each bus cycle.
Itdoes this atrising edges on /AS on a bus with multiplexed
addresses and data, or at falling edges on /DS or /RD on
a non-multiplexed bus.

This field should be written as 01 if INTACK carries asingle
low-active pulse during an interrupt acknowledge cycle.

The 10 value in IAckMode is reserved and should not be
programmed.

IAckMode should be written as 11 if /INTACK carries a
double pulse during an interrupt acknowledge sequence.
This mode is compatible with several Intel microproces-
sors.

If the IRQTP bit (BCR1) is O, the IUSC drives its /INT pin in
a totem-pole fashion (both high and low). If IRQTP is 1, the
IUSC drives/INT in an open-drain fashion (low only) so that
the request can be wire-ORed, in which case an external
pull-up resistor should be provided.

7.8 INTERRUPT ACKNOWLEDGE CYCLES

The IUSC does not require Interrupt Acknowledge cycles.
The system designer can simply pull up the /INTACK pin,
and software can read the Interrupt Pending (IP) bits in the
Daisy Chain Control Register (DCCR) and the Set DMA
Interrupt Register (SDIR), which are described in later
sections.

Even if the host processor does Interrupt Acknowledge
cycles, the IUSC does not have to provide a vector. If |EI
is high and the NV bit in the Interrupt Control Register (ICR)
or DMA Interrupt Control Register (DICR) is 1, the IUSC
sets the [US bit of the highest priority interrupt then pend-
ing, but it does not return an interrupt vector.

But, since most microprocessors in use today perform
interrupt acknowledge cycles to obtain an 8-bit interrupt
vector, the rest of this section will assume vectored inter-
rupts.

Figure 7-5 shows the kind of interrupt acknowledge cycle
that the IUSC expects when the IAckMode field (BCR5-4)
is 00, on a bus with multiplexed addresses and data.
(Actually there are two subcases of this kind of cycle,

depending on whether the host processor uses /DS or /RD
signaling. Since the timing is the same for either strobe,
Figure 7-5 simply shows a trace labeled “/DS or /RD".)

If the lUSC samples /INTACK low at the rising edge of /AS,
it "freezes” its internal interrupt state; if it is requesting an
interrupt it forces its IEO output low regardiess of the state
of IEl, and starts resolving its internal interrupt priorities. I
the |El and IEO pins are part of an interrupt acknowledge
daisy chain with other interrupting devices, this resolution
occurs in concert with the interrupt logic in the other
devices.

The IEI pin must be valid for a specified setup time before
/DS or /RD goes low. The host CPU’s strobe must be
delayed if needed to guarantee this. If IEl is high and the
IUSC is requesting an interrupt, it responds to /DS or /RD
by setting the IUS bit of its highest requesting type of
interrupt, driving a vector onto the AD7-ADO pins, and
driving WAIT//RDY appropriately to signal when the vec-
tor is valid. If {El is low at the leading/falling edge of /DS or
/RD, and/or if the IUSC is not requesting an interrupt, it
does not respond to the cycle.

7-8

UM014001-1002'

Gayle Gamble
UM014001-1002

Z216C32 |USC™
USER'S MANUAL

AD15-ADO

/INTACK

/AS

IEO

1]

/DS OR/RD

/WAIT//RDY
(as Wait)

/WAIT//RDY
(as Ack)

/INT

Figure 7-5. An Interrupt Acknowledge Cycle with IACKMODE=00 on a Multiplexed Bus

—E—EC
U

Ni/Z
T\
N\
4
N Y S

UMO014001-1002

7-9

Gayle Gamble
UM014001-1002

N 205

216C32 IUSC™
USER'S MANUAL

7.8 INTERRUPT ACKNOWLEDGE CYCLES (Continued)

Figure 7-6 shows the kind of interrupt acknowledge cycle
that the IUSC expects when the IAckMode field (BCR5-4)
is 00, on a bus with separate address and data lines. (As
before there are two subcases of this kind of cycle,
depending on whether the host processor uses /DS or /RD
signaling. Since the timing is identical for either strobe,
Figure 7-6 simply shows a trace labeled “/DS or
/RD")

Here the IUSC freezes its internal interrupt state in re-
sponse to a falling edge on /INTACK; again, if it is request-
ing aninterruptitforces its [EO output low regardless of the
state of IEl, and starts resolving its internal interrupt priori-
ties.

AD15-ADO

/INTACK \

: < vec:tor

In this mode /INTACK must stay low untit after /DS or /RD
goes low, and IEl must be valid for a specified setup time
before /DS or /RD goes low. (The falling edge of /DS or JRD
may have to be delayed to guarantee this.) If IEl is high and
the IUSC is requesting an interrupt, it responds to /DS or
/RD by setting the 1US bit of its highest priority requesting
type of interrupt, driving a vector onto the AD7-ADQ pins,
and driving /WAIT//RDY appropriately to signal when the
vector is valid. If IEl is low at the leading/falling edge on
/DS or [RD, and/or if the IUSC is not requesting an interrupt,
it does not respond to the cycle.

i/

e\

IE! 74

/DS OR/RD

/WAIT//RDY

(as Wait)

/WAIT/[RDY

i
N/

(as Ack)

/INT

pa—

Figure 7-6. An Interrupt Acknowledge Cycle with IACKMODE=00 on a Non-Multiplexed Bus

7-10

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLa5

Z16C32 IUSC™
USER'S MANUAL

Figure 7-7 shows the kind of interrupt acknowledge cycle
that the IUSC expects when the IAckMode field is 01. Here
asingle pulse on /INTACK substitutes for the pulse on /DS
or /RD in the previous cases; the latter two signals must
remain high throughout the cycle. For this case, operation
on a nonmultiplexed bus is identical with that on a multi-
plexed bus once the /AS strobe is over. The only distinction
is that a multiplexed bus must meet minimum times be-
tween the pulse on /INTACK and the preceding and
following pulses on /AS. These minima are similar to those
required for register read and write cycles.

In this mode, an interrupt acknowledge daisy chain on IEl/
IEO cannot be used to select whether the IUSC or another
device should respond to each interrupt acknowledge
cycle. Instead, external logic like that shown in Figure 7-2

must decide which requesting device is to respond to an
interrupt acknowledge cycle, if such a cycle occurs when
more than one isrequesting an interrupt. The externallogic
would typically consider the state of the individual request-
ing devices' interrupt request lines in making this decision.
(The lines cannot be OR-tied in this case.)

In this “single-pulse” mode, the IE! pin must set up and
hold around the leading/falling edge on /INTACK. If El is
high and the IUSC is requesting an interrupt at that point,
it responds to /INTACK by driving a vector onto the AD7-
ADO pins and driving /WAIT//RDY appropriately to signal
when the vector is valid. If |El is low at the leading/falling
edge of /INTACK, and/or if the IUSC is not requesting an
interrupt at that point, it does not respond to the cycle.

—

AD15-ADO

\ Vec tor

/INTACK \

/WAIT//RDY
(as Walt)

.

/WAIT//RDY
(as Ack)

/INT

N

(16T

—

Figure 7-7. An interrupt Acknowledge Cycle with IACKMODE=01

7-11

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLaB

Z16C32 IUSC™
USER'S MANUAL

7.8 INTERRUPT ACKNOWLEDGE CYCLES (Continued)

Figure 7-8 shows the kind of interrupt acknowledge cycle
that the IUSC expects when the IAckMode fieldis 11. Here,
two consecutive low puises on /INTACK constitute the
complete interrupt acknowledge cycle, and /DS and /RD
should both stay high throughout the cycle. This mode is
compatible with several microprocessors made by intel
Corp. and other companies. As in the preceding case,
operation is similar whether the bus is multiplexed or non-
muitiplexed. The multiplexed bus must meet minimum
times between the pulses on /AS and the pulses on
/INTACK. These minima are similar to those between /AS
and /DS or /RD in register read cycles.

In this "double pulse mode” the IUSC keeps an internal

state bit that distinguishes the two /INTACK pulses in each
pair. The IUSC freezes its internal interrupt state in re-

AD15-ADO

sponse to the first falling edge on /INTACK. If it is request-
ing aninterruptitforces its IEQ output low regardiess of the
state of IE|, and starts resolving its internal interrupt priori-
ties, but the IUSC does not otherwise respond to the first
cycle.

In this mode the IE| pin must be valid for a specified setup
time before /INTACK goes iow for the second pulse. If IEl
is high at this point and the IUSC is requesting an interrupt,
itresponds to the second /INTACK pulse by setting the [US
bit of its highest-priority requesting type of interrupt, driv-
ing a vector onto the AD7-ADO pins, and driving
/WAIT//RDY appropriately to signal when the vector is
valid. If IEl is low at the leading edge of /INTACK, and/or if
the IUSC is not requesting an interrupt, it does not respond
to the cycle.

vegtor

IEOC \

1]

/WAIT//RDY
(as Wait)

MWAIT//RDY
(as Ack)

/INT

. S/
/INTACK __/—___/—
/
/"

—

Figure 7-8. An Interrupt Acknowledge Cycle with IACKMODE=11

7-12

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLa5

21632 [USC™
USER'S MANUAL

7.9 INTERRUPT ACKNOWLEDGE VS READ CYCLES

Interrupt Acknowledge cycles are similar to the cycles that
occur when the host processor reads an 1USC register,
which are discussed in Chapter 2. However, the user
should note the following ways in which interrupt acknowl-
edge cycles differ from read cycles:

u With IAckMode=00 on a multiplexed bus, /INTACK
acts like an address line. When an |USC samples
/INTACK low at a rising edge on /AS, it ignores the
address on the AD lines.

On a non-multiplexed bus with IAckMode=00, each
leading edge of /RD or /DS captures the state of
/INTACK.

m With IAckMode=00 and /DS signaling, the state of
R//W does not matter for a cycle in which the IUSC
samples /INTACK low. (In other cycles R//W
differentiates Read cycles from Writes.)

B Whenthe WAIT//RDY pin carries the Wait function, the
IUSC asserts the pin during interrupt acknowledge
cycles, but never does so during register Read or
Write cycles.

® When WAIT//RDY carries the Acknowledge function,
the IUSC asserts it later in Interrupt Acknowledge
cycles than in Reads. However, the relationship,
between the falling edge of WAIT//RDY and the validity
of data on the AD lines, is similar in both kinds of
cycles.

7.10 SERIAL CONTROLLER INTERRUPT TYPES

The serial controller section of the IUSC includes six types
of interrupts, arranged on the internal interrupt daisy chain
in the foltowing priority order:

Receive Status (highest priority)
Receive Data

Transmit Status

Transmit Data

1/O Pin

Miscellaneous (lowest priority)

SN LN

Each of these types has one each IE, IP, and IUS bit, as
described in an earlier section of this chapter.

7.10.1 Receive Status Interrupt Sources
and lA Bits

Any of six interrupt sources can set the Receive Status IP
bit. Software can read the status of each source in the
LSbyte of the Receive Command/Status Register (RCSR),
which is shown in Figure 7-9. The following descriptions of
the RCSR status bits are similar to those in the Detailed
Status in the RCSR section of Chapter 5.

ExitedHunt. The RS IP bitcan be setwhenthis bit (RCSR7)
goes from 0o 1 because the receiver has detected a Sync
or Flag sequence in a synchronous mode.

IdleRcved. The RS IP bit can be set when this bit (RCSR6)
goes from 0 to 1 because the receiver has seen 15 or 16
consecutive one bits. In asynchronous modes with 16, 32,
or 64X clocking, the receiver sets RCSR6 after one bit time
or less, so this source's IA bit should not be set in such
modes.

Break/Abort. The RS IP bit can be set when this bit
(RCSR5) goes from 0 to 1 because the Receiver has
detected a Break condition in an asynchronous mode or
an Abort condition in an HDLC/SDLC mode.

RxBound. If the |A bit for this source is 1, the interrupt logic
sets the RS IP bit when software or the Receive DMA
channel reads a character from the RxFIFO that is marked
with RxBound status. Such marking reflects an address
character in Nine-Bit mode, negation of /DCD during the
character in external sync mode, the last character of a
frame in HDLC/SDLC and 802.3 modes, or one of five
block terminating characters in Transparent Bisync mode.

Abort/PE. If the |A bitfor this source is 1, the interrupt logic
sets the RS IP bit when software or the Receive DMA
channel reads a character from the RxFIFO that failed
parity checking, or, in HDLC/SDLC mode with the QAbort
bit (RMR8) set, a character that was followed by an Abort
sequence.

RxOver. If the |A bit for this source is 1, the interrupt logic
sets the RS IP bit when software or the Receive DMA
channel reads a character from the RxFIFO that is marked
with Overrun status. The character so marked is the first
one that arrived while the FIFO was full. An intermediate
number of characters after it may have been lost. See
‘Handling Overruns and Underruns' in Chapter 5 for more
information.

7-13

UMO014001-1002

Gayle Gamble
UM014001-1002

216C32 (UsC™
A 2iLans USER'S MANUAL
7.10 SERIAL CONTROLLER INTERRUPT TYPES (Continued)
ACmA(WO) shortF/| Exited | 1dtle | Break | Rx |cree| abot | Rx | Rx
2ndBE 1stBE RxResidue cvTyps] Hunt | Reved | /abort [Bound | FE | PE | Over | Avai
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Figure 7-9. The Receive Command/Status Register (RCSR)
“RTSA data’ if last RCSR15-12 command 4-7 was 4
RXFIFO fill level if last RCSR15-12 command 4-7 was 5 Exited | Idle | Break | Rx | Word | Parity |AXOverj TCOR
Rx Int Req level if last RCSR15-12 command 4-7 was 6 HuntIA} Roved | /Abort | Bound | Status | Eror § 1A | Sel
*Rx DMA Req level® if last RCSR15-12 command 4-7 was 7 1A 1A 1A 1A
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 7-10. The Receive Interrupt Control Register (RICR)

As described in Chapter 5, once an Interrupt-Armed RCSR
bithas been set, it mustbe “unlatched” by writing a 1 to that
bit position in RCSR. For Exited Hunt, Abort (in HDLC
mode), RxBound, Abort/PE, and RxOver, this action also
clears the RCSR bit. The Break/Abort (in Async modes)
and IdleRcved bits in the RCSR do not become 0 until
software has unlatched the bit and the line condition has
ended.

Each of these six sources has a separate Interrupt Arm
(1A) bit in the LSbyte of the Receive Interrupt Control
Register (RICR). Figure 7-10 shows the RICR. If an [A bitis
1, the interrupt logic sets the Receive Status IP bit as
described above. if an |A bit is 0, the corresponding bit in
RCSR has no effect on the IP bit and thus will not cause
interrupts. The setting of the |A bits for the ExitedHunt,
IdleRcved, and Break/Abort conditions has no effect on

the bits in RCSR, while the JA bits for the RxBound, Abort/
PE, and Overrun conditions affect how the corresponding
RCSR bits operate, as described in Chapter 5.

In order to ensure that future interrupts are requested
properly when more than one Receive Status condition is
Armed in the RICR, a Receive Status interrupt service
routine must clear all of the |A bits in the RICR and then set
the desired ones again, after it has cleared the RS IP bit
and the sources it has serviced.

When software wants to change the |A bits in the RICR after
the register is firstinitialized, it should write only the LSbyte
of the register rather than all 16 bits, to avoid inadvertently
changing a threshold or time slot assigner setting in the
MSbyte.

7-14

UMO014001-1002

Gayle Gamble
UM014001-1002

QN 2La5

Z16C32 SC™
USER'S MANUAL

7.10.2 Receive Data Interrupts

This interrupt type has only one source, so there is no 1A bit
forit. The interrupt logic sets the RD IP bitwhen a character
is received, and the number of previously-received char-
acters in the RxFIFO is equal to the number programmed
as the “Receive Data Interrupt Request Level”. That is, the
IP bit is set when a character is received, that makes the
number of characters in the RxFIFO exceed the pro-
grammed value.

The RD IP bit is also set if the number of characters is less
than the programmed threshold level, and the receiver
places a character marked with RxBound status in the
RxFIFQ.

If received data is handled by either software polling or the
Receive DMA channel, disable the Receive Data interrupt
by leaving its |E bit O. (A later section discusses IE bits.)

To program the Receive Data Interrupt Request Level, first
write the “Select RICRHi=/INT Level” command to the
RCmd field of the Receive Command/Status Register
(RCSR15-12). Then write the number of received charac-
ters at which the IUSC should start requesting a Receive
Data interrupt, minus one, to the MSbyte of the Receive
Interrupt Control Register (RICR). For example, if the IUSC
should request a Receive Data interrupt when its 32-byte
RxFIFO becomes 3/4 full, write hex 60 to RCSR15-8, then
write decimal 23 (hex 17) to RICR15-8.

It is good programming practice to follow these two steps
with writing a “Select RICRHi=FIFO Status” command to
the RCSR, to protect the Request Level from inadvertent
modification when other parts of the software change the
1A bits in the LSbyte of the RICR.

Code that writes or reads the Receive Data Interrupt
Request threshold must ensure that no interrupts will occur
between the time it writes the “Select RICRHi=/INT Level”
command to the RCSR, and when it writes or reads the
value in the RICR, if such interrupts can lead to other code

writing a different Select command (for TSA data, the FIFO
Fill level, or DMA request threshold) to the RCSR.

Figure 7-11 shows a sample service routine for Receive
Datainterrupts. While itis not particularly fancy or efficient,
it does illustrate several important points:

1. It reads the FIFO fill level to determine how many
characters to read. The fact, that reception of an
RxBound character (i.e., the last character of a frame,
or message), can set the Receive Data IP bit, means
that a Receive Data interrupt service routine can't
blindly read the number of characters implied by the
Interrupt Request Level.

2. ltexplicitly clears the Receive Data IP and 1US bits by
writing to the Daisy Chain Control Register (DCCR) as
described in a later section. Neither bit is affected by
reading data from the RxFIFO.

3. Mre-readsthe FIFOfilllevel after clearing the IP bit, and
processes any characters that have been received
while it was processing earlier characters. This proce-
dure guards against losing an interrupt associated
with a late-arriving End of Frame (RxBound) character.

4. ltreads the status from RCSR “before” reading each
character, and reads RCSR an extra time after reading
out an End of Frame (RxBound) character, to clear the
latching of the status that occurs when an RxBound
character is read out.

This is not the only way to handie RxBound checking.
Another way is to enable a Receive Status interrupt when
the Receive Data interrupt service routine reads a RxBound
character out of the RxFIFO, and not check RxBound
status in this routine at all. Software that uses this method
must ensure that an Receive Status interrupt can interrupt
the Receive Data ISR in a "nested” fashion.

7-15

UMO014001-1002

Gayle Gamble
UM014001-1002

. Z16C. "~
N 2iLan Ussn'sa 2Mlyusutﬁ:u.
7.10 SERIAL CONTROLLER INTERRUPT TYPES (Continued)

Start: Interrupt with
Vector = "Rx Data”

{

IF NECESSARY,
write 0101 to
RCmd (RCSR15-12)

:

Read FIFO count

CT: =RICR15-8
Yes Clear the RD IP bit | Read FIFO count
(write 90,¢ "] cT=RICR15-8
to DCCR7-0)
No
ot "
rom R
Handle bits other [CT=0?
than RxBound
as required.
Yes
Read & store last Clear the RD IUS bit

End of
Frame? RxBound
{RCSR4) =1

Yes _ |byte/word from RDR.)
Decrement CT by (write 9044
1 or 2 accordingly to DCCR15-8)

Read & store byte Retum from

or word from RDR. zfe;%gg? 5R (1)5;2 Interrupt
- Decrement CT by y

1 or 2 accordingly. clear latched status

Perform End of
Frame processing
(switch buffers etc.)

Figure 7-11. A Sample Service Routine for Receive Data Interrupts

7-16
UMO014001-1002

Gayle Gamble
UM014001-1002

AN 2La5

216C32 JUSC™
USER'S MANUAL

7.10.3 Transmit Status Interrupt Sources
and |A Bits

The interrupt logic can set the Transmit Status IP bit in
response to any of sixinterrupt sources. Software canread
the status of each source in the LSbyte of the Transmit
Command/Status Register (TCSR), which is shown in
Figure 7-12. The following descriptions of the TCSR bits
are similar to those in the Detailed Status in the TCSR
section of Chapter 5:

PreSent. The interruptlogic can set the TS IP bit when this
bit (TCSR7) goes from a0 to a 1, because the transmitter
has finished sending the “Preamble” selected in the Chan-
nel Control Register (CCR11-8) in a synchronous mode.

IdleSent. The interrupt logic can set the TS IP bit when this
bit (TCSR6) goes from a 0 to a 1, because the transmitter
has sent the idle line state selected by the Txidle field
(TCSR10-8). If Txldle and TxMode specify the condition as
Flags or Syncs, this bit can be set for each one sent.
Otherwise, for bit-oriented Idle conditions, it is set only
after the first bit is sent.

AbortSent. The interrupt logic can set the TS IP bit in
HDLC/SPLC mode, when this bit (TCSR5) goes from 0 to
1 because the transmitter has sent an Abort character.

EOF/EOM Sent. The interrupt logic can setthe TS IP bitin
a synchronous mode, when this bit (TCSR4) goes from O to
1because the transmitter has sent the closing Flag or Sync
character at the end of a message or frame.

CRCSent. The interrupt logic can setthe TS IP bitina sync
mode, when this bit (TCSR3) goes from 0 to 1 because the
transmitter has sent the CRC sequence just before the end
of a message or frame.

TxUnder. The interruptiogic can setthe TS IP bit when this
bit (TCSR1) goes from 0 to 1, because the transmitter
needed a character from the TxFIFO but it was empty.

Once one of these TCSR bits is 1, it must be cleared to 0
by writing a 1 to that bit position in TCSR.

In order to ensure that future interrupts are requested
properly when more than one Transmit Status condition is
Armed in the TICR, a Transmit Status interrupt service
routine must clear all of the 1A bits in the TICR and then set
the desired ones again, afterithas cleared the TS IP bitand
the sources it has serviced.

Each of these six sources has a separate Interrupt Arm
(IA) bit in the LSbyte of the Transmit Interrupt Control
Register (TICR). Figure 7-13 shows the TICR. If an 1A bitis
1, the interrupt logic sets the Transmit Status IP bit when
the corresponding bit in the Transmit Command/Status
Register (TCSR) goes from O to 1. If an IA bit is 0, the
corresponding TCSR bithas no effect on the IP bitand thus
will not cause interrupts. The setting of the IA bits in TICR
has no direct effect on the TCSR bits.

When software wants to change the 1A bitsinthe TICR after
the register is first initialized, it should write only the LSbyte
of the register rather than all 16 bits, to avoid inadvertently
changing a threshold or time slot assigner setting in the
MSbyte.

EOF/
Under Pre | idie | Abort CRC | Al Tx Tx
TCmd Walt Txidie Sent | Sent | Sent E?,“,{' Sent | Sent | Under | Empty
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Figure 7-12. The Transmit Command/Status Register (TCSR)
-*"TTSA data” if last TCSR15-12 command 4-7 was 4
*TXFIFO fill lovel® if last TCSR15-12 command 4-7 was 5 pre | !die | Abort | EOF/ | CRC | wae | Tx | TC1R
*Tx Int Req level” if last TCSR15-12 command 4-7 was 6 sentia| Sent | Sent | EOM | sent | gong | Under| sel
“Tx DMA Req level® if last TCSR15-12 command 4-7 was 7 1A IA |SentlA] A 1A
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Figure 7-13. The Transmit Interrupt Control Register (TICR)
7-17

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLa5

716C32 lUSC™
USER'S MANUAL

7.10.4 Transmit Data Interrupts

This interrupt type has only one source, so there is no need
for an IA bit for it. The interrupt logic sets the Transmit Data
IP bit whenever the Transmitter finished sending a charac-
ter, and the number of empty character positions in the
TxFIFQO is equal to the value programmed as the “Transmit
Data Interrupt Request Level”. Since this event is immedi-
ately followed by taking the next character out of TxFIFO,
the net effect if that the IUSC requests a Transmit Data
interrupt when there are more empty character positions in
the TxFIFO than the Request Level value.

Iftransmitted data is to be handled by the Tx DMA channel,
disable this interrupt by leaving its |E bit 0. (A later section
discusses |E bits.)

To program the Transmit Data Interrupt Request Level, first
write the “Select TICRHi=/INT Level” command (value
0110) to the TCmd field of the Transmit Command/Status
Register (TCSR15-12). Then write the number of empty
character positions at which the IUSC should startrequest-
ing a Transmit Data interrupt, minus one, to the MSbyte of
the Transmit Interrupt Control Register (TICR). For ex-
ample, if the IUSC should request a Transmit Data interrupt
when its 32-byte TxFIFO has only four characters left in it,
write hex 60 to TCSR15-8, then write decimal 27 (hex 1B)
to TICR15-8.

It is good programming practice to follow these two steps
with writing a “Select TICRHi=FIFO Status" command to
the TCSR, to protect the Request Level from inadvertent
modification when other parts of the software change the
|A bits in the LSbyte of the TICR.

Code that writes or reads the Transmit Data Interrupt
Request threshold must ensure that no interrupts will occur
between the time it writes the “Select TICRHi=/INT Level”
command to the TCSR, and when it writes or reads the
value in the TICR, if such interrupts can lead to other code
writing a different Select command (for TSA data, the FIFO
Fill level, or DMA request threshold) to the TCSR.

Note that a Purge Tx FIFO (or Purge Rx and Tx FIFQO)
command will typically make the IUSC immediately set its
Transmit Data IP bit. This will, in turn, make it start request-
ing an interrupt on its /INT pin if:

B it had not been doing so,

B the IEl pin is high,

| its TD IE and MIE bits are 1, and

| its TD IUS and all higher-priority IUS bits are 0.

As with all IUSC interrupts, a Transmit Data interrupt
service routine must explicitly clear the Transmit Data IP
and IUS bits by writing to the Daisy Chain Control Register

(DCCR) as described later; neither of these bits is cleared
by simply writing data into the TxFIFO.

UMO014001-1002

Gayle Gamble
UM014001-1002

AN 2iLa5

716C32 lusc™
USER'S MANUAL

7.10.5 /O Pin Interrupt Sources and IA Bits

The interrupt logic can set the I/0 Pin IP bit in response to
rising and/or falling edges on any of six pins, namely /RxC,
TxC, [RxREQ, /TxREQ, /DCD, and /CTS. The following
description is similar to that in the Edge Detection and
Interrupts section of Chapter 4.

Software can program the IUSC to detect rising andjor
falling edges on the /CTS, /DCD, /TxC, /RxC, /[TXxREQ, and
/RxREQ pins, and to interrupt when such events occur.
Figure 7-14 shows that the Status Interrupt Control Regis-
ter (SICR) includes separate Interrupt Arm (IA) bits for
rising and falling edges on each of these pins. A 1 in one
ofthese bits makes the IUSC detect that kind of edge, while
a 0 makes it ignore such edges. This edge detection and
interrupt mechanism operates without regard for whether
the various pins are programmed as inputs or outputs in
the I/O Control Register (IOCR).

When the IUSC detects an edge that is enabled in the
SICR, it records the event in an internal latch that is not
directly accessible in the IUSC's register map. Instead, as
shown in Figure 7-15, the Miscellaneous Interrupt Status
Register (MISR) includes two bits for each of these six pins,
one called a “Latched/Unlatch” or L/U bit, and the other
being a “data bit” that has the same name as the pin itself.

A hardware or software Reset sequence clears all the L/U
bits to zero. While the L/U bit for a pin is 0, the associated
data bit reports and tracks the state of the pin in a
“transparent” fashion, with a 1 indicating a low and a 0
indicating a high.

Whenever a pin's L/U bit is 0 and its internal edge-
detecting latch is set, the IUSC sets the L/U bitto 1, clears
the detection latch, and sets the IOP [P bit. IOP IP can be
read and cleared (and if necessary set) in the Daisy Chain
Control Register (DCCR1).

While an L/U bit is 1, the state of the associated data bit is
frozen (latched). These two bits remain in this state, re-
gardless of further transitions on the pin, untit software
writes a 1 to the L/U bit. This clears the L/U bit to 0 and
“opens” the data bit to once again report and track the
state of the pin, at least for an “instant”. If one or more
enabled transitions occurred while the L/U bit was set, then
L/U is set again right after software writes the 1 to it.

Writing a 0 to an L/U bit has no effect; it does not matter
what value software writes to the “data” bits.

RCC | DPLL
RxCDn | RxCUp | TxCDn | TxCUp | RxRDn | RxRUp | TxRDn | TxRUp |DCDDN|DCDUR] CTSDN | CTSUP BRG1 | BRGO
T M BT el el R Bl el el e Il Under DSme | =ia™ | ™A
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Figure 7-14. The Status Interrupt Control Register (SICR)
fiCC | DPLL | grat | erao
RxCLU| MxC | TxCWU| MxC [RALUL MR [TxRLU] MR [poowu] mcp |ceTswu| /cTs | Under Dmmc w0
U
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Figure 7-15. The Miscellaneous Interrupt Status Register (MISR)
7-19

UMO014001-1002

Gayle Gamble
UM014001-1002

N 235

Z16C32 IUSC™
USER'S MANUAL

7.10.6 Miscellaneous Interrupt Sources and
1A Bits

The interrupt logic can set the Miscellaneous [P bit in
response to any of four interrupt sources. Software can
read the status of these sources in the LSbyte of the
Miscellaneous Interrupt Status Register (MISR}), which is
shown in Figure 7-15. The foliowing descriptions repeat
some information from Chapters 4 and 5:

RCCUnder. If the RCCUnder IA bitis 1, the IUSC sets this
bit (MISR3) and the Misc IP bit if the receiver has
decremented the Receive Character Counter (RCC) to
zero and then it receives another character (in the same
frame/message).

DPLLDSync. If the DPLLDSync IA bit is 1, the IUSC sets
this bit (MISR2) and the Misc IP bit if software set up the
Digital Phase Locked Loop circuit for Biphase encoding
and the DPLL detects two consecutive missing clocks,
indicating a loss of synchronization.

BRG1. Ifthe BRG11Abitis 1,the IUSC sets this bit (MISR1)
and the Misc IP bit when Baud Rate Generator 1 counts
down to zero.

BRGO. Ifthe BRGO |A bitis 1, the IUSC sets this-bit (MISRO)
and the Misc IP bit when Baud Rate Generator O counts
down to zero.

Once any of these bits is 1, software must write a 1 to that
bit position to “unlatch” it. Writing a 1 to any of MISR3-0
clears the “read-side” bit unless the setting event recurred
while the bit was latched, in which case the bit is set again
immediately.

Each of these four sources has a separate Interrupt Arm
(1A) bitinthe LSbyte of the Status Interrupt Control Register
(SICR), as shown in Figure 7-14. If an IA bit is 1, the
interrupt logic sets the corresponding bit in MISR and the
Miscellaneous IP bit, when the indicated condition occurs.
IfanIAbitis 0, the logic will not set the corresponding MISR
bit, and thus the condition can't cause interrupts. Clearing
an |A bit does not clear the corresponding bit in MISR.

7.11 SERIAL IP AND IUS BITS

Software can read, set, and clear the Interrupt Pending
(tP) and Interrupt Under Service (IUS) bits, for all six
interrupt types in the serial controller, in the Daisy-Chain
Control Register (DCCR). Figure 7-16 shows the DCCR.
The MSbyte deals only with the 1US bits, while the LSbyte
deals with the IP bits but allows clearing of the IP and IUS
bits in one step.

Software can read the six IUS bits from DCCR13-8 and the
six IP bits from DCCR5-0. The two MS bits of each byte
always read as 00. When software writes the DCCR, the
two MS bits of each byte can represent a command that is
applied to the type(s) selected by ones writtenin the sixLS
bits of that byte. DCCR15-14 are an 1US Op field that the
IUSC interprets as follows:

DCCR7-DCCR6 are an IP Op field that the IUSC interprets
as follows:

IP Op Operation
00 No operation
01 Clear both the IP and 1US bit(s) of the
type(s) selected in DCCR5-0
10 Clear the IP bit(s) of the type(s)
selected in DCCR5-0
11 Set the IP bit(s) of the type(s)

selected in DCCR5-0

The “clear both” option sounds efficient but in general is
useful only during initialization sequences. The later sec-
tion “Software Requirements” describes how an interrupt
service routine should clear an IP bit before examining the
device status, but should delay clearing the [US bituntit the
ISR is (nearly) over.

IUS Op Operation
Ox No operation
10 Clear the IUS bit(s) of the type(s)
selected in DCCR13-8
11 Set the IUS bit(s) of the type(s)
selected in DCCR13-8
7-20

UMO014001-1002

Gayle Gamble
UM014001-1002

AN 2La5

21632 jusc™
USER'S MANUAL

If software writes both bytes of the DCCR simultaneously
ona 16-bit bus, the IUS command is “set”, the IP command
is “clear both”, and a particular type is selected by ones in
both the MSbyte and LSbyte, the IUSC clears the IUS bitfor
thattype. Onthe other hand, if the [US command says “set”
for a type and the LSbyte says “clear both” but that type's
bit in DCCR5-0 is 0, the IUSC sets that type’s 1US bit.

In addition, one of the encoded commands that can be
written to the Channel Command/Address Register (CCAR)
allows for a general exit from a serial controller interrupt
service routine, regardless of which type initiated the
routine. If software writes the Reset Highest Serial IUS
command (00010) to the RTCmd field (CCAR15-11), it
clears the highest-priority IUS bit that is set in the serial
controller.

1US Op RS RD TS TD 10P | Misc IP Op RS RD T8 0 IOP | Misc
(WO) ws | s | s us s | wsc (Wo) P 1P P tP P P
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Figure 7-16. The Daisy Chain Control Register (DCCR)
7.12 SERIAL INTERRUPT ENABLE BITS
Software canread, set, and clear the Interrupt Enable (IE)
bits for all six interrupt types in the serial controiler, in the IEOp Operation
LSbyte of its Interrupt Control Register (ICR). Figure 7-17 Ox No operation
shows the ICR. Software can read all six |E bits from ICRS- 10 Clear the [E bit(s) of the type(s)
0; ICR7-6 always read as 00. When software writes the selected in ICR5-0
LSbyte of the ICR, the IE Op field (ICR7-6) comprises a 11 Set the |E bit(s) of the type(s)
command that the IUSC applies to any and all IE bits selected in ICR5-0
selected by ones written to ICR5-0. The IUSC interprets IE
Op as follows:
7-21

UMO014001-1002

Gayle Gamble
UM014001-1002

A 205

216C32 lusc™
USER'S MANUAL

7.13 SERIAL CONTROLLER INTERRUPT OPTIONS

Figure 7-17 shows that the MSbyte of the Interrupt Control
Register (ICR) contains control bits that apply to all inter-
rupts from the serial controller. These bits are fully under
software control and can be read or written at any time.

The Master Interrupt Enable (MIE; ICR15) must be set to
1 to allow any of the types in the serial controller to request
an interrupt.

Whenever the Disable Lower Chain bit (DLC; ICR14)is 1,
the serial controller forcesits IEQ output low, so that neither
the IUSC's DMA channels, nor external devices further
down the daisy chain, can request interrupts nor respond
to interrupt acknowledge cycles.

If the No Vector bit (NV; ICR13) is 1, the IUSC neither
provides a vector nor drives the /WAIT//RDY pin during an
interrupt acknowledge cycle in which the highest-priority
requesting type is in the serial controller. However, in such
a case the IUSC still sets the IUS bit of the highest-priority
requesting type.

The Vector Includes Status field (VIS; ICR12-9) controls
whether the vector, that the IUSC returns during an inter-
rupt acknowledge cycle in which the highest-priority re-
questing type is in the serial controller, identifies the type

or not. Such vector modification can be enabled for all
types in the serial controller, or only for those above a
selected priority:

VIS Which types appear in vectors
Oxxx No types

100x All types

1010 10P and above (not Misc)

1011 Transmit Data and above

1100 Transmit Status and above

1101 Receive Data and Status

1110 Receive Status only

1111 No types

If the contents of VIS allow the highest-priority type, that is
requesting at the time of an Interrupt Acknowledge cycle,
to modify the interrupt vector, then bits 4-1 of the returned
vector identify that type, as described in the next section.
If not, the IUSC returns the 8-bit vector exactly as the host
software programmed it.

IE Op RS RD TS T (o] Misc
MIE DLC NV VIS Rsrvd (WO) \E IE IE IE IE IE
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 7-17. The Interrupt Control Register (ICR)

7-22

UMO014001-1002

Gayle Gamble
UM014001-1002

AN 2La05

Z16C32 lUSC™
USER'S MANUAL

7.14 SERIAL INTERRUPT VECTORS

The vectors returned by the IUSC for interrupts from the
serial controller section are independent of those from the
DMA section. Software can read and write serial interrupt
vector information in the Interrupt Vector Register (IVR).
This register is also the basis of the vector that the IUSC
returns during aninterrupt acknowledge cycle inwhich the
highest priority requesting type is in the serial controller.

Figure 7-18 shows the IVR. The basic vector can be written
and read in its LSbyte; software can read a modified
version of the vector in its MSbyte. (Writing the MSbyte has
no effect.) Bits 15-12 and 8 are the image of those in the
corresponding bits of the LSbyte, while the TypeCode
field (IVR11-9) gives the identity of the highest priority
interrupt type that has its IP bit set (the state of its IUS bit
does not matter).

TypeCode Meaning
000 No serial interrupt pending
001 Miscellaneous
010 1/O pin
011 Transmit Data
100 Transmit Status
101 Receive Data
110 Receive Status

111 (will not be read)

The state of the VIS field (ICR12-9) has no effect on reading
the IVR. VIS simply controls how the serial controller
decides whether to return IVR15-8 or IVR7-0 as the inter-
rupt vector when it responds to an interrupt acknowledge
cycle for which the highest priority requesting type is in the
serial controller.

Interrupt Vector 7-4 (RO) TypeCode (RO) ('Xg) Interrupt Vector (RW)
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

Figure 7-18. The Interrupt Vector Register (IVR)

7-23

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLa5

Z16C32 lUsC™
USER'S MANUAL

7.15 DMA CONTROLLER INTERRUPT TYPES

There are only two interrupt types in the DMA Controller
section of the IUSC, one each for the transmit and receive
channels. Receive channel interrupts have higher priority
than Transmit channel interrupts. Each DMA channel has
one each IE, IP, and IUS bit, as described in an earlier

section of this chapter. The interrupt capabilities of the two
channels are identical and, except as noted, the informa-
tion in the next five sections of this chapter applies equally
to both.

7.16 DMA INTERRUPT SOURCES AND IA BITS

Software can set each DMA channel's IP bitin response to
any of four possible interrupt sources, which are readable
as the four LS bits of each DMA Mode Register (TDMR3-
0 and RDMR3-0):

EOA/EOL. A DMA channel sets this bit (xDMR3) in Array
and Linked List modes, when it goes inactive because it
has fetched a zero Byte Count from an array or list entry,
indicating the end of the array or list.

EOB. A DMA channel sets this bit (xDMR2) in any mode,
when it decrements the Byte Count for the current buffer
(TBCR or RBCR) to zero. It also sets this bit if software has
enabled the Early Termination feature, when the serial
controller signals for buffer termination. In Single Buffer
mode the channel goes inactive at this time. The channel
also goes inactive at this time in Pipelined mode, if the
software hasn't provided a new buffer address and byte
count and set the CONT bit (xDMR7).

HAbort. A channel sets this bit (xDMR1) in any mode, if
external hardware drives the /ABORT pin low during a bus
cycle by the channel. The channel goes inactive when this
occurs, regardless of the mode.

SAbort. A channel sets this bit (xDMRO) in any mode, if
host software writes an Abort This Channel or Abort All
Channels command to the MSbyte of the DMA Command/
Address Register (DCAR). The channe! goes inactive
when this occurs, regardless of the mode.

As noted in Chapter 5, the channel clears all four of these
bits whenever software reads themin the LSbyte of its DMA
Channel Mode Register (xDMR7-0).

Each of these four sources has a separate Interrupt Arm
(1A) bit in each channel's DMA Interrupt Arm Register
(TDIAR and RDIAR). Figure 7-19 shows the format of these
registers. If an IA bit is 1, the interrupt logic sets the
channel's IP bit when the corresponding status bit is 1. If
an [A bit is 0, the corresponding status bit operates
normaliy but has no effect on the channel’s IP bit and thus
cannot cause interrupts.

EOA/ | EOB | Habort | SAbort
Reserved (0) EOLIA] 1A 1A 1A
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Figure 7-19. The Transmit and Receive DMA Interrupt Arm Registers (TDIAR and RDIAR)
‘ RxDMA| TxDMA AxDMA| TxDMA
Reserved (0) 1US 1US Reserved (0) P P
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

Figure 7-20. The Set and Clear DMA Interrupt Registers (SDIR and CDIR)

7-24

UMO014001-1002

Gayle Gamble
UM014001-1002

At e e

L

————.
ot o

N 205

21632 IUSC™
USER'S MANUAL

7.17 DMA IP AND IUS BITS

Software can read, set, and clear the Interrupt Pending
(IP) and Interrupt Under Service (IUS) bits for both DMA
channels using the shareable Set and Clear DMA Interrupt
Registers (SDIR and CDIR). Figure 7-20 shows the ar-
rangement of these registers. Software can read the cur-
rent state of the bits from the SDIR at any time. Writing a
one, to one or more of the four active bit positions in the
SDIR, sets the corresponding bit(s), while writing a zero
has no effect. Writing a one, to one or more of the four active
bit positions in the CDIR, clears the corresponding bit(s),
while writing a zero has no effect. The registers are defined
like this to avoid interactions between hardware setting the
IP and IUS bits and software clearing them.

In addition, one of the encoded commands that can be
written to the DMA Command/Address Register (DCAR)
allows for a general exit from a DMA interrupt service
routine, regardless of whether it serviced the transmit or
receive channel. If software writes the Reset Highest DMA
IUS command (1000) to the DCmd field (DCAR15-12), the
IUSC clears the highest-priority 1US bit that is set in the
DMA section. Unfortunately, the command does not also
clear the corresponding IP bit, so that an interrupt service
routine has to do this explicitly for the particular channel
that it is servicing.

7.18 DMA IE BITS

Software can read and write both channels’ Interrupt
Enable (IE) bits in the less significant byte of the shareable
DMA Interrupt Control Register (DICR). Figure 7-21 shows
the DICR. If a channel's |E bitis 1, then the IUSC requests

aninterruptwhen its [P bitis 1 and its lUS bit is 0, provided
that the channel's “|EI" signal from higher-priority types is
true, and the DMA Controller's MIE bit (DICR15) is 1.

7.19 DMA-CONTROLLER-LEVEL INTERRUPT OPTIONS

Figure 7-21 also shows how the MSbyte of the DMA
Interrupt Control Register (DICR) includes four control bits
that affect all interrupts from the DMA section. These bits
are fully under software control and can be read or written
at any time.

The Master Interrupt Enable bit (MIE; DICR15) must be
set to allow either of the DMA channels to request an
interrupt.

Whenever the Disable Lower Chatin bit (DLC; DICR14) is
1, the IUSC forces its IEO output low, so that devices
further down the daisy chain can neither request interrupts
nor respond to interrupt acknowledge cycles.

If the No Vector bit (NV; DICR13) is 1, the IUSC neither
provides a vector nor drives the WAIT//RDY pin, during an
interrupt acknowledge cycle in which the highest-priority
requesting type is one of the DMA channels. However, in
such a case the IUSC still sets the 1US bit of the highest-
priority requesting DMA channel.

The Vector Includes Status bit (VIS; DICR12) controls
whether the vector returned, during an interrupt acknowl-
edge cycle in which the highest-priority requesting type is
one of the DMA channels, identifies the channel or not. If
VIS is 0, the IUSC returns the vector programmed by the
host software unchanged for both channels. If VIS is 1, bits
2-1 of the returned vector are 10 for a Tx channel interrupt
and 11 for an Rx channel interrupt.

MIE DL NV VIS

Reserved (0) RXDMA] TADMA

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Figure 7-21. The DMA Interrupt Control Register (DICR)

7-25

UMO014001-1002

Gayle Gamble
UM014001-1002

N 205

216C32 lUSC™
USER'S MANUAL

7.20 DMA INTERRUPT VECTORS

The vectors returned by the IUSC for interrupts from the
DMA Controller are independent of those from the serial
channel. Software can read and write interrupt vector
information in the DMA Interrupt Vector Register (DIVR).
This register is also the basis of the vector that the IUSC
returns during an interrupt acknowledge cycle in which the
highest-priority requesting type is one of the DMA chan-
nels. ‘

Figure 7-22 shows the format of the DIVR. Software can
read and write the basic vector in its LSbyte, and canread
a modified version of the vector in its MSbyte. (Writing the
MSbyte has no effect.) Bits 15-11 and 8 are the image of
those in the corresponding bits of the LSbyte. DICR10-9

are a TypeCode for the highest priority DMA interrupt type
thathasiits IP bit set(the state of its IUS bit does not matter):

TypeCode Meaning
00 No DMA interrupt is pending
01 Reserved (will not be read)
10 Tx but not Rx interrupt
11 Rx interrupt

The state of the VIS bit (DICR12) has no effect on reading
the DIVR. In fact, VIS simply determines whether the IUSC
returns the MSbyte or LSbyte of the DIVR as the vector,
during an interrupt acknowledge cycle in which the high-
est-priority requesting type is one of the DMA channels.

. Type Code IV Vi RW
Interrupt Vector 7-3 (RO) (RO) (RO) Interrupt Vector (RW)
15 14 13 12 1 10 9 8 7 [5 4 3 2 1 0

Figure 7-22. The DMA Interrupt Vector Register (DIVR)

7.21 SOFTWARE REQUIREMENTS

Having described all of the features and functions of the
IUSC thatrelate to interrupts, this section will describe how
these features should be used by interrupt service rou-
tines.

7.21.1 Nested Interrupts

An important characteristic of interrupt-driven systems is
whether they allow nested interrupts, that is, whether they
allow interrupt service routines (ISRs) to be themselves
interrupted, or whether each ISR proceeds to completion
before another interrupt can occur.

The {USC supports nested interrupts by including an
Interrupt Under Service (IUS) latch for each type of inter-
rupt. When an IUSC that is requesting an interrupt sees an
interrupt acknowledge cycle and its |El pin is high, it
automatically sets the IUS latch of the highest priority type
that has its IP bit set. If interrupt acknowledge cycles are
not visible to the IUSC, software can still allow nested
interrupts by reading the IP bits from the LSbytes of the
DCCR and SDIR, and explicitly setting the [US latch of the
highest priority type that has its IP bit set, in the MSbyte of
the same register.

Regardless of whether the 1US bit is set automatically or
explicitly by software, once it is set the ISR can re-enable
processor interrupts to allow other interrupts. The IUSC in
question will not request another interrupt for the same
type nor any lower-priority type within it, until software
clears the IUS bit near the end of the ISR.

Interrupts from other devices are controlled automatically
if the devices are arranged in an interrupt daisy-chain;
otherwise the centralinterrupt controller must control which
devices can interrupt which ISRs.

When an ISR re-enables interrupts to allow nested inter-
rupts from higher-priority types, it is a good practice to
disable them once again, just before clearing the IUS bit
near the end of the ISR. (They will be enabled again by the
standard mechanism for the processor being used, e.g.,
an IRET or RET! instruction, after saved registers are
restored from the stack.) This procedure prevents “tail
recursion” when there's heavy interrupt traffic, wherein the
stack gets filled with muiltiple copies of saved registers
because another interrupt of the same type happens as
soon as the IUS is cleared.

7-26

UMO014001-1002

Gayle Gamble
UM014001-1002

216C32 [USC™
USER'S MANUAL

7.21.2 Which Type(s) to Handle?

If an interrupt service routine (ISR) is initiated by an
interrupt acknowledge cycle that obtains a vector from the
IUSC, and the “Vector Incudes Status” options of the serial
and DMA sections are enabled, the service routine typi-
cally concerns itself only with the type identified by the
vector, and returns from the interrupt after handling that

single type.

Otherwise software should read the Interrupt Pending bits
in the Daisy Chain Control Register (DCCR) and the Set
DMA Interrupt Register (SDMR) to see which type(s) need
service. This is particularly necessary on Personal Com-
puters, in which interrupt acknowledge cycles are not
visible to add-in peripherals.

If more than one IP bit is setin these registers, the ISR may
handle only the most urgent type and return from the
interrupt thereafter, like a “Vector Includes Status” ISR.
Alternatively it may choose to handle all of the types that
have their IP bits set, before returning to the interrupted
process.

Without nested interrupts, worst-case interrupt response
considerations may limiteach ISR to handling justone type
of interrupt before re-enabling interrupts and returning to
the interrupted process. This allows the interrupt prioritiz-
ing mechanism to select which interrupt to handle next.

If nested interrupts can occur, it is more feasible for an
IUSC ISR to handle all of the pending types within the
device before returning to the interrupted process, be-
cause higher-priority I1SRs will be able to run while it is
doing so.

7.21.3 Handling a Type

The process of handling a single type of interrupt is the
same regardless of whether the overall ISR handles only
the highest priority pending type, or all the pending types
within the device. The necessary steps vary for the various
types in the IUSC. :

The following descriptions don't attempt to cover every-
thing that each type of ISR should do, only the minimum
requirements needed to keep the interrupt subsystem
operating correctly.

7.21.3.1 Recelve Status or Transmit Status Type
1. Write the DCCR to clear the IP bit.

2. Read the RCSR or TCSR and handle the indicated
conditions appropriately.

3. Afterallthe conditions have been handled, write a byte
to the LSbyte of the RCSR or TCSR, that has a 1 for
each status bit that was handled and isarmed by a 1~
in the corresponding IA bit in the RICR or TICR. This
clears/unlatches these status bits.

4. Write a zero byte to the LSbyte of the RICR or TICR,
which disarms all the sources/status bits.

5. Write a byte to the same LSbyte, to re-arm those
sources/status bits that should be armed for the future.

Steps 4 and 5 are needed only for these two types, to
ensure that another interrupt will occur if the hardware sets
armed sources/status bits after step 2, or the bits are
otherwise left as 1 by the ISR.

7.21.3.2 /O Pin or Miscellaneous Type
1. Wirite the DCCR to clear the IP bit.

2. Read the MISR and handie the indicated conditions
appropriately.

3. Afterallthe conditions have been handled, write abyte
to the LSbyte of the MISR, that has a 1 in each "L/U" bit
that was handled and is armed by a 1 in the corre-
sponding IA bit in the SICR. This clears/unlatches
these status bits. (Of course, software may want to
write 1s to other L/U bits as well, such as those for
unarmed conditions.)

7.21.3.3 Rx or Tx DMA Type
1. Wirite the CDIR to clear the IP bit.

2. Read the TDMR or RDMR. The four LSbits identify the
interrupting condition(s). These bits are automatically
cleared after they are read as 1, so software should
take care to handle the End of Array/End of List
condition as well as the End of Buffer condition, if it
should read both as 1.

7-27

UMO014001-1002

Gayle Gamble
UM014001-1002

N 205

Z16C32 IUSC™
USER'S MANUAL

7.21 SOFTWARE REQUIREMENTS (Continued)

7.21.3.4 Receive Data Type
1. Write the DCCR to clear the IP bit.

2. Read the RDR often enough to bring the fill level below
the “Rx Data Interrupt Request Level” in the RICR.
Under some conditions, writing a Purge Rx FIFO
command to the CCAR would eliminate the need to
read the TDR.

Typically, the ISR wants to read the fill ievel from the RICR,
and read the RDR the number of times indicated by that
value. In HDLC and similar modes, because the “RD”
interrupt occurs for the end of a frame as well as when the
fill level reaches the Request Level, software can not
blindly read the number of characters indicated by the
Request Level.

Ona 16-bit bus the minimum Request Level is 01 (meaning
request when 2 characters have been received). In such
a system it is acceptable for software to read only pairs of
characters and leave the last (unpaired) character to be
handled on the next interrupt. The exception is that in
HDLC and similar modes, if the ISR gets a fill level of 01
from its first read of the RICR, the available character must
be the last one of a frame, and as such should be read
individually.

Ifthe Request level is low and the serial rate is high, it might
happen that enough characters arrive while software is
reading the number indicated by the initial read from the
RICR, so thatthe number of characters in the RxFIFO never
falls below the Request Level. This is particularly possible
if the Request Level is 01 (meaning interrupt when 2 empty
slots) and software only reads character pairs from the
RDR. If this can happen, after software finishes reading
each block of data, it should read the RICR again, and read
more data from the RDR if needed, to ensure that future Rx
Data interrupts will occur.

In HDLC and similar modes, software will want to know
where frames end. On a 16-bit bus, if the oldest character
in the RxFIFQ is the last one of a frame, and software tries
to read 2 characters from the RDR, the (1)USC only re-
moves the oldest character from the RxFIFQ. The routine
handling Receive Data interrupts can determine frame/
message boundaries in two ways:

a. Read the RCSR after each read from the RDR. If the
RxBound bit is set the previous read included the last
character of a frame. In this case, if 1stBE in the RCSR
is 1 then the last read yielded only 1 character, else it
included 2 characters.

b. Enable nested interrupts and have the Rx Status ISR,
when it sees an RxBound condition, do something to
affectthe operation of the RxData ISR when it resumes.
This is tricky but is the sort of thing that can help make
life as a programmer worthwhile.

7.21.3.5 Transmit Data Type
1. Write the DCCR to clear the P bit.

2. Wirite the TDR often enough to bring the number of
empty bytes in the TxFIFO below the “Tx Data Interrupt
Request Level” in the TICR OR, write the (TCSR and)
TICR with a smalier Request Level, to accomplish the
same purpose. OR, write the ICR to disable the Trans-
mit Data interrupt.

Typically the ISR wants to read the fill level from the TICR
and write the TDR enough times to fill the TxFIFO, or write
enough character pairs to fill it except for one empty
position. If there is not enough data available to do this, the
ISR might want to change the Request Level to 31 (hex 1F)
sothat the next Transmit Data interrupt will occur when the
FIFO is empty, and then write all the available characters
to the TDR.

7-28

UMO014001-1002

Gayle Gamble
UM014001-1002

N 205

216C32 lUSC™
USER'S MANUAL

If the Request level is low and the serial rate is high, it might
happen that the Transmitter takes enough characters out
of the TxFIFQ while software is writing the number indi-
cated by the initial read from the TICR, so that the number
of empty slots never falls below the Request Level. This is
particularly possible if the Request Level is 01 (meaning
interrupt when 2 empty slots) and software only writes
character pairs to the TDR. If this situation can happen,
after software finishes writing a block of data to the TDR, it
should read the TICR again and write more data to the TDR
if needed, to ensure that future Tx Data interrupts will
occur.

InHDLC and similar modes, the part of the ISR that handles
Tx Data interrupts typically needs to take special actions at
the end of each frame. It can do this with or without using
the Transmit Character Counter (TCC), and can use the
TCC either directly or by means of the 32-bit Transmit
Control Block (TCB) feature.

Using the TCC directly:

a. At the start of each frame software should ioad the
TCLR with the number of data characters in the frame/
message, and then write a Load TCC command to the
CCAR.

b. I, on a 16-bit bus after software has written enough
characters to the TDR to decrement the TCC down to
0001, software writes 16 bits tothe TDR, the (HUSC will
only place the single character from the AD7-0 pins
into the TxFIFO, ignoring the characterona AD15-8. In
a Little-Endian (intel-type) system this is acceptable.
In a Big-Endian (Motorola-type) system software can
avoid problems by either copying the last character of
each Tx frame into the next-higher byte location after
the memory buffer, or by writing the last byte of the
frame using a byte write operation.

c. The hardware automatically tags the byte that corre-
sponds to decrementing the TCC from 1 t0 0. After this
byte goes through the TxFIFO and out onto the link, the
Transmitter finishes the frame, typically by sending the
CRC and closing Flag.

e. Softwarecan either read the TCC or useits own length-
tracking mechanism, to know when each frame ends
and thus when to write the TCLR again.

Using 32-bit TCBs:

a. Before the startof the first frame after a Reset, software
has to write a Purge TxFIFO or a Load TCC command
to the CCAR, to make the IUSC expect the first TCB.
(For subsequent frames this step is not necessary.)

b. At the start of each frame software should write a 32-
bit TCB to the TDR, of which the last 16 bits are the
number of data characters in the frame.

c-f. Same as steps b-e above.

Not usingthe TCC:

a. Software doesn't need to do anything special to the
IUSC at the start of a frame, other than to initialize its
own frame-length-tracking mechanism.

b. While writing the frame to the TDR on a 16-bit bus, if
there are two characters left in the frame, software
must write the second-last character to the LSbyte of
the TDR using a byte write operation.

c. Before writing the last character of the frame to the
LSbyte of the TDR, software should write a 'Set EOF/
EOM' command to the MSbyte of the TCSR.

d. After that byte goes through the TxFIFO and out onto
the link, the Transmitter finishes the frame, typically by
sending the CRC and closing Flag.

7.21.4 Exiting the ISR

If an 1US bit was set by an interrupt acknowledge cycle or
explicitly by software, then after the ISR has handled one
or more interrupt types as described above, it must clear
the 1US bit that was set. (if nested interrupts were enabled,
it is a good practice to first disable interrupts again, to
avoid filling the stack with multiple copies of saved regis-
ters, in case another interrupt of the same type happens
right after IUS is cleared. The normal mechanism provided
by the processor for ending an ISR, e.g., an IRET or RETI
instruction, will then re-enable interrupts after saved regis-
ters and such are restored from the stack.)

Software can clear 1US by writing to the MSbyte of the
DCCR or CDIR, or by writing a “Reset Highest 1US"
command to the MSbyte of the CCAR or DCAR. The latter
method is more general than the former, but less than fully
general in that the software has to remember whether the
(highest priority) type was in the serial controller or the
DMA section.

7-29

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLa5

Software Summary n

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLas

USER's MANUAL

CHAPTER 8
SOFTWARE SUMMARY

8.1 INTRODUCTION

This chapter includes a bit by bit description of all the
registers in the IUSC.

8.2 ABOUT RESETTING

The IUSC goes into an initial inactive state whenever
external hardware drives the /RESET pin low. In this state,
it stores the next data written to it in the Bus Configuration
Register (BCR), whichever register address within the
IUSC software uses for the write operation. Chapter 2
describes how the address used for the BCR write is
actually important, in the sense that the address line
connected tothe S//D pin (the one that selects between the
Serial Controlier and DMA sections of the IUSC in Rormal
operation) determines whether the IUSC drives and re-
ceives the WAIT//RDY pin as a “wait” or “acknowledge”
handshake.

Aside from requiring the BCR write, software can reset the
1USC much like a hardware reset does. Resetting the Serial
Controller in Chapter 4 describes how to do this, by first
writing a 1 to the RTReset bit in the Channel Command/
Address Register (CCAR10), and then writing zeroes to
the whole CCAR. Software can also reset the DMA chan-
nels, by writing the “Reset All Channels” command (hex
90) to the MSByte of the DMA Command/Address Register
(DCAR15-8).

After either a hardware or a software reset, all register
bits in the 1USC are zero except for the following:

1. The following bits reflect the state of pins. The IUSC
treats these as inputs until and unless software pro-
grams them as outputs.

MISR14 [RxC
MISR12 xC
MISR10 /RxREQ
MISR8 [TxREQ
MISR6 /DCD
MISR4 /CTS
PSR14 /PORT7
PSR12 [PORT6
PSR10 [PORTS
PSR8 [PORT4
PSR6 [PORT3
PSR4 [PORT2
PSR2 [PORTA
PSR1 fPORTO

2. The following bits are 1 because the TxFIFO is empty:

TCSRO
TICR13

TxEmpty
(indicates 32 empty entries)

UMO014001-1002

o0 |

Gayle Gamble
UM014001-1002

\

25

Z16C32 USC™
USER'S MANUAL

8.3 PROGRAMMING ORDER

The IUSC and other USC family members aren’t as particu-

lar

about the order in which software programs their

register fields, as are the members of Zilog's SCC family.
Still, initializing registers in the wrong order can thoroughly
confuse the IUSC'’s internal logic and make it do strange
things. Always initialize the IUSC in the following order:

1.

Set the pin configurations in the IOCR and PCR. While
it's OK to change the modes and even the direction of
a signal dynamically, it should be fairly obvious that if
you're going to use pins in certain ways, they ought to
be pointing in the right direction before telling internal
logic to use them.

Select the clocking scheme in the CMCR and HCR.
(It's OK to enable a BRG at this pointif it's only used for
clocking, butifit's used for interrupts it's probably best
to wait until fater.)

Set up most or all of the other mode and control bits in
the Transmitter, Receiver, DMA channels, etc., but
don't enable anything to run or operate until alt of the
basic modes and controls are in place. This proce-
dure avoids messy interactions when one internal unit
is trying to signal another before the latter is ready to
listen.

Setup theinitial Interrupt Arm bits and Interrupt Enable
bits; it might be a good superstition to clear all the (P
and |US bits after doing this.

Enable whichever units need to run and operate ini-
tially. Some units might not want to be enabled until
later, like enabling the Transmitter and Receiver after
a call is established.

Finally, set the Master Interrupt Enable (MIE) bits in the
serial controller and DMA sections. In general, you
want to do this last so that interrupt service routines
can assume that everything’s set up in its starting
configuration.

8.4 USING DMA TO INITIALIZE THE SERIAL CONTROLLER

Instead of initializing the serial controller and DMA chan-
nels together as described above, software can initialize

the

IUSC’s Transmit DMA channel first and then use it to

initialize the serial controller. To do this:

1.

Initialize the shared DMA registers DCR and BDCR to
match the system hardware and software configura-
tion. There shouldn't be any need to use interrupts for
this operation, but it might be a good idea to set up the
DICR and DIVR as well.

Program the MSByte of the TDMR appropriately for the
initializing transfer. Single Buffer mode should suffice.

Program the TAR with the address of a sequence of
bytes or 16-bit words that will initialize the serial
controller. If there’s only an 8-bit bus, structure this
string as a series of byte pairs. The first byte of each
pair goes into the LSByte of the Channel Command
/Address Register (CCAR) to identify the destination
(register address) of the second byte of the pair. If
there's a 16-bit bus, structure the sequence as pairs of
16-bit words. The first word of each pair goes into
CCAR to identify the destination of the second word of
the pair.

4. Arrange the string/sequence to initialize the serial

controller registers in the order described in the previ-
ous section. Make the ChanLoad bit (bit 7) of the first
byte or word of each pair be 1, except make it 0 in the
last entry of the sequence. If the RegAddr field in that
last entry is non-zero, that is, if it doesn't point to the
CCAR, the IUSC will fetch the second byte or word of
the last pair and write it into the indicated register
before finishing the initializing operation. If the RegAddr
is zero, the IUSC will stop without fetching a foliowing
byte or word.

Program the TDMR with the length of the initializing
string. This should include at least the first byte or word
of the last entry, and optionally the second word or
byte, as described above.

Writea "Start Tx Channel” command includingMBRE=1
(hex 21) to the MSByte of the DMA Command
/Address Register (DCAR).

Write a “Trigger Channel Load DMA” command (hex
20) to the MSByte of the CCAR.

Assuming the processor is set up to grant use of the
bus to the IUSC, the operation should complete very
quickly. This should be verified by checking the LSByte
of the TDMR for hex 04 (End of Biock).

8-2

UMO014001-1002

Gayle Gamble
UM014001-1002

AN 2iLaB

Z16C32 IUSC™
USER'S MANUAL

8.5 DETERMINING THE DEVICE REVISION LEVEL

8.5.1 Fetching First TCB

New designs should not have to bother with this distinc-
tion, but long-standing applications may have to.

Software can determine whether an {USC was manufac-
tured before or after September of 1992, in terms of
whether it fetches a TCB from the first entry of an Array or
Linked List, as follows:

1. Enable the Transmitter but disable its output on TxD.

2. Enable 32-bit TCBs.

3. Setup alistor array in which the TCB in the first entry
contains one TCC value while the first data buffer starts

with a TCB that includes a different value.

4. Issueaload TCC orPurge TxFIFO command to make
the device expect a TCB.

5. Start/Init the Tx DMA channel on the array or list,

6. Read the TCLRto see which value ithas, and save this
result in a boolean variable for this IUSC.

7. Re-initialize the hardware by pausing the DMA chan-
nel, purging the TXFIFO, and re-enabling the Transmit-
ter output onto TxD.

When it comes time to start the DMA channel in normal
operation, software should examine the boolean variable
set up in step 6 above to determine how to do so:

a. Write a Load TCC or Purge Tx FIFO command to the
device, to ensure that it is expecting a TCB.

b. If the device is an old one that does not fetch the TCB
from the first array or linked list entry, software should
fetch these two "TCB words” from the first entry itself,
and write them to the TDR.

c. Start/Init the Tx DMA channel.
8.5.2 Determining Later Revisions

Zilog makes every effort toimprove devices like the 16C32
while preserving compatibility with software developed on
earlier devices. Nonetheless, for some purposes (like
using new features) software needs to tell which revision of
the device it is operating on, and behave differently for
different revisions.

The TestMode Control Register (TMCRY) is register number
00111 (typically address OE), and the Test Mode Data
Register (TMDR) is register 00110 (typically address 0C).
If software writes the value 31 (hex 1F) to the TMCR and
then reads the TMDR, IUSCs that do not bear the SL1660
topmarking will return the hex value 4453, while those
manufactured after that time will return 4D44. If there are
future functional revisions to the device, they will return
some other value.

On an 8-bit bus, software can only read the LS byte of the
TMDR (hex 53 or 40).

Software can use this feature to determine whether it can
use new features of later devices, such as the Purge Rx
command (described in the Commands section of Chap-
ter 5, the UnderWait feature (described in the ‘Handling
Overruns and Underruns' section of Chapter 5, and the
array-chaining feature (described in the Array Mode sec-
tion of Chapter 6).

8-3

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLais

Z16C32 lUSC™
USER'S MANUAL

8.6 TIPS AND TECHNIQUES

This section describes some of the commonest ways that
people have gotten in trouble using the IUSC, in hardware
and software.

8.6.1 Common Hardware Problems

H1. /DS OR (/RD and /WR), not both

Interconnect /RD and /WR among multiple IUSCs, or
interconnect /DS, but not all three. Each non-bused pin
should be connected to an individual pullup resistor of
about 10K ohms.

H2. No other strobe during pulsed IACK cycles
Ifyour application uses "single pulsed” or “double pulsed”
interrupt acknowledge signaling, you have to ensure that
neither /RD nor /DS is asserted during the acknowledge
cycle.

H3. More pullups!
IUSC designs need a lot of pullup resistors, for various
reasons:

® Unused inputs or 1/Os: PORTO-7, /IEI, /INTACK,
/ABORT

m Outputs tri-stated until 1USC initialized: PORTO-7,
/BUSREQ, /INT

8| Buscontrol signalsthataren’talwaysdriven by external
logic when the IUSC(s) aren’t doing so: /AS, R//W, /DS,
/RD, WR.

W Serial inputs that aren’t driven by external logic in
some cases: /TxREQ, /RxREQ, /TxC, /RxC, /CTS,
/DCD, PORT7-0.

H4. /WAIT//RDY neither open-drain nor rescinded
/WAIT//RDY is a totem-pole output except when the IUSC
is acting as bus master. This can be a time-critical signal,
and RC rise times are not good in critical applications. The
/WAIT//RDY outputs of multiple IUSCs have to be ORed
(positive-logic ANDed) using a logic gate.

HS5. Drive /AS whenever /RD, /WR, or /DS

Designs that synthesize an /AS pulse to multiplex a non-
multiplexed bus (so that software does not have to write
register addresses to indirect address registers) need to

pulse /AS lowin all cycles thatinclude a pulse on /RD, /WR,
or/DS. Several designers, including the writer, have gotten
into trouble trying to save power and noise by only driving
/AS low in host cycles targeted for the IUSC. It is accept-
able to do this if /RD and /WR or /DS are similarly qualified,
so that they occur only during cycles targeted to the IUSC.
But if the logic blocks the /AS and then shows the part one
ofthe other strobes, itfigures itis still “chip selected” (after
all, the last/AS showed /CS low) and responds to the cycle
that is actually intended for a different slave.

8.6.2 Common Software Problems

S§0. “Unreset”

The software Reset facility in the CCAR has to be set and
then cleared. The part will not operate correctly if it is left
as 1.

S$1. Register Initialization Order

There are certain constraints on the order in which the
various registers in the IUSC should be initialized, as
described earlier in this Chapter. Many of them are com-
mon-sense points, but the some seemingly obvious ap-
proaches, like initializing the registers in address order or
alphabetical order, are not likely to be successful.

S2. WordStatus problems

Always program the WordStatus bit (RICR3) according to
whether software or the Rx DMA channel will subsequently
read 8 or 16 bits from the RDR and RxFIFO. lf your software
writes the LSbyte of RICR to change the Rx Status IA bits,
be sure it preserves the proper setting of WordStatus while
doing so.

S3. Handling MBRE

Be sure to accompany DMA commands written to the
DCAR with the proper setting of the Master Bus Request
Enable bit (MBRE). As discussed in Commands and
/BUSREQ Enable in Chapter 6, the proper setting is obvi-
ous for commands that Start one or both channels or
Pause, Abort, or Reset both. For commands that Pause,
Abort, or Reset one channel, it is probably best to include
MBRE=1, in case the other channel is running.

8-4

UMO014001-1002

Gayle Gamble
UM014001-1002

N 205

216C32 [USC™
USER'S MANUAL

For applications on a 16-bit bus that must write indirect
register addresses to the DCAR, IUSCs that do not bear
the 16C32 SL1660 topmarking require software to clear
MBRE when doing so, then read or write the target register,
and then set MBRE again. IUSCs with the SL1660
topmarking do not have this problem. If software knows it
is running with such a device, it can omit this procedure,
but must preserve the current setting of MBRE when
writing register addresses.

$4. Transmit Data Length

Note that there are two controls required on the length of
transmitted data. The TBCR in the Tx DMA channel, which
is set from the fifth and sixth bytes of each entry in Array
and Linked List modes, controls how many bytes the DMA
channel takes from each buffer. The TBCR value must
include any Transmit Control Blocks that are provided in
DMA buffers, but not TCBs that are in the array and linked
list entries.

The TCLR in the Transmitter, which is typically set from the
second word of the TCB if TCBs are used, controls how
many bytes the Transmitter sends in each frame, and
should not include CRC bytes that the Transmitter calcu-
lates and sends, but should include CRC bytes that are
*passed through” from a received frame without change.

S5. Receive Data Length

There is one required control, one optional control, and
one reporting mechanism associated with the length of
received data. The RBCR in the Rx DMA channel, which is
set from the fifth and sixth bytes of each entry in Array and
Linked List modes, controls the maximum number of bytes
the Rx DMA channel will store in each buffer. The length of
Rx memory buffers, and thus the RBCR values, should
allow for storing CRCs if they are used, and also allow for
16-bit RSBs if they are stored in the buffer but need not
allow for 32-bit RSBs if they are stored in Array and Linked
List entries.

The optional control is the value of the RCLR, which can be
set to the length of the longest frame that can be legally
received, including the CRC. An optional interrupt when
the RCC underflows can be enabled to notify software of an
unduly long frame, which generally indicates the corrup-
tion of the Flag(s) between two frames.

The reporting mechanism is that the ending value of the
RCC for each frame, is typically stored in 32-bit RSBs in
Array and Linked List entries. The length of the frame,
including CRC bytes, can be computed by subtracting this
ending value from the starting value of the RCLR. if RCLR
is set to all ones, the frame length is simply the ones
complement of the ending value.

$6. FIFO Thresholds

The Tx and Rx DMA thresholds must be set to at least 1 on
a 16-bit bus, meaning ‘request DMA transfer when at least
two characters have been received or when there are at
least two empty character locations in the TxFIFO." Many
applications operate best if the DMA thresholds are set at
about half full. Lower values provide greater protection
against Rx Overruns and Tx Underruns, but reach a point
of diminishing returns due to increasing overhead of get-
ting on and off the external bus.

it is a good programming practice to protect the DMA
thresholds from inadvertent destruction by word writes to
the TICR and RICR, by writing “Select FIFO Status™ com-
mands to the TCSR and RCSR after the thresholds are set.

Assuming you do not want Tx nor Rx Data interrupts in
|USC applications, there is no need to program the Inter-
rupt thresholds. Just leave the IE bits for these interrupts 0.

S7. Interrupts for Rx Overrun and Tx Underrun
These are the two things the IUSC needs software to deal
with fairly immediately. Software should virtually always
enable interrupts for these two conditions. They are pref-
erable to related interrupts like Abort Sent because they
occur earlier and give the software more time to deal with
the conditions.

8-5

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLa5

216C32 USC™
USER'S MANUAL

8.6 TIPS AND TECHNIQUES (Continued)

$8. Interrupt handling

A new section at the end of Chapter 7 gives specific
requirements for each type of interrupt. In general, the
strategy is 1) clear IP, 2) read the status bits, handie them
including clearing/unlatching them, and 3) clear IUS. Inter-
rupts can be lost if this order is not followed. The efficient-
sounding command “clear IP and IUS" that the IUSC
offers, shouid be avoided exceptininitialization sequences.

§9. Clearing all 1A bits for Rx and Tx Status
interrupts

For these two types of interrupts, software has to clear all
of the A bits after it reads and clears the status bits, and
then set the desired IAs again, to ensure that any status
conditions that have arisen since software last read the
status, will cause a subsequent interrupt request.

$10. Do not use ReArbTime “one channel per grant”
The value 10 in the ReArbTime field (DCR11-10) ieads to
various kinds of erroneous operation, and is now Reserved
and should not be programmed.

$11. Priming the Transmitter for Transmit Control
Blocks

When using TCBs, after a hardware or software Reset,
software must force the Transmitter to expect the initial
TCB by issuing a Purge TxFIFQO or Load TCC command. In

Array or Linked List mode, after the Tx DMA channe! has
come to the end of the Array or List as indicated by a zero
buffer byte count, software must similarly force the Trans-
mitter to expect a TCB by issuing a Purge TxFIFO or Load
TCC command, before it issues the Start/init Tx channel
command.

$12. Interlocks are “after end of frame” not “before
start”

The three classes of interlocks for software synchroniza-
tion between frames, Wait2Send/Send Frame, Wait4 TxTrig/
Trigger Tx DMA, and WaitdRxTrig/Trigger Rx DMA, all
occur after the end of a frame, not before the first frame
after the partis setup. Thus these three commands are not
needed right after initialization.

$§12. Preserving loopback/echo settings

If you wantto seta loopback or echo mode in CCAR9-8, be
sure to preserve it when writing commands to the MSbyte
of CCAR. If your processor has an "OR to memory"
command and the IUSC is memory-mapped, that instruc-
tion is a natural for issuing commands. Similarly, if your
application is on a 16-bit bus and must write indirect
register addresses to the CCAR, be sure to preserve
CCAR9-8 when doing so.

UMO014001-1002

Gayle Gamble
UM014001-1002

AN 2L05

Z16C32 USC™
USER'S MANUAL

8.7 SERIAL CONTROLLER TEST MODES

The serial controller portion of the IUSC includes a facility
intended for Zilog's device testing, that gives software
access to certain internal signals and registers that are not
otherwise accessible. The low-order bits of the Test Mode

Control Register (TMCR) serve to select which internal
signals or registers are accessed by reading (or in two
cases writing) the Test Mode Data Register (TMDR). The
choices are as follows:

TMCR4-0 Signals/Register Selection R/W Status TMCR4-0 Signals/Register Selection R/W Status
00001 TMDR15-8: Rx shift register, MSbyte RO 01010 TMDR15-8: Rx CRC checker, bits 23-16 RO
TMDR 7-0: Tx shift register, MSbyte RO TMDR 7-0: Tx CRC generator, bits 23-16 RO
00010 TMDR15-8: Rx CRC checker, LSbyte RO 01011 TMDR15-8: Rx CRC checker, bits 31-24 RO
TMDR 7-0: Tx CRC generator, LSbyte RO TMDR 7-0: Tx CRC generator, bits 31-24 RO
00011 TMDR15-8: Rx CRC checker, bits 15-8 RO 01100 serial side of TxFIFO: RO
TMDR 7-0: Tx CRC generator, bits 15-8 RO TMDR10: EOF/EOM bit RO
— TMDR9: CRC enable bit RO
00100 serial side of RxFIFO:) wo Transparent Bisync: insert DLE RO
TMDR11: ShortF/CVType status bit W0 Nine-Bit mode: Address/Data RO
TMDR10: Abor/PE status bi wo TMDR7-0: data character RO
TMDR9: RxBound status bit W0
TMDR8: CRC Error status bit W0 01110 1/0 and Misc status (see Figure 8-3 below) W0
TMDR7-0: data chi w0
~0: data character 01111 internal interrupt daisy chain: RO
00101 Clock MUX outputs (see Figure 8-1 below) RO TMDR13: Rx Status IEO RO
TMDR12; Rx Data IEO RO
00110 TMDR12-8; CTR1 value RO TMDR11: Tx Status IEQ RO
TMDR4-0: CTRO value RO TMDR10: Tx Data IEO RO
: :) TMDRS; /0 Pin [EQ RO
00111 Clock MUX inputs (see Figure 8-2 below) RO IMDRS: Misc IEQ RO
01000 TMDR15; DPLL Adjust RO - - -
TMDR14: DPLL Shorten/Extend RO 10110 Receive Count Holding Register (RCHR) RO
TMDR13: DPLL One/Two RO 1111 Device Version Code: RO
TMDR12-8: DPLL State RO 4453 Device manufactured without SL1660 topmarking RO
01001 TMDR15-8: Rx shift register, LSbyte RO 4D44 Device manufactured with SL1660 topmarking RO
TMDR 7-0: Tx shift register, LSbyte RO

Some of this information may be of use to software.
Howaver, the hardware access time for reading the TMDR
is considerably longer than for other IUSC registers. (See
the Product Description for details.)

If software needs to read any of the above Test Mode
information, the hardware design must provide more time

for the data lines to become valid, than would otherwise be
necessary. This may require the injection of more “wait
states” into such read cycles than would be needed for
other registers. In some cases the best solution is a
software-programmable wait state generator that can ex-
tend accesses to TMDR but not penalize performance for
other IUSC register accesses.

8-7

UMO014001-1002

Gayle Gamble
UM014001-1002

AY= e {sers s
8.7 SERIAL CONTROLLER TEST MODES (Continued)

D15§D14| D131 D12] D11 JD10| D9 [D8 J D7 | D6 D5 | D4 D3] D2 | D1 | DO

L,

RxC Pad Output

CTRO Enable
/Rx Clock

CTRO Clock

/Tx Clock

CTR1 Clock

DPLL Clock

0

RxC Output Enable

0

BRGO Clock

BRG1 Clock

TxC Output Enable

TxC Pad Output

CTR1 Enable

Figure 8-1. Test Mode Data Register with TMCR 4-0 = 00101 (Clock Mux Outputs)

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2La5

Z16C32 [usC™
USER'S MANUAL

D15

D14} D13fD12| D11 |D1Of DO | DB D7 D6 f D5 | D4 | D3] D2 | D1

|—— E

0

TxC Pad
Rx Sync
/Rx Clock

BRGO Output

CTRO Output

Tx Byte Clock

DPLL TxC Output

0

0

Rx Byte Clock

Tx Complete

BRG1 Output

CTR1 Output

RxC Pad

DPLL RxC Output

Figure 8-2. Test Mode Data Register with TMCR 4-0 = 00111 (Clock Mux Inputs)

UMO014001-1002

Gayle Gamble
UM014001-1002

. Z16C32 UsC™
N 2iLa5L Uszn‘s3 lel\JNsUiL
8.7 SERIAL CONTROLLER TEST MODES (Continued)

D15| D14 D13 D12IDN11 D10 DO D8 | D7 D6 | D5] Daf D3| D21 D1 | DO

|— BRGO ZC Status Latch
BRG1 ZC Status Latch
DPLL Sync Status Latch
RCC Overflow Status Latch

Reserved

CTS Status Latch

Reserved

DCD Status Latch

Reserved

TxXREQ Status Latch

Reserved

RxREQ Status Latch

Reserved

TxC Status Latch

Reserved

RxC Status Latch

Figure 8-3. Test Mode Data Register with TMCR 4-0 = 01110 (/O and Misc. Status)

8-10

UMO014001-1002

Gayle Gamble
UM014001-1002

N 205

216C32 [USC™
USER'S MANUAL

8.8 REGISTER REFERENCE
8.8.1 Register Addresses

The following pages include all of the fields in all of the
registers in the IUSC, including both the serial controller
and DMA sections. They are arranged in alphabetical
order by register name, like Table 2-2 in Chapter 2. (If you
want to look up a register by its address/register number,
look in Table 2-1in Chapter 2 and then come back here...)
These are located to the right of the name of each register
on the following pages, and are shown as s d b aaaaa,
where:

s is the address bit connected to the S//D pin (0=DMA,
1=serial);

d s the address bit connected to the D//C pin, or the bit
in DCAR? (O=serial control regs or DMA Tx, 1=serial
Data regs or DMA Rx);

b s 1forabyte access ona 16-bit bus (itis shown as "b”
in all cases, like a placeholder);

aaaaa is the actual register address, from AD5-1, AD13-9,
CCARS5-1, or DCARS-1.

8.8.2 Conditions/Context

Entries in this column indicate the conditions under which
descriptions to their right apply or can validly be used. If an
entry is blank, the description to the right always applies.

8.8.3 Description

Often entries in this column consist of one or more suben-
tries of the form “value=description”. If some possible
values aren’t shown, it may mean they are reserved (and
should not be written) or that they will never be read. Or,
particularly for single Read-Write bits, if the other case is
obvious, it's left out. For example, for an entry like “1=dog
is dead” we didn't feel obliged to add “O=dog is alive".

The following abbreviation is used in some entries in this
column and “Conditions/Context":

:= this “assignment operator” indicates that the value on
its right is written to the field or bit on its left.

8.8.4 RW Status

This column includes the following codes for each register
field:

RW The field is fully under the control of software,
and can be read and written.

RO The field is read only; writing to it has no
effect.
ROC The bit is read-only; the IUSC clears it auto-
matically after software reads it as 1.

WO The field is write-only; reading it will either
return zeroes or an unrelated item that is
described next in the list.

WOC The field is write only. After using its value
the IUSC will clear it to zero, so that it points
back to the indirect address register.

R,W1C The bit is set by the IUSC hardware, writing
a1toitclearsit.
R,W1U The bitis controlled by the IUSC hardware,

writing a 1 to it “unlatches” it.

8-11

UMO014001-1002

Gayle Gamble
UM014001-1002

21632 USC™

N 2iLa5 USER'S MANUAL
8.9 REGISTER TABLES

Burst/Dwell Control Register (BDCR} Register Address 0 x b 01001
MaxXfers MaxClLKs
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Field/Bit | Conditlons RW ,
Bit(s) Name IContext Description Status Ref Chapter: Section
BDCR15-8 | MaxXfers 0O=no effect; RW | 6: Bus Occupancy Throttling
1-255=maximum number of bus cyclesAransfers the .
DMA channels will do per bus grant
BDCR7-0 MaxCLKs 0=no effect;
1-255=DMA channels limited to 8-2040 CLK periods
per bus grant
Bus Configuration Register (BCR) No Address (First Write after RESET)
SepAd Reserved (Must be zero) IAckMode |BRQTP] 16Bit |ARQTP SRAQ“‘
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Field/Bit { Conditions RW .
Bit(s) Name IContext Description Status Ref Chapter: Section
BCR15 SepAd 8-bit bus 1 it AD13-8 carry register addresses WO | 2: Bus Configuration Register
16-bitbus | Must be 0
BCR5-4 |1AckMode 00=sample /INTACK at start of each slave cycle;
0O1=single pulse on/INTACK;
11=ouble pulse on /INTACK
BCR3 BRQTP 0=drive /BUSREQ open-drain, sample it first;
1=drive /BUSREQ totem pole (full time)
BCR2 16-Bit 0=8-bit data on AD7-0; 1=16-bit data on AD15-0
BCR1 /IRQTP O=drive /INT pin totem pole (full time);
1=drive /INT open drain
BCRO SRightA Muxed AD | O=use AD6-0 as B/W, RegAddr, ULL;
0O=use AD7-1
8-12 RW = Read/Write, RO = Read Only, WO = Write Only. For other codes see page 8-11.

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLaB

Z16C32 USC™
USER'S MANUAL

Channel Command/Address Register (CCAR)

Register Address 1 0 b 00000

RTCmd

RT Chan
Reset RTMode Load BIW

RegAddr un

15 14 13 12 1

10 9 8 7 6

4 3 2 1]

Field/Bit | Conditlons
Bit(s) Name IContext

Description

RW

Status Ref Chapter: Section

CCAR15-12 | RTCmd

00000=no operation
00001=Reserved

00010=Reset Highest Serial IUS
00100=Trigger Channel Load DMA
00101=Trigger Rx DMA
00110=Trigger Tx DMA
00111=Trigger Rx and Tx DMA
01001=Purge Rx FIFO
01010=Purge Tx FIFO
01011=Purge Rx and Tx FIFO
01101=Load RCC

01110=toad TCC

01111=Load RCC and TCC
10001=Load TCO

10010=Load TC1

10011=Load TCO and TC1
10100=Select Serial Data LSBIit First
10101=Select Serial Data MSBit Flrst
10110=Select D15-8 First
10111=Select D7-0 First
11001=Purge Rx

All other values are Reserved and
should not be programmed.

WO 5: Commands

CCAR10 RTReset

1=put Serial Controller in software Reset state;
O=release it from Reset state

RW 5: Resetting the Serial
Controller

CCAR9-8 RTMode

00=normal mode: Tx and Rx are independent;
01=echo RxD to TxD;

10=Local Loop TxD to RxD;

11=internal Local Loop

RW 4: The RxD and TxD Pins

CCAR7 ChanLoad | Channel

Load DMA

1=continue Channel Load operation;
O=terminate it

RW 8: Using DMA to Initialize
the Senal Controller

CCAR6 B/IW 16-bit bus

0O=next access to CCAR will be 16 bits;
1=access MS or LS byte of register

WOC | 2: Register Addressing

CCARS5-1 RegAddr

register address for next access to CCAR
(see Tables 2-1 and 2-2)

WOC

CCARO Ui

1=next access to CCAR will be to MSbyte
of selected by RegAddr,
0O=access LSByte or whole 16-bit register

woC

RW = Read/Write, RO = Read Only, WO = Write Only. For other codes see page 8-11. 8-13

UMO014001-1002

Gayle Gamble
UM014001-1002

H Z16C32 IUSC™
AN 2iLans USER'S MANUAL

Channel Command/Status Register (CCSR) Register Address 10 b 00010
RCCF | RFFC | Clear | DPLL | DPLL | DPLL On | Loop | Ctr :
ovio | Avail | RCCF | sync | 2Miss | tMiss | OPHLEYe | Loop | Send {Bypass TxResidue Reserved
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Fleld/Bit | Conditions RW .
Bit(s) Name ‘IContext Description Status Ref Chapter: Section
CCSR15 RCCF Ovfio] RCC 1=RCC FIFO overflow (4+1 frames) RO 5. DMA Sug)gon Features:
Enabled The RCC FIFO
CCSR14 RCCF Avail 1=RCC FIFO not empty RO
CCSR13 Ciear RCCF 1=purge RCC FIFO, clear RCCF Ovfio and WO
RCCF Avail to 0
CCSR12 DPLL Sync 1=DPLL in sync RW1G | 4: More About the DPLL
CCSR!1 DPLL2Miss | Biphase 1=DPLL has seen two consecutive missing clocks RWIC
CCSR10 DPLL1Miss | Biphase, 1=DPLL has seen a missing clock RWIC
CVOK=0
CCSR9-8 DPLLEdge 00=DPLL resyncs on rising and falling edges RW
NRZ 01=DPLL sees rising edges only;
modes 10=DPLL sees falling edges only;
only 11=DPLL free-runs like CTR1,0
CCSR7 OnLoop Slaved 1=Transmit is or has been active (cleared only RO 5: Slaved Monosync Mode
Monosync | by leaving Slave Monosync mode; 5: HDLC/SDLC Loop Mode
H/SDLC 1=|USC has inserted itself in the loop
Loop
CCSR6 LoopSend | H/SDLC 1=Transmit actively sending; RO 5: HDLC/SDLC Loop Mode
Loop 0=Transmit rapeating Receive
CCSR5 CirBypass =route CTR1-0 outputs to Rx/TxCLK selection, RW | 4: Transmit and Receive
BRG's, /RxC, /TxC output selection Clocking: Using PORTO-1 for
1=route PORT1-0 pins direct to these uses Bit Clocking
CCSR4-2 | TxResidue | H/SDLC. | 000=last character of Transmit frame contains RW | 5:HDLC/SDLC Mode:
II:'{SELC 8 bits; 001-111=last character contains 1-7 bits Frame Length Residuals
8-14 RW = Read/Write, RO = Read Only, WO = Write Only. For other codes see page 8-11.

UMO014001-1002

Gayle Gamble
UM014001-1002

H 216C32 [USC™
N 2iL05 USER'S MANUAL
Channel Control Register (CCR) Register Address 1 0 b 00011
. Flag Async:TxShavel i
Waitd Wait4
Blk | Pre- RxStatBlk ,
na Tx Trig amrble Sync:TxPreL | Sync:TxPrePat ol Rx Trig Reserved (0)
15 14 13 12 1 10 9 8 7 6 4 3 2 1 0
Fleld/Bit | Conditions RW \ :
Bit(s) Name Context Description Status Ref Chapter: Section
CCR15-14 | TxCirBik 00=do not use Transmit Control Blocks; RW | 5: DMA Support Features:
10=use 32-bit TCB's Transmit Control Blocks
CCR13 WaitdTxTrig | Sync 1=hold Transmit DMA Request between 5: Synchronizing Frames/
frames/messages, until software issues Messages with Software
Trigger Tx DMA command Response
CCR12 Flag H/SDLC, 1=send Flags as Preamble 5: Between Frames,
Preamble | CCR9-8 Messages, or Characters
=01
CCR11-8 TxShaveL | Async, shave the number of Stop bits 5: Asynchronous Mode
CMR15=1 | specified by TxSubMode (CMR14)
by (15 minus the value in this field)/16 bit times
CCR11-10 | TxPreL Sync w/ 00=send 8-bit Preamble; 01=16-bit, 5: Between Frames,
Preamble | 10=32-bit; 11=64-bit Messages, or Characters
CCR9-8 TxPrePat | Syncw/ 00=all-zero Preamble; Ot=all ones or Flags;
Preamble | 10=101010...; 11=010101...
CCR7-6 RxStatBik 00=do not use Receive Status Blocks; % DMA Ssutp?onBﬁea‘t‘ures:
ExtSyne, | 00=use 16-it RSBS; eceive Status Blocks
T. Bisyne, 10=use 32-bit RSB's
H/SDLC,
802.3,
ACV
(15538}
CCR5 Waitd Sync 1=hold Receive DMA Request between frames/ 5: Synchronizing Frames/
RxTrig messages, until software issues "Trigger Rx Messages with Software
DMA* command Response
RW = Read/Write, RO = Read Only, WO = Write Only. For other codes see page 8-11. 8-15

UMO014001-1002

Gayle Gamble
UM014001-1002

. 216C32 JUsC™
@ ZILCE USER'S MANUAL

Channel Mode Register (CMR) Register Address 1 0 b 00001
TxSubMode TxMode RxSubMode RxMode
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Because the content of the SubMode fields depends on the Mode flelds, the following descriptions are grouped by mode. TxSubMode
and RxSubMode bits that are not shown for a particular Mode value are Reserved In that mode and should be programmed with zeros.

Field/Bit | Conditions RW .
Bit(s) Name Context Description status Ref Chapter: Section
CMR11-8 | TxMode 0000=Asynchronous RW | 5: Asynchronous Mode
CMR15-14 | TxSubMode | TxMode=0 { 00=send one stop bit; 01=two stop bits; RW
10=1 shaved stop bit (per CCR11-8);
11=2 shaved stop bits
CMR13-12 00=16 TXCLKs/Tx bit; 01=32 TxCLKs/Tx bit;
10=64 TxCLKs/Tx bit
CMR3-0 RxMode 0000=Asynchronous RW
CMR5-4 RxSubMode | RxMode=0 | 00=16 RxCLKs/Rx bit; 01=32 RxCLKs/Rx bit; AW
10=64 RxCLKs/Rx bit
CMR11-8]| TxMode 0001=Reserved RW
CMR3-0 RxMode 0001=External Sync 5: Extemal Sync Mode
CMR11-8]| TxMode 0010=2=Isochronous RW | 5: Isochronous Mode
CMR14 TxSubMode | TxMode=2 | O=send one stop bit; 1=two stop bits RW
CMR3-0 RxMode 0010=2=Isochronous RW
CMR11-8 | TxMode 0100=4=Monosync RW EA Monosync and Bisync
CMR15 TxSubMode | TxMode=4] 1=send CRC on Tx Underrun RW odes
CMR13 1=send Preamble before opening Sync
CMR12 0=send 8-bit Syncs;
1=send Syncs per TxLength
CMR3-0 RxMode 0100=4=Monosync RW
CMR5 RxSubMode | RxMode=4 Osm'r received Syncs; RW
O=include them in RxFIFO and CRC calculation
CMR4 0=expect 8-bit Syncs;
1=expect Syncs per RxLength
8-16 RW = Read/Write, RO = Read Only, WO = Write Only. For other codes see page 8-11.

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2L05

216C32 JusC™
USER'S MANUAL

Channe! Mode Register (CMR) (Continued)

Because the content of the SubMode fields depends on the Mode fields, the following descriptions are grouped by mode. TxSubMode

and RxSubMode bits that are not shown for a particular Mode value are Reserved in that mode and should be programmed with zeros.

Field/Bit | Conditions : RW .
Bit(s) Name IContext Description Status Ref Chapter: Section
CMR11-8 TxMode 0101=5=Bisync RW §: Monosync and Bisync
CMR15 | TxSubMode | TxMode=5 | 1=send CRC on Tx Underrun Aw | Modes
CMR14 0=send closing/idle SYNs from TSR15-8;
1=send closing/idle SYNO/SYN1 (TSR7-0/15-8)
CMR13 1=send Preamble before opening Sync
CMR12 0O=send 8-bit Syncs;
1=send Syncs per TxLength
CMR3-0 RxMode 0101=5=Bisync RW
CMR5 RxSubMode | RxMode=5 | 1=strip received Syncs; RW
O=include them in RxFIFO and CRC calculation
CMR4 0O=expect 8-bit Syncs;
1=expect Syncs per RxLength
CMR11-8 | TxMode 0110=6=HDLC/SDLC RW | 5: HDLC/SDLC Mode
CMR15-14 { TxSubMode | TxMode=6 | 00=send 7-bit Abort on Tx Underrun;
01=send 15-bit Abort, 10=send Fiag;
11=send CRC then Flag
CMR13 1=send Preamble before opening Flag
CMR12 1=consecutive idle Flags share a 0
(11111101111111...); 0=(11111100111111...)
CMR3-0 RxMode 0110=6=HDLC/SDLC RW
CMR7-4 RxSubMode | RxMode=6 | xx00=no Address or Control field handling; RW
xx01=1-byte Address only;
x010=1-byte Address, 1-byte Control;
x110=1-byte Address, 2-byte Control;
0011=Extended Address, 1-byte Control;
0111=Extended Address, 2-byte Control;
1011=Extended Address, Control >= 2 bytes;
1111=Extended Address, Control >= 3 bytes
CMR11-8 | TxMode 0111=7=Transparent Bisync RW | &: Transparent Bisync Mode
CMR15 TxSubMode | TxMode=7 | 1=send CRC on Tx Underun RW
CMR14 0O=send closing/idle SYNs;
1=send closing/idle DLE-SYNs
CMR13 1=send Preamble before opening DLE-SYN
CMR12 0=send ASCI! control characters;
1=send EBCDIC
CMR3-0 RxMode 0111=7=Transparent Bisync RW
CMR4 RxSubMode | RxMode=7 | O=look for ASCH control characters; RW
1=look for EBCDIC
CMR11-8 | TxMode 1000=8=Nine Bit RW | 5: Nine Bit Mode
CMR15 TxSubMode | TxMode=8 | O=send 9th bit 0 (data); RW
1=send 9th bit 1 (address)
CMR14 0O=send eight data bits;
1=send seven data bils plus parity
CMR13-12 00=16 TxCLKs/Tx bit; 01=32 TxCLKs/Tx bit;
10=64 TxCLKs/Tx bit
CMR3-0 RxMode 1000=8=Nine Bit RW
CMRS5-4 RxSubMode | RxMode=8 | 00=16 RxCLKs/Rx bit; 01=32 RxCLKs/Rx bit; RW
10=64 RxCLKs/Rx bit

RW = Read/Write, RO = Read Only, WO = Write Only. For other codes see page 8-11.

UMO014001-1002

8-17

Gayle Gamble
UM014001-1002

N 205

Z16C32 USC™
USER'S MANUAL

Channel Mode Register (CMR) (Continued)

Because the content of the SubMode fields depends on the Mode fields, the following descriptions are grouped by mode. TxSubMode
and RxSubMode bits that are not shown for a particular Mode value are Reserved in that mode and should be programmed with zeros.

Field/Bit | Conditions RW .

Bit(s) Name IContext Description Status Ref Chapter: Section
CMR11-8 TxMode 1001=9=802.3 (Ethemnet) RW 5: 802.3 (Ethemet) Mode
CMR15 TxSubMode] TxMode=9 | O=send CRC on Tx Underrun RW
CMR3-0 RxMode 1001=9=802.3 (Ethernet) RW
CMR4 RxSubMode § RxMode=8 | O=receive all frames, RW

1=match 16-bit Destination Address vs RSR
CMR11-8 TxMode 101x=10-11=Reserved
CMR3-0 RxMode
CMR11-8 TxMode 1100=12=Slaved Monosync RW 5: Slaved Monosync Mode
CMR15 TxSubMode | TxMode 1=send CRC on Tx Underrun RW
CMR13 =12 0=do not send (stop sending at EOM);
1=send a(nother) message
CMR12 O=send 8-bit Syncs;
1=send Syncs per TxLength
CMR3-0 RxMode 1100=12=Reserved (use RxMode=0100=4=
Monosync, with TxMode=1100=12)
CMR11-8 | TxMode 1101=13=Reserved
CMR3-0 RxMode
CMR11-8 | TxMode 1110=14=HDLC/SDLC Loop RW | 5: HDLC/SDLC Loop Mode
CMR15-14 | TxSubMode | TxMode 00=send 7-bit Abort on Tx Underrun; RW
=14 01=send 15-bit Abort; 10=send Flag;
11=send CRC then Fiag
CMR13 (initialty) O=Transmit disabled; 1=insert into loop; RW
(once inserted) O=repeat Rx to Tx; 1=send
CMR12 1=consecutive idle Flags share a0 RW
(11111101111111...); 0=(11111100111111..))
CMR3-0 RxMode 1110=14=Reserved (use RxMode=0110=6=
HDLC/SDLC, with TxMode=1110=14)
CMR11-8 | TxMode 1111=15=Reserved
CMR3-0 RxMode

Clear DMA Interrupt Register (CDIR)

Register Address 0 x b 01101

RxDMA | TXDMA RxDMA | TXDMA
Reserved (0) S S Reserved (0) P P
15 14 13 12 1" 10 [8 7 6 5 4 3 2 1 0
; Field/Bit | Conditions ; RW .
Bit(s) Name IContext Description Status Ref Chapter: Section
CDIR9 RXDMA 1US 1=clear Rx DMA IUS bit; 0=no change WO | 7:DMAIP and IUS Bits
CDIR8 TxDMA IUS 1=clear Tx DMA 1US bit; O=no change
CDIR1 RxDMA 1P 1=clear Rx DMA IP bit; 0=no change
CDIRO TxDMA P 1=clear Tx DMA IP bit; 0=no change
8-18 RW = Read/Write, RO = Read Only, WO = Write Only. For other codes see page 8-11.

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLa5

216C32 JUSC™
USER'S MANUAL

Clock Mode Control Register (CMCR)

Register Address 10 b 01000

GIR1Sre

CTROSrc

BRG1Src BRGOSrc DPLLSrc

TxCLKSrc

RxCLKSrc

15 14

13

12 1

10 9 8 7 6

4

3 2 1 0

Bit(s)

Fleld/Bit
Name

Conditions
/Context

Description

RW
Status

Ref Chapter: Section

CMCR15-14

CTR1Sre

00=CTR1 disabled;
01=CTR1 input is PORT1/CLK1;
10=/RxC pin; 11=/TxC pin

RW

CMCR13-12

CTROSrc

00=CTRO disabled;
01=CTRO input Is PORTO/CLKO;
10=/RxC pin; 11=/TxC pin

4: Tx and Rx Clocking:
CTRO and CTR1

CMCR11-10

BRG1Src

00=BRG?1 input is CTRO output or PORTO;
01=CTR1 output or PORT1;
10=/RxC pin; 11=/TxC pin

CMCR9-8

BRGOSrc

00=BRGO input is CTRO output or PORTC;
01=CTR1 output or PORTY;
10=/RxC pin; 11=/TxC pin

4: Tx and Rx Clocking:
The Baud Rate Generators

CMCR7-6

DPLLSrc

00=DPLL input is BRGO output;
01=BRG1 output; 10=/RxC pin; 11=/TxC pin

4: Tx and Rx Clocking:
Introduction to the DPLL

CMCR5-3

TxCLKSrc

000=no TxCLK (Transmit disabled);
001=TxCLK is /RxC; 010=/TxC;
011=DPLL Tx output;

100=BRGO output; 101=BRG1 output;
110=CTRO output or PORTO;
111=TxCLK is CTR1 output or PORT1

CMCR2-0

RxCLKSr¢

000=no RxCLK (Receive disabled);
001=RxCLK is /RxC; 010=/TxC;
011=DPLL Rx output,

100=BRGO output; 101=BRG1 output;
110=CTRO output or PORTO;
111=RxCLK is CTR1 output or PORT1

4: Tx and Rx Clocking:
TxCLK and RxCLK Selection

RW = Read/Write, RO = Read Only, WO = Write Only. For other codes see page 8-11.

UMO014001-1002

8-19

Gayle Gamble
UM014001-1002

. Z16C32 USC™
09 2il(5 USER'S MANUAL
Daisy Chain Control Register (DCCR) Register Address 10 b 01101
1US Op RS RD T8 0 1OP | Misc IPOp RS RD TS D 10P | Misc
wo) ws | ws Jws | s | ws | s (WO) IP IP P IP IP P
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Field/Bit | Conditions RW .
Blt(s) Name IContext Description Status Ref Chapter: Section
DCCR15-14 | 1USOp Write Ox=no operation; WO | 7:Serial IP and IUS Bits
10=clear IUS bits selected by 1s in DCCR13-8;
11=set US bits selected by 1s in DCCR13-8
DCCR13 RS IUS Read 1=Receive Status interrupt under service RO 7: Serial [P and |US Bits
Write 1=set or clear Receive Status IUS per IUS Op; WO &Eg‘fﬁﬂ{ﬁgtemm
0=no change
DCCR12 RD IUS Read 1=Recaive Data interrupt under service RO 7: Serial IP and 1US Bits
Write 1=se or clear Recalve Data IUS per IUS Op; wo | 7 FixData ntermupts
0=no change
DCCR11 TS IUS Read 1=Transmit Status interrupt under service RO 7: Serial IP and IUS Bits
Write 1=set or clear Transmit Status IUS per IUS Op; WO gbz)r(c[;:t:n%t?}\ugnlgtenupt
0=no change
DCCR10 TDIUS Read 1=Transmit Data interrupt under service RO | 7: Serial IP and IUS Bits
Wite 1=set or clear Transmit Data IUS per IUS Op; wo | /¢ Transmit Data Interrupts
0=no change
DCCR9 0P 1US Read 1=1/0 Pin interrupt under service RO |7 |Sgrisg Iil’ and Iussgits
Write 1=set or clear /O Pin IUS per IUS Op; L[] ;’né 1A B|r|1tsnterrupt urces
0=no change
DCCR8 Misc IUS | Read 1=Miscellaneous interrupt under service RO | 7: Serial :P and IUS Bits
Write 1=set or clear Miscellaneous per 1US Op; WO g;,'ﬁ,‘ggg':,?ﬁ}\’%{,“s‘e""p‘
0=no change
DCCR7-6 1P Op Write 00=no operation; WO | 7: Serial IP and |US Bits
01=clear P and IUS bits sel by 1s in DCCRS-0;
10=clear IP bits selected by 1s in DCCR5-0;
11=set IP bits selected by 1s in DCCR5-0
DCCR5 RSIP Read 1=Receive Status interrupt pending RO | 7:Serial IP a?d 1US Bits
Write 1=set or clear Receive Status IP/IUS per IP Op; WO anfAsg;tg s Intermupt Sources
0O=no change
DCCR4 RDIP Read 1=Receive Data interrupt pending RO { 7:Serial IP and IUS Bits
7: Rx Data Interrupts
Write 1=set or clear Receive Data IPAUS per iP Op; WO
O=no change
DCCR3 T8IP Read 1=Transmit Status interrupt pending RO | 7: Serial IP and IUS Bits
Witte 1=set or clear Transmit Status IP/IUS per IP Op; WO | Frk Stalus Intermupt Sources
0=no change
DCCR2 TDIP Read 1=Transmit Data interrupt pending RO | 7: Serial IP and 1US Bits
Wiite 1=set or clear Transmit Data (P/IUS per [P Op; wo | 7 Transmit Data nterrupts
0=no change
DCCR1 IOP P Read 1=l/O Pin interrupt pending RO | 7: Serial IP and IUS Bits
Wite 1=set or clear /O Pin IP/IUS per IP Op; wo | 7o, ntermupt Sources
=no change
DCCRO Misc IP Read 1=Miscellaneous interrupt pending RO | 7: Serial P and 1US Bits
Write 1=set or clear Miscellaneous IPIUS per IP Op; WO | LMiscellaneous interrupt
0=no change
8-20 RW = Read/Write, RO = Read Only, WO = Write Only. For other codes see page 8-11.

UMO014001-1002

Gayle Gamble
UM014001-1002

3 Z16C32 lusc™
@ ZILCE USER'S MANUAL
DMA Array Count Register (DACR) Register Address 0 x b 00100
Reserved (0) RALCnt TALCnt
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Field/Bit | Conditions RW ,
Bit(s) Name ‘IContext Description Status Ref Chapter: Section
DACR7-4 | RALCnt Array or Reflects the Rx DMA channel's progress while RO 6: Array and Linked-List
Linked List | fetching array or list information. See Ref text. Fetching Status

DACR3-0 | TALCnt Refects the Tx DMA channel's progress while
fetching array or list information. See Ref text.

DMA Command/Address Register (DCAR)

Register Address 0 x b 60000

DCmd

Reserved (0)

Rx/Tx
cmd

Rx/Tx

MBRE | ‘Reg

RegAddr un

15 14 13 12 1"

10 9 8 7 6 5

4 3 2 1 0

Fleld/Bit
Name

Conditions

Bit(s) IContext

Description

RW .
Status Ref Chapter: Section

DCAR15-12
DCARg

DCmd
Rx/Tx Cmd

Treating all of DCAR15-9 as a single field:
0000000=Null (no operation);
0001000=Reset Tx Channel;
0001001=Reset Rx Channel;
0010000=Start Tx Channel;
0010001=Start Rx Channel;
0011000=Start/Continue Tx Channel;
0011001=Start/Continue Rx Channel;
0100000=Pause Tx Channel;
0100001=Pause Rx Channel;
0101000=Abort Tx Channel;
0101001=Abort Rx Channel;
0111000=Start/Init Tx Channel;
0111001=Start/Init Rx Channel;
1000000=Resst Highest DMA IUS;
1001000=Reset All Channels;
1010000=Start All Channels;
1011000=Start/Continue All Channels;
1100000=Pause All Channels;
1101000=Abort All Channels;
1111000=Start/Init All Channels

WO | 6: Commands and
/BUSREQ Enable

DCARS MBRE

1=enable Bus Requests by the DMA channels;
O=block Bus Requssts by the DMA channels

DCAR? Rx/Tx Reg

1=select Rx DMA channet register for next
access to DCAR; 0=Tx DMA register

WOC | 2: Register Addressing

DCAR6 BW 16-bit bus

16-bit bus

O=next access to DCAR will be 16 bits;
1=access MS or LS byte of register

woC

DCAR5-1 | RegAddr

DMA register address for next access to DCAR

WOC

DCARO uL

1=next access to DCAR will be to MSByte of
register selected by RegAddr; 0=LSByte or
whole 16-bits

WwoC

UMO014001-1002

RW = Read/Write, RO = Read Only, WO = Write Only. For other codes see page 8-11.

8-21

Gayle Gamble
UM014001-1002

H Z16C32 lUsC™
0N 2iLa15 USER'S MANUAL
DMA Control Register (DCR) Register Address 0 x b 00011
i Pre Min | DCSD UAS
ChanPri Empt ALBVO] ReArbTime Reserved (0) Reserved (0) oo | oat Al AddrSeg
15 14 13 12 11 10 9 8 7 6 5 4 2 1 0
Field/Bit | Conditions RW .
BHt(s) Name ‘Context Description Status Ref Chapter: Section
DCR15-14 | ChanPri 00=Tx DMA has priority for bus access; RW 6: Inter-Channel Operation
01=Rx DMA has priority; 10=alternating priority and Priority
DCR13 PreEmpt 1=higher-priority channel can seize bus control
DCR12 ALBVO Arrayand | O=addresses/counts are Littie-Endian (Z80%/Intel) 6: Format of Binary Values
Linked List | 1=Big-Endian (Z8000%/680x0) in Array/Lists
DCR11-10 | ReArbTime 00=select channel at start of each grant, both 6: Inter-Channel Operation
channels can use the bus in one grant, and Priority
01=channel keeps selection until its request is
gone; then the other channel can use the bus
in the same grant;
1x=Reserved, do not program
DCR5 MinOff39 1=minimum bus re-request time is 39 CLKs; 6: Bus Occupancy Throttling
0=7 CLKs
DCR4 DCSDOut 1=drive D//C pin low for Tx DMA, high for Rx 6: DMA Cycle Options
DMA and drive S//D low for arrayflist access, 6: Bus Cycle Options
high for data;
0=do not drive D//C, S//D pins
DCR3 1Wait 1=add one Wait state to all DMA cycles
DCR2 UASAI 1=present /UAS and MS16 of address
in every cycle; O=only when necessary
DCR1-0 AddrSeg 00=32-bit address incrementing/decrementing; 6: Address Sequencing
10=incr/decr affects only LS 16 address bits;
11=incr/decr affects only LS 24 address bits
DMA Interrupt Control Register (DICR) Register Address 0 x b 01100
mE |oc | nw | vis Reserved (0) RX%MA TXP'EMA
15 14 13 12 1 10 9 8 7 6 5 4 2 1 0
Field/Bit | Conditions RW .
Bit(s) Name Context Description Status Ref Chapter: Section
DICR15 MIE 1=gnable interrupts from DMA channels RW | 7: DMA-Controller-Level
Interrupt Options
DICR14 DLC 1=disable IEQ from {USC
DICR13 NV 1=do not provide a vector during IAck cycles
DICR12 VIS 1=include TypeCods in DMA interrupt vectors;
O=retum vector as software wrote it to DIVR7-0
DICR1 RxDMA |E 1=Rx DMA interrupt enable(d)
DICRO TxDMA IE 1=Tx DMA interrupt enable(d)
8-22 RW = Read/Write, RO = Read Only, WO = Write Only. For other codes see page 8-11.

UMO014001-1002

Gayle Gamble
UM014001-1002

N 205

216C32 USC™

USER'S MANUAL
DMA Interrupt Vector Register (DIVR) Register Address 0 x b 01010
Interrupt Vector 7-3 (RO) TVF}"RS;’“ (lr\xloo) Interrupt Vector (RW)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 (]
Field/Bit | Conditions RW .

Bit(s) Name IContext Description Status Ref Chapter: Section
DIVR15-11 Read as software wrote DIVR7-3 RO 7: DMA Interrupt Vectors
DIVR10-9 | TypeCode | DIVR15-8, | highest pending interrupt type: RO

orlAckw/ | 00=no DMA type pending;

VIS=t 10=Tx DMA (no Rx DMAY},

(DICR12) | 11=RxDMA
DIVR8 as software wrote DIVRO RO
DIVR7-0 Read/Write | basic 8-bit DMA interrupt vector RW

DIVR7-0,

or |Ack w/

VIS=0

(DICR12)

Hardware Configuration Register (HCR)

Register Address 10 b 01001

crroov | ST Jevok | oPLDv | OPLMode | Resaved |BRGIS|BRGIE[Resened |BRGOS|BRGOE
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Flel/Bit | Conditions RW \
Bit(s) Name IContext Description Status Ref Chapter: Section
HCR15-14 | CTRODiv 00=CTRO divides by 32; RW | 4: Txand Rx Clocking
01/16; 10=/8; 11=/4 CTRO and CTRt
HCR13 CTR1DSsl 0=CTRODIv determines CTR1 divisor;
1=DPLLDiv determines CTR1 divisor
HCR12 CVOK Biphase 1=do not report single code violations 4: More About the DPLL
HCR11-10 | DPLLDWv 00=DPLL divides by 32; 01=/16; 10=/8; 4: Tx and Rx Clocking:
11=do not use for DPLL (/4 for CTR1) Introduction to the DPLL
HCR9-8 DPLLMode 00=disable DPLL, 4: More About the DPLL
01=run DPLL for NRZ modes;
10=run DPLL for Biphase-Mark or -Space;
11=run DPLL for either Biphase-Level mode
HCR5 BRG1S 1=BRG1 single cycle mode; O=continuous 4: Tx and Rx Clocking
HCR¢ | BRGIE 1=enable BRGT The Baud Rate Generators
HCR1 BRGOS 1=BRGO single cycle mode; O=continuous
HCRO BRGOE 1=enable BRGO

RW = Read/Write, RO = Read Only, WO = Write Only. For other codes see page 8-11.

UMO014001-1002

8-23

Gayle Gamble
UM014001-1002

716C32 IUsc™
A 2iLa5s USER'S MANUAL

Input/Output Control Register ({OCR} Register Address 10 b 01011
CTSMode DCDMode TxRMode RxRMode TxDMode TxCMode RxCMode
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1]
Field/Bit | Conditions RW .
Bit(s) Name IContext Description Status Ref Chapter: Section
IOCR15-14 | CTSMode 0x=/CTS pin is low-active Clear To Send input; RW 4: The /CTS Pin
10=drive /CTS Low; 11=drive /CTS High
IOCR13-12 | DCDMode 00=/DCD is low-active Rx Carrier Detect input; 4: The /OCD Pin
01=/DCD is low-active Rx Sync Detect input;
10=drive /DCD Low; 11=drive /DCD High
IOCR11-10 | TxRMode 00=/TxREQ pin is an input; 4. The /RXREQ and /TXREQ
01=drive /TXxREQ with Transmit DMA Request; Pins
10=drive /TXREQ Low; 11=drive /TXREQ High
IOCR9-8 RxRMode 00=/RxREQ pin is an input;

01=drive /RXREQ with Receive DMA Request;
10=drive /RXREQ Low; 11=drive /RXREQ High

IOCR7-6 TxDMode 00=drive /TxD with Transmitter output; 4: The /RxD and /TxD Pins
01=release /TxD to high impedance;
10=drive /TxD Low; 11=drive /TxD High

IOCRS-3 TxCMode 000=/TxC pin is an input; 4: The /RxC and /TxC Pins
001=drive /TxC with TxCLK;

010=drive /TxC with Transmit char clock;
011=drive /TxC with Transmit Complete;
100=drive /TxC with output of BRGO;
101=drive /TxC with output of BRG1;
110=drive /TxC with output of CTR1,
111=drive /TxC with Tx output of DPLL

IOCR2-0 RxCMode 000=/RxC }Jln is an input;

001=drive /RxC with RxCLK;
010=drive /RxC with Receive char clock;
011=drive /RxC with /RXxSYNC;
100=drive /RxC with output of BRGO;
101=drive /RxC with output of BRG1;
110=drive /RxC with output of CTRO,
111=drive /RxC with Rx output of DPLL

8-24 RW = Read/Write, RO = Read Only, WO = Write Only. For other codes see page 8-11.

UMO014001-1002

Gayle Gamble
UM014001-1002

. Z16C32 IUSC™
D 2Las (ser's ManuAL
Interrupt Control Register (ICR) Register Address 0 0 b 01100
IE Op RS RD T8 0 IOP | Misc
ME | DLC | NV VIS Rsrvd (WO) E E I E i r
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Fleld/Bit | Conditions RW \

Bit(s) Name ‘IContext Description Status Ref Chapter: Section
ICR15 MIE 1=enable interrupts from this serial controlier RW] 7: Serial Interrupt Options
ICR14 DLC 1=disable Interrupt Enable Out (IEQ) RW
ICR13 NV 1=do not retum a vector during /INTACK cycle RW
ICR12-9 VIS Oox=interrupt vectors never include status; RW

100x=interrupt vectors always include status;
1010=vectors include status except for Misc;
1011=vectors include status only for TD, TS,
RD and RS
1100=vectors include status only for TS, RD,
and RS
1101=vectors include status only for RD and RS
1110=vectors include status only for RS
1111=interrupt vectors never include status
ICR7-6 IE Op Write Ox=no operation; WO | 7: Serial Interrupt Enable Bits
10=clear the IE bits selected by 1s in ICR5-0;
11=set the |E bits selected by 1s in ICR5-0
ICR5 RSIE Read 1=Receive Status interrupt enabled RO
Write 1=set or clear Receive Status IE per |E Op; WO
0=no change
ICR4 RDIE Read 1=Receive Data interrupt enabled RO
Write 1=set or clear Receive Data IE per IE Op; WO
0=no change
ICR3 TSIE Read 1=Transmit Status interrupt enabled RO
Write 1=set or clear Transmit Status IE per |E Op; WO
0=no change
ICR2 TDIE Read 1=Transmit Data interrupt enabled RO
Write 1=set or clear Transmit Data |E per |E Op; WO
0=no change
ICR1 I0PIE Read 1=l/0 Pin interrupt enabled RO
Write 1=set or clear O Pin |E per IE Op; WO
0O=no change
ICRO Misc IE Read 1=Misceilaneous intermupt enabled RO
Write 1=set or clear Miscellaneous IE per IE Op; WO
0=no change

RW = Read/Write, RO = Read Only, WO = Write Only. For other codes see page 8-11.

UMO014001-1002

8-25

Gayle Gamble
UM014001-1002

216C32 lusC™

@ 2ilis USER'S MaNUAL
Interrupt Vector Register (IVR) Register Address 10 b 01010
Inferrupt Vector7-4 (RO) Type Code (RO) (g’g) Interrupt Vector (RW)
15 14 13 12 1 10 9 8 7 4 3 2 1 0
Fleld/Bit | Conditions RW .

BIt(s) Name ‘IContext Description Status Ref Chapter: Section
IVR15-12 Read as software wrote [VR7-4 RO 7: Serial Interrupt Vectors
IVR11-9 TypeCode | IVR15-8, highest pending interrupt type: RO

orlAckw/ | 000=no interrupt type pending;
highest 001=Misc;
pending 101=I/0 Pin;
type 011=Transmit Data;
enabled by | 100=Transmit Status;
ICR12-9 101=Receive Data;
110=Receive Status
IVR8 as software wrote IVRO RO
IVR7-0 Read/Write | basic 8-bit interrupt vector RW
IVR7-0, {reads back as software wrote it)
or lAck w/
highest
pending
type
blocked by
ICR12-9
8-26 RW = Read/Write, RO = Read Only, WO = Write Only. For other codes see page 8-11.

UMO014001-1002

Gayle Gamble
UM014001-1002

Z16C32 JUSC™
N2JLa5 USER'S MANUAL
Miscellaneous Interrupt Status Register (MISR) Reglster Address 10 b 01110
RCC | DPLL
RxcLu| mxc |mxcwu] mxe JRxRLU] RxR | TxRLU] MR |ocouu| DED [CTswu] /eTS | Under DEX?c BRG1 | BRGO
W w w
15 14 13 12 1 10 9 8 7 [5 4 3 2 1 0
Bit(s) Hﬂd"’lgn c,%‘:)‘ﬂ:'&?’ Description St':m . Ref Chapter: Section
MISR15 RxCLU Read 1=0ne or more transition(s) enabled by SICR15-14 RW1U | 4: The /RxC and /TxC Pins
has (have) occurred on the /RxC pin
Write 1=open the latches for /RxC and for this bit
MISR14 /RxC RxCLU=1 | 1=the (first such) enabled transition was a rising edge; | RO
0=it was a falling edge
RxCL/U=0 | 1=the /RxC pin is low; 0=it's high
MISR13 TxCLWY Read 1=0ne or more transition(s) enabled by SICR13-12 RW1IU
has (have) occurred on the /TxC pin
Write 1=open the latches for /TxC and for this bit
MISR12 TxC TxCLWU=1 | 1=the (first such) enabied transition was a rising edge; | RO
0=it was a falling edge
TxCLU=0 |} 1=the /TxC pin is low; 0=it's high
MISR11 RxRLU Read 1=one or more transition(s) enabled by SICR11-10 RW1U | 4: The /RXREQ and /TXREQ
has (have) occurred on the /RXREQ pin pins
Write 1=0pen the latches for /RxR and for this bit
MISR10 /RxR RxRLU=1 | 1=the (first such) enabled transition was a rising edge; | RO
O=it was a falling edge
RxRLU=0 | 1=the /RXREQ pin is low; O=it's high
MISR9 TxRWU Read 1=0ne or more transition(s) enabled by SICR9-8 RW1U
has (have) occurred on the /TxREQ pin
Write 1=open the latches for /TxR and for this bit
MISR8 xR TxRLWU=1 | 1=the (first such) enabled transition was a rising edge; | RO
0O=it was a falling edge
TXRLU=0 | 1=the /TxREQ pin is low; O=it's high
MISR7 DCDWV Read 1=0ne or more transition(s) enabled by SICR7-6 RW{U | 4: The /DCD Pin
has (have) occurred on the /DCD pin
Write 1=open the latches for /DCD and for this bit
MISR6 /DCD DCOL=1 | 1=the (first such) enabled transition was & rising edge; | RO
0=it was a falling edge
DCDUU=0 | 1=the /DCD pin is low; O=it's high
MISR5 CTSW Read 1=one or more transition(s) enabled by SICR5-4 RWIU | 4: The/CTS Pin
has (have) occurred on the /CTS pin
Write 1=0pen the latches for /CTS and for this bit
MISR4 CTS CTSLU=1 | 1=the (first such) enabled transition was a rising edge; | RO
O=it was a falling edge
CTSL/U=0 | 1=the /CTS pin is low; O=it's high
MISR3 RCC Under 1=RCC FIFO has counted down past 0 RW1U | 5: DMA Support Features:
w {Receive frame/message longer than max aliowed) The RCC FIFO
MISR2 DPLLDSync 1=DPLL has lost sync RW1U | 4: More About the DPLL
w 7: Miscellaneous Interrupt
Sources and |A Bits
MISR1 BRG1 LU 1=BRG1 has counted down to 0 RW1U | 4: Txand Rx Clocking:
MISRO | BRGO LU 1=BRGO has counted down to 0 Rwiy | The Baud Rate Generators

RW = Read/Write, RO = Read Only, WO = Write Only. For other codes see page 8-11.

UMO014001-1002

8-27

Gayle Gamble
UM014001-1002

216C32 Jusc™

N 2iLa5B USER'S MANUAL
Register Address 0 1b 11110

Next Receive Address Register Lower (NRARL)

LS 16 bits of “next receive address" (see below)

15 14 13 12 H 10 9 8 7 6 5 4 3 2 1

Next Recelve Address Register Upper (NRARU) Register Address 01 b 11111

MS 16 bits of “next receive address” (see below)
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1]
Field/Bit | Conditions RW \

BHt(s) Name Context Description Status Ref Chapter: Section
NRARU15-0 Pipelined]| 32-bit address of next Rx DMA buffer RW] 6: Pipslined Mode
NRARL1S-0 Array or 32-bit address in Array or Linked List (used to 2 ﬁ’,{ﬁ{d"'ﬁgt"mde

Linked List | fetch address and count of next Rx DMA buffer)

Next Receive Byte Count Register (NRBCR) Register Address 01 b 11101

Length of next Rx DMA buffer
15 14 13 12 1 10] 8 7 6 5 4 3 2 1 0
Bit(s) Flﬁ‘l!d“ﬁlt cfc’:"o‘f":m’ Description sa‘t'{’ s Ref Chapter: Section
NRBCR15-0 Pipelined | length of next Rx DMA buffer, in bytes RW | 6: Pipelined Mode

8-28 RW = Read/Write, RO = Read Only, WO = Write Only. For other codes see page 8-11.

UMO014001-1002

Gayle Gamble
UM014001-1002

Z16C32 [UsC™
N 2iLan USER'S MANUAL
Register Address 0 0 b 11110

Next Transmit Address Register Lower (NTARL)

LS 16 bits of “next transmit address* (see below)

15 14 13 12 1 10 3 8 7 6 5 4 3 2 1 0

Next Transmit Address Register Upper (NTARU)

MS 16 bits of "next transmit address" (see below)
15 14 13 12 1 10 9 8 7] 5 4 3 2 1 0
Fleld/Bit | Conditions RW .
Bit(s) Name Context Description Status Ref Chapter: Section
N;ﬁggﬁ@ Pipelined | 32-bit address of next Tx DMA buffer RW g: zirgaelirmd Mode
N 15-0 . " ’ - : Array Mode
Array or 32-bit address in Array or Linked List (usedto - Li i
Linked List | fetch address and count of next Tx DMA bufier 6: Linked List Mode

Register Address 00 b 11101

Next Transmit Byte Count Register (NTBCR)
Length of next Rx DMA buffer
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 o
Field/Bit | Conditions RW .
Bit(s) Name Context Description Status Ref Chapter: Section
NTBCR15-0 Pipelined | number of bytes in next Tx DMA buffer RW | 6: Pipslined Mode

RW = Read/Write, RO = Read Only, WO = Write Only. For other codes see page 8-11. 8-29

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2La5

216C32 lUSC™

USER'S MANUAL
Port Control Register (PCR) Register Address 1 0 b 00101
P7Mode P6Mode P5Mode P4Mods P3Mode P2Mode P1Mode POMode
15 14 13 12 1 10] 8 7 6 5 4 3 2 1 0
Bit(s) F'ﬁ;dn:g" c’%rglzl&rtus Description SIRWI s Ref Chapter: Section
PCR15-14 | P7Mode 00=PORT?7 pin is an input; RW | 4:The Port Pins
01=drive PORT7 with TxComplets;
10=drive PORTY low; 11=drive PORT7 high
PCRR13-12 | P6Mode 00=PORTS pin is a GP input; 4: The Port Pins
01=PORTS pin is /FSYNC input; 4: The Time Slot Assigners
10=drive PORTS low; 11=drive PORTS high
PCR11-10 P5Mode 00=PORTS pin is an input; 4: The Port Pins
01=drive PORT5 with /RXSYNC;
10=drive PORTS low; 11=drive PORTS5 high
PCRR3-8 | P4Mode 00=PORT4 pin is an input; 4:ThePort Pins
01=drive PORT4 with Tx TSA Gate; 4: The Time Slot Assigners
10=drive PORT4 low; 11=drive PORT4 high
PCR7-6 P3Mode 00=PORTS3 pin is an input;
01=drive PORT3 with Rx TSA Gate;
10=drive PORT3 low; 11=drive PORT3 high
PCR5-4 P2Mode 00=PORT2 pin is an input; 4: The Port Pins
01=drive PORT2 with LocalTalk driver enable signal; 4: LocalTalk (AppleTalk)
10=drive PORT2 low; 11=drive PORT2 high Interface
PCR3-2 P1Mode 00=PORT1 pin is a GP input; 4:The Port Pins
01=PORT1 pin is CLK1 input; 4: Tx and Rx Clocking:
10=drive PORT1 low; 11=drive PORT1 high CTRO and CTR1
PCR1-0 POMode 00=PORTO pin is a GP input;
01=PORTO pin is CLKO input;
10=drive PORTO low; 11=drive PORTO high

8-30

UMO014001-1002

RW = Read/Write, RO = Read Only, WO = Write Only. For other codes see page 8-11.

Gayle Gamble
UM014001-1002

N 2La5

Z16C32 IUSC™

USER'S MANUAL
Port Status Register (PSR) Register Address 1 0 b 00100
PTLI] 7 | PeU| /P6 | PSLU| P5 | PALV| /P4 |PILU| 3 | PLU| /P2 | PILUY| /1 JPOLU]L /PO
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Bit(s) Fﬁ;ﬁ" c,%’:g":g’x':s Description sm s Ref Chapter: Section
PSR15 P7LU 1=transition detected on PORTY pin RW1U | 4: The Port Pins
PSR14 P7 P7LAU=1 1=rising edge on PORT7; O=falling edge RO
P7LU=0 1=PORT7 was low last time P7L/U:=1;
0=PORT7 was high
PSR13 P6L/U 1=transition detected on PORTS pin RW1U
PSR12 P8 P6LAU=1 1=rising edge on PORTS; O=falling edge RO
P6LAU=0 1=PORT6 was low last time P6L/U.=1;
0=PORT6 was high
PSR11 P5LU 1=transition detected on PORTS5 pin RWIU
PSR10 fP5 P5LU=1 1=rising edge on PORTS; O=falling edge RO
P5L/U=0 1=PORT5 was low last time P5L/U:=1;
0=PORT5 was high
PSR9 P4 1=transition detected on PORT4 pin RW1U
PSR8 P4 P4L/U=1 1=rising edge on PORT4; O=falling edge RO
P4LU=0 1=PORT4 was low last time P4L/U:=1,
0=PORT4 was high
PSR7 P3LU 1=transition detected on PORT3 pin RWiU
PSR6 P3 P3LU=1 1=rising edge on PORTS; 0=falling edge RO
P3LU=0 1=PORT3 was low last time P3L/U:=1;
0=PORT3 was high
PSR5 P2LV 1=transition detected on PORT2 pin RW1U
PSR4 P2 P2LU=1 1=rising edge on PORT2; 0=falling edge RO
P2LU=0 1=PORT2 was low last time P2L/U:=1;
0=PORT2 was high
PSR3 P1LA 1=transition detected on PORT1 pin RWIU
PSR2 ™ P1LU=1 1=rising edge on PORT1; O=falling edge RO
P1LU=0 1=PORT1 was low last time P1LU:=1;
0=PORT1 was high
PSR1 POLV 1=transition detected on PORTO pin RW1U
PSRO PO POLA=1 1=rising edge on PORTO; O=falling edge RO
POLU=0 1=PORTO was low last time POLAU:=1;
0=PORTO was high
RW = Read/Write, RO = Read Only, WO = Write Only. For other codes see page 8-11. 8-31

UMO014001-1002

Gayle Gamble
UM014001-1002

p‘g szms Z16C32 iusc™

USER'S MaNuAL
Receive Address Reglster Lower (RARL) Register Address 0 1 b 10110
LS 16 bits of current Rx DMA butfer address
15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0
Receive Address Register Upper (RARU) Register Address 01 b 10111
MS 16 bits of current Rx DMA buffer address
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 o
Field/Bit | Conditions RW .

Bit(s) Name IContext Description Status Ref Chapter: Section
RARU15-0 32-bit address of next Rx DMA buffer RW | 6: DMA Fundamentals:
RARL15-0 Addresses and Byte Counts

Receive Byte Count Register (RBCR) Register Address 01 b 10101
Number of bytes left in current Rx DMA buffer
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Field/Bit | Conditions RW .

Bit(s) Name ‘Context Description Status Ref Chapter: Section

RBCR15-0 Number of byte locations (left) in Rx DMA butfer RW | 6: DMA Fundamentals:

Addresses and Byte Counts
Receive Character Count Register (RCCR) Register Address 10 b 10110
Ending count of oldest received frame/message in RCC FIFO
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
FleldBit | Conditions RW .

Bit(s) Name IContext Description Status Ref Chapter: Section

RCCR15-0 RCCAvail | Final RCC value of oldest recaived frame/ RO | 5: DMA Support Features:

((1>CSR14) message in the RCC FIFO The RCC FIFO
8-32 RW = Read/Write, RO = Read Only, WO = Write Only. For other codes see page 8-11.

UMO014001-1002

Gayle Gamble
UM014001-1002

216C32 {USC™

@ 2Lan USER'S MANUAL
Recelve Command/Status Register (RCSR) Register Address 10 b 10010
Remd (WO) RuResid Shortf/ | Exited | Idle | Break | Rx | CRCE| Abort | Rx | Rx
ondBE 1StBE XHesidue CVType| Hunt | Rcved | /Abort | Bound | /FE | /PE | Over | Avai
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Field/Bit | Conditions RW ,
Bit(s) Name ‘IContext Description Status Ref Chapter: Section
RCSR15-12 | RCmd Sync 0000=no operation; 0001=Reserved wo 5: Commands
0010=Clear Receive CRC Generator
0011=Enter Hunt Mode;
0100=Select RICRHi=RTSA Data
0101=Select RICRHi=RxFIFO Status
0110=Select RICRHi=/INT Level
0111=Select RICRHi=/RxREQ Leve!
1xxx=Reserved
RCSR15 2ndBE Last RDR | 1=2nd-oldest byte in RxFIFO had RxBound, RO 5: Status Reporting:
:esag.twas PE, or RxOver when RDR was last read Detailed Status in the RCSR
its
RCSR14 1$1BE 1=oldest byte in RxFIFO had RxBound, RO
PE, or RxOver when RDR was last read
RCSR11-19 | RxResidue | H/SDLC 000=frame ended at character boundary RO 5: HDLC/SDLC Mode:
001-111=number of extra bits at end Frame Length Residuals
RCSR8 ShontF/ H/SDLC, 1=received frame ended before RW1U | 5: Status Reporting:
CVType CMR7-4 Address/Control fields {see Note 1) orRO | Detailed Status in the RCSR
not xx00 i
ACV O=received Data word
{15538} 1=received Command/Status word (see Note 1)
RCSR7 ExitedHunt 1=receiver has left Hunt mode RWiU
RCSR6 IdleRcved 1=15 or 16 ones received RWiU
RCSRS Break/Abort | Async 1=Break received RWiU
H/SDLC 1=Abort received (global/real-time flag)
RCSR4 RxBound Nine Bit 1=address character (see Note 2) R,Vg c():
ACV 1=2nd (or only) byte of word (see Note 2) o
(1553B)
ExtSync, | 1=end of message (see Note 2)
T. Bisync
802.3 1=ond of frame (see Note 2)
HDLC/ 1=Flag or Abort followed this character
SDLC (see Note 2)
RCSR3 CRCEFE | Sync 1=CRC not correct (at this point; see Note 1) RO
Async 1=framing error (Stop bit = zero/space;
see Note 1)
RCSR2 Abor/PE | QAbort 1=parity error (see Note 2) RWIC
(RMR8)=0 or RO
H/SDLC, 1=Abort followed this character (see Note 2)
QAbort=1
RCSR1 RxOver 1=RxFIFQ overflow (see Note 2)
RCSRO RxAvail 1=RxFIFQ is not empty RO

Note 1: The IUSC carries these bits through the RxFIFO with data characters; they may represent the status of the oldest character or two
currently in the FIFO, or of the last one or two read from it, as described in the referenced Chapter/Section.

Note 2: The IUSC carries these bits through the RxFiFO with data
currently in the FIFO, of the last one or two read from it, or may be a cumulat

in the referenced Chapter/Section.

characters; they may represent the status of the oldest character or two
iveflaiched bit (if interrupts are armed for this bit), as described

RW = Read/Write, RO = Read Only, WO = Write Only. For other codes see page 8-11.

UMO014001-1002

8-33

Gayle Gamble
UM014001-1002

N 205

21632 IUSC™
USER'S MANUAL

Receive Count Limit Register (RCLR)

Register Address 1 0 b 10101

Starting value for Receive Character Counter

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Bit(s) Flel/Bit C/%';f"::’x';s Description s | RetChapter: Section
RCLR15-0 Starting value for RCC: D=disable RCC; RW | 5: DMA Support Features:

FFFF=enable RCC, no set max frame/message
length; else maximum allowed length

The Character Counters

Receive Data Register (RDR)

Register Address 1 0 b 1x000 or 1 1 b xxoxx

Received character: read only using 16-bit operation

Received character: 8- or 16-bit read

15 14 13 12 1 10 9 8 7 6 5 -4 3 2 1 0
Bit(s) F'ﬁ;"n’g" °/%';‘:":‘:;“s Description sgm o | RefChapter: Section
RDR15-8 16-bitbus | The "other” received character in a 16-bit read RO | 5: The Data Registers and
(may be the oldest or 2nd-oldest per *Select the FIFOs
D15-8 First" or "Select D7-0 Flrst" commands in
RTCmd {CCAR15-11))
RDR7-0 Received character

Receive DMA Interrupt Arm Register (RDIAR)

Register Address 0 1 b 01111

EQA/ | EOB | HAbort] SAbort
Reserved (0) EoLIA|] 1A | 1A | 1A
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
FieldBit | Conditions RW \
Blt(s) Name Context Description Status Ref Chapter: Section
RDIAR3 EOAEOL 1A | Array, 1=amm interrupt on End of Array/End of List RW | 7: DMAInterrupt Sources
Linked List | (RMCR3) and IA Bits
RDIAR2 EOBIA 1=am interrupt on End of Buffer (RDMR2)
RDIAR1 HAbort 1A 1=am interrupt on Hardware Abort (RDMR1)
RDIARO SAbort IA 1=amm interrupt on Software Abort (RDMRO)
8-34 RW = Read/Write, RO = Read Only, WO = Write Only. For other codes see page 8-11.

UMO014001-1002

Gayle Gamble
UM014001-1002

21632 IUSC™

N 205 UsER's MANUAL
Receive DMA Mode Register (RDMR) Register Address 0 1 b 00001
RSB | Clear i EOA/
DMAMode AL | Gount AddrMode | TermE | 8/16 | CONT | GLink | BUSY | INITG EOL EOB | HAbort | SAbort
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Field/Bit { Conditions RW .
Bit(s) Name IContext Description Status Ref Chapter: Section
RDMR15-14 | DMAMode 00=Single Buffer; 01=Pipelined; RW | 6: DMAFundamentals
10=Array; 11=Linked List
RDMR13 RSBinA/L | Array or 00=store Receive Status Blocks in data buffers RW | 6: Storing Recsive Status
Linked List | after frames/messages;, Blocks
1=store RSBs in Array/List entries;
RDMR12 ClearCount | Array or 1=clear Byte Count fields in Array/List entries to RW | 6:Array Mode
Linked List | zero after fetching them 6: Linked List Mode
RDMR11-10 | AddrMode 00=increment addresses; RW | 6:Address Sequencing
01=decrement addresses; 10=fixed address
ROMR9 TermE 1=terminate buffer on RxBound RW | 6: DMA Fundamentals:
Buffer Termination
ROMR8 8/16 16-bit bus | 1=8-bit transfers; RW | 6: DMA Fundamentals:
0=16-bit transfers Data Width, Byte Ordering
ROMR7 CONT Pipelined | 1=software has issued a Start/Continue command RO | 6: Channel Status
after loading Next Address and Count
RDMR6 GLink Linked List | 1=the channel is reading the Link address from RO
a list entry, or it stopped while doing so
RDMRS BUSY 1=the channel is operating per a Start RO
command; O=the channel is stopped
RDMR4 INITG Array or 1=the channel is fetching information from the RO
Linked List | array orfinked list, or it stopped while doing so
RDMR3 EOAEOL | Amayor 1=the channel has reached the end of the array ROC
Linked List | or list, signified by a zero Byte Count field
RDMR2 EOB 1=the channel has reached the end of the buffer ROC
RDMR1 HAbort 1=the channel has stopped because the /ABORT ROC
pin went low while it was doing a memory cycle
RDMRO SAbort 1=software stopped the channel via an ROC
Abort command
RW = Read/Write, RO = Read Only, WO = Write Only. For other codes see page 8-11. 8-35

UMO014001-1002

Gayle Gamble
UM014001-1002

. 216032 JUSC™
N 2iLan USER'S MANUAL

Receive Interrupt Control Register (RICR) Register Address 10 b 10011
"RTSAdata" if last RCSR15-12 command 4-7 was 4
“RXFIFO fill level" if last RCSR15-12 command 4-7 was 5 Exitod | dlo {Broaks) Rx 4 | Werd | Abort JRxover| TcoR
Rx Int Req level f last RCSR15-12 command 4-7 was 6 Hunt I] Agied | Abort | Bound f siatus | PE | 1A} el
*Rx DMA Req level® if last RCSR15-12 command 4-7 was 7
15 14 13 12 b3 10 9 8 7 6 5 4 3 2 1 (]
: FieldBit | Conditions RW . :
Bit(s) Name IContext Description Status Ref Chapter: Section
RICR15-9 | RTSASlot | 4 writtento | “slot number® (number of bytes from frame sync) RW | 4: The Time Slot Assigners
RCmd at which to activate Rx in each frame
since 57
written
there, read
or write
W/RICR8=0
RICR15-13 | RTSAOffset | 4 writtento | “offset" (number of bits delay) at which to WO
RCmd activate Rx in each frame :
since 5-7
written
there, write
w/RICR8=1
RICR12-9] RTSACount | 4 writtento | 0000=disable Rx Time Slot Assigner WO
RCmd 0001-1111=number of consecutive bytes/
since 5-7 octetsftime slots to receive in each frame
written
there, write
w/RICR8=1
RICR158 Swrittento | the number of characters/bytes/octets RO | 5:The Data Registers and
RCmd, or | currently in the RxFIFO the FIFOs
Reset,
since 4, 6,
or 7 written
there
RICR15-8 6 written to | number of charactersibytes/octets in the RW 7: Receive Data interrupts
RCmd RxFIFO, above which to request a Receive
since 4,5, | Data interrupt
or 7 written
there
RICR15-8 7 writtento | number of charactersibytes/octets in the RxFIFO, RW | 6: DMA Requests by the
RCmd above which to request a Receive DMA transfer Receiver and Transmitter
since 4-6 This value must be at least 1 for 16-bit Rx DMA
written operation
there
RICR7 ExitedHunt 1=am interrupts on ExitedHunt (RCSR7) RW | 7: Receive Status Interrupt
1A Sources and 1A Bits
RICR6 IdleRcvedIA 1=arm interrupts on IdleRcved (RCSR6) RW
RICRS B{e&k/Abort 1=arm interrupts on Break/Abort (RCSRS) RW
RICR4 RxBound 1A 1=am interrupts on RxBound (RCSR4) RW
RICR3 WordStatus 0O="queued" status in RCSR reflects oldest RW 5: Status Repom‘ng: Detailed
character in RxFIFO; 1=two oldest characters Status in the RCS|
RICR2 Abort/PE (A 1=am interrupts on Abort/PE (RCSR2) RW 7: Receive Status Interrupt
Sources and [A bits
RICR1 RxOver 1A 1=am interrupts on RxOver (RCSR1) RW
RICRO TCOR Sel O=select Time Constant value for reading TCOR RW 4: Tx and Rx Clocking: The
1=capture current count for reading TCO! Baud Rate Generators
8-36 RW = Read/Write, RO = Read Only, WO = Write Only. For other codes see page 8-11.

UMO014001-1002

Gayle Gamble
UM014001-1002

1 Z16C32 lUsC™
N 2iLa5 USER'S MANUAL
Receive Mode Register (RMR) Register Address 10 b 10001
RxCRC |RxCRC RxPar

RxDecode RxCRCType st | Enab QAbort| RxParType Enab RxLength RxEnable
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 (]
Bit(s) F"‘l‘;dnﬁ" %mm‘ Description oy o| RetChapter: Section
RMR15-13 | RxDecode 000=RxD not encoded ("NRZ"); RW 4: Data Formats and
001=invert polarity of RxD ("NRZB"); Encoding
010=decode RxD NRZI-Mark;
011=decode RxD NRZI-Space;
100=decode RxD Biphase-Mark (FM1);
101=decode RxD Biphase-Space (FMO);
110=decode RxD Biphase-Level (Manchester);
111=decode RxD Differential Biphase-Level
RMR12-11 { RxCRCType | Sync 00=use 16-bit CRC-CCITT for Rx; 5: Cyclic Redundancy
01=use CRC-16 for Rx; Checking
10=use 32-bit Ethemet CRC for Rx
RMR10 RxCRCStart | Sync 0O=start Receive CRC generator as all-zeros;
1=all ones
RMR9 RxCRCEnab { Sync 1=include Receive characters in CRC
RMR8 QAbort HDLC/ 1=use Abort/PE bit in RxFIFO and RCSR2 for 5: Status Reporting: Detailed
SDLC Abort indication Status in the RCS
§: HDLC/SDLC: Handling a
0=use Abort/PE for Parity Error indication Received Abort
RMR7-6 RxParType 00=Receive Parity Even; 01=0dd; 5: Parity Checking
10=Zero (Space); 11=One (Mark)
RMR5 RxParEnab 1=accumulate and check Parity bits
RMR4-2 RxLength 000=receive eight bit characters; 5: The Mode Registers:
001-111=receive 1-7 bit characters Character Length
RMR1-0 RxEnable 00=disable Recsiver (immediately);
01=disable Rx at end of message/frame/char,
10=enable Ax unconditionally;
11=auto-enable Rx per /DCD pin
Recelve Sync Register (RSR) Register Address 10 b 10100
Receive Sync, SYN1, or 9th-16th bits of Ethemet address Receive SYNO or 1st-8th bits of address
15 14 13 12 1 10] 8 7 8 5 4 3 2 1]
Field/Bit { Conditions RW .
Bit(s) Name IContext Description Status Ref Chapter: Section
RSR15-8 Monosync | Receive Sync match character RW iﬂolgonosync and Bisync
Bisyne second half of Receive sync match (SYN1) 5: 80923 (Ethemet) Mode
802.3 match against second-received 8 bits of address
RSR7-0 Bisync first half of Receive sync match (SYNO) a:ohgonosync and Bisync
os
H/SDLC, match against first-received 8 bits of address 5: HDLC/SDLC Mode
(CMR7-4) 5: 802.3 (Ethemet) Mode
not xx00,
802.3

RW = Read/Write, RO = Read Only, WO = Write Only. For other codes see page 8-11.

UMO014001-1002

8-37

Gayle Gamble
UM014001-1002

N 2La5

Z16C32 [USC™

USER'S MANUAL
Set DMA Interrupt Register (SDIR) Register Address 0 x b 01110
- Reserved (0) RXOMA | TXOMA Reserved (0) RXDMA | TXDMA
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Bit(s) Flr:xladn,\?an cl%':)ﬂ:leo;t‘s Description Str;m . Ref Chapter: Section
SDIRS RxDMA IUS { Read 1=Rx DMA interrupt under service RO 7: DMA IP and IUS Bits
Write 1=set Rx DMA IUS bit; 0=no change WO
SDIR8 TxDMAIUS | Read 1=Tx DMA interrupt under service RO
Write 1=set Tx DMA IUS bit; 0=no change WO
SDIR1 RxDMAIP | Read 1=Rx DMA interrupt pending RO
Write 1=set Rx DMA IP bit; O=no change WO
SDIRO TxDMAIP | Read 1=Tx DMA Interrpt pending - RO
Write 1=set Tx DMA IP bit; 0=no change WO
Status Interrupt Control Register (SICR) Register Address 10 b 01111
RxCDn | RxCUp | TxCDn | TxCUp] RxRDn | RxRUp | TxRDn | TxRUp |DCDDN |DCDUp| CTSDN [CTSUp Sn%‘j, gg u;; BRG1 | BRGO
1A IA 1A 1A 1A 1A 1A 1A 1A 1A 1A 1A 1A |Xn 1A 1A
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Bit(s) Fm‘;’:" cm':g’;t‘s Description St':‘t'tvx . Ref Chapter: Section
SICR15 RxCDn A 1=set MISR15/interrupt on fall of /RxC RW | 4:The/RxC and /TxC Pins
SICR14 RxCUp IA 1=set MISR15/interrupt on rise of /RxC
SICR13 TxCDn 1A 1=set MISR13/interrupt on fall of /TXC
SICR12 TxCUp A 1=set MISR13/interrupt on rise of /TxC
SICR11 RxRDn IA 1=set MISR11/interrupt on fall of /RXxREQ 4: /RxREQ and /TxREQ Pins
SICR10 RxRUp 1A 1=set MISR11/Interrupt on rise of /RXREQ
SICR9 TxRDn |A 1=set MISRY/interrupt on fall of TXREQ
SICR8 TxRUp IA 1=set MISRY/interrupt on rise of TXREQ
SICR? DCDDn 1A 1=set MISR7/interrupt on fall of /DCD 4: The /DCD Pin
SICR6 DCDUp 1A 1=set MISR7/interrupt on rise of /DCD
SICR5 CTSDn I1A 1=set MISR5/interrupt on fall of /CTS 4:The /CTS Pin
SICR4 CTSUp IA 1=set MISR5/interrupt on rise of /CTS
SICR3 RCC Under | RCCused | 1=interrupt on RCC underflow 5: DMA Support Features:
1A (Receive frame/message longer than The RCC FIFO
max allowed)
SICR2 DPLLDSync | Biphase 1=interrupt on DPLL sync loss 4: More About the DPLL
IA 7: Miscellaneous Interrupt
Sources and 1A Bits
SICR1 BRG1 1A 1=interrupt on BRG1 zero 4: Tx and Rx Clocking:
SICRO | BRGOIA 1=interrupt on BRGO zero The Baud Rate Generalors
8-38 RW = Read/Write, RO = Read Only, WO = Write Only. For other codes see page 8-11.

UMO014001-1002

Gayle Gamble
UM014001-1002

N2La5

21632 IUSC™
USER'S MANUAL

Test Mode Control Register (TMCR)

Register Address 10 b 00111

Reserved (0) Test Register Address
15 14 13 12 1 10] 8 7 6 5 4 3 2 1 0
Field/Bit | Conditions RW .

Bit(s) Name Context Description Status Ref Chapter: Section
TMCR4-0 Address of test register to read or write in TMDR RW 8: Serial Controller Test Modes
Test Mode Data Register (TMDR) Register Address 1 0 b 00110
Test Register selected by TMCR4-0
15 14 13 12 1" 10 9 8 7 6 5 4 3 2 1 0

Fleld/BIt | Conditions RW .
Bit(s) Name Context Description status Ref Chapter: Section
TMDR15-0 Test register selected by TMCR4-0 Varies | 8: Serial Controller Test Modes
Time Constant 0 Register (TCOR) Register Address 10 b 10111
Divisor for (or current count in) Baud Rate Generator 0
15 14 13 12 b3 10 9 8 7 6 5 4 3 2 1 o
Field/Bit | Conditions RW .
Bit(s) Name Context Description Status Ref Chapter: Section
TCOR15-0 Write, of divisor/starting value for BRGO: RW | 5: DMA Support Features:
Read w/ O="input=output"; 1=divide by 2; The Character Counters
TCORSel | n=divide by n+1
(RICRO)=0
Read w/ Value of BRGO counter last time TCORSel'=1 RO
TCORSel
(RICRO)=1
Time Constant 1 Register (TC1R) Register Address 10 b 11111
Divisor for (or current count in) Baud Rate Generator 1
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Fleld/Bit | Conditions RW .
Bit(s) Name IContext Description Status Ref Chapter: Section
TC1R15-0 Write, or divisor/starting value for BRG1: RW | 4: DMA Support Features:
Read w/ O=input=output; 1=divide by 2; The Character Counters
TC1RSel | n=divide by n+1
(RICRO)=0
Read w/ Value of BRG1 counter last time TC1RSel:=1 RO
TC1RSel
(RICRO)=1

RW = Read/Write, RO = Read Only, WO = Write Only. For other codes see page 8-11.

UMO014001-1002

8-39

Gayle Gamble
UM014001-1002

N\ 205

Z16C32 IUsC™
USER'S MANUAL

Transmit Address Register Lower (TARL)

Register Address 0 0 b 10110

LS 16 bits of current Tx DMA buffer address

15 14 13

12 1" 10 9 8 7 6 5 4 3 2 1 0
Transmit Address Register Upper (TARU) Register Address 00 b 10111
MS 16 bits of current Tx DMA buffer address
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Field/Bit | Conditlons RW .

Bit(s) Name IContext Description Status Ref Chapter: Section
TARU15-0 32-bit current address in Tx DMA buffer RW | 6: DMA Fundamentals:
TARL15-0 Addresses and Byte Counts

Transmit Byte Count Register (TBCR) Register Address 00 b 10101
Number of bytes left to send in current Tx DMA buffer
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Field/Bit | Conditions RW .
Bit(s) Name IContext Description Status Ref Chapter: Section
TBCR15-0 Number of bytes left to send in Tx DMA buffer RW | 6: DMA Fundamentals:
Addresses and Byte Counts
Transmit Character Count Register (TCCR) Register Address 10 b 11110
Current value of Transmit Character Counter
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1]
Field/Bit | Conditions RW .

Bit(s) Name ‘IContext Desctlption Status Ref Chapter: Section

TCCR15-0 0=TCC disabled; eise number of bytes (left) to RO 5: DMA Support Features:
send In current/next Transmit frame/message The Character Counters
8-40 RW = Read/Write, RO = Read Only, WO = Write Only. For other codes see page 8-11.

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLa5

21632 lUsc™
USER'S MANUAL

Transmit Command/Status Register (TCSR)

Register Address 10 b 11010

TCmd

Under
Wait

Txld! Pre |die
ide Sent | Sent

Abort
Sent

EOF/
EOM

Sent

CRC | A
Sent | Sent

Tx
Under

Tx
Empty

15 14

13

12 11

10 9 8 7 6

5

4

3 2

1

0

Bit(s)

Fleld/Bit
Name

Conditions
/Context

Description

RW
Status

Ref Chapter: Section

TCSR15-12

TCmd

0000=no operation; 0001=reserved

Sync

0010=Clear Tx CRC Generator

0011=reserved

0100=Select TICRHi=TTSA Data
0101=Select TICRHi=TxFIFO Status
0110=Select TICRHi=/INT Level
0111=Select TICRHi=/TxREQ Level

TICR2=1

1000=Send Frame/Message

H/SDLC

1001=Send Abort

101x=reserved

T.Bisync

1100=Enable DLE Insertion
1101=Disable DLE Insertion

Sync

1110=Clear EOF/EOM
1111=Set EOF/EOM

WO

5. Commands

TCSR11

UnderWait

Sync

1=interlock Transmitter from Tx underrun
until Send Frame command. Also, if TxCtriBlk
(CCR15-14) is 10 = 32-bit TCBs, delay start
of frame transmission until TxFIFO is full or
complete frame written to TxFIFO.

RW

5: Handling Overruns and
Underruns: Tx Underruns

TCSR10-8

Txldle

Selects the Transmit idle line condition:
000=the default for TxMode (sync/Flag/Mark)
001=alternating zeroes and ones
010=continuous zeroes

011=continuous ones

100=reserved

101=alternating Mark and Space
110=continuous Space (TxD low)
111=continuous Mark (TxD high)

RW

5: Between Messages,
Frames, or Characters

TCSR?7

PreSent

Sync

1=Transmitter has finished sending Preamble

TCSR6

IdleSent

1=Transmitter has sent ldle condition

TCSR5

AbortSent

H/SDLC

1=Transmitter has sent Abort

TCSR4

EOF/EOM
Sent

Sync

1=Transmitter has sent End of Frame/End
of Message

TCSR3

CRCSent

Sync

1=Transmitter has sent a CRC code

RW1U

TCSR2

AliSent

Async

1=last bit has gone out onto TxD

RO

TCSR1

TxUnder

1=Transmitter has Underflowed

RW1U

TCSRO

TxEmpty

1=TxFIFO is empty

RO

5: Status Reporting:
Detailed Status in the TCSR

RW = Read/Write, RO = Read Only, WO = Write Only. For other codes see page 8-11.

UMO014001-1002

8-41

Gayle Gamble
UM014001-1002

N 2iLas

21632 uSC™
UsER's MANUAL

Transmit Count Limit Register (TCLR)

Register Address 10 b 11101

Starting value for Transmit Character Counter

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Bit(s) Fﬁ;"n’g" c/%%dmﬂfx?s Description satvrx . Ref Chapter: Section

TCLR15-0

Starting value for TCC: O=disable TCC;

else length of next frame/message, in bytes

RW

5: DMA Support Features:
The Character Counters

Transmit Data Register (TDR)

Register Address 1 0 b 1x000 or 1 1 b xxxxx

Transmit character: write only using 16-bit operation

Transmit character: 8- or 16-bit write

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 (i}
Field/Bit | Conditions RW .
Bit(s) Name Context Description Status Ref Chapter: Section
TDR15-8 16-bit bus | The "other" Transmit character in a 16-bit write WO 5: The Data Registers and
(may be sent 1st or 2nd per “Select D15-8 the FIFOs
First* or *Select D7-0 Flrst* command in
RTCmd [CCAR15-11])
TDR7-0 Transmit character
Transmit DMA Interrupt Arm Register (TDIAR) Register Address 0 0 b 01111
EOA/ | EOB | HAbort | SAbort
Reserved (0) eoLiAl a | A |
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1]

See the description of the Receive DMA Interrupt Arm Register (RDIAR). This one is identical except that it arms status bits in the TOMR
rather than the ROMR.

8-42

RW = Read/Write, RO = Read Only, WO = Write Only. For other codes see page 8-11.

UMO014001-1002

Gayle Gamble
UM014001-1002

21632 [USC™

@ 2L USER'S MANUAL
Transmit DMA Mode Register (TDMR) Register Address 0 0 b 00001
TCB | Clear i EOA
DMAMode AL | Count AddrMode | TemE | 8/16 | CONT | GLink | BUSY | INITG EOL EOB | HAbort | SAbort
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fleid/Bit | Conditions RW .
Bit(s) Name Context Description Status Ref Chapter: Section
TDMR15-14 | DMAMode 00=Single Buffer; 01=Pipelined; RW | 6: DMA Fundamentals
10=Amay; 11=Linked List
TDMR13 TCBinAL | Arrayor 0=fetch Transmit Control Blocks from data 6: Fetching Transmit Control
Linked List | buffers before start of frames/messages; Blocks
with TCBs | 1=fetch TCBs from Array/List entries
TDMR12 ClearCount | Array or 1=clear Byte Count fields in Array/List entries to 6: Array Mode
Linked List | zero after fetching them 6: Linked List Mode
TDMR11-10 | AddrMode 00=increment addresses; 5: Address Sequencing
01=decrement addresses; 10=fixed address
TDMR9 TermE 1=terminate buffer at end of Tx frame 6: DMA Fundamentals:
Buffer Termination
TOMR8 8/16 16-bitbus | 1=8-bit transfers 6: DMA Fundamentals:
0=16-bit transfers Data Width, Byte Ordering
TDMR7 CONT Pipelined | 1=software has issued a Start/Continue RO 6: Channel Status
command after loading Next Address and Count
TDMR6 GLink Linked List § 1=the channel is reading the Link address from
a list entry, or it stopped while doing so
TOMRS BUSY 1=the channel is operating per a Start
command; O=the channel is stopped
TDMR4 INITG Array or 1=the channel is fetching information from the array
Linked List | or linked list, or it stopped while doing so
TDMR3 EOA/EOL | Amayor 1=the channel has reached the end of the array ROC
Linked List | or list, as signified by a zero Byte Count field
TDMR2 EOB 1=the channel has reached the end of a buffer
TDMR1 HAbort 1=the channel stopped because the /ABORT
pin went low while it was doing a memory cycle
TDMRO SAbort 1=software stopped the channel via an Abort
command
RW = Read/Write, RO = Read Only, WO = Write Only. For other codes see page 8-11. 8-43

UMO014001-1002

Gayle Gamble
UM014001-1002

: ' 216C32 IUSC™
N 2iLas USER'S MANUAL

Transmit interrupt Control Register (TICR) Register Address 10 b 11011

“TTSAdata" if last TCSR15-12 command 4-7 was 4 .
"TXFIFO il level* if last TCSR15-12 command 4-7 was 5 s Jo | Abort | EQF | CRC | War2 | Tx | TCIR
“Tx Int Req level* i last TCSR15-12 command 4-7 was 6 on ent | Sent | oM, | Sent | Send | Under | Sl
“Tx DMA Req level” if last TCSR15-12 command 4-7 was 7
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Fleld/Bit | Conditions RW .
Bit(s) Name Context Description Status Ref Chapter: Section
TICR15-9 | TTSASIot | 4 writtento | "slot number* (number of bytes from frame sync) RW 1 4: The Time Slot Assigners
TCmd at which to activate Tx in each frame
since 5-7
written
there, read
or write
w/TICR8=0
TICR15-13 | TTSAOffset | 4 writtento | “offset* (number of bits delay) at which to WO
TCmd activate Tx in each frame
since 5-7
written
there, write
w/TICR8=1
TICR12-9 | TTSACount | 4 writtento | 0000=disable Tx Time Slot Assigner wo
TCmd 0001-1111=number of consecutive bytes/
since 5-7 | octets/time slots to receive in each frame
written
there, write
w/TICR8=1
TICR15-8 Swritten to | the number of characters/bytes/octets RO 5: The Data Registers and
TCmd, or | currently in the TxFIFO the FIFOs
Reset,
since 4, 6,
or 7 written
there
TICR15-8 6 writtento | the number of empty characters/bytes/octets in the AW | 7: Transmit Data interrupts
TCmd TxFIFQ, above which to request a Transmit
since 4,5, | Data interrupt
or 7 written
there
TICR15-8 7 written to | the number of empty characters/bytes/octets in the RW | 6: DMA Requests by the
RCmd TxFIFO, above which to request a Transmit DMA Receiver and Transmitter
since 4-6 | transfer
written This value must be at least 1 for 16-bit Tx DMA
there operation
TICR7 PreSentiA | Sync 1=am interrupts on Preambie Sent (TCSR7) RW | 7: Transmit Status Interrupt
Sources and 1A Bits
TICR6 IdleSent 1A 1=am interrupts on IdleSent (TCSRE)
TICRS /ZbonSent H/SDLC 1=am interrupts on AbortSent (TCSRS)
!
TICR4 SOFIE\OM Sync 1=am interrupts on EOF/EOM Sent (TCSR4)
ont
TICR3 CRCSent 1A | Sync 1=am interrupts on CRCSent (TCSR3)
TICR2 Wait2Send | Sync 1=hold Transmitter from sending each RW | 5: Synchronizing Frames/
frame/message until software issues "Send Messages with Software
Message/Frame" command Response
TICR1 TxUnder IA 1=am interrupts on TxUnder (TCSR1) RW | 7: Transmit Status Interrupt
Sources and |A Bits
TICRO TC1R Sel 0O=select Time Constant value for reading TC1R RW 4: Tx and Rx Clocking: The
1=capture current count for reading TC1R Baud Rate Generators
8-44 RW = Read/Write, RO = Read Only, WO = Write Only. For other codes see page 8-11.

UMO014001-1002

Gayle Gamble
UM014001-1002

N 205

216C32 lusC™

USER'S MaNUAL
Transmit Mode Register (TMR) Register Address 1 0 b 11001
TxCRC] TxCRC | TXxCRC TxPar
TxEncode TxCRCType stat | Enab | atend TxParType Enab TxLength TxEnable
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 (]
Fleld/Bit | Conditions RW .

Blt(s) Name IContext Description Status Ref Chapter: Section

TMR15-13 | TxEncode 000=do not encode TxD ("NRZ"); RW 4: Data Formats and
001=invert polarity of TxD ("NRZB"); Encoding
010=encode TxD NRZ|-Mark;
011=encode TxD NRZI-Spacs;
100=encode TxD Biphase-Mark (FM1);
101=encode TxD Biphase-Space (FMO);
110=encode TxD Biphase-Level (Manchester);
111=encode TxD Differential Biphase-Level

TMR12-11 | TxCRCType | Sync 00=use 16-bit CRC-CCITT for Tx; 5: Cyclic Redundancy
01=use CRC-16 for Tx; Checking
10=use 32-bit Ethemet CRC for Tx

TMR10 TxCRCStart | Sync O=start Transmit CRC generator as ali-zeros;
1=all ones

TMR8 TxCRCEnab | Sync O=include Transmit characters in CRC

TMR8 E)r()gRCat Sync 1=send accumutated CRC at EOF/EOM

TMR7-6 TxParType 00=Transmit Parity Even; 01=0dd; 5: Parity Checking
10=Zero (Space); 11=One (Mark)

TMR5 TxParEnab 1=accumulate and send Parity bits

TMR4-2 TxLength 000=send eight bit characters; 5: The Mode Registers:
001-111=send 1-7 bit characters Character Length

TMR1-0 TxEnable 00=disable Transmitter (immediately); 5. The Mode Registers:
01=disable Tx at end of message/frame/char; Enabling and Disabling
10=enable Tx unconditionally;
11=auto-enable Tx per /CTS pin

Transmit Syne Register (TSR} Register Address 10 b 11100
Transmit SYN1 Transmit Sync or SYNO
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Field/Bit | Conditions RW .

Bit(s) Name Context Description Status Ref Chapter: Section
RSR15-8 Bisync Second half of Transmit sync (SYN1) RW iﬂ:ohgonosync and Bisync
RSR7-0 hslllonggync, Transmit Sync character 5: S|:\s,ed Monosync Mode

av
Monosync
Bisync First half of Transmit sync (SYNO)

RW = Read/Write, RO = Read Only, WO = Write Only. For other codes see page 8-11.

UMO014001-1002

8-45

Gayle Gamble
UM014001-1002

Appendix: Changes E

N 2iLT5

UMO014001-1002

Gayle Gamble
UM014001-1002

UMO014001-1002

Gayle Gamble
UM014001-1002

N 2iLa5

USER's MANUAL

CHAPTER 9

APPENDIX: CHANGES

9.1 INTRODUCTION

This section summarizes the changes in the names of
registers and commands since the original USC Technical
Manual.

9.2 BASIC TERMINOLOGY

Transmit Status Blocks—>Transmit Control Blocks
The names of registers and other USC features, in past
documentation, maintained the distinction between “sta-
tus” information as flowing from the USC to the host, and
“control” information as flowing from the host to the USC
pretty strictly — all except this one.

Interrupt Enable (for individual sources) —>
Interrupt Arm

There was no distinction between the enabling of a whole
interrupt type and the enabling of an individual source
within a type, and it seemed important to distinguish
between these, so we kept the former as “enabling” and
called the latter “arming” instead. Vague memories of
early minicomputer terminology say the same terms were
used.

9.3 COMMANDS

Reload RCC / TCC —> Load RCC/TCC
It was not clear why RCC and TCC were “reloaded” while
TCO and TC1 were just “loaded”.

Select Straight/Swapped Memory Data —> Select
D15-8/D7-0 First

“Straight” means whichever way your microprocessor
wants it, while “swapped” is the way the other guys’ part
works...

Preset CRC —> Clear Tx/Rx CRC Generator

More descriptive of the function: “preset” seemed to carry
the possibility that you might be able toload in any arbitrary
starting value...

9.4 BIT/FIELD NAMES

Bit and field names not really used in the early USC
manuals — they were more like text titles. But for those bits
and fields that had fairly short titles, the names in this
manual may or may not be the same. One change of note
is that RCSR4 has been changed from “CV/EOF/EOM" to
“RxBound”, after it was noted that the bit has a fourth use:
in Nine-Bit mode it flags address bytes. (“CV/EOF/EOM/
Addr” seemed a little long...)

Another such change is that CCSR14 is now called RCCF
Avail rather than RCC Valid. (It is perfectly valid for the
RCC FIFO to be empty, in which case there's nothing
available to be read from it.)

The bit and field names in this book are similar to, but not
identical with, those in the Electronic Programmer’s Manual.

UMO014001-1002

Gayle Gamble
UM014001-1002

UM014001-1002

Gayle Gamble
UM014001-1002

