
Copyright ©2011 Zilog®, Inc. All rights reserved.
www.zilog.com

UM020107-1211

User Manual

eZ80® Family of Microprocessors

ZTP Network Security SSL
Plug-In

http://www.zilog.com

ii

ZTP Network Security SSL Plug-In
User Manual
This publication is subject to replacement by a later edition. To determine whether a later edition exists or
to request copies of publications, visit www.zilog.com.

DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.

LIFE SUPPORT POLICY

ZILOG’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body or (b)
support or sustain life and whose failure to perform when properly used in accordance with instructions for
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A criti-
cal component is any component in a life support device or system whose failure to perform can be reason-
ably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

Document Disclaimer

©2011 Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications
or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES
NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE
INFORMATION, DEVICES or TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO
DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED
IN ANY MANNER TO USE OF INFORMATION, DEVICES or TECHNOLOGY DESCRIBED
HEREIN OR OTHERWISE. The information contained within this document has been verified according
to the general principles of electrical and mechanical engineering.

eZ80® and eZ80Acclaim! are trademarks or registered trademarks of Zilog, Inc. All other product or ser-
vice names are the property of their respective owners.

Warning:
 UM020107-1211

http://www.zilog.com

ZTP Network Security SSL Plug-In
User Manual

iii
Revision History

Each instance in the Revision History table below reflects a change to this document from
its previous version. For more details, click the appropriate links in the table.

Date
Revision
Level Description

Page
Number

Dec
2011

07 Updated for the SSL v2.4.0 release. All

Feb
2009

06 Updated for the SSL v2.3.0 release. All

Nov
2008

05 Updated for the SSL v2.2.0 release; updated Figure 4, Figure 5, and Link-
ing the SSL Libraries sections.

14, 15, 19

Aug
2007

04 Updated for the SSL v2.1.0. All

Jul
2006

03 Global changes: updated SSL and ZTP version numbers. All

Apr
2006

02 Global changes: updated SSL and ZTP version numbers; removed all con-
tent related to ZTP v1.3.4.

All

Jan
2006

01 Formatted to current publication standards. All
UM020107-1211 Revision History

iv

ZTP Network Security SSL Plug-In
User Manual
Revision History UM020107-1211

ZTP Network Security SSL Plug-In
User Manual

v

Table of Contents

Revision History. .iii

Introduction . 1
Features . 1
Limitations of the ZTP Network Security SSL Plug-In . 2
Architecture . 2
How to Use SSL . 4
Difference Between SSL Versions . 6

SSL Handshake Protocols . 8
Security Concepts . 9

Getting Started . 13
Packages . 13
Installation . 13
Directory Structure . 13
Building and Running the SSL Demo . 16

SSL Configuration . 19
SSL Configuration using ZDS II . 20
ZDS II Project Settings . 20
SSL Initialization . 21
SSL Handshake Protocol Initialization . 22
Client Mode or Server Mode Support . 24
Digest Algorithm Selection . 24
Cipher Algorithm Selection . 26
PKI Algorithm Selection . 28
Cipher Suite Configuration . 31
EDH Parameters . 37
Certificates . 40
Certificate Verification . 48
Verifying All Certificates . 50
Signature Verification . 50
Session Cache . 52
Session Cache Operation . 53
Diagnostic Messages . 53

How to Use the HTTPS Server . 54

Creating SSL Applications . 57
SSL Applications in ZTP-Based Systems . 57
UM020107-1211 Table of Contents

ZTP Network Security SSL Plug-In
User Manual

vi
Appendix A. Default SSL Cipher Suites . 63
SSL Version 2 Cipher Suites . 63
SSL Version 3 Cipher Suites . 64
TLS Version 1 Cipher Suites . 65
AES Extensions . 67

Appendix B. Advanced Topic: Creating Private Cipher Suites 69

Appendix C. Diffie-Hellman Private Keys . 71

Customer Support. 73
UM020107-1211 Table of Contents

ZTP Network Security SSL Plug-In
User Manual

1

Introduction

Zilog’s TCP/IP Network Security SSL Plug-In provides security for TCP connections
established between a client and a server using the Zilog TCP/IP Software Suite (ZTP).
The SSL handshake protocol is used to authenticate the server and arrive at a shared secret
between the client and server that is used to encrypt all application data transferred over
the SSL session. Additionally, each transferred message contains a message authentication
code that can detect if its data has been altered during transition.

Features

This package is only compatible with the ZTP Software Suite of the same version. For exam-
ple, the ZTP Network Security Plug-In package X.Y.Z is only compatible with ZTP Soft-
ware Suite X.Y.Z; it is not compatible with ZTP Software Suite X.Y+1.Z or X.Y.Z-1.1

The ZTP Network Security SSL Plug-In includes support for the following versions of the
SSL handshake protocol:

• SSL version 2 (SSLv2) client and server support

• SSL version 3 (SSLv3) client and server support

• TLS version 1 (TLSv1) client and server support

Each version of the SSL protocol can operate in any of the following modes, independent
of other SSL handshake protocols:

• Client Only mode

• Server Only mode

• Client Server mode 

You can run one, two or all three versions of the SSL handshake protocol simultaneously.

The ZTP Network Security SSL Plug-In provides support for the following cryptographic
functions.

• Supported public key algorithms:

– RSA

– DSS (using the DSA)

– DH

1. Throughout this document, X.Y.Z refers to the ZTP version number in Major.Minor.Revision format
UM020107-1211 Introduction

ZTP Network Security SSL Plug-In
User Manual

2

• Supported digest algorithms:

– MD5

– SHA1

– Keyed MD5 (HMAC_MD5)

– Keyed SHA1 (HMAC_SHA1)

• Supported symmetric cipher algorithms:

– RC4 (128-bit)

– DES (56-bit)

– Triple DES (3DES, 168-bit)

– AES (128-bit or 256-bit)

Limitations of the ZTP Network Security SSL Plug-In

The ZTP Network Security SSL Plug-In does not support the following SSL features:

• Client authentication

• Anonymous Diffie-Hellman cipher suites

• Support for the MD2 digest algorithm

• Support for the IDEA or RC2 symmetric ciphers

• Support for the Fortezza key exchange algorithm

Architecture

Figure 1 displays the main software modules of that comprise the ZTP Network Security
SSL Plug-In.
UM020107-1211 Introduction

ZTP Network Security SSL Plug-In
User Manual

3

Each of the following SSL modules is described in this section.

• TCP Interface Module

• SSL Record Layer Module

• SSL Session Cache Module

• SSL Interface Module

• SSL Cryptographic Module

TCP Interface Module. This module uses the ZTP TCP API to establish TCP connections
and exchange SSL data. It also uses the stream sockets interface (open, bind, close, read,
write).

SSL Record Layer Module. SSL Record Layer module is above the TCP Interface mod-
ule. This module is responsible for framing all SSL handshake messages and application
data. After an SSL session is established, the record layer will pad all messages to a multi-
ple of the cipher’s block size, compute a message authentication code on the data, frag-
ment the message, and then encrypt each of the fragments. Upon receiving the message,
the record layer reassembles inbound fragments, decrypts the message, verifies the mes-
sage authentication code, and passes the message to the handshake protocol for additional
processing. For application-level data, the record layer allows the data to be received from
the upper SSL interface.

Figure 1. Software Modules in the ZTP Network Security SSL Plug-In

Handshake Protocol

Record Layer

Alert Protocol

Cryptographic Library

(RC4, DES, 3DES, AES, MD5, SHA-1, RSA, DH, DSA)

TCP
Interface

SSL Interface/ TCP Emulation

SSL
Session Cache
UM020107-1211 Introduction

ZTP Network Security SSL Plug-In
User Manual

4

The handshake protocol module is responsible for establishing SSL sessions. This module
actually contains six sub-modules:

1. SSLv2 Client

2. SSLv2 Server

3. SSLv3 Client

4. SSLv3 Server

5. TLSv1 Client

6. TLSv1 Server 

The module used to establish an SSL session depends on the configuration of the ZTP
Network Security SSL Plug-In. It is possible for multiple handshake modules to be active
at the same time.

SSL Session Cache Module. Adjacent to the handshake module is the SSL session
cache module, which is used to store information about the established SSL sessions. If
the same client and server attempt to establish another session in the future, the session
cache can be enabled to reduce the number of handshake messages that must be
exchanged, which will in turn reduce the session establishment time. This reduction is pri-
marily a result of not having to perform complex public key algorithms.

SSL Interface Module. Above the handshake module is the SSL interface module. This
layer exposes the SSL API to upper-layer applications. Other than the SSL-specific initial-
ization commands (Initialize_SSL, SSL2_ClientInit, SSL2_ServerInit,
SSL3_ClientInit, SSL3_ServerInit, TLS1_ClientInit, and
TLS1_ServerInit), this interface exposes the same TCP interface as used by the TCP
Interface module. This exposure allows user applications that are written to use ZTP’s
TCP interface to be seamlessly ported to use SSL.

SSL Cryptographic Module. The final module in the ZTP Network Security SSL Plug-In
is the cryptographic module, which contains the digest algorithms, ciphers and public key
algorithms used by the SSL protocol to secure application data.

How to Use SSL

The Initialize_SSL API must be called to enable the SSL Interface layer used by
applications to securely transfer data. This API must be called only one time during sys-
tem initialization, regardless of how many SSL client and server tasks are created. Addi-
tionally, an initialization call must be made for each version of the SSL handshake
protocol that will be supported by the application. This initialization routine is accom-
plished by calling one or more of the following APIs:

• SSL2_ClientInit

• SSL2_ServerInit
UM020107-1211 Introduction

ZTP Network Security SSL Plug-In
User Manual

5

• SSL3_ClientInit

• SSL3_ServerInit

• TLS1_ClientInit

• TLs1_ServerInit

Client mode support is enabled by calling the corresponding xxx_ClientInit API.
Server mode support is enabled by calling the corresponding xxx_ServerInit API. Cli-
ent-Server mode is enabled by calling xxx_ClientInit and xxx_ServerInit API. An
optional HTTPS server can also be created by calling the https_init API.

The code fragment that follows shows an example of each of these initialization steps.

/*
* Initialize the SSL Layer
*/
Initialize_SSL();

/*
* Initialize each handshake protocol for client
* and server support. Each protocol is configured
* to use the same certificate chain. Ephemeral
* Diffie-Hellman parameters are used for SSLv3
* and TLSv1.
*/

 SSL2_ClientInit();
 SSL2_ServerInit(&CertChain, NULLPTR);
 SSL3_ClientInit();
 SSL3_ServerInit(&CertChain, &DheParams);
 TLS1_ClientInit();
 TLS1_ServerInit(&CertChain, &DheParams);

 /*
 * Launch the HTTPS server over SSL
 */

https_init(http_defmethods,httpdefheaders,website,443);

After the initialization steps are complete, the application programs set up SSL sessions
and securely transfer data using an API that is almost identical to that of the TCP API run-
ning on the underlying ZTP system.

TCP-based applications in ZTP use the open, bind, send, and receive API sockets to
establish TCP connections and transfer data. To use SSL, ZTP applications still use the
same API. The only difference is the use of the SOCK_SSL socket type instead of the
SOCK_STREAM socket type.
UM020107-1211 Introduction

ZTP Network Security SSL Plug-In
User Manual

6

This user manual explains these concepts and offers a considerable amount of information
related to SSL configuration files. Careful modification of these configuration files will
alter the default behavior of the ZTP Network Security SSL Plug-In.

Difference Between SSL Versions

This section offers a brief summary of the differences between the multiple versions of the
SSL protocols supported by and relevant to the ZTP Network Security SSL Plug-In. This
material is not intended to be an explanation of the SSL handshake protocols.

SSL Version 2

SSL version 2 is the oldest and simplest of the SSL handshake protocols. The default set
of cipher suites defined in the SSLv2 specification (known as cipher specs in SSLv2) use
RSA for the key exchange algorithm and MD5 as the digest algorithm. The default set of
ciphers supported in the SSLv2 specification are:

• RC2

• RC4

• IDEA

• DES

• 3DES

The ZTP Network Security SSL Plug-In does not support RC2 or IDEA.

One potential security flaw of the SSLv2 protocol is that it is susceptible to man-in-the
middle types of attacks in which an attacker can trick the actual client and server into
using a relatively insecure cipher suite. This situation is possible because the SSLv2 client
has the final choice of SSLv1 cipher suite used during the session. This choice is usually
based on the set of mutually-supported cipher suites that the SSLv2 server returns in its
hello message.

However, these SSLv2 handshake messages are not protected; therefore, it is possible that
an attacker could intercept the server’s hello message and modify the list of mutually-sup-
ported ciphers so that just a single weak cipher remains. This intercept can trick the client
to use a weaker cipher suite than it would have ordinarily chosen based on the original
message received from the server. The attacker then tries to determine the weak cipher’s
symmetric key to gain access to the encrypted data.

To overcome this problem, the SSLv3 and TLSv1 protocols maintain a running digest of
all SSL handshake messages used to establish a session. After the session is established,

Note:
UM020107-1211 Introduction

ZTP Network Security SSL Plug-In
User Manual

7

the client and server both encrypt the digest and send it to the other side for verification. If
this verification step fails, the session is not established. Therefore, if an attacker modifies
one of the SSLv3 or TLSv1 handshake messages, the SSL session will not be established.

SSLv3 and TLSv1 also expand the set of public key algorithms used to establish an SSL
session; both allow the use of the DSA and DH algorithms. SSLv3 also supports the
Fortezza key exchange algorithm, although this particular algorithm was later dropped
from the TLSv1 protocol; it is not supported by the ZTP Network Security SSL Plug-In.

SSLv3 and TLSv1 use MD5 and SHA1 for computing message authentication codes.
Therefore, security flaws in either of these algorithms cannot be exploited to gain access
to the secure data. Also, these protocols use different keys in the computation of message
authentication codes and data encryption. In contrast, SSLv2 uses the same key to com-
pute the message authentication code and encrypt the data. Therefore, it is easier for an
attacker to gain access to secure data using SSLv2 because a successful attack on either a
cipher or a digest algorithm will compromise this secure data.

The main difference between SSLv3 and TLSv1is that TLSv1 uses a complex pseudoran-
dom function generator based on keyed MD5 and SHA1 digests (HMAC_MD5 and
HMAC_SHA1) when selecting random values required by the TLSv1 handshake protocol.
The PRF function must digest thousands of bytes of data to produce a few dozen output
bytes. This amount of processing can have the effect of scrambling the data into excellent
pseudorandom values, yet it does so at the expense of additional computations and slower
overall operation.

In general, the SSLv2 protocol is less secure than the SSLv3 or TLSv1 protocols. How-
ever, the additional computations performed in SSLv3 and TLSv1 protocols to secure the
session causes the session establishment times of these protocols to be longer than for
SSLv2. In addition, because of the complexity of the TLS pseudorandom function genera-
tor, it takes longer to establish TLSv1 sessions than it does to establish SSLv3 sessions.
UM020107-1211 Introduction

ZTP Network Security SSL Plug-In
User Manual

8

SSL Handshake Protocols

This chapter presents an overview of the SSL handshake protocols and some background
information about security concepts.

Before SSL begins transferring encrypted application data, an SSL session is established
between the SSL client and the SSL server. The establishment of a session is initiated by
the SSL client.

The following processes occur during this session establishment:

1. The client verifies the identity of the server. This verification is performed by analyz-
ing a certificate that the server sends to the client when a new session is established.
The SSL protocol optionally allows the server to request a certificate from the client
so that the server can verify the client’s identity. However, the SSL server in ZTP does
not implement client authentication.

2. The client and server decide on a set of cryptographic algorithms to be used to
exchange a secret key, encrypt/decrypt data (cipher), and ensure message integrity
(through a one-way hash function). The combination of a key exchange algorithm, a
cipher algorithm and a hash algorithm is called a cipher suite.

3. The client generates a secret value, called a Master Key, that is used to derive addi-
tional keys for encrypting/decrypting data exchanged between a client and a server.
This key is sent to the server using the selected key exchange algorithm; and is pro-
tected using the information in the server’s certificate (the server’s public key) and
other SSL handshake messages.

4. Because the key exchange algorithm is asymmetric, only the server that possesses the
corresponding private key recovers the Master Key generated by the client.

5. The client and server independently generate read and write keys from the Master
Key; these keys are used to encrypt/decrypt data with the cipher algorithm.

6. The client and server exchange test messages to ensure both sides are using the correct
Read and Write keys. The test message is composed of data exchanged using the
handshake protocol. In the case of TLSv1 and SSLv3, the test message is a hash of all
handshake messages used to establish the SSL session. This message is also encrypted
using the negotiated cipher suite. If each party is able to decrypt the message and ver-
ify its contents then both parties are using the same symmetric key. This also proves
that the server is in possession of the private key corresponding to the public key in
the server’s certificate and completes the authentication of the server.

When a session is successfully established, every byte of data exchanged between the cli-
ent and server is packaged into an SSL data record. Each data record contains a field
called the message authentication code (MAC), which is computed using the Hash func-
UM020107-1211 SSL Handshake Protocols

ZTP Network Security SSL Plug-In
User Manual

9

tion defined for a particular cipher suite used. The entire record is then encrypted and sent
to the peer. The peer decrypts the inbound message, verifies the MAC code; and if found
acceptable, it presents the data to the upper layer application. When all of the required
information is exchanged between the client and server, the underlying TCP connection is
severed.

Security Concepts

This section introduces some basic aspects of security as related to SSL. This information
is not intended to be a security reference or to explain the SSL protocol.

Identity. Identity is a set of attributes that uniquely distinguishes one particular entity from
other similar entities. Before the SSL client can establish a session, it must identify the
SSL server with which it must communicate. The identity of the server typically consists
of a host name (or IP address) and an underlying TCP port number.

Authentication. Authentication is the process of validating an entity’s identity. Upon
establishing an SSL session handshake, the SSL server sends the client an X.509 certifi-
cate that the client uses to verify the identity of the server. One of the fields in the certifi-
cate is a digital signature created by a third party (or possibly the server itself) called the
certificate issuer. By signing the certificate, the issuer vouches for the identity of the server
and asserts that there is a binding between the subject of the certificate (the SSL server)
and the public key contained in the certificate, implying that the actual SSL server to
which the certificate is issued is in possession of the corresponding private key.

After executing a public key exchange algorithm, the client and the server arrive at the
same shared secret if the server is in possession of the private key corresponding to the
public key in the server’s certificate. Therefore, if the client trusts the certificate issuer,
then the client can be assured of the server’s identity and begin transferring sensitive infor-
mation.

1. The TLSv1 and SSLv3 specifications allow for the use of completely anonymous
cipher suites in which neither client nor server authentication is performed. However,
the ZTP Network Security SSL Plug-In does not support the use of anonymous cipher
suites.

2. A trust relationship can be hierarchical in nature. A client can obtain a certificate from
an unknown server that was signed by an issuer that the client does not know/trust.
However, if the client obtains an issuer’s certificate, and if that certificate is signed by
a trusted issuer, then the client can implicitly trust the intermediate certificate issuer
and also trust the server’s certificate. In the SSLv3 and TLSv1 protocols, the server
sends the client a list of certificates. The first certificate contains the SSL server’s pub-
lic key, and any following certificates are the X.509 certificates of the entity that
issued the preceding certificate. These chains terminate the self-signed certificate
belonging to the root certificate authority.

Notes:
UM020107-1211 SSL Handshake Protocols

ZTP Network Security SSL Plug-In
User Manual

10
Cipher. A cipher is an algorithm that transforms plain text into encrypted text, and vice
versa. In terms of security, ciphers are used to provide privacy. Even if an encrypted mes-
sage is intercepted, the plain text content of the message is not visible, and therefore the
communication between endpoints is maintained as private.

Cipher algorithms require a special input called a key to encrypt/decrypt data. This key is
used to uniquely scramble the data as it passes through the cipher algorithm. Cryptograph-
ically-strong ciphers are capable of producing very different output blocks for a given
plain text block if only a few bits in the key are modified. In general, the longer the key (in
bits) the harder it is to determine a plain text message from examining its cipher output.

Ciphers are broadly classified as:

• Symmetric ciphers

• Asymmetric ciphers

Symmetric Ciphers. A symmetric cipher uses the same shared key to encrypt and decrypt
a message. Therefore, before a symmetric cipher is used to transfer encrypted data, it is
necessary for both parties to possess the same secret key. Figure 2 displays the typical
flow of symmetric cipher encryption and decryption.

One of the challenges with symmetric algorithms is to maintain the shared secret as truly
secret. For example, if there are 100 clients that communicate with a particular server
using a shared secret and this secret is compromised by one of the clients, then all 101 sys-
tems must be updated with a new shared secret.

Asymmetric Ciphers. Asymmetric algorithms use different keys to encrypt and decrypt
data. Asymmetric algorithms typically use a public and private key pair. Therefore, unlike
symmetric algorithms, it is not necessary to distribute a shared secret to all parties

Figure 2. Symmetric Cipher Encryption and Decryption

Cipher

Plain Text

Shared Key

Encrypted Text

Cipher

Plain Text
Shared Key

Encrypted Text

Symmetric Cipher Encryption

Symmetric Cipher Decryption
UM020107-1211 SSL Handshake Protocols

ZTP Network Security SSL Plug-In
User Manual

11
involved before encrypted data transfer occurs. Figure 3 displays the typical flow of asym-
metric cipher encryption and decryption.

In the context of SSL, the server possesses a private key which is not distributed or shared
with any client. The corresponding public key is contained in the server’s X.509 certificate
and freely distributed to prospective clients when they initiate a new SSL session. There-
fore, unlike symmetric ciphers, there is no risk associated with a public key being compro-
mised by a client because the public key is not a secret.

The disadvantage of asymmetric ciphers is that they are more computationally intensive
than symmetric ciphers. As a result, asymmetric ciphers run much slower than symmetric
algorithms. The difference in performance can be a few orders of magnitude, increasing as
key strength is increased.

The SSL protocol uses an asymmetric cipher (key exchange algorithm) to exchange the
Master Key, and it uses a symmetric cipher to encrypt/decrypt the upper layer data blocks
when an SSL session is established.

Stream Cipher. A stream cipher is a symmetric cipher that operates on an arbitrary-sized
input message to produce an output message of the same length. The algorithm expands a
cryptographic key into a key stream in which its length matches the length of the input
text. The input text and key stream are exclusively ORed to produce the final cipher text
output message.

Block Cipher. A block cipher is a symmetric cipher that breaks an input message into
fixed-sized blocks. Padding may be required to ensure that the input text is an exact multi-

Figure 3. Asymmetric Cipher Encryption and Decryption

Cipher

Plain Text

Public Key

Encrypted Text

Cipher

Plain Text
Private Key

Encrypted Text

Asymmetric Cipher Encryption

Asymmetric Cipher Decryption

Note:
UM020107-1211 SSL Handshake Protocols

ZTP Network Security SSL Plug-In
User Manual

12
ple of the block size. The block cipher algorithm uses a key to convert the plain text blocks
into cipher text blocks on a block-by-block basis.

Hash Function. A hash function takes an arbitrary amount of input data and produces a
fixed-sized hash, or digest, of the message. Cryptographic hash functions are one-way
functions. It is impossible to determine the original message from a hash of that message.
Hashes are commonly used in digital signatures and message authentication codes.

Message Integrity. Prior to encrypting an SSL data record, the SSL protocol computes a
one-way hash on the data in the record as well as on the state information pertinent to the
SSL session (secret key + message sequence number). The output of the hash function is
called a message authentication code. If only the originator and intended recipient of the
message know the correct state information used to compute the hash, then it is unlikely
that an attacker can modify the message in transit without the recipient detecting an error
on the MAC.

X.509 Certificate. The SSL protocols require that the server have a certificate that is
passed to the client for authentication purposes. The X.509 standard specifies the format
of information in the certificate. The certificate contains information such as the identity
of the server to which the certificate was issued, a time period over which the certificate is
valid, the server’s public key, the identity of the certificate issuer, and a digital signature of
the certificate generated by the issuer. The signature is created using a hash of the certifi-
cate and encrypted using an asymmetric cipher with the issuer’s private key.

If a client has the issuer’s public key (which can also be in the certificate), then the client
can validate the signature and verify the identity of the server. When the server proves that
it is in possession of the private key corresponding to the public key in the certificate, the
client trusts the server and begins exchanging sensitive data.

The X.509 certificate is specified using a platform independent data modelling language
called abstract syntax notation (ASN.1). Encoding of data values in the actual certificate
follows ASN.1 distinguished encoding rules (DER format).

Optionally, the SSL protocols allow the server to request a certificate from the client so
that it can authenticate the client. However, few clients are likely to have valid certificates,
and the server does not request a certificate from the client. The ZTP Network Security
SSL Plug-In SSL server does not support client authentication, nor does it request a certif-
icate from the client.
UM020107-1211 SSL Handshake Protocols

ZTP Network Security SSL Plug-In
User Manual

13
Getting Started

This chapter is a summary of the steps required to run the SSL demo sample project pro-
vided with the ZTP Network Security SSL Plug-In. Subsequent chapters provide detailed
configuration information. For additional setup information, refer to the ZTP Network
Security SSL Plug-In Quick Start Guide (QS0059).

Packages

Table 1 lists both the international and U.S. versions of the ZTP Network Security SSL
Plug-In package.

Installation

Prior to installing one of the ZTP Network Security SSL Plug-In packages, you must
install the ZTP Software Suite integrated with the ZDS II – eZ80Acclaim! development
tools. The install program will place the ZTP Network Security SSL Plug-In in the same
folder where the underlying ZTP base package is installed.

The default directory depends on which code version of ZTP has been installed.

Object Code
C:\Program Files\Zilog\ZTP_x.y.z_Lib_ZDS\ZTP

Source Code
C:\Program Files\Zilog\ZTP_x.y.z_Src_ZDS\ZTP

The crypto directory is only included in the U.S. installation of the ZTP Network Security
SSL Plug-In, in which X.Y.Z refers to the ZTP Software Suite version.

Directory Structure

After installing the ZTP Network Security SSL Plug-In on your PC several new folders
and files will be added to the directory in which the underlying ZTP software suite was
installed.

Table 1. ZTP Network Security SSL Plug-In Install Packages

Package Name Description

SSLX.Y.Z_INT International version of the ZTP Network Security Plug-In (no source code for the cryp-
tographic functions).

SSLX.Y.Z_US U.S. version of the ZTP Network Security Plug-In (full source code).

Note:
UM020107-1211 Getting Started

http://www.zilog.com/docs/ez80acclaim/software/qs0059.pdf
http://www.zilog.com/docs/ez80acclaim/software/qs0059.pdf

ZTP Network Security SSL Plug-In
User Manual

14
Figure 4 displays the directory structure of a ZTP-based system after this plug-in package
has been installed. The following new folders were added to the original ZTP installation:

• Apps\crypto

• Apps\SSL

• SSLDemo 

In addition, an SSL_Crypto folder is added to the Inc folder. SSL-related configuration
files are added to the Conf\Opt directory.
UM020107-1211 Getting Started

ZTP Network Security SSL Plug-In
User Manual

15
Figure 4. Directory Structure for a ZTP-Based Source System
UM020107-1211 Getting Started

ZTP Network Security SSL Plug-In
User Manual

16
Figure 5 displays the directory structure of a ZTP-based library system after the plug-in
package has been installed. The SSLDemo folder is added to the original ZTP installation.
SSL related configuration files are added to the \ZTP\Conf\ directory of the ZTP library
package.

Building and Running the SSL Demo

The following three procedures will help you to build the SSL Demo sample application,
run it in a browser, and send an encrypted message between two eZ80 development plat-
forms.

Figure 5. Directory Structure for a ZTP-Based Library System
UM020107-1211 Getting Started

ZTP Network Security SSL Plug-In
User Manual

17
Build the SSL Demo Application

Observe the following procedure to build the SSL Demo application.

1. Launch the ZDS II Integrated Development Environment (IDE). From the Windows 7
Start menu, select the All Programs menu option. Scroll through the program and
folder listings to the Zilog ZDS II – eZ80Acclaim! A.B.C folder item; click to expand
this folder, then click the ZDS II – eZ80Acclaim!_A.B.C menu option.

2. From the File menu in ZDS II, select the Open Project menu option, and navigate to the
location of the SSLDemo folder, as shown in Figure 4 (U.S.) or Figure 5 (international).

3. Within the SSLDemo folder, open the ZDS II project file that corresponds to the eZ80
development platform you are using.

For example, if you are using the eZ80F910300KITG Development Kit, open the
ZTPSSLDemo_eZ80F910300KITG.zdsproj project file.

4. Select the Build→ Rebuild All menu option.

5. Download the executable file to the eZ80 Development Platform.

View an Embedded Website using SSL

Observe the following procedure to view an embedded website using SSL.

If you have not previously used ZTP or have not run any of the sample projects, please
refer to the Hardware Setup procedure in the Zilog TCP/IP Software Suite Quick Start
Guide (QS0049) to become familiar with how to run ZTP sample programs.

1. During initialization, the SSLDemo project will display its IP address in the terminal
emulation program (e.g., HyperTerminal). Record this IP address so that it can be used
in the steps that follow.

2. On the PC, launch an SSL-enabled browser such as Internet Explorer. In the browser’s
URL bar, enter the following address:

https:\\a.b.c.d

In this URL, a.b.c.d is the IP address that was recorded in Step 1.

To open a web page on a ZTP system without using SSL, simply enter a.b.c.d into the
browser’s URL bar to instruct the browser to retrieve the default web page using the HTTP
protocol. A more formal method of specifying this URL is to use the syntax
http:\\a.b.c.d, which explicitly tells the browser that the default web page is to be
opened using the HTTP protocol. In the procedure above, the URL syntax was
https:\\a.b.c.d, which directs the browser to open the default website using the
HTTPS protocol which is simply HTTP running over SSL.

Note:

Note:
UM020107-1211 Getting Started

http://www.zilog.com/docs/software/qs0049.pdf
http://www.zilog.com/docs/software/qs0049.pdf

ZTP Network Security SSL Plug-In
User Manual

18
Send an Encrypted Message

Observe the following procedure to send an encrypted message between two eZ80 devel-
opment platforms.

1. Build the SSL demo application for the eZ80 development platform that will operate
as a server and download the executable.

2. Similarly, rebuild the application for the second eZ80 development platform that will
operate in client mode. If necessary, change the MAC and IP addresses used by the
client.

3. Start the server program by entering the following command on the server system’s
console:

ssldemo server 5000

4. Send an encrypted (secret) message to the server by entering the following command
on the client’s console:

ssldemo client 192.168.1.23:5000 “secret message”

Ensure that you use the IP address of the target server in the command.

For additional information about building and running this sample program, refer to the
ZTP Network Security SSL Plug-In Quick Start Guide (QS0059), which is available free
for download on the Zilog website; it can also be found in the docs directory.

Note:
UM020107-1211 Getting Started

http://www.zilog.com/docs/ez80acclaim/software/qs0059.pdf

ZTP Network Security SSL Plug-In
User Manual

19
SSL Configuration

Before customizing the SSL demo project or adding SSL support to your existing ZTP
application, see Table 2. Additional information is available in the ZTP Network Security
SSL Plug-In Reference Manual (RM0047). The Default Configuration File column identi-
fies the source file that contains the default setting for the indicated parameter.

The SSL demo project supplied with the ZTP Network Security SSL Plug-In already
includes the default values for all of the configuration options. You can examine the SSL
demo project to get a better understanding of how these configurable options can be cus-
tomized.

Table 2. SSL Configuration Reference

Configurable
Parameter Options

Default
Configuration
File Description

ZDS II project
settings

ZDS II project configuration *.zdsproj Must specify Real-Time Kernel used,
add SSL header files to Include Paths,
and link SSL libraries.

SSL
initialization

None main.c Mandatory

SSL
handshake
protocol
initialization

• SSL2_ClientInit
• SSL2_ServerInit
• SSL3_ClientInit
• SSL3_ServerInit
• TLS1_ClientInit
• TLS1_ServerInit

main.c At least one handshake protocol must
be initialized.

Digest
algorithm
selection

• MD5
• SHA1
• HMAC_MD5
• HMAC_SHA1

hash_conf.c MD5 must be included for all versions of
SSL. SSLv3 also requires SHA1. TLSv1
requires all digest algorithms.

Cipher
algorithm
selection

• RC4
• DES
• 3DES
• AES

cipher_conf.c

PKI algorithm
selection

• RSA
• DSA
• DH

pki_conf.c PKI algorithm should match server’s
certificate.

Cipher suite
configuration

ssl_conf.c Valid combinations of digest, cipher,
and PKI algorithms used to secure
application level data.
UM020107-1211 SSL Configuration

http://www.zilog.com/docs/ez80acclaim/software/rm0047.pdf
http://www.zilog.com/docs/ez80acclaim/software/rm0047.pdf

ZTP Network Security SSL Plug-In
User Manual

20
SSL Configuration using ZDS II

This section explains how to configure the ZTP Network Security SSL Plug-In using
ZDS II. The SSLDemo project supplied with the ZTP Network Security SSL Plug-In
already includes all of these configuration steps.

ZDS II Project Settings

To use the ZTP Network Security SSL Plug-In in your ZDS II-based projects, the follow-
ing items must be properly configured:

• Specification of the kernel

• Addition of SSL-related header files to the Include paths

• Specification of the SSL libraries to link with the project

Specify the Kernel

Ensure that the SSL_OS_RZK preprocessor symbol is included in the list of preprocessor
symbols located in the Preprocessor tab of the Project → Settings → C menu.

EDH
parameters

dh_param.c Must be supplied to support Ephemeral
Diffie-Hellman cipher suites in Server
mode. Must also set an EDH function
pointer to enable client or server EDH
cipher suites.

Certificates Not required for client only
operation

Certificate.c Server certificates must be accompa-
nied by a private key.

Certificate
verification

Certificate.c User visible callback routine.

Signature
verification

• TRUE
• FALSE

ssl_conf.c Determines whether SSL will verify digi-
tal signatures.

Session cache • Size
• Time-out

ssl_conf.c Specifies whether client and server ses-
sion information can be cached.

Diagnostic
messages

• SSL_DEBUG_NONE
• SSL_DEBUG_ERROR
• SSL_DEBUG_WARNING
• SSL_DEBUG_INFO

ssl_conf.c Controls amount of diagnostic informa-
tion displayed on the console.

Table 2. SSL Configuration Reference (Continued)

Configurable
Parameter Options

Default
Configuration
File Description
UM020107-1211 SSL Configuration

ZTP Network Security SSL Plug-In
User Manual

21
Adding SSL Headers to the List of Include Paths

To access the SSL API, it is necessary to include the SSL.h header file in your application
program. The SSL.h header file also includes other SSL-related header files. For your
ZDS II project to build correctly, the path for all of the SSL-related header files must be
specified in the Include paths input section in the Preprocessor tab of the Project →

Settings → C menu. The default location of the SSL-related header files depends on the
version of ZTP used; these paths are:


..\ZTP\Apps\Crypto\Inc for source package
..\ZTP\Inc for Library

Add the location of the above SSL-related header files to both the User and Standard text
fields.

Linking the SSL Libraries

Before ZDS II can link a project using the SSL API, the SSL libraries to be used must be
specified in the Object/library modules text field in either the General or Input cat-
egories on the Linker tab of the Project Settings menu. Zilog recommends that you
always include all SSL-related libraries in the linker settings, and allow the ZDS II linker
to decide which libraries are used and which are ignored. Adding unused libraries to the
list of object/library modules does not increase the size of the final application. When
specifying libraries, be sure to separate each library using a semicolon character (;).

The libraries listed in Table 3 are used to work with SSL.

SSL Initialization

Before attempting to initialize any of the SSL handshake protocols or using the SSL inter-
face layer, the application program must call the Initialize_SSL API. This API acti-
vates the interface used by application programs to establish SSL sessions and securely
transfer information. Because SSL uses the TCP transport layer, TCP must also be initial-
ized to enable SSL functionality.

The Initialize_SSL API takes no parameters and will return either SSL_SUCESS or
SSL_FAILURE. If Initialize_SSL is called more than once, all subsequent calls will
fail.

Table 3. SSL Libraries

Library Description

Crypto_SSL.lib Contains SSL and Crypto files.

ZTPSSLCore.lib Contains the socket files that are used for SSL.
UM020107-1211 SSL Configuration

ZTP Network Security SSL Plug-In
User Manual

22
The code fragment that follows shows an example of how to initialize the SSL interface:

{
SSL_STATUS Status;
Status = SSL_Initialize();

}

SSL Handshake Protocol Initialization

After calling the Initialize_SSL API, at least one of the SSL handshake protocols
must be initialized. The ZTP Network Security SSL Plug-In is capable of supporting the
following SSL protocols:

• SSL version 2 Client

• SSL version 2 Server

• SSL version 3 Client

• SSL version 3 Server

• TLS version 1 Client

• TLS version 1 Server

It is permissible to initialize one, two, or all six of these handshake protocols, but SSL will
not function unless any one protocol is initialized.

To disable support for a particular handshake protocol, do not call its corresponding ini-
tialization function. Such a call will prevent the ZDS II linker from including code for that
particular handshake protocol in the final application image.

Table 4 shows the relationship between the SSL handshake protocols and their initializa-
tion functions.

Table 4. SSL Handshake Protocol Functions

SSL Handshake Protocol Initialization Function

SSL version 2 Client SSL2_ClientInit

SSL version 2 Server SSL2_ServerInit

SSL version 3 Client SSL3_ClientInit

SSL version 3 Server SSL3_ServerInit

TLS version 1 Client TLS1_ClientInit

TLS version 1 Server TLS1_ServerInit
UM020107-1211 SSL Configuration

ZTP Network Security SSL Plug-In
User Manual

23
Each of the xxxs_ClientInit APIs is a null function returning a variable of type
SSL_STATUS. The TLS1_ClientInit API is shown in the following code fragment; the
SSL2_ClientInit and SSL3_ClientInit APIs have the same format.

SSL_STATUS TLS1_ClientInit(void);

Each server initialization function takes two parameters and returns a status code. To illus-
trate these parameters, the function prototype for the TLS1_ServerInit API is shown in
the following code fragment. The same syntax also applies to the SSL2_ServerInit and
SSL3_ServerInit functions.

SSL_STATUS
TLS1_ServerInit
(
CERT_CHAIN * pCertChain,
ASN1_ENC_DATA * pDheParams
);

The first of these parameters is a reference to the server’s certificate chain, which is a list
of X.509 certificates beginning with the server’s certificate and followed by the certificate
of each intermediate certificate authority that signed the previous certificate. The certifi-
cate chain ends with a self-signed root certificate issued by the certificate authority.

The second parameter is a pointer to the Diffie-Hellman parameters (the prime modulus, p
and the generator, g) that the server will use for Ephemeral Diffie-Hellman (EDH) cipher
suites. SSL clients will receive their Ephemeral Diffie-Hellman parameters from the
server to which they are attempting to establish a connection. If support for Ephemeral
Diffie-Hellman parameters is not required for either the TLS1 or SSL3 server, then this
parameter is set to NULLPTR on the corresponding xxxx_ServerInit function call.

SSL version 2 does not support Ephemeral Diffie-Hellman cipher suites; therefore this
parameter should always be NULLPTR when calling the SSL2_ServerInit API.

It is permissible to use different certificate chains and Ephemeral Diffie-Hellman parame-
ters on each of the handshake protocol initialization calls. In some cases, this usage is
mandatory. For example, if the TLSv1 server has been issued a DSA certificate, this server
will only be able to SSL sessions using EDH cipher suites. But if an SSLv2 server is also
initialized, then that server must have an RSA certificate. Therefore, in this example, the
SSLv2 and TLSv1 servers must use different certificate chains.

The SSL demo project included with the ZTP Network Security SSL Plug-In contains a
file dh_params.c containing the Ephemeral Diffie-Hellman parameters used on the calls
to TLS1_ServerInit and SSL3_ServerInit. The certificate chains shared by these
server is contained in a file named Certificate.c.

Note:
UM020107-1211 SSL Configuration

ZTP Network Security SSL Plug-In
User Manual

24
Client Mode or Server Mode Support

When each of the SSL handshake protocols is initialized (see the SSL Handshake Protocol
Initialization section on page 22), the first parameter on the initialization call specifies
whether the protocol supports the client and/or server mode of operation.

1. SSL sessions are always initialized by clients. Servers will only wait passively for
connection attempts from remote clients.

2. The SSL handshake protocols implemented in the ZTP Network Security SSL Plug-In
are capable of operating simultaneously. For example, it is possible that an SSLv3 cli-
ent session is being established at the same time as a TLSv1 server session and a
TLSv1 client session. However, when multiple sessions are established at the same
time, it takes longer for all sessions to be established than if they had been established
serially.

Digest Algorithm Selection

The SSL handshake protocols use digest algorithms for many purposes, including generat-
ing and verifying message authentication codes, generating session keys, and verifying
digital signatures. The ZTP Network Security SSL Plug-In recognizes the following four
digest (or hash) algorithms:

• MD5

• SHA1

• HMAC_MD5

• HMAC_SHA1 

Depending on the SSL handshake protocols used and the configuration of cipher suites,
some of these digest algorithms can be removed from the project to reduce code size. This
removal can be performed by modifying HashGen array in the hash_conf.c file.

The default setting of the HashGen array is shown in the following code fragment.

HASH_NEW HashGen[SSL_MAX_HASH] =
{

NullHash_New,
MD5_New,
HMAC_MD5_New,
SHA1_New,
HMAC_SHA1_New

};

Notes:
UM020107-1211 SSL Configuration

ZTP Network Security SSL Plug-In
User Manual

25
Each of the four supported digest algorithms has an entry that follows the NullHash_New
function pointer.

Each entry in the array is a function pointer that is used to initialize a data structure that the
SSL handshake protocols use to perform digest operations. NullHash does not perform
any useful function, but it must be included in the HashGen array for proper operation of
the SSL protocol.

The ordering of entries in the HashGen array is not arbitrary, and is determined by the
ordinal values of the following macros (see the ez80_hash.h header file); the values of
these macros must not be altered.

#define SSL_HASH_NULL 0
#define SSL_HASH_MD5 1
#define SSL_HASH_HMAC_MD5 2
#define SSL_HASH_SHA1 3
#define SSL_HASH_HMAC_SHA1 4

Table 5 shows which digest algorithms are required for each of the SSL handshake proto-
cols. If the application uses combinations of protocols, select the last row in the table that
matches one of the SSL handshake protocols used. For example, if your project requires
the SSLv2 and TLSv1 handshake protocols, then the digest algorithms corresponding to
the TLSv1 handshake protocol must appear in the HashGen array.

If a digest algorithm is not required, replace the corresponding entry in the HashGen array
with NullHash_New. For example, in an application required to support SSLv2 and
SSLv3, it is not necessary to include the HMAC_MD5 or HMAC_SHA1 digest algorithms;
therefore the project can be made slightly smaller by using the following HashGen array.

HASH_NEW HashGen[SSL_MAX_HASH] =
{

NullHash_New,
MD5_New,

Table 5. Mandatory Digest Algorithm by SSL Protocol Version

SSL Handshake 
Protocol version Mandatory Digest Algorithms

SSLv2 MD5

SSLv3 MD5, SHA1

TLSv1 MD5, SHA1, HMAC_MD5, HMAC_SHA1

Note:
UM020107-1211 SSL Configuration

ZTP Network Security SSL Plug-In
User Manual

26
NullHash_New,
SHA1_New,
NullHash_New

};

Care must be taken while removing the SHA1 digest algorithm. Sometimes this algorithm
is used in the process of signing digital certificates. Therefore, if the SHA1 digest algo-
rithm is not configured into the system and the SSL protocol must either generate or verify
a signature using the SHA1 algorithm, it will not be possible to complete the operation. As
a result, an SSL session will be prevented from becoming established.

It is important to keep the HashGen array synchronized with the table of cipher suites ref-
erenced by the pSSL2_CipherSuites, pSSL3_CipherSuites and
pTLS1_CipherSuites pointers. For example, if the SHA1_New function pointer is
replaced with NullHash_New, then the SHA1 digest algorithm will not be included in the
application. Therefore, if any of the cipher suite tables contains an entry which uses
SHA1, such as TLS_RSA_WITH_3DES_EDE_CBC_SHA, these cipher suites must be dis-
abled as they will not function properly without the SHA1 algorithm. For more informa-
tion about this topic, see the Cipher Suite Configuration section on page 31.

Cipher Algorithm Selection

The SSL handshake protocols use symmetric cipher algorithms to encrypt and decrypt
application level data transferred through SSL. With symmetric ciphers, both the client
and server use the same set of keys to encrypt and decrypt data. These symmetric keys are
changed each time the client and server establish a new session. These keys are derived
from information exchanged during the execution of the (asymmetric) PKI algorithm dur-
ing the establishment of a session.

The ZTP Network Security SSL Plug-In recognizes the following four cipher algorithms:

• RC4 (128-bit key)

• DES (56-bit key)

• 3DES (168-bit key)

• AES (128-bit key or 256-bit key) 

Each of these four cipher algorithms has an entry that follows the NullCipher_New func-
tion pointer.

An SSL session is established using any one of these cipher algorithms. However, not all
SSL clients and servers implement the same set of ciphers. By supporting multiple cipher

Note:
UM020107-1211 SSL Configuration

ZTP Network Security SSL Plug-In
User Manual

27
algorithms, there is a possibility that the client and server will be able to determine at least
one common algorithm that can be used to encrypt data. However, if a weak cipher algo-
rithm is included in the set of supported cipher algorithms, then it is possible that at some
point, a session could be established with the weaker algorithm.

The ZTP Network Security SSL Plug-In uses a global array, named the CipherGen array,
that determines which symmetric ciphers are available for encrypting data. This array is
located in the cipher_conf.c configuration file. The default setting of the CipherGen
array is shown in the following code fragment.

CIPHER_NEW CipherGen[SSL_MAX_CIPHERS] =
{

NullCipher_New,
RC4_New,
DES_New,
DES3_New,
AES_New

};

Each entry in the array is a function pointer used to initialize a data structure that the SSL
handshake protocols use to perform encryption and decryption operations. NullCipher
does not perform any useful function, but it must be included in the CipherGen array for
proper operation of the SSL protocol.

The ordering of entries in the CipherGen array is not arbitrary, and is determined by the
ordinal values of the following macros (see the ez80_cipher.h header file); the values
of these macros must not be altered.

#define SSL_CIPHER_RC4 1
#define SSL_CIPHER_DES 2
#define SSL_CIPHER_3DES 3
#define SSL_CIPHER_AES 4

If an application does not require the use of a particular cipher, its entry in the CipherGen
array can be replaced with the NullCipher_Init function pointer. This pointer has the
effect of causing the linker to remove the cipher algorithm from the generated program
image. For example, if an application does not use the AES cipher, the CipherGen array
can be reconfigured, as shown in the following code fragment:

CIPHER_NEW CipherGen[SSL_MAX_CIPHERS] =
{

NullCipher_New,
RC4_New,
DES_New,
DES3_New,
UM020107-1211 SSL Configuration

ZTP Network Security SSL Plug-In
User Manual

28
NullCipher_New
};

It is important to keep the CipherGen array synchronized with the table of cipher suites
referenced by the pSSL2_CipherSuites, pSSL3_CipherSuites, and
pTLS1_CipherSuites pointers. For example, if the DES3_New function pointer is
replaced with NullCipher_New, then the 3DES cipher algorithm will not be included in
the application. Therefore, if any of the cipher suite tables contains an entry which uses
3DES – such as TLS_RSA_WITH_3DES_EDE_CBC_SHA – these cipher suites must be dis-
abled because they will not function properly without the 3DES algorithm. For more
information about this topic, see the Cipher Suite Configuration section on page 31.

The AES cipher was standardized after the SSL specifications were created. Therefore,
there are no defined cipher suites in the SSLv2, SSLv3 or TLSv1 specifications that use
AES. However, changes to the TLSv1 specification have included cipher suites that use
either the 128-bit or 256-bit AES algorithm. The ZTP Network Security SSL Plug-In
defines several cipher suites for TLSv1 and SSLv3 using AES, but does not include any
definitions for SSLv2 cipher suites using AES. Because AES is relatively new to SSL, it
may be difficult to find third party applications supporting AES-based cipher suites. At the
date of publication of this document, for example, Microsoft Internet Explorer v6.0 did not
include AES support.

PKI Algorithm Selection

A public key infrastructure (PKI) allows an insecure network to exchange data securely
via authentication and privately via encryption. PKI systems employ public key cryptogra-
phy in which a public and private key pair is used to perform cryptographic operations.

In public key cryptography, one entity holds the private key in secrecy; while the public
key is freely distributed. Public key algorithms allow entities to securely arrive at a com-
mon shared secret without having any prior knowledge of each other.

In contrast, private key systems require all parties to be in possession of a common shared
secret before secure communication begins. As the number of participants in private key
systems increases, it becomes harder to keep the shared secret private. Once a secret is
compromised, secure communication is no longer assured. In public key systems, only
one device must keep the private key a secret regardless of the number of participants. The
downside of public key cryptography is that its asymmetric algorithms tend to be more
computationally intensive than private key symmetric algorithms.

SSL servers are required to be in possession of a public and private key pair. The server’s
public key is placed into a certificate that is signed and validated by a trusted third party.
During the establishment of an SSL session, the client receives a copy of the server’s cer-

Note:
UM020107-1211 SSL Configuration

ZTP Network Security SSL Plug-In
User Manual

29
tificate and, therefore, the public key. A field within the certificate indicates which public
key algorithm can be used to arrive at a shared secret that will be used to derive the shared
symmetric key(s) used to encrypt data exchanged between the parties.

The ZTP Network Security SSL Plug-In supports the following three public key algo-
rithms:

• RSA encryption

• DSA signature

• Diffie-Hellman key agreement

The most popular algorithm used with SSL is RSA encryption, which is the only key
exchange algorithm supported by SSLv2. On their own, DSA signatures cannot be used to
establish a shared secret, but the DSA algorithm is used to sign Ephemeral Diffie-Hellman
parameters, thereby allowing the Diffie-Hellman key agreement algorithm to arrive at a
shared secret.

A global array, PkiGen, determines which public key algorithms are available for use by
the SSL handshake protocols. This array is located in the pki_conf.c configuration file.
The default setting of the PkiGen array is shown in the following code fragment.

PKI_Init PkiGen[SSL_MAX_PKI] =
{

NullPki_init,
rsa_init,
dsa_init,
dh_init

};

In the above code, note that a call to each of the three supported PKI algorithms appears
below the NullPki_init function pointer. Indeed, each entry in the array is a function
pointer that is used to initialize a data structure that the SSL handshake protocols use dur-
ing key exchange processing. The NullPki algorithm does not perform any useful func-
tion, but it must be included in the PkiGen array for proper operation of the SSL protocol.

The ordering of entries in the PkiGen array is not arbitrary, and is determined by the ordi-
nal values of the following macros (see the ez80_pki.h header file); the values of these
macros must not be altered.

#define SSL_PKI_ID_RSA 1
#define SSL_PKI_ID_DSA 2
#define SSL_PKI_ID_DH 3
UM020107-1211 SSL Configuration

ZTP Network Security SSL Plug-In
User Manual

30
If an application does not use a particular PKI algorithm, its entry in the PkiGen array can
be replaced with the NullPki_init function pointer. This pointer has the effect of caus-
ing the linker to remove the PKI algorithm from the generated program image. For exam-
ple, if an application does not use the Diffie-Hellman key agreement algorithm, the
PkiGen array is reconfigured, as shown in the following code fragment:

PKI_Init PkiGen[SSL_MAX_PKI] =
{

NullPki_init,
rsa_init,
dsa_init,
NullPki_init

};

It is important to keep the PkiGen array synchronized with the tables of cipher suites ref-
erenced by the pSSL2_CipherSuites, pSSL3_CipherSuites, and
pTLS1_CipherSuites pointers. For example, if the rsa_init function pointer is
replaced with NullPki_init, then the RSA algorithm will not be included in the appli-
cation. Therefore, if any of the cipher suite tables contains an entry which uses RSA, such
as TLS_RSA_WITH_3DES_EDE_CBC_SHA, these cipher suite must be disabled because
they do not function properly without the RSA algorithm. For more information about this
topic, see the Cipher Suite Configuration section that follows.

1. If the ZTP Network Security SSL Plug-In has been configured to verify signatures, it
could become necessary to include both RSA and DSA in the PkiGen array, because
these algorithms are required to verify signatures generated with the same algorithm.

2. The use of Diffie-Hellman certificates is extremely rare. Therefore, the dh_init
function pointer is usually replaced with NullPki_init. This replacement will not
prevent the SSLv3 and TLSv1 protocols from using the Diffie-Hellman key agree-
ment algorithm with ephemeral parameters. Use of the Diffie-Hellman algorithm with
ephemeral parameters is controlled by the pDheInit function pointer in the
pki_conf.c configuration file. Therefore, to completely remove Diffie-Hellman
from the application, the dh_init entry in the PkiGen array must be replaced with
NullPki_init, and the pDheInit function pointer must be set to NULLPTR. For
more information about this topic, see the EDH Parameters section on page 37 .

Practical Considerations for SSL Servers and Clients

When the ZTP Network Security SSL Plug-In is operating in server mode, the server must
have a certificate indicating which public key algorithm is required. The corresponding
algorithm initialization function pointer must be in the PkiGen array.

Notes:
UM020107-1211 SSL Configuration

ZTP Network Security SSL Plug-In
User Manual

31
When the ZTP Network Security SSL Plug-In is operating in client mode, it does not
know the type of certificate a server possesses. If the server presents a certificate using a
public key algorithm which is not included in the PkiGen table, then the client will be
unable to establish a session with the server. The greatest flexibility is afforded by includ-
ing all possible algorithms in the PkiGen array. However, such an inclusion comes at the
expense of increasing the code size of the application due to public key algorithms that are
rarely used. Due to the overwhelming popularity of the RSA algorithm, Zilog recom-
mends that the RSA algorithm always be included in the PkiGen array.

Cipher Suite Configuration

During the establishment of an SSL session, the client and server determine a 3-tuple of
PKI algorithm, symmetric cipher algorithm and digest algorithm that is used to secure
communications. This 3-tuple is called a cipher suite. Because SSL supports different
PKI, cipher and digest algorithms, there are many possible combinations of cipher suites.

The ssl_conf.c configuration file contains tables of SSL_CS_INFO structures that
define a set of cipher suites that can be supported by the ZTP Network Security SSL Plug-
In. Individual entries in these tables can be removed or disabled to prevent the cipher suite
from being selected during the establishment of a session. These tables also determine the
minimum set of PKI, cipher and digest algorithms that must be included in the PkiGen,
CipherGen and HashGen arrays.

To understand these relationships, first understand the structure of a single cipher suite.
The SSL_CS_INFO data structure is shown in the following code fragment.

typedef struct SSL_CS_INFO
{

SSL_WORD CipherSuite;
SSL_BYTE KeyAlg;
SSL_BYTE CipherAlg;
SSL_BYTE HashAlg;
SSL_BOOL IsExport;
SSL_BYTE KeySize;
SSL_BYTE IVSize;
SSL_BYTE MacSize;
SSL_BOOL IsValid;

} SSL_CS_INFO;

The CipherSuite entry is a two-byte code that the SSL specification defines to identify
the standard cipher suites. Each code also features a long mnemonic. The cipher suites that
the ZTP Network Security SSL Plug-In is capable of supporting can be found in the
CipherSuite.h header file; some examples are shown in the following code fragment.

#define TLS_RSA_WITH_RC4_128_MD5 0x0400
UM020107-1211 SSL Configuration

ZTP Network Security SSL Plug-In
User Manual

32
#define TLS_RSA_WITH_AES_128_CBC_SHA 0x2F00
#define TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA 0x0D00
#define TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA 0x1300

The KeyAlg entry identifies the algorithm that the ZTP Network Security SSL Plug-In
uses to arrive at a shared secret between the client and server when using this cipher suite.
The macros that the ZTP Network Security SSL Plug-In uses for the KeyAlg codes are
defined in the ez80_pki.h header file and are shown in the following code fragment.

#define SSL_PKI_RSA 1
#define SSL_PKI_DH 2
#define SSL_PKI_DHE_RSA 3
#define SSL_PKI_DHE_DSS 4

The CipherAlg entry identifies one of the supported cipher algorithms (see the
ez80_cipher.h header file).

#define SSL_CIPHER_NULL 0
#define SSL_CIPHER_RC4 1
#define SSL_CIPHER_DES 2
#define SSL_CIPHER_3DES 3
#define SSL_CIPHER_AES 4

The HashAlg entry identifies one of the supported digest algorithms (see the
ez80_hash.h header file).

#define SSL_HASH_NULL 0
#define SSL_HASH_MD5 1
#define SSL_HASH_HMAC_MD5 2
#define SSL_HASH_SHA1 3
#define SSL_HASH_HMAC_SHA1 4

The IsExport entry indicates whether this cipher suite can be exported for use outside
the United States. Only those cipher suites that contain the word EXPORT in the mne-
monic can be used in products outside the United States without government approval. All
exportable SSL cipher suites implemented by the ZTP Network Security SSL Plug-In use
an effective 40-bit symmetric key and restrict the modulus in the key exchange algorithm
to a maximum of 512 bits2.

The KeySize entry specifies the number of bytes in the symmetric key that are used by
the cipher algorithm.

2. Although these limits are below current United States export law requirements, source code customers are advised to seek
government counsel before modifying the SSL protocol to allow longer keys in exported cipher suites.
UM020107-1211 SSL Configuration

ZTP Network Security SSL Plug-In
User Manual

33
For export cipher suites using a 40-bit effective symmetric key, the cipher algorithm still
uses the full key length. The distinction is that only 40 bits of the symmetric key are pro-
tected during the key exchange algorithm for export ciphers.

IVSize denotes the length, in bytes, of the initialization vector used by the cipher algo-
rithm. Block ciphers operating in cipher-block chaining mode (CBC) require an initializa-
tion vector.

The MacSize denotes the length, in bytes of the message authentication code that the SSL
record layer generates on each outbound record and verifies on each inbound record. The
MAC is constructed using the digest algorithm specified by the HashAlg identifier.

The IsValid flag determines whether or not the cipher suite definition is used while
determining a compatible set of cipher suites between the SSL client and server. If the
IsValid flag is set to FALSE, then the cipher suite is not used during negotiations. This
setting allows applications to dynamically enable or disable cipher suites, as required.

Given a cipher suite mnemonic, it is simple to translate it into binary information which
can be used by the SSL handshake protocols. For example, the
TLS_RSA_WITH_RC4_128_MD5 mnemonic can be characterized as:

• The cipher suite is designed for use with the TLS handshake protocol.

• The RSA algorithm is used to exchange a secret key.

• RC4 is used to encrypt/decrypt all communications once the session is established.
The RC4 algorithm implemented in SSL uses a 128-bit symmetric key.

• MD5 is used as the message digest algorithm to generate MAC codes.

The corresponding SSL_CS_INFO structure that contains the same information is shown
in the following code fragment:

{
TLS_RSA_WITH_RC4_128_MD5,
SSL_PKI_RSA,
SSL_CIPHER_RC4,
SSL_HASH_MD5,
FALSE,
RC4_128_KEY_SIZE_BYTES,
RC4_IV_SIZE_BYTES,
MD5_HASH_SIZE_BYTES,
TRUE

};

Because the mnemonic does not contain the word EXPORT, the IsExport flag is set to
FALSE. Additionally manifest constants are used for the sizes of the KeySize, IVSize,

Note:
UM020107-1211 SSL Configuration

ZTP Network Security SSL Plug-In
User Manual

34
and MacSize fields. Lastly, the IsValid flag is set to TRUE so that this cipher suite can
be used for establishing a session.

Cipher Suite Tables

The first step in establishing an SSL session is for the client and server to determine a
common cipher suite. Both the client and server must be capable of supporting the exact
same cipher suite, or else the session will not be established. If the client supports only
TLS_RSA_WITH_RC4_128_MD5 and the server supports only
TLS_RSA_WITH_RC4_128_SHA, the client and server cannot establish an SSL session.

To facilitate the establishment of a session, it is advantageous if both parties are capable of
supporting multiple cipher suites. This type of support increases the chance that at least
one match will be found. With the ZTP Network Security SSL Plug-In, this task is accom-
plished by creating tables of SSL_CS_INFO structures that define a set of cipher suites
supported by the SSL handshake protocols. Each implemented SSL handshake protocol
has a global variable, defined in ssl_conf.c, that references its table of cipher suites.
These variables are named:

• pSSL2_CipherSuites

• pSSL3_CipherSuites

• pTLS1_CipherSuites 

A second set of global variables specifies how many entries are present in each of the
cipher suite tables. These variables are named:

• NumSSL2_CipherSuites

• NumSSL3_CipherSuites

• NumTLS1_CipherSuites

The following code fragment shows a sample cipher suite table for the TLSv1 handshake
protocol. For clarity, only the mnemonic of the SSL_CS_INFO structure is shown, fol-
lowed by an ellipsis.

SSL_CS_INFO TLS1_CipherSuites[] =
{

{ TLS_NULL_WITH_NULL_NULL, ... },
{ TLS_RSA_WITH_RC4_128_MD5, ... },
{ TLS_RSA_WITH_DES_CBC_SHA, ... }

};
SSL_BYTE NumTLS1_CipherSuites =
sizeof(TLS1_CipherSuites) / sizeof(SSL_CS_INFO);
SSL_CS_INFO *pTLS1_CipherSuites = TLS1_CipherSuites;
UM020107-1211 SSL Configuration

ZTP Network Security SSL Plug-In
User Manual

35
The first entry in every cipher suite table must indicate a NULL cipher suite; i.e., one that
uses the NULL PKI algorithm, the NULL cipher algorithm and the NULL digest algo-
rithm. This cipher suite must never be enabled (i.e., IsValid is set to FALSE). It is
included in the cipher suite because it describes the session’s initial state (operation on a
completely unsecured channel).

The ordering of cipher suites within each table is significant. Entries appearing higher in
the table are preferred over entries appearing lower in the table. For example, in the sam-
ple cipher suite table above, it is possible that both the client and server support both
cipher suites; however, because the TLS_RSA_WITH_RC4_128_MD5 entry appears before
TLS_RSA_WITH_DES_CBC_SHA, preference will be given to the
TLS_RSA_WITH_RC4_128_MD5 cipher suite. When the corresponding ZTP Network
Security SSL Plug-In SSL handshake protocol is operating as a server, it selects the first
matching entry in the cipher suite table that matches the list of cipher suites supplied by
the client. When the corresponding SSL protocol is operating in client mode, it orders its
list of supported cipher suites in the same order as they appear in the cipher suite table,
thus indicating the order of preference to the server. In either situation, all cipher suites in
the table for which the IsValid flag is FALSE are ignored.

Synchronizing PKI, Cipher and Digest Configurations

After the cipher suite tables are created, it is easy to determine the minimal set of PKI
algorithms, cipher algorithms and digest algorithms that must be configured in the Pki-
Gen, CipherGen, and HashGen arrays. For example, to determine what entries must exist
in the CipherGen array to support all cipher suites for which the IsValid flag is set to
TRUE, note each unique entry in the CipherAlg field. Suppose the cipher suites all used
SSL_CIPHER_NULL, SSL_CIPHER_RC4 or SSL_CIPHER_DES. As a result, the Cipher-
Gen array could be modified, as shown in the following code fragment, because the 3DES
and AES cipher algorithms will not be required.

CIPHER_NEW CipherGen[SSL_MAX_CIPHERS] =
{

NullCipher_New,
RC4_New,
DES_New,
NullCipher_New, // 3DES not required
NullCipher_New // AES not required

};

Configuring the HashGen array is slightly more complicated, because the HMAC_MD5 and
HMAC_SHA1 hashes are always used by TLSv1 – even though they never appear in the

Note:
UM020107-1211 SSL Configuration

ZTP Network Security SSL Plug-In
User Manual

36
CipherGen table. For additional information about configuring the HashGen array, see
Table 5 on page 25.

Configuring the PkiGen array is difficult. Use the values listed in Table 6 to determine the
minimum set of PKI algorithms required based on the KeyAlg field in all cipher suite
entries.

1. When RSA export cipher suites are used, the ZTP Network Security SSL Plug-In will
abort the establishment of a session if the RSA modulus exceeds the export limit
regarding public key size.

2. Any cipher suite containing the text DHE uses Ephemeral Diffie-Hellman (EDH)
parameters to arrive at a shared secret between the client and the server. Therefore, the
pDheInit function pointer must reference the dhe_init routine, or else Ephemeral
Diffie-Hellman cipher suites cannot be supported. The difference between a Diffie-
Hellman (DH) certificate and DHE parameters is that the private and public Diffie-
Hellman values never change when a DH certificate is used. In contrast, when DHE
parameters are used, the private and public values are changed each time a new ses-
sion is established.

3. When DSS certificates (using the DSA signature algorithm) are employed, EDH key
exchange is always performed. This situation exists because the DSA algorithm can-
not be used to establish a shared secret; it can only be used to digitally sign some other
datum. Therefore, DHE_DSS cipher suites use Ephemeral Diffie-Hellman parameters
to arrive at a shared secret, and these parameters are signed using the public key con-
tained in the DSS certificate.

RSA certificates are used for encryption and signatures. Cipher suites using RSA for key
exchange through RSA encryption contain text such as _RSA_WITH_ or
_RSA_EXPORT_WITH_. Cipher suites using Ephemeral Diffie-Hellman parameters signed
with RSA use text such as _DHE_RSA_.

In general, when a cipher suite contains two public key algorithms (for example,
TLS_DHE_RSA_WITH_DES_CBC_SHA), the first public key algorithm identifies the key

Table 6. PKI Algorithm Requirements by Cipher Suite

KeyAlg Value From
Cipher Suite

Required PKIGen
Entry

Required pDheInit
Setting

SSL_PKI_RSA rsa_init NULLPTR

SSL_PKI_DH dh_init NULLPTR

SSL_PKI_DHE_RSA rsa_init dhe_init

SSL_PKI_DHE_DSS dsa_init dhe_init

Notes:
UM020107-1211 SSL Configuration

ZTP Network Security SSL Plug-In
User Manual

37
exchange algorithm (DHE in this example). The second public key algorithm identifies
the algorithm used for authentication (RSA in this example). Because RSA can be used for
both key exchange and authentication, the text RSA only appears once in the cipher suite
mnemonic. This feature represents another advantage of using RSA certificates; i.e., only
one (computationally-intensive) public key operation must be performed to authenticate
the server and arrive at a shared secret, as opposed to cipher suites requiring the use of two
public key algorithms.

As indicated above, SSL primarily uses two public key algorithms to generate and verify
DSA and RSA signatures. Because the use of RSA certificates is more prevalent than DSS
(i.e., DSA) certificates, it is not required that the dsa_init function pointer be included
in the PkiGen array. However, in cases where a server’s certificate is signed using an
issuer’s DSA private key, it will not be possible to verify the signature unless the
dsa_init function pointer is included in the PkiGen array. Furthermore, if signature ver-
ification is enabled (see the Signature Verification section on page 50), it will not be possi-
ble to establish a session.

EDH Parameters

When an Ephemeral Diffie-Hellman cipher suite is used to secure a communication chan-
nel between the SSL client and server, the server must supply DH parameters to the client
in a handshake message. Ephemeral Diffie-Hellman cipher suites contain the text _DHE_
in the cipher suite mnemonic; e.g., TLS_DHE_RSA_WITH_DES_CBC_SHA. The DH param-
eters contain two values necessary to complete the Diffie-Hellman key agreement algo-
rithm: the prime modulus, p, and the generator, g. The message that is sent also contains
the server’s public value.

In the ZTP Network Security SSL Plug-In implementation, the SSL server selects a new
private key and generates a public value prior to sending the Ephemeral Diffie-Hellman
parameters and the public value to the client. However, the server always uses the same
DH parameters (p and g). A reference to these DH parameters must be supplied to the
server on the TLS1_ServerInit or SSL3_ServerInit APIs, as shown in the following
TLSv1 initialization call example:

TLS1_ServerInit(&CertChain, &DheParams);

By default, the SSLv3 and TLSv1 servers in the ZTP Network Security SSL Plug-In use
the same set of DH parameters, but this usage is not mandatory. Because SSLv2 cipher
suites do not use Ephemeral Diffie-Hellman cipher suites, the final parameter on the
SSL2_Init API is always specified as NULLPTR.

In the default configuration of the ZTP Network Security SSL Plug-In, the Ephemeral Dif-
fie-Hellman parameters are contained in the dh_params.c configuration file, as shown in
the following code fragment:

SSL_BYTE DH_Params_Pem[] = {"\
UM020107-1211 SSL Configuration

ZTP Network Security SSL Plug-In
User Manual

38
MIGKAkEA3uxiDPwIuoU6r22inWehs84FBTvrD8bQufdCltw6RAoV+DM5PHkyMLoH\
KEThy65yDANqA0s4tukYX+jEg98IFQJBAKK+9mbWv9G6WqQExbjrjxKUJG863bYR\
QlwmO9kd6hs6rQDa1g1E5UQ9SOrUcs6cLGzuSQYE+0K8G7UEknvAKTYCAgCg"};

ASN1_ENC_DATA DheParams =
{

PEM_ENCODED_DATA,
sizeof(DH_Params_Pem)-1,
DH_Params_Pem

};

The p and g values must be encoded as a sequence of two ASN.1 DER integers. The first
integer is the value of the prime modulus, p, and the second integer is the value of the gen-
erator, g. The SSL library assumes that p and g have been chosen appropriately. The ASN.1
DER data can optionally be Base64-encoded (as shown in the example above).

The variable used to specify the DH parameters must be of type ASN1_ENC_DATA block.
The encoding member of the data structure indicates whether the DH parameters are
DER_ENCODED_DATA (i.e., DER-encoded ASN.1 data) or BASE64_DER_ENCODED_DATA
(i.e., Base64 DER-encoded ASN.1 data). Base64 DER-encoded ASN.1 data is also known
as PEM encoding and, therefore, the encoding member of the ASN1_ENC_DATA variable
can be specified as PEM_ENCODED_DATA.

The length and pData members of the ASN1_ENC_DATA structure indicate the number
of bytes in the encoded data and the address of the first byte of the encoded data.

How to Generate Ephemeral Diffie-Hellman Parameters

The ZTP Network Security SSL Plug-In does not include any utilities to generate Diffie-
Hellman parameters. Third-party utilities must be used to generate Ephemeral Diffie-Hell-
man parameters, if required; Zilog does not recommend or endorse any such utilities. This
section describes how to generate Diffie-Hellman parameters using the dhparam com-
mand in OpenSSL.

To generate a Diffie-Hellman parameter, enter the following command at the OpenSSL
command prompt:

OpenSSL> dhparam -text -out dh_param.txt 512

This command will produce an output file named dh_param.txt that contains the prime
modulus and generator in text format, as well as a Base64-encoded ASN.1 DER data
block containing the DH parameters. The maximum length of the DH modulus is 512 bits.
An example of the contents of the text file is shown in the following code fragment:

Diffie-Hellman-Parameters: (512 bit)

Note:
UM020107-1211 SSL Configuration

ZTP Network Security SSL Plug-In
User Manual

39
prime:
00:84:5f:92:80:12:59:11:5a:5d:22:84:e9:8d:6e:
fc:1b:6b:e4:7d:bb:76:97:57:07:c1:9a:4d:1f:ea:
88:ae:d5:13:08:5a:00:9a:78:a2:28:47:aa:f6:90:
ce:5d:cd:75:01:cc:9c:89:7a:79:4d:af:37:c1:ad:
ba:74:3d:12:3b
generator: 2 (0x2)

-----BEGIN DH PARAMETERS-----
MEYCQQCEX5KAElkRWl0ihOmNbvwba+R9u3aXVwfBmk0f6oiu1RMIWgCaeKIoR6r2
kM5dzXUBzJyJenlNrzfBrbp0PRI7AgEC
-----END DH PARAMETERS-----

To use this output with the ZTP Network Security SSL Plug-In, cut and paste the two lines
of text between the BEGIN DH PARAMETERS and END DH PARAMETERS delimiters
mentioned above, and place it into an array that is referenced by the pData member of the
ASN1_ENC_DATA structure. The following code fragment shows how to instantiate a vari-
able of type ASN1_ENC_DATA that uses these DH parameters.

SSL_BYTE DH_Params_Pem[] = {"\
MEYCQQCEX5KAElkRWl0ihOmNbvwba+R9u3aXVwfBmk0f6oiu1RMIWgCaeKIoR6r2\
kM5dzXUBzJyJenlNrzfBrbp0PRI7AgEC"};
ASN1_ENC_DATA DheParams =
{

PEM_ENCODED_DATA,
sizeof(DH_Params_Pem)-1,
DH_Params_Pem

};

By default, the OpenSSL dhparam command will generate DH parameters with a genera-
tor of two or five. If larger generators are required, use the -dsaparam option, as shown
in the following code fragment:

OpenSSL> dhparam -text -dsaparam -out dh_param.txt 512

Modulus Length

As the number of bits in the DH modulus is increased, it becomes more difficult for
attackers to guess the DH shared secret generated by the algorithm. However, this increase
also increases the amount of time it takes for the ZTP Network Security SSL Plug-In to
compute results using the DH key exchange algorithm.

Additionally, if export cipher suites are enabled, it is important to ensure that the modulus
does not exceed export requirements. The original SSLv3 and TLSv1 cipher suites
required the DH modulus of export cipher suites to be less than or equal to 512 bits to con-
form with United States export regulations at that time. Since then, export regulations
have been relaxed to allow the export of 1024-bit public keys (and 56-bit symmetric keys);
UM020107-1211 SSL Configuration

ZTP Network Security SSL Plug-In
User Manual

40
however, the ZTP Network Security SSL Plug-In does not currently recognize extended
cipher suites that employ 1024-bit public keys.

Certificates

Before describing where certificates are configured in the ZTP Network Security SSL
Plug-In, you can review the role of certificates in SSL.

Background

During the establishment of a session, X.509 certificates are mainly used to authenticate
the server, and are optionally used to authenticate the client. The SSLv3 and TLSv1 speci-
fications also define a set of anonymous cipher suites in which neither party is authenti-
cated. The ZTP Network Security SSL Plug-In does not support client authentication, nor
does it support anonymous cipher suites. Therefore, only SSL servers are required to pos-
sess an X.509 certificate.

X.509 certificates contain information that identifies the entity for which the certificate
was issued (referred to as the subject of the certificate) and information about the entity
that issued the certificate (the issuer). Certificates are valid only for a certain period of
time. Each certificate contains two time stamps. The first time stamp specifies the start of
a certificate’s validity period. The second time stamp identifies the time at which the cer-
tificate expires. Certificates used outside this time period are to be treated as invalid. For
the purpose of establishing an SSL session, the two most important items in the certificate
are the server’s public key and the certificate signature.

When a certificate is created, the issuer asserts that the subject of the certificate is in pos-
session of a private key corresponding to the public key in the certificate. The issuer also
asserts that it has performed some level of verification (indeed, perhaps none) of the sub-
ject’s identity. The exact information required by an issuer to verify a subject’s identity
will vary between issuers. This scenario is analogous to various certificates used by peo-
ple, such as a library card or a passport. The background checks performed by the respec-
tive issuers are not necessarily identical. Therefore, when presenting either of these
certificates to prove one’s identity, one of these certificates may be more accepted (i.e.,
trusted) because the issuer has more credibility.

Trust relationships form the basis of SSL authentication. When an SSL server presents a
client with its digital certificate, the client performs basic integrity checks on the certifi-
cate (for example, it may check whether the entity presenting the certificate is the same as
the subject, or if the certificate has expired). However, a forged certificate could easily
pass these basic integrity checks. Therefore, every X.509 certificate is signed by the issuer
(using the issuer’s private key). A client that is in possession of the issuer’s certificate can
use the issuer’s public key to verify the authenticity of the certificate presented by the sub-
ject (i.e., the SSL server). Therefore, if the client trusts the issuer, it can be assured of the
server’s identity. Conversely, if the client does not know the issuer of the subject’s certifi-
cate, then it can obtain the certificate of the issuer that issued the issuer’s certificate. This
UM020107-1211 SSL Configuration

ZTP Network Security SSL Plug-In
User Manual

41
process continues until the client obtains a certificate from a trusted issuer, or until a certif-
icate is presented that was signed by the same entity presenting the certificate (called a
self-signed certificate). In this circumstance, the subject of the certificate is vouching for
itself.

When a self-signed certificate is presented to a client, it must determine whether to accept
the certificate or not, and whether or not to allow the SSL session to be established. Many
computer programs executing with user interfaces will typically force the human user to
make the decision. The ZTP Network Security SSL Plug-In uses a callback routine to
make this decision (see the Certificate Verification section on page 48).

After the client is satisfied with the server’s identity, it uses the public key in the certificate
to arrive at a shared secret between the client and the server, which in turn is used to
encrypt all data transferred between them. This encryption occurs via the execution of a
public key algorithm. If the server actually possesses the private key that corresponds to
the public key in the certificate, then both the client and the server will arrive at the same
secret. Otherwise, the secrets will not match, and data encrypted by one party will not be
understood by the other party. The SSL handshake protocols are able to detect this condi-
tion and will immediately sever the SSL connection.

Certificate Chains

The previous section explained basic certificate concepts and indicated that certificate
trust relationships are hierarchical in nature. Consequently, TLSv3 and SSLv1 servers are
able to present the client with a list of certificates called a certificate chain. The first chain
in the certificate belongs to the server presenting the list. The next certificate in the chain
belongs to the issuer that signed the server’s certificate. The next certificate belongs to the
issuer that signed the issuer of the subject’s certificate, etc.

SSL certificate chains can (but are not required to) end with a self-signed certificate (i.e.,
the one in which the certificate is issued to and issued by the same entity).

SSLv2 servers are only permitted to supply the client with a single certificate, often a self-
signed certificate. For the client to accept the server’s certificate, it must trust one of the
certificates in the server’s chain. This trust can be developed as the result of having the pre-
viously stored issuer’s certificate or simply prompting the user to accept the certificate.

When one of the SSL server handshake protocols in the ZTP Network Security SSL Plug-
In is initialized (see the SSL Handshake Protocol Initialization section on page 22), the
first parameter must be a pointer to the CERT_CHAIN data structure. This data structure
accommodates a maximum of four X.509 certificates. The following code fragment shows
an initialized variable of type CERT_CHAIN that contains a chain of two certificates:

CERT_CHAIN CertChain =

Note:
UM020107-1211 SSL Configuration

ZTP Network Security SSL Plug-In
User Manual

42
{
2, // 2 certificates in this chain
BASE64_DER_ENCODED_DATA,// All certs & keys are in PEM format
NULLPTR, // Created by SSL layer when the chain is parsed
{key_data, sizeof(key_data)-1},

// Private Key
{ {cert_data, sizeof(cert_data)-1},

// Subject Certificate
 {cert2_data, sizeof(cert2_data)-1},

// Issuer's Certificate
{NULLPTR, 0},
{NULLPTR, 0} }

};

The first member of the CERT_CHAIN structure indicates the number of certificates in the
chain (must be between one and four, inclusive).

The second parameter specifies the encoding of all certificates and the subject’s private
key. Valid options are BASE64_DER_ENCODED_DATA (or, equivalently,
PEM_ENCODED_DATA) or DER_ENCODED_DATA.

The third member of the CERT_CHAIN data structure contains a pointer to a data structure
that the SSL protocol uses to parse information in the server’s certificate. This parameter
must always be set to NULLPTR when an application initializes a CERT_CHIAIN data
structure.

The fourth member is a structure pointing to the first byte of the private key and to the
length (in bytes) of the private key data.

The last member of the CERT_CHAIN is an array of (pointer, length) tuples that references
the first byte of data in an X.509 certificate and the number of bytes of data in the X.509
certificate.

Generating Certificates

While developing an SSL-based application, either use one of the sample certificates and
private key included in the SSLDemo folder, or create a new certificate and private key. To
create a new certificate, it is necessary to obtain a third party tool. Zilog does not recom-
mend or endorse any Certificate Authorities or third party utilities for the purpose of gen-
erating certificates and key pairs. However, for informational purposes, this section
describes how to generate a certificate chain using OpenSSL (refer to www.openssl.org).

The ZTP Network Security SSL Plug-In does not contain any utilities to generate public/
private key pairs or generate X.509 certificate. Prior to putting a product into production,
you should contact a certificate authority to request a signed X.509 certificate (and if

Note:
UM020107-1211 SSL Configuration

www.openssl.org
http://www.openssl.org

ZTP Network Security SSL Plug-In
User Manual

43
required, a public/private key pair). Third party utilities can also be used to generate these
items.

The first step is to generate a self-signed root certificate that will terminate the certificate
chain. Generating this root certificate will generate a server certificate that will be signed
with the root certificate, as the following instruction shows.

1. Generate a self-signed RSA (512-bit) certificate.

In the following example, the interactive mode of the OpenSSL req command is used
to enter information about the issuer. This information can also be provided in a con-
figuration file.

OpenSSL> req -newkey rsa:512 -x509 -nodes -out Root.crt -keyout
RootKey.txt -set_serial 0x01 -days 365
Loading 'screen' into random state - done
Generating a 512 bit RSA private key
....++++++++++++
...++++++++++++
writing new private key to 'RootKey.txt'

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished
Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:CA
Locality Name (e.g., city) []:San Jose
Organization Name (e.g., company) [Internet Widgets Pty
Ltd]:Zilog
Organizational Unit Name (e.g., section) []:.
Common Name (e.g., YOUR name) []:ZTP SSL CA
Email Address []:.

This command generates a 512-bit RSA self-signed certificate with the subject and
issuer common name set to ZTP SSL CA. The certificate will be valid for 365 days
starting from the current date, and the certificate’s serial number will be set to 01. The
X.509 certificate that is generated will be in PEM (i.e., Base64 ASN.1 DER data) and
stored in a file named Root.crt. A PEM-encoded RSA private key file will also be
generated and stored in a file named RootKey.txt. The -nodes option directs the
UM020107-1211 SSL Configuration

ZTP Network Security SSL Plug-In
User Manual

44
req command not to DES-encrypt the private key. The Base64-encoded data in these
files will be enclosed between the beginning and ending delimiter lines.

An example is shown in the following code fragment.

-----BEGIN CERTIFICATE-----
MIICQjCCAeygAwIBAgIBATANBgkqhkiG9w0BAQQFADBSMQswCQYDVQQGEwJVUzEL
MAkGA1UECBMCQ0ExETAPBgNVBAcTCFNhbiBKb3NlMQ4wDAYDVQQKEwVaaUxPRzET
MBEGA1UEAxMKWlRQIFNTTCBDQTAeFw0wNTEwMTUyMDAxMTZaFw0wNjEwMTUyMDAx
MTZaMFIxCzAJBgNVBAYTAlVTMQswCQYDVQQIEwJDQTERMA8GA1UEBxMIU2FuIEpv
c2UxDjAMBgNVBAoTBVppTE9HMRMwEQYDVQQDEwpaVFAgU1NMIENBMFwwDQYJKoZI
hvcNAQEBBQADSwAwSAJBALwIx2kBFRWBu7f17d4V+qe/By+6FGOzPus0rRtXEFPy
+M+11NISOLikREZV948QKN1GkT/8fJplhuMNn5G1LhsCAwEAAaOBrDCBqTAdBgNV
HQ4EFgQUHZCNWFT6S8lrh1+jSuTKIsZVk/8wegYDVR0jBHMwcYAUHZCNWFT6S8lr
h1+jSuTKIsZVk/+hVqRUMFIxCzAJBgNVBAYTAlVTMQswCQYDVQQIEwJDQTERMA8G
A1UEBxMIU2FuIEpvc2UxDjAMBgNVBAoTBVppTE9HMRMwEQYDVQQDEwpaVFAgU1NM
IENBggEBMAwGA1UdEwQFMAMBAf8wDQYJKoZIhvcNAQEEBQADQQALzgTerl+vD04M
PirnJIWeXpk3stLJ+yXhtVUp/puVRMx/cUNuK+B/Fko0MBJgWp8ILHf31DcHzXGQ
rpS8d8XM
-----END CERTIFICATE-----

2. Create the SSL server’s certificate. The OpenSSL req command will be used again;
however, this time a command file is used to supply the req command with informa-
tion about the SSL server. This command will also generate a self-signed certificate
for the server but, in the next step, the certificate will be signed by the root certificate
created in the previous step.

OpenSSL> req -newkey rsa:512 -x509 -nodes -out SrvrSS.crt -keyout
SrvrKey.txt -config info.txt

Loading 'screen' into random state - done
Generating a 512 bit RSA private key
......................++++++++++++
..++++++++++++
writing new private key to 'SrvrKey.txt'

OpenSSL>

The contents of the configuration file info.txt is shown in the following code frag-
ment.

[req]
 distinguished_name = req_distinguished_name
 prompt = no

 [req_distinguished_name]
UM020107-1211 SSL Configuration

ZTP Network Security SSL Plug-In
User Manual

45
 C = US
 ST = CA
 L = San Jose
 O = Zilog Inc.
 CN = My SSL Server
 emailAddress = name@mycompany.com

 [req_attributes]

3. Use the self-signed certificate created in Step 1 (the mock certificate authority’s certif-
icate is used in this example), to sign the certificate generated in Step 2. This authori-
zation is accomplished using the OpenSSL x509 command, as shown in the
following code fragment.

OpenSSL> x509 -days 100 -CA Root.crt -CAkey RootKey.txt -in
SrvrSS.crt -out Srvr.crt -set_serial 0x1234
Loading 'screen' into random state - done
Signature ok
subject=/C=US/ST=CA/L=San Jose/O=Zilog Inc./CN=My SSL Server/
emailAddress=name@mycompany.com
Getting CA Private Key
OpenSSL>
An example of the contents of the generated Srvr.crt text file
(PEM encoded) follows:
-----BEGIN CERTIFICATE-----
MIIBvzCCAWmgAwIBAgICEjQwDQYJKoZIhvcNAQEEBQAwUjELMAkGA1UEBhMCVVMx
CzAJBgNVBAgTAkNBMREwDwYDVQQHEwhTYW4gSm9zZTEOMAwGA1UEChMFWmlMT0cx
EzARBgNVBAMTClpUUCBTU0wgQ0EwHhcNMDUxMDE1MjE1NDI1WhcNMDYwMTIzMjE1
NDI1WjB9MQswCQYDVQQGEwJVUzELMAkGA1UECBMCQ0ExETAPBgNVBAcTCFNhbiBK
b3NlMRMwEQYDVQQKEwpaaUxPRyBJbmMuMRYwFAYDVQQDEw1NeSBTU0wgU2VydmVy
MSEwHwYJKoZIhvcNAQkBFhJuYW1lQG15Y29tcGFueS5jb20wXDANBgkqhkiG9w0B
AQEFAANLADBIAkEAlHUuaMSbWu5jNAWDC8zTvM5JYQAsiJrXBkXDdOQKKHH6dlsH
MmUFdpxNYXQQMUmhpsc4ktWQORqdEROXQYV16QIDAQABMA0GCSqGSIb3DQEBBAUA
A0EAlnY7md2V/vKPWb/hNN9qbj/ZNNLGv+8QCii/3vm0WYsZFprS31FEcWDKu1aE
r/2NIm4yqJfXFM4jJxaYThX7xg==
-----END CERTIFICATE-----

To use this file, cut and paste the text between the BEGIN and END delimiters and place
it into a C array that will be referenced by a variable of type CERT_CHAIN. It is neces-
sary to append line continuation characters (\) to each line of text, as shown in Step 4.

4. Create a CERT_CHAIN data structure which contains the server’s certificate, the CA’s
root certificates and the server’s private key. The following declaration shows an
example.

#include "SSL.h"
UM020107-1211 SSL Configuration

ZTP Network Security SSL Plug-In
User Manual

46
SSL_BYTE SrvrCrt[] = {"\
MIIBvzCCAWmgAwIBAgICEjQwDQYJKoZIhvcNAQEEBQAwUjELMAkGA1UEBhMCVVMx\
CzAJBgNVBAgTAkNBMREwDwYDVQQHEwhTYW4gSm9zZTEOMAwGA1UEChMFWmlMT0cx\
EzARBgNVBAMTClpUUCBTU0wgQ0EwHhcNMDUxMDE1MjE1NDI1WhcNMDYwMTIzMjE1\
NDI1WjB9MQswCQYDVQQGEwJVUzELMAkGA1UECBMCQ0ExETAPBgNVBAcTCFNhbiBK\
b3NlMRMwEQYDVQQKEwpaaUxPRyBJbmMuMRYwFAYDVQQDEw1NeSBTU0wgU2VydmVy\
MSEwHwYJKoZIhvcNAQkBFhJuYW1lQG15Y29tcGFueS5jb20wXDANBgkqhkiG9w0B\
AQEFAANLADBIAkEAlHUuaMSbWu5jNAWDC8zTvM5JYQAsiJrXBkXDdOQKKHH6dlsH\
MmUFdpxNYXQQMUmhpsc4ktWQORqdEROXQYV16QIDAQABMA0GCSqGSIb3DQEBBAUA\
A0EAlnY7md2V/vKPWb/hNN9qbj/ZNNLGv+8QCii/3vm0WYsZFprS31FEcWDKu1aE\
r/2NIm4yqJfXFM4jJxaYThX7xg=="};
SSL_BYTE RootCrt[] = {"\
MIICQjCCAeygAwIBAgIBATANBgkqhkiG9w0BAQQFADBSMQswCQYDVQQGEwJVUzEL\
MAkGA1UECBMCQ0ExETAPBgNVBAcTCFNhbiBKb3NlMQ4wDAYDVQQKEwVaaUxPRzET\
MBEGA1UEAxMKWlRQIFNTTCBDQTAeFw0wNTEwMTUyMDAxMTZaFw0wNjEwMTUyMDAx\
MTZaMFIxCzAJBgNVBAYTAlVTMQswCQYDVQQIEwJDQTERMA8GA1UEBxMIU2FuIEpv\
c2UxDjAMBgNVBAoTBVppTE9HMRMwEQYDVQQDEwpaVFAgU1NMIENBMFwwDQYJKoZI\
hvcNAQEBBQADSwAwSAJBALwIx2kBFRWBu7f17d4V+qe/By+6FGOzPus0rRtXEFPy\
+M+11NISOLikREZV948QKN1GkT/8fJplhuMNn5G1LhsCAwEAAaOBrDCBqTAdBgNV\
HQ4EFgQUHZCNWFT6S8lrh1+jSuTKIsZVk/8wegYDVR0jBHMwcYAUHZCNWFT6S8lr\
h1+jSuTKIsZVk/+hVqRUMFIxCzAJBgNVBAYTAlVTMQswCQYDVQQIEwJDQTERMA8G\
A1UEBxMIU2FuIEpvc2UxDjAMBgNVBAoTBVppTE9HMRMwEQYDVQQDEwpaVFAgU1NM\
IENBggEBMAwGA1UdEwQFMAMBAf8wDQYJKoZIhvcNAQEEBQADQQALzgTerl+vD04M\
PirnJIWeXpk3stLJ+yXhtVUp/puVRMx/cUNuK+B/Fko0MBJgWp8ILHf31DcHzXGQ\
rpS8d8XM"};

SSL_BYTE PrivKey[] = {"\
MIIBOgIBAAJBAJR1LmjEm1ruYzQFgwvM07zOSWEALIia1wZFw3TkCihx+nZbBzJl\
BXacTWF0EDFJoabHOJLVkDkanRETl0GFdekCAwEAAQJAPkM/KZV7ipF8ba76HRLU\
otTplZMbGlfGYs0Tgoy5behsGp+BG5mJJuS60CgzfFoxIFU5M18a+0njumsMogWG\
4QIhAMNglptCehhck24Bj0SsOD38xf4DwuX3lgr7hTC2VlVtAiEAwoWhStgbBAwH\
GwyjIsRBhy6haZHO7nxC6tLTIHmd4O0CIF+NeZrtZDFN9XyznpIDeG44lcypokQ+\
Vk+Au58bThXxAiASKvryi5aSXTE4tIh0EdJw9sj6nDSwj4iMeB5h9RnqzQIhAK1i\
ZFUHOYjTBanXj/Pl9QqNXqPn42u4B1GqOUJG/gmD"};

CERT_CHAIN CertChain =
{
2, // 2 certificates in this chain
PEM_ENCODED_DATA, // All certs & keys are in PEM format
NULLPTR, // Created by SSL layer when the chain

// is parsed.
{PrivKey, sizeof(PrivKey)-1},

// Server's Private Key
{ {SrvrCrt, sizeof(SrvrCrt)-1},

// Server's Certificate
 {RootCrt, sizeof(RootCrt)-1},

// Issuer's Certificate
UM020107-1211 SSL Configuration

ZTP Network Security SSL Plug-In
User Manual

47
 {NULLPTR, 0},
 {NULLPTR, 0} }

};

5. Lastly, to initialize the SSL server, use the certificate chain created in Step 4. For
example, to use this certificate chain with the TLSv1 handshake protocol, use the fol-
lowing function call:

TLS1_ServerInit(&CertChain, &DheParams);

Certificate Creation Issues

Consider the following points when creating your own certificates and private keys to be
used with the SSL:

• The SSLv2 protocol always uses the RSA algorithm to exchange the Master Key dur-
ing the establishment of a session. Therefore, X.509 certificates created for use with
the SSLv2 protocol must contain an RSA Public Key, and the corresponding private
key must be an RSA Private Key. Similarly, the constructed SSLv2 certificate chain
must contain only one X.509 certificate.

• It is important to choose a key length that is appropriate for the importance of the data
being exchanged. The sample certificates in the Certificate directory of the
SSLDemo folder use a 512-bit public key. The longer the key, the less likely an
attacker is to discover or hack the key. However, as key size increases, the SSL layer
takes more time to complete the key exchange algorithm during the establishment of a
session.

• The SSL layer in ZTP requires the private key to be in clear text format. Be sure that
the utility used to generate the private key does not encrypt the output. To prevent
encrypting of the private key, the –nodes option is used in the OpenSSL example,
discussed earlier in this chapter. If the Private Key is encrypted, then the SSL layer
will be unable to complete the key exchange, and it will not establish an SSL session.

• The X.509 certificate and Private Key must be encoded in the same manner. The SSL
layer in ZTP cannot process these parameters if one is DER_ENCODED_DATA and the
other is BASE64_DER_ENCODED_DATA.

• If the SSL server’s Private Key and X.509 certificate are in the PEM format
(BASE64_DER_ENCODED_DATA), they must be stored in RAM because the algorithm
which converts PEM-formatted data into DER-formatted data (DER_ENCODED_DATA)
performs the conversion in place (i.e., Base64 decoding overwrites the encoded data).

• Because private keys are stored in memory and must be transferred to the CPU over
the system data bus, some form of physical security is required to prevent an attacker
from analyzing the system memory or snooping the data bus and obtaining the private
key.
UM020107-1211 SSL Configuration

ZTP Network Security SSL Plug-In
User Manual

48
Certificate Verification

Prior to using X.509 certificates, SSL clients and servers will perform integrity checks on
the certificate to determine if it is authentic. For ZTP Network Security SSL Plug-In serv-
ers, these checks occur during the SSL handshake protocol’s initialization call (see the
SSL Handshake Protocol Initialization section on page 22). For clients, these checks occur
when the server’s certificate chain is received during the establishment of a session.

In the ZTP Network Security SSL Plug-In implementation, the following items are veri-
fied for each certificate in the chain:

• X.509 certificate structure

• The certificate’s validity period is checked

• Certificate Signature (can be disabled)

• If the certificate is self-signed

By default, if the certificate contains all of the expected fields, is presented within its
validity period, its signature has been verified and the certificate is not self-signed, the
ZTP Network Security SSL Plug-In will implicitly trust the certificate. If any of these
checks fail, a user-modifiable callback function is called. This callback function is named
VerifyCertificate, and the default implementation (as shown in the following code
fragment) is present in the Certificate.c configuration file.

SSL_STATUS VerifyCertificate
(

SSL_X509_S * pCertificate
)
{

return(SSL_SUCCESS);
}

The purpose of this callback routine is to allow an application to examine information
regarding a suspect certificate. If the VerifyCertificate callback returns
SSL_SUCCESS, the certificate will be trusted and used to complete the establishment of a
session. If the callback function returns SSL_FAILURE, the certificate will not be trusted;
this situation will prevent an SSL session from being established. The default implementa-
tion simply accepts all suspect certificates.

The flags member of the SSL_X509_S structure referenced by the pCertificate
pointer contains a combination of one or more of the following values which indicate the
results of processing the certificate:

#define SSL_X509_PARSED_OK 0x01
#define SSL_X509_DATE_VALID 0x02
UM020107-1211 SSL Configuration

ZTP Network Security SSL Plug-In
User Manual

49
#define SSL_X509_SIGNATURE_VERIFIED 0x04
#define SSL_X509_SELF_SIGNED 0x08
#define SSL_X509_PERMANENT 0x10
#define SSL_X509_UNKNOWN_SIG_ALG 0x40
#define SSL_X509_TRUSTED 0x80

In general, certificates for which the SSL_X509_PARSED_OK flag is not set must never be
trusted.

If the SSL_X509_DATE_VALID flag is not set, an attempt is made to use the certificate
before or after its stated validity period. However, it could also be the case that the system
date has not been set correctly.

The SSL_SIGNATURE_VERIFIED flag indicates if the SSL library is able to verify the sig-
nature on the certificate. This verification is possible with a self-signed certificate, but it
will only be possible with other certificates if the SSL layer is in possession of the issuer’s
certificate (i.e., public key). Again, this verification is possible for all certificates in the
certificate chain except, perhaps, for the last certificate. If the last certificate in the chain is
self-signed, then its signature can be verified; if it is not, then your application must deter-
mine if the issuer should be trusted.

The SSL_X509_SELF_SIGNED flag indicates that the subject and issuer of the suspect
certificate are identical; i.e., an entity is vouching for itself. Because the SSL layer has no
way of determining if such a certificate is truly trustworthy, such certificates are always
passed to the VerifyCertificate callback routine. In some cases, the certificate should
be accepted without any question. For example, if a self-signed certificate is installed for a
ZTP Network Security SSL Plug-In server, the VerifyCertificate callback function
will be called. Clearly, this certificate must be accepted, because it is the one owned by
your application.

In those cases in which a remote SSL server presents a certificate chain that does not end
in a self-signed root certificate, it must be assumed that the client application is already in
possession of the trusted root certificate, or implicitly trusts the certificate’s issuer. In all
other cases, the certificate might not be trustworthy.

Generally, the only certificates that are marked SSL_X509_PERMANENT are the local
server certificates. However, your application is permitted to set this flag on any certificate
presented to the VerifyCertificate callback for which SSL_SUCCESS is being
returned. This allowance will prevent the SSL layer from releasing resources associated
with the certificate.

The SSL_X509_UNKNOWN_SIG_ALG flag indicates one possible reason why the signature
verified flag is not set (i.e., if the ZTP Network Security SSL Plug-In does not implement
or has been configured not to support the signature algorithm that the issuer used to sign
the certificate), then it will not be possible to verify the signature. In this case, the
SSL_X509_UNKNOWN_SIG_ALG flag will be set and the SSL_X509_SIGNATURE_VERIFIED
flag will be cleared.
UM020107-1211 SSL Configuration

ZTP Network Security SSL Plug-In
User Manual

50
The SSL protocol layer internally sets the SSL_X509_TRUSTED flag on all certificates that
it implicitly trusts, or on those certificates for which the VerifyCertificate callback
function returns SSL_SUCCESS.

The ZTP Network Security SSL Plug-In does not check if the certificate has been revoked. No
attempt is made to contact certificate issuers and obtain a list of certificates that have been revoked.
If this functionality is required, it must be implemented within the VerifyCertificate callback
function.

Verifying All Certificates

In some instances, it is useful to examine all certificates – even those that the SSL layer
implicitly trusts (i.e., the SSL_X509_TRUSTED flag is set), especially if the application
must perform additional integrity checks on the certificate beyond the basic verification
performed in the SSL library. For example, the application can obtain the issuer’s certifi-
cate revocation list (CRL) to determine if an otherwise-valid certificate should be rejected.

To force the VerifyCertificate callback to be called for all certificates processed by
the SSL handshake protocols, set the value of the SSL_PresentAllCertificates con-
figuration variable to TRUE. This variable is located in the ssl_conf.c configuration
file. Its default definition is shown in the following code fragment:

SSL_BOOL SSL_PresentAllCertificates = FALSE;

Signature Verification

A digital signature provides a mechanism that allows an entity to verify that another entity
was the originator of a specific piece of digital information. This verification establishes
the authenticity of the information. To generate a signature, the information is typically
hashed into a fixed-sized quantity using a digest algorithm, and then subjected to a public
key operation using the signatory’s private key.

Any other entity possessing the signatory’s public key can then perform the complemen-
tary public key operation using the signatory’s public key and compare the recovered
digest to a locally-generated digest of the same piece of information. If these digests are
identical, the information is deemed authentic; i.e., the signatory’s private key has not
been compromised. If the key remains secure, then by the nature of the asymmetric public
key algorithm, it is extremely unlikely that an attacker could forge the signature on an
altered block of information.

All X.509 certificates used by SSL must be signed by an issuer. By verifying the signature
on a certificate, the recipient can be relatively certain that the certificate is accurate and
identical to the information that the issuer originally signed. If it can be proven (via an

Note:
UM020107-1211 SSL Configuration

ZTP Network Security SSL Plug-In
User Manual

51
asymmetric key exchange/agreement algorithm) that the subject of the certificate is in pos-
session of the private key corresponding to the public key in the certificate, then the certif-
icate recipient can be relatively certain that it is communicating with the entity to which
the certificate was issued.

When the SSL client and the server establish a session using Ephemeral Diffie-Hellman
parameters (or temporary RSA keys), these parameters are also digitally signed by the
SSL server. If the client verifies the signature on these parameters, it can be relatively cer-
tain that the parameters were created by the SSL server and not an attacker attempting to
trick the client to use bogus parameters which the attacker can decode.

By default, the ZTP Network Security SSL Plug-In will attempt to verify all digital signa-
tures. However, this verification can require the execution of many public key algorithms
which take considerable CPU bandwidth. At the customer’s discretion, verification of dig-
ital signatures can be disabled. The customer is advised that doing so will lower the over-
all security of the system. However, in applications requiring faster session establishment
times, disabling the verification of digital signatures could be a viable option.

Disabling Signature Verification

Digital signature verification is controlled by the value of the SSL_VerifySignatures
configuration variable located in the ssl_conf.c configuration file. The default setting
is shown in the following code fragment:

SSL_BOOL SSL_VerifySignatures = TRUE;

Disabling signature verification is useful only for SSL clients. SSL servers in the ZTP Net-
work Security SSL Plug-In will always generate signatures when required, regardless of
the setting of the SSL_VerifySignatures variable. In addition, because client authenti-
cation is not supported, SSL servers in this implementation will never verify a client signa-
ture.

Limitations

Because the ZTP Network Security SSL Plug-In only supports a limited set of crypto-
graphic operations, it can only verify (and generate) digital signatures that use these sup-
ported algorithms. A digital signature requires the use of a digest algorithm and a public
key signature algorithm. This implementation supports two digest algorithms (MD5 and
SHA1) and two signature algorithms (RSA and DSA). Therefore, the only digital signa-
ture algorithms that can be supported are:

• MD5 with RSA encryption

• SHA1 with RSA encryption

• SHA1 with DSA

Note:
UM020107-1211 SSL Configuration

ZTP Network Security SSL Plug-In
User Manual

52
The digital signature standard (DSS) specification does not permit the use of MD5 with
DSA. Therefore, this implementation will not recognize MD5 with DSA as a valid signa-
ture.

Session Cache

Executing public key algorithms is a computationally-intensive process, and accounts for
nearly all of the time required to establish an SSL session. As the length of the keys
involved increases, execution time increases exponentially. To prevent the execution of
these asymmetric algorithms each time a session is initiated, the same client and same
server must establish a new session in all versions so that the SSL handshake protocol uses
a session cache.

This session cache effectively stores the shared secret which a given client and server
derive using a public key algorithm from a previous session. If both parties store this
shared secret in the session cache, then the next time they attempt to establish a session,
there will be no need to execute another public key algorithm to arrive at a common shared
secret.

In the ZTP Network Security SSL Plug-In implementation, the session cache is controlled
by the value of two configuration variables, SSL_MAX_SESSION_CACHE_ENTRIES and
SSL_CACHE_TIMEOUT. These variables are defined in the ssl_conf.c configuration
file. The default configuration is shown in the following code fragment:

SSL_BYTE SL_MAX_SESSION_CACHE_ENTRIES = 8;
SSL_DWORD SSL_CACHE_TIMEOUT = 30000; /* measured in 10ms ticks */

SSL_MAX_SESSION_CACHE_ENTRIES determines the maximum number of entries in the
cache. One entry is used for each SSL session established using a different remote IP
address. This addressing requirement allows multiple remote sockets (i.e., individual con-
nections) to share the same SSL session. For example, if an SSL session is established
with remote socket 1.2.3.4:5000, then it creates a new entry in the session cache which
will be reused if a connection is attempted with remote socket 1.2.3.4:6000. If the
SSL_MAX_SESSION_CACHE_ENTRIES variable is set to 0, then the SSL session cache is
disabled; i.e., all attempts at establishing an SSL session will be required to perform asym-
metric public key operations to arrive at a new shared secret every time the same client
and server reconnect.

The SSL_CACHE_TIMEOUT variable determines the maximum lifetime (measured in 1/100th
of a second) of an idle entry in the session cache. In general, leaving entries in the session
cache indefinitely is a security risk because the longer the shared secret remains in existence,
the greater the likelihood that an attacker will be able to find it. Conversely, if session entries

Note:
UM020107-1211 SSL Configuration

ZTP Network Security SSL Plug-In
User Manual

53
expire too fast, then extra public key operations must be performed, resulting in slow session
establishment times. The default configuration specifies that an idle entry in the session cache
will expire in five minutes.

Session Cache Operation

When a new session is established, the SSL protocol layers adds a new entry to the session
cache and sets the entry’s expiry timer to SSL_CACHE_TIMEOUT. As more sessions are
established, additional entries in the cache are used. If the cache is full (i.e., it contains
SSL_MAX_SESSION_ENTRIES) and a new session is established, the recently used entry
will be evicted from the cache.

Each time the SSL protocol layers search the cache for a specific entry and that entry is
found, its time out value is reset to SSL_CACHE_TIMEOUT. While searching the session
cache, the SSL protocol layer will evict expired entries.

Diagnostic Messages

The ZTP Network Security SSL Plug-In is capable of generating a considerable amount of
diagnostic information. This information is displayed on the console device when the
handshake protocols execute. To control the amount of diagnostic messages displayed, the
value of the SSL_DEBUG_LEVEL configuration variable can be modified; this variable is
defined in the ssl_conf.c configuration file. The default configuration is shown in the
following code fragment.

SSL_BYTE SSL_Debug_level = SSL_DEBUG_ERROR;

This variable can be set to any one of the four values listed in Table 7.

Table 7. Diagnostic Message Control

SSL_DEBUG_LEVEL Setting Description

SSL_DEBUG_NONE Suppress all diagnostics messages

SSL_DEBUG_ERROR Display only Error messages

SSL_DEBUG_WARNING Display only Error and Warning messages

SSL_DEBUG_INFO Display all diagnostics messages
UM020107-1211 SSL Configuration

ZTP Network Security SSL Plug-In
User Manual

54
How to Use the HTTPS Server

The SSL libraries contain an HTTPS server that can serve encrypted web pages to client
browsers. This HTTPS server is initialized by calling the https_init API. This API
takes the same number and type of parameters as the standard HTTP server API.

For example, to initialize the standard HTTP server in ZTP, the following command is
used:

http_init(http_defmethods,httpdefheaders,website,80);

To initialize the HTTPS server, the following command is used:

https_init(http_defmethods,httpdefheaders,website,443);

The HTTPS server will be accessible to clients using the same version of the SSL hand-
shake protocol as the ZTP Network Security SSL Plug-In. Therefore, if the SSL version 2,
SSL version 3, and TLS version 1 handshake protocols have all been initialized in server
mode, the HTTPS server will be accessible to SSL clients using any of these protocol ver-
sions. For more information about initializing these different SSL protocols, see the SSL
Handshake Protocol Initialization section on page 22 and the Client Mode or Server Mode
Support section on page 24.

It is possible to have both secure and nonsecure web servers running at the same time.
However, the two webservers must be on different ports. The port number used for nonse-
cure HTTP servers is 80; for secure HTTP servers (HTTP over SSL or HTTPS), use port
443.

For more information about the HTTP (or HTTPS) server, refer to the section headed How
to Use HTTP in the ZTP Network Security SSL Plug-In Reference Manual (RM0047).

Limitations of the ZTP HTTPS Server

Consider the following points when using the ZTP HTTPS server.

1. It could become necessary to configure your client browser to support the same ver-
sion of SSL that is used by the ZTP HTTPS server; consult the documentation for
your browser for configuration assistance. Using Microsoft Internet Explorer as an
example, navigate to Tools →Internet Options, click the Advanced tab, and ensure
that the appropriate SSL protocols are selected. Figure 6 on page 55 displays this
Advanced tab in the Internet Options dialog in Internet Explorer.
UM020107-1211 How to Use the HTTPS Server

http://www.zilog.com/docs/ez80acclaim/software/rm0047.pdf

ZTP Network Security SSL Plug-In
User Manual

55
When multiple SSL protocols are enabled, preference is given to the higher protocol.
Therefore, if both TLSv1 and SSLv2 are selected, the browser first connects using TLS and
only reverts to SSLv2 if the TLS connection attempt fails.

2. When using the sample certificate with the HTTPS server in the SSL demo project, be
aware that client browsers such as Microsoft Internet Explorer generate warning mes-
sages when processing the sample certificate (see Figure 7 on page 56). The first
warning is encountered because the certificate was self-signed; therefore, a trusted
root certificate authority does not exist in the certificate chain. The second warning is
generated because the certificate’s subject (the distinguished name, or identity of the
SSL server) does not match the server’s website or IP address. These warnings are not

Figure 6. Internet Options Window

Note:
UM020107-1211 How to Use the HTTPS Server

ZTP Network Security SSL Plug-In
User Manual

56
generated when the CA issues a valid certificate in which the CN value matches the
server’s name or IP address.

3. All ZTP SSL servers share the same certificate. However, each ZTP SSL handshake
protocol is configured to use different certificates. For more information about ZTP
SSL server configuration, see the SSL Handshake Protocol Initialization section on
page 22.

Figure 7. Security Alert
UM020107-1211 How to Use the HTTPS Server

ZTP Network Security SSL Plug-In
User Manual

57
Creating SSL Applications

This chapter explains how to migrate a TCP-based client or server application to use SSL.

UDP-based applications cannot use SSL.

Automatic Protocol Negotiation

When a remote SSL client attempts to establish an SSL session with a local server, the
remote client is free to use any version of the SSL handshake protocol it requires (i.e.,
SSLv2, SSLv3 or TLSv1). If the corresponding SSL handshake protocol layer in the ZTP
Network Security SSL Plug-In is also initialized and a compatible cipher suite is negoti-
ated, then the session is established.

When a local ZTP SSL client attempts to establish a connection with a remote SSL server,
the ZTP Network Security SSL Plug-In, on its initial attempt, will use the highest version
of the SSL handshake protocol initialized in client mode. For example, if TLSv1 and
SSLv3 and SSLv2 have all been initialized in client mode (see the Client Mode or Server
Mode Support section on page 24), then the TLSv1 handshake protocol will first be used
to attempt to establish the session. If this session fails, the ZTP SSL layer will automati-
cally reattempt the connections using the next-highest version of the SSL handshake pro-
tocol layer initialized in client mode (SSLv3 in this example). This process continues until
either the session is established or until all client-enabled handshake protocols fail to
establish the session.

SSL Applications in ZTP-Based Systems

Transferring encrypted data using any of the ZTP SSL handshake protocols follows the
same semantics as transferring data using the ZTP TCP layer. However, the syntax is
slightly different.

Server Applications

This section provides a procedure that a ZTP TCP server process uses to create a TCP con-
nection, and shows the modification required to use the SSL layer. For more information
about the TCP socket APIs, refer to the API Definitions section of the ZTP Network Secu-
rity SSL Plug-In Reference Manual (RM0047). Observe the following procedure to estab-
lish a TCP-SSL connection in server mode:

1. To open a TCP-SSL server socket, a TCP server application in ZTP must first create a
TCP server socket that must be listening for the connections. The following code frag-
ment offers an example.

Note:
UM020107-1211 Creating SSL Applications

http://www.zilog.com/docs/ez80acclaim/software/rm0047.pdf
http://www.zilog.com/docs/ez80acclaim/software/rm0047.pdf

ZTP Network Security SSL Plug-In
User Manual

58
INT16 sockfd;
INT16 confd;
struct sockaddr_in server;
struct sockaddr_in client;
sockfd = socket(AF_INET, SOCK_STREAM, 0);
server.sin_addr.s_addr = INADDR_ANY;
server.sin_family = AF_INET;
server.sin_port = intel16(0x1234);

bind(sockfd, (struct sockaddr *)&server, sizeof(struct
sockaddr_in));
listen(sockfd, 1);

This API opens the TCP socket and requests a server socket to be created on TCP port
0x1234. To create an SSL server application, the above code is modified, as shown in
the following code fragment:

INT16 sockfd;
INT16 confd;
struct sockaddr_in server;
struct sockaddr_in client;

sockfd = socket(AF_INET, SOCK_SSL, 0);
server.sin_addr.s_addr = INADDR_ANY;
server.sin_family = AF_INET;
server.sin_port = intel16(0x1234);

bind(sockfd, (struct sockaddr *)&server, sizeof(struct
sockaddr_in));
listen(sockfd, 1);

To accept a TCP-SSL connection from a remote client, the code informs the TCP
server to wait for an incoming TCP connection request, as shown in the following
example:

struct sockaddr_in client;
confd = accept(sockfd, (struct sockaddr *)&client, (INT16
*)&addrlen);

The same API is used to wait for an incoming SSL connection request. When a con-
nection is established, the SSL handshake is complete, and the confd variable is
released to the application, which transfers the SSL data.
UM020107-1211 Creating SSL Applications

ZTP Network Security SSL Plug-In
User Manual

59
2. To receive TCP data over the TCP-SSL connection, the recv API is used. For exam-
ple, to receive 10 bytes of TCP data and place the data in a buffer called MyBuff, the
following code fragment can be used:

BYTE MyBuff[100];
INT16 Status;
Status = recv(ConnectionDev, MyBuf, 10, 0);

The exact same application is used to receive 10 bytes of data through the SSL layer.

Although the data sent between the client and server SSL layers is encrypted, the data
passed between the ZTP SSL layer and the user application is nonencrypted. Therefore, the
code that retrieves data from the ZTP TCP layer can also be used to retrieve decrypted data
from the ZTP SSL layer without modification.

To send TCP data, the send API is used. For example, to send 10 bytes of TCP data
from a buffer called MyBuff, the following code fragment is used:

Status = send(ConnectionDev, MyBuf, 10, 0);

The exact same application is used to send 10 bytes through the SSL layer.

3. To close an underlying TCP-SSL connection, the close_s API is used, with the
socket of the connection device (used during data transfer) passed as a parameter.

close_s(ConnectionDev);

The exact same close_s API is also used to close the SSL session represented by the
SSL connection socket. When it is no longer necessary to maintain the TCP server in a
running condition, the application can close the TCP socket by issuing the close_s
API and using the TCP socket ID.

close_s(ServerDev);

Again, the exact same close_s API is also used to close the SSL server device.

In summary, any ZTP TCP server application is converted to use SSL for secure data
transfer by changing the socket type used. The syntax and semantics of all other data
transfer APIs are identical for both TCP and SSL.

Note:
UM020107-1211 Creating SSL Applications

60

ZTP Network Security SSL Plug-In
User Manual
Client Applications

This section presents steps that a ZTP TCP client process uses to create a TCP connection,
and shows the modification required to use the SSL layer.

Observe the following procedure to establish a TCP-SSL connection in client mode:

1. To open a TCP/SSL client, a TCP client application in ZTP uses the connect() API
to request a connection to a specific remote server. For example:

INT16 sockfd;
UINT32 dstipaddr;

struct sockaddr_in server;
struct sockaddr_in client;
sockfd = socket(AF_INET, SOCK_STREAM, 0);
dstipaddr = name2ip("172.16.6.204");
server.sin_addr.s_addr = intel(dstipaddr);
server.sin_family = AF_INET;
server.sin_port = intel16(0x1234);

connect(sockfd, (struct sockaddr *)&server, sizeof(struct
sockaddr));

This API opens the TCP socket and requests a TCP connection to port 0x1234 on the
remote device on which the IP address is 172.16.6.204. If the connection is success-
fully established, sockfd will reference the TCP socket dedicated to this connection.
If the connection fails, connect() returns a negative value. To create an SSL connec-
tion socket in client mode, the connect() call is modified, as shown in the following
code fragment:

INT16 sockfd;
UINT32 dstipaddr;
struct sockaddr_in server;
struct sockaddr_in client;

sockfd = socket(AF_INET, SOCK_SSL, 0);

dstipaddr = name2ip("172.16.6.204");

server.sin_addr.s_addr = intel(dstipaddr);
server.sin_family = AF_INET;
server.sin_port = intel16(0x1234);
connect(sockfd, (struct sockaddr *)&server, sizeof(struct
sockaddr));
Creating SSL Applications UM020107-1211

ZTP Network Security SSL Plug-In
User Manual

61
This API opens the SSL socket (SSL) and requests an SSL connection to port 0x1234
on the remote device on which the IP address is 172.16.6.204. If the SSL session is
successfully established, socketfd will reference the SSL device driver ID dedicated
to this connection. If an SSL session cannot be established, connect() returns a neg-
ative value.

2. To receive TCP data over the TCP-SSL connection, the recv API is used. For exam-
ple, to receive 10 bytes of TCP data and place the data in a buffer called MyBuff, the
following code fragment can be used:

BYTE MyBuff[100];
INT16 Status;
Status = recv(sockfd, MyBuf, 10, 0);

The exact same API is used to receive 10 bytes of data through the SSL layer.

Although the data sent between the client and server SSL layers is encrypted, the data
passed between the ZTP SSL layer and user application is nonencrypted. Therefore, the
code that retrieves data from the ZTP TCP layer can also be used to retrieve decrypted data
from the ZTP SSL layer without modification.

To send TCP data, the send API is used. For example, to send 10 bytes of TCP data
from a buffer called MyBuff, the following code fragment can be used:

Status = send(ConnectionDev, MyBuf, 10, 0);

This exact same API is also be used to send 10 bytes through the SSL layer.

3. To close an underlying TCP/SSL connection, the close_s() API is used with the
socket of the connection (used during the data transfer) that is passed as a parameter.

close_s(sockfd);

The exact same close_s API is also used to close the SSL session represented by the
SSL connection socket.

In summary, any ZTP TCP client application is converted to use SSL for secure data
transfer by changing the socket type used from SOCK_STREAM to SOCK_SSL. The syn-
tax and semantics of all other data transfer APIs are identical for both TCP and SSL.

For more information about the TCP socket layer APIs, refer to the API Definitions chap-
ter of the ZTP Network Security SSL Plug-In Reference Manual (RM0047).

Note:
UM020107-1211 Creating SSL Applications

http://www.zilog.com/docs/ez80acclaim/software/rm0047.pdf

62

ZTP Network Security SSL Plug-In
User Manual
Creating SSL Applications UM020107-1211

ZTP Network Security SSL Plug-In
User Manual

63
Appendix A. Default SSL Cipher Suites
This appendix identifies the subset of the cipher suites defined in the SSL version 2, SSL
version 3 and TLS version 1 specifications, which are supported by the ZTP Network
Security SSL Plug-In.

In general, an SSL cipher suite is comprised of the following components:

• A key exchange algorithm used to establish a shared secret between the client and
server

• A cipher algorithm used for encrypting and decrypting data through the SSL layer

• A digest algorithm (known as a hash) used to compute a Message Authentication
Code which allows the recipient of an SSL data record to verify that the data sent by
the peer was not altered in transit

By using various combinations of algorithms for these components, a large number of
cipher suites can be supported, subject to the implementation limitations discussed in this
appendix.

SSL Version 2 Cipher Suites

The SSL Version 2 specification limits the choice of key exchange algorithm and hash
function to RSA and MD5, respectively. Therefore, the SSL2 cipher suite is determined by
the choice of cipher algorithm (and corresponding symmetric key size). Because this
implementation does not support the RC2 or IDEA ciphers, cipher suites using these algo-
rithms cannot be supported.

Table 8 shows the cipher suites defined in the SSL Version 2 specification, and indicates
which are supported by the ZTP Network Security SSL Plug-In.

Table 8. SSLv2 Cipher Suites

Cipher Suite Mnemonic Supported?

SSL_CK_RC4_128_WITH_MD5 Yes

SSL_CK_RC4_128_EXPORT40_WITH_MD5 Yes

SSL_CK_RC2_128_CBC_WITH_MD5 No

SSL_CK_RC2_128_CBC_EXPORT40_WITH_MD5 No

SSL_CK_IDEA_128_CBC_WITH_MD5 No

SSL_CK_DES_64_CBC_WITH_MD5 Yes

SSL_CK_DES_192_CBC_WITH_MD5 Yes
UM020107-1211

ZTP Network Security SSL Plug-In
User Manual

64
When SSLv2 was drafted, the U.S. export laws restricted the length of the encryption keys
to 40 bits and public keys to 512 bits. Therefore, when the longer keys are exchanged only
40 bits of the key can be encrypted. The remaining key must be sent in clear text. Similarly,
the public key size used in export cipher suites must be restricted to 512 bits or less.

SSL Version 3 Cipher Suites

The SSLv3 and TLSv1 cipher suites contained in their respective specifications are nearly
identical. The only significant difference is the SSLv3 specification included support for
the Fortezza key exchange algorithm, which is not included in the TLSv1 specification.
Otherwise, the only difference between the cipher suites is all SSLv3 cipher suites use SSL
as the first three characters in the cipher suite mnemonic; while TLSv1 cipher suites use
TLS. Therefore, the SSLv3 cipher suite SSL_RSA_WITH_RC4_128_MD5 is identical to the
TLSv1 cipher SUITE TLS_RSA_WITH_RC4_128_MD5.

Table 9 shows the cipher suites defined in the SSL version 3 specification and indicates
which of them are supported by the ZTP Network Security SSL Plug-In.

Table 9. SSLv3 Cipher Suites

Cipher Suite Mnemonic Supported?

SSL_RSA_WITH_NULL_MD5 Yes

SSL_RSA_WITH_NULL_SHA Yes

SSL_RSA_EXPORT_WITH_RC4_40_MD5 Yes

SSL_RSA_WITH_RC4_128_MD5 Yes

SSL_RSA_WITH_RC4_128_SHA Yes

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 No

SSL_RSA_WITH_IDEA_CBC_SHA No

SSL_RSA_EXPORT_WITH_DES40_CBC_SHA Yes

SSL_RSA_WITH_DES_CBC_SHA Yes

SSL_RSA_WITH_3DES_EDE_CBC_SHA Yes

SSL_DH_DSS_EXPORT_WITH_DES40_CBC_SHA Yes

SSL_DH_DSS_WITH_DES_CBC_SHA Yes

SSL_DH_DSS_WITH_3DES_EDE_CBC_SHA Yes

SSL_DH_RSA_EXPORT_WITH_DES40_CBC_SHA Yes

SSL_DH_RSA_WITH_DES_CBC_SHA Yes

SSL_DH_RSA_WITH_3DES_EDE_CBC_SHA Yes

Note:
UM020107-1211

ZTP Network Security SSL Plug-In
User Manual

65
When SSLv3 was drafted, the U.S. export laws restricted the length of the encryption keys
to 40 bits and public keys to 512 bits. Therefore, when cipher algorithms are used which
require longer key lengths, only 40 bits of the key are protected by the key exchange algo-
rithm. Similarly, the public key size used in export cipher suites must be restricted to 512
bits or less. The public keys used for signature verification are not restricted in export
cipher suites, but the key size of the (Ephemeral) Diffie-Hellman parameters must be 512
bits or less.

TLS Version 1 Cipher Suites

The SSLv3 and TLSv1 cipher suites contained in their respective specifications are nearly
identical. The only significant difference is that the SSLv3 specification included support
for the Fortezza key exchange algorithm, which is not included in the TLSv1 specifica-
tion. Otherwise, the only difference between the cipher suites is all SSLv3 cipher suites
use SSL as the first three characters in the cipher suite mnemonic, while TLSv1 cipher
suites use TLS. Therefore, the SSLv3 cipher suite: SSL_RSA_WITH_RC4_128_MD5 is
identical to the TLSv1 cipher SUITE TLS_RSA_WITH_RC4_128_MD5.

SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA Yes

SSL_DHE_DSS_WITH_DES_CBC_SHA Yes

SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA Yes

SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA Yes

SSL_DHE_RSA_WITH_DES_CBC_SHA Yes

SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA Yes

SSL_DH_anon_EXPORT_WITH_RC4_40_MD5 No

SSL_DH_anon_WITH_RC4_128_MD5 No

SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA No

SSL_DH_anon_WITH_DES_CBC_SHA No

SSL_DH_anon_WITH_3DES_EDE_CBC_SHA No

SSL_FORTEZZA_KEA_WITH_NULL_SHA No

SSL_FORTEZZA_KEA_WITH_FORTEZZA_CBC_SHA No

SSL_FORTEZZA_KEA_WITH_RC4_128_SHA No

Table 9. SSLv3 Cipher Suites (Continued)

Cipher Suite Mnemonic Supported?

Note:
UM020107-1211

ZTP Network Security SSL Plug-In
User Manual

66
Table 10 shows the cipher suites defined in the TLS version 1 specification, and indicates
which are supported by the ZTP Network Security SSL Plug-In.

Table 10. TLSv1 Cipher Suites

Cipher Suite Mnemonic Supported?

TLS_RSA_WITH_NULL_MD5 Yes

TLS_RSA_WITH_NULL_SHA Yes

TLS_RSA_EXPORT_WITH_RC4_40_MD5 Yes

TLS_RSA_WITH_RC4_128_MD5 Yes

TLS_RSA_WITH_RC4_128_SHA Yes

TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5 No

TLS_RSA_WITH_IDEA_CBC_SHA No

TLS_RSA_EXPORT_WITH_DES40_CBC_SHA Yes

TLS_RSA_WITH_DES_CBC_SHA Yes

TLS_RSA_WITH_3DES_EDE_CBC_SHA Yes

TLS_DH_DSS_EXPORT_WITH_DES40_CBC_SHA Yes

TLS_DH_DSS_WITH_DES_CBC_SHA Yes

TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA Yes

TLS_DH_RSA_EXPORT_WITH_DES40_CBC_SHA Yes

TLS_DH_RSA_WITH_DES_CBC_SHA Yes

TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA Yes

TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA Yes

TLS_DHE_DSS_WITH_DES_CBC_SHA Yes

TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA Yes

TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA Yes

TLS_DHE_RSA_WITH_DES_CBC_SHA Yes

TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA Yes

TLS_DH_anon_EXPORT_WITH_RC4_40_MD5 No

TLS_DH_anon_WITH_RC4_128_MD5 No

TLS_DH_anon_EXPORT_WITH_DES40_CBC_SHA No

TLS_DH_anon_WITH_DES_CBC_SHA No

TLS_DH_anon_WITH_3DES_EDE_CBC_SHA No
UM020107-1211

ZTP Network Security SSL Plug-In
User Manual

67
When SSLv3 was drafted, the U.S. export laws restricted the length of the encryption keys
to 40 bits, and public keys to 512 bits. Therefore, when cipher algorithms are used that
require longer key lengths, only 40 bits of the key are protected by the key exchange algo-
rithm. Similarly, the public key size used in export cipher suites must be restricted to 512
bits or less. The public keys used for signature verification are not restricted in export
cipher suites, but the key size of the (Ephemeral) Diffie-Hellman parameters must be 512
bits or less.

AES Extensions

The advanced encryption standard (AES) is being adopted because the U.S. government
prefers symmetric ciphers; it is intended to replace the older data encryption standard
(DES). Because the SSL specifications were drafted prior to the standardization of AES,
they do not define any AES-based cipher suites. RFC 3268 defines a set of cipher suites
compatible with the TLSv1 specification.

Table 11 shows the AES-based cipher suites defined in RFC 3268, and indicates which are
supported by the ZTP Network Security SSL Plug-In.

Table 11. SSLv2 Cipher Suites

Cipher Suite Mnemonic Supported?

TLS_RSA_WITH_AES_128_CBC_SHA Yes

TLS_DH_DSS_WITH_AES_128_CBC_SHA Yes

TLS_DH_RSA_WITH_AES_128_CBC_SHA Yes

TLS_DHE_DSS_WITH_AES_128_CBC_SHA Yes

TLS_DHE_RSA_WITH_AES_128_CBC_SHA Yes

TLS_DH_anon_WITH_AES_128_CBC_SHA No

TLS_RSA_WITH_AES_256_CBC_SHA Yes

TLS_DH_DSS_WITH_AES_256_CBC_SHA Yes

TLS_DH_RSA_WITH_AES_256_CBC_SHA Yes

TLS_DHE_DSS_WITH_AES_256_CBC_SHA Yes

TLS_DHE_RSA_WITH_AES_256_CBC_SHA Yes

TLS_DH_anon_WITH_AES_256_CBC_SHA No

Note:
UM020107-1211

ZTP Network Security SSL Plug-In
User Manual

68
UM020107-1211

ZTP Network Security SSL Plug-In
User Manual

69
Appendix B. Advanced Topic: Creating
Private Cipher Suites

When the SSL specifications were originally drafted, they contained a default set of sup-
ported cipher suites. A cipher suite is a combination of PKI algorithm, symmetric cipher,
and digest algorithm used to secure data exchanged in an SSL session. The specifications
also permitted implementors to define their own cipher suites. This feature is useful only
in environments in which the implementor has control over the code used by both clients
and servers, because third party implementations are unlikely to recognize the implemen-
tor’s cipher suites. In addition, the implementor must ensure that the codes used to define
their cipher suites are unique in their environment. If an implementor defines a new cipher
suite code (for example, 0xFF, 0x7C), then this code must be understood by all SSL
devices in the environment (i.e., the same PKI, cipher, and digest algorithms), or else it
will not be possible to establish SSL sessions.

Users of the ZTP Network Security SSL Plug-In international distribution are only permit-
ted to define new cipher suites that are a combination of cryptographic algorithms which
are currently supported. If you are using the U.S. version, modify the source code to the
cryptographic library to add additional algorithms that can be used to define new cipher
suites.

This section provides a simple example to show how to add a new TLSv1 cipher suite.

RFC 3268 defines a number of standard cipher suites that can be added to the TLS proto-
col to support AES. Some of these cipher suites are already supported in this implementa-
tion. All of the cipher suites specified in RFC 3268 use the SHA1 digest algorithm. In this
example, a private AES-based cipher suite is defined for the ZTP Network Security SSL
Plug-In, which uses MD5.

Procedure

1. Examine the cipher suite codes defined in the CipherSuite.h header file, as shown
in the following code strings.

#define TLS_RSA_WITH_RC4_128_MD5 0x0400
#define TLS_RSA_WITH_RC4_128_SHA 0x0500

Notice that the last byte of these code strings is 0x00. Private cipher suites must use a
value of 0xFF in the cipher suite code. Therefore, the 0x11FF value is used for the
new cipher suite.

For this cipher suite, it is appropriate to use the RSA, AES and MD5 algorithms;
therefore, a suitable mnemonic for the cipher suite is:

PRIVATE_RSA_WITH_AES_128_CBC_MD5
UM020107-1211

70

ZTP Network Security SSL Plug-In
User Manual
This mnemonic indicates that RSA will be used for authentication and key exchange;
128-bit AES will be used as the symmetric cipher, and MD5 will be used as the digest
algorithm. Therefore, add the following definition to the CipherSuite.h header file:

#define PRIVATE_RSA_WITH_AES_128_CBC_MD5 0x11FF

2. A new entry must be created in the cipher suite table for each of the SSL handshake
protocols in which this cipher suite must be supported. The definition of the cipher
suite entry is shown in the following code fragment:

{
PRIVATE_RSA_WITH_AES_128_CBC_MD5,
SSL_PKI_RSA,
SSL_CIPHER_AES,
SSL_HASH_MD5,
FALSE,
AES_128_KEY_SIZE_BYTES,
AES_IV_SIZE_BYTES,
MD5_HASH_SIZE_BYTES,
TRUE

},

For the cipher suite to take effect, it is necessary to rebuild the project. To give this
cipher suite preference, place it immediately after the definition of the NULL cipher
suite. Alternatively, all other cipher suites in the table can be removed or can be dis-
abled by setting the last entry in the other cipher suites to FALSE. For more informa-
tion about this topic, see the Cipher Suite Configuration section on page 31.
 UM020107-1211

ZTP Network Security SSL Plug-In
User Manual

71
Appendix C. Diffie-Hellman Private Keys
Although this implementation supports the establishment of an SSL session using Diffie-
Hellman certificates with the SSLv3 and TLSv1 handshake protocols, it must be noted
that this use of Diffie-Hellman certificates is extremely rare. Consequently, few utilities
are able to generate Diffie-Hellman certificates, and even fewer utilities will generate a
Diffie-Hellman private key. Those utilities that do output DH private keys are likely to do
so in different formats. The PKCS#3: Diffie-Hellman Key Agreement Standard does not
specify the format of the DH private key.

Therefore, this implementation uses the simplest possible encoding of the DH private key
consistent with the ASN.1 definition in PKCS#15 – a single ASN.1 DER-encoded integer
containing the value of the private key:

DHPrivateKey ::= INTEGER -- private key, x

As an example, the DER encoding of the private key 0x12345678 is:

02 04 12 34 56 78

The segments in this key can be defined as:

02: ASN.1 INTEGER.

04: Length of the integer in octets.

12 34 56 78: Value of the integer MSB first.
UM020107-1211

72

ZTP Network Security SSL Plug-In
User Manual
 UM020107-1211

ZTP Network Security SSL Plug-In
User Manual

73
Customer Support

To share comments, get your technical questions answered or report issues you may be
experiencing with our products, please visit Zilog’s Technical Support page at 
http://support.zilog.com.

To learn more about this product, find additional documentation or to discover other facets
about Zilog product offerings, please visit the Zilog Knowledge Base at http://zilog.com/
kb or consider participating in the Zilog Forum at http://zilog.com/forum.

This publication is subject to replacement by a later edition. To determine whether a later
edition exists, please visit the Zilog website at http://www.zilog.com.
UM020107-1211 Customer Support

http://support.zilog.com
http://zilog.com/kb
http://zilog.com/kb
http://zilog.com/forum
http://www.zilog.com

	ZTP Network Security SSL Plug-In User Manual

	Revision History
	Table of Contents
	Introduction
	Features
	Limitations of the ZTP Network Security SSL Plug-In
	Architecture
	How to Use SSL

	Difference Between SSL Versions

	SSL Handshake Protocols
	Security Concepts

	Getting Started
	Packages
	Installation
	Directory Structure
	Building and Running the SSL Demo

	SSL Configuration
	SSL Configuration using ZDS II
	ZDS II Project Settings

	SSL Initialization
	SSL Handshake Protocol Initialization
	Client Mode or Server Mode Support
	Digest Algorithm Selection
	Cipher Algorithm Selection
	PKI Algorithm Selection
	Cipher Suite Configuration
	EDH Parameters
	Certificates
	Certificate Verification
	Verifying All Certificates
	Signature Verification
	Session Cache
	Session Cache Operation
	Diagnostic Messages

	How to Use the HTTPS Server
	Creating SSL Applications
	SSL Applications in ZTP-Based Systems

	Appendix A. Default SSL Cipher Suites
	SSL Version 2 Cipher Suites
	SSL Version 3 Cipher Suites
	TLS Version 1 Cipher Suites
	AES Extensions

	Appendix B. Advanced Topic: Creating Private Cipher Suites
	Appendix C. Diffie-Hellman Private Keys
	Customer Support

