
Copyright ©2011 Zilog Inc. All rights reserved.
www.zilog.com

ZTP Network Security
SSL Plug-In
Reference Manual

RM004707-1211

eZ80® CPU

http://www.zilog.com
http://www.zilog.com

ZTP Network Security SSL Plug-In
Reference Manual

ii
DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.

LIFE SUPPORT POLICY

ZILOG’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE
EXPRESS PRIOR WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL
COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant
into the body, or (b) support or sustain life and whose failure to perform when properly
used in accordance with instructions for use provided in the labeling can be reasonably
expected to result in a significant injury to the user. A critical component is any
component in a life support device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or system or to affect its safety or
effectiveness.

Document Disclaimer

©2011 Zilog Inc. All rights reserved. Information in this publication concerning the
devices, applications, or technology described is intended to suggest possible uses and
may be superseded. ZILOG, INC. DOES NOT ASSUME LIABILITY FOR OR
PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION,
DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO
D O E S N O T A S S U M E LI A B I L I T Y F O R I N T E L L EC T U A L PRO P E RT Y
INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION,
DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The
information contained within this document has been verified according to the general
principles of electrical and mechanical engineering.

eZ80 and eZ80Acclaim! are registered trademarks of Zilog Inc. All other product or
service names are the property of their respective owners.

Warning:
RM004707-1211

ZTP Network Security SSL Plug-In
Reference Manual

iii
Revision History

Each instance in the following revision history table reflects a change to
this document from its previous version. For more details, refer to the cor-
responding pages or appropriate links provided in the table.

Date
Revision
Level Description Page

Dec
2011

07 Updated for the SSL v2.4.0 release. All

Feb
2009

06 Updated for the SSL v2.3.0 release.

Nov
2008

05 Updated for the SSL v2.2.0 release. All

Aug
2007

04 Updated for the SSL v2.1.0 release. All

Jul
2006

03 Updated for the SSL v2.0.0 release. All

Apr
2006

02 Updated for the SSL v1.2.0 release. All

Jan
2006

01 Formatted to current publication standards. All
RM004707-1211 Revision History

ZTP Network Security SSL Plug-In
Reference Manual

iv
Table of Contents

Revision History . iii

Table of Contents. iv

Introduction . vii
About this Manual . vii
Intended Audience . vii
Manual Organization . vii
Related Documents . viii
Manual Conventions . viii
Safeguards . ix

ZTP Network Security Plug-In .1

About SSL .1

Data Structures. .3

Basic SSL Data Types .3

Constructed SSL Data Types .3
SSL_Data_Block_S .4
SSL_BN .5
ASN1_Enc_Data .7
Cert_Chain .8
SSL_X509_S .10
SSL_PKI .15
RSA_Params .17
DSA_Params .18
DH_Params .19
PKI_Init .20
PKI_DheInit .21
SSL_Hash .22
HASH_New .24
RM004707-1211 Table of Contents

ZTP Network Security SSL Plug-In
Reference Manual

v

SSL_Cipher .27
CIPHER_New .30
SSL_CS_Info .33

SSL Constants .36

API Definitions .39
Initialize_SSL .40
SSL2_ClientInit .42
SSL2_ServerInit .44
SSL3_ClientInit .47
SSL3_ServerInit .49
TLS1_ClientInit .53
TLS1_ServerInit .55
VerifyCertificate .58
free_x509_certificate .62

SSL Configuration .64
SSL_MAX_Session_Cache_Entries .66
SSL_Cache_Timeout .68
SSL_Debug_level .69
SSL_VerifySignatures .70
SSL_PresentAllCertificates .72
NumSSL2_CipherSuites .74
pSSL2_CipherSuites .75
NumSSL3_CipherSuites .76
pSSL3_CipherSuites .77
NumTLS1_CipherSuites .78
pTLS1_CipherSuites .79
HashGen .80
CipherGen .82
PKIGen .84
pDheInit .86
DheParams .87
RM004707-1211 Table of Contents

ZTP Network Security SSL Plug-In
Reference Manual

vi
CertChain .89

Customer Support .92
RM004707-1211 Table of Contents

ZTP Network Security SSL Plug-In
Reference Manual

vii
Introduction

This Reference Manual describes the APIs associated with the Zilog Net-
work Security (SSL) Plug-In for eZ80® CPU-based microprocessors and
microcontrollers. SSL supports the eZ80Acclaim!™ family of devices,
which includes the eZ80F91, eZ80F92 and eZ80F93 microcontrollers; the
eZ80L92 microprocessor is also supported.

About this Manual

Zilog recommends that you read and understand all chapters and instruc-
tions in this manual before using the ZTP SSL product. This manual
serves as a reference guide for SSL APIs.

Intended Audience

This document is written for Zilog customers who are familiar with real-
time operating systems, microprocessors, assembly language and high-
level languages such as C.

Manual Organization

This Reference Manual contains the following chapters and appendices.

ZTP Network Security Plug-In

This chapter provides an architectural overview of Zilog’s SSL imple-
mentation.

Data Structures

This chapter provides a detailed description of the SSL Data Structures in
terms of syntax, argument descriptions, return values and example codes.
RM004707-1211 Introduction

ZTP Network Security SSL Plug-In
Reference Manual

viii
API Definitions

This chapter describes the SSL APIs in terms of syntax, argument
descriptions, return values and example codes.

SSL Configuration

This chapter describes the global variables used to configure the SSL
handshake protocols.

Related Documents

In addition to this manual, you must be familiar with the documents listed
in Table 1.

Manual Conventions

The following conventions are adopted to provide clarity and ease of use:

Use of X.Y.Z

Throughout this document, X.Y.Z refers to the SSL version number in
Major.Minor.Revision format.

Courier New Typeface

Code lines and fragments, functions and various executable items are dis-
tinguished from general text by displaying in the Courier New typeface.

Table 1. Related Documentation

Zilog Network Security Plug-In Quick Start Guide QS0059

Zilog Network Security Plug-In User Manual UM0201

Zilog Real-Time Kernel Quick Start Guide QS0048

Zilog TCP/IP Software Suite Quick Start Guide QS0049

Zilog TCP/IP Software Suite Reference Manual RM0041
RM004707-1211 Introduction

For example: #include "ZSysgen.h".

Safeguards

When you use SSL with one of Zilog’s development platforms, follow the
precautions listed on this page to avoid permanent damage to the develop-
ment platform.

Power-Up Precautions

When powering up, observe the following sequence.

1. Apply power to the PC and ensure that it is running properly.

2. Start the terminal emulator program on the PC.

3. Apply power through connector P3 on the eZ80 Development Plat-
form.

Power-Down Precautions

When powering down, observe the following sequence.

1. Exit the monitor program.

2. Remove power from the eZ80 Development Platform.

Always use a grounding strap to prevent damage resulting from electro-
static discharge (ESD).

Note:

ZTP Network Security SSL Plug-In
Reference Manual

1

ZTP Network Security Plug-In

This reference manual discusses Secure Sockets Layer (SSL) support to
any TCP-based application that uses the Zilog TCP/IP (ZTP) Software
Suite. This document also provides information about SSL APIs and data
structures included in the ZTP Network Security plug-in package.

This package is only compatible with the ZTP Software Suite of the same
version. For example, ZTP Network Security Plug-In package X.Y.Z is
only compatible with ZTP Software Suite X.Y.Z; it is not compatible
with ZTP Software Suite X.Y+1.Z or X.Y.Z–1.

Although the ZTP Network Security SSL Plug-In runs on the same pro-
cessors as the ZTP Software Suite, the best performance is obtained when
using faster platforms. For example, the ZTP Network Security SSL Plug-
In will run much faster on a RAM-based eZ80F91 system than on a Flash-
based eZ80F92 system.

About SSL

SSL is a suite of protocols that provides authentication, privacy and data
integrity over an insecure channel; e.g., a TCP connection. Authentication
ensures that communication occurs only with the intended target and not
an attacker masquerading as the target. Privacy prevents eavesdroppers
from understanding the communication, and the data integrity provides a
mechanism for participants to detect a message that may have been tam-
pered with by an attacker.

This package provides support for the SSL version 2, SSL version 3 and
TLS version 1 protocols. Existing TCP server or client applications use
one or more of these protocols to secure communication with a peer
device. As a rule of thumb, later versions of the SSL protocol provide bet-
RM004707-1211 ZTP Network Security Plug-In

ZTP Network Security SSL Plug-In
Reference Manual

2

ter security than earlier versions of the protocol at the expense of
increased code size and slightly slower operation.
RM004707-1211 ZTP Network Security Plug-In

ZTP Network Security SSL Plug-In
Reference Manual

3

Data Structures

This chapter describes the basic data types and data structures used by the
SSL handshake protocols and cryptographic support routines.

Basic SSL Data Types

Table 2 lists the basic SSL data types (see ssl_types.h).

Constructed SSL Data Types

The remainder of this chapter describes the data structures used by the
SSL handshake protocols plus the cryptographic support routines that are
constructed from the basic SSL data types listed in Table 2.

Table 2. Basic SSL Data Types

Data Type Definition

BYTE unsigned char (8-bit)

BOOL unsigned char (8-bit)

WORD unsigned short int (16-bit)

DWORD unsigned long int (32-bit)

SSL_BYTE BYTE

SSL_BOOL BOOL

SSL_STATUS SSL_BYTE

SSL_WORD WORD

SSL_DWORD DWORD

SSL_TRIO unsigned int (24-bit)
RM004707-1211 Data Structures

ZTP Network Security SSL Plug-In
Reference Manual

4

SSL_Data_Block_S

typedef struct SSL_DATA_BLOCK_S
{

SSL_BYTE *pData;
SSL_WORD Length;

} SSL_DATA_BLOCK_S;

SSL_DATA_BLOCK_S describes an opaque data structure. A data structure
is said to be opaque if its owner does not have any knowledge of the
information in the structure. In this instance, support routines are used to
interpret and act upon the data. As an example, base64 ASN.1 DER-
encoded X.509 certificates are used to initialize various SSL handshake
protocol servers. The application programmer uses SSL_DATA_BLOCK_S
structure to pass the opaque certificate data to the corresponding initial-
ization routine which can decode and interpret information within the cer-
tificate. Table 3 lists the SSL_DATA_BLOCK_S structure members.

Table 3. SSL_DATA_BLOCK_S Structure Members

Member Name Description

pData References a block of opaque data bytes.

Length Number of bytes of data in the opaque data block.
RM004707-1211 Data Structures

ZTP Network Security SSL Plug-In
Reference Manual

5

SSL_BN

typedef struct EZ80_BN
{

BYTE *pNum; // Pointer to the number
WORD NumBytes; // Number of Bytes in the number
WORD MaxBytes; // Maximum number of bytes the

// number buffer can contain
} EZ80_BN;

Big numbers are used by the public key infrastructure (PKI) algorithms
that SSL uses for authentication. All eZ80 big numbers are stored in little-
endian format; i.e., the least-significant byte of the big number is stored in
the lowest memory location, and the most-significant byte of the big num-
ber is stored in the highest memory location. All eZ80 numbers are inter-
preted as unsigned values.

Big numbers are an extension of the standard C data types implemented
by the ZDS II compiler. For example, the value 0x11223344 can be rep-
resented as an unsigned long or as an SSL_BN of length 4 (NumBytes = 4).
The maximum length of an SSL big number is determined by the value of
the MAX_EZ80_BN_BYTES macro (currently defined as 4096).

The SSL layer allocates big numbers from the run-time heap. Arithmetic
operations performed on big numbers increase the size of the number. For
example, if a 64-byte value is multiplied by a 64-byte value, the result can
be up to 128 bytes long. If the size of the big number is not large enough
to contain the result, then a much bigger number must be allocated.
Therefore, the SSL layer will allocate more space than required to store
the big number. In this instance, the MaxBytes field will be larger than
the NumBytes field.
RM004707-1211 Data Structures

ZTP Network Security SSL Plug-In
Reference Manual

6

Table 4. EZ80_BN Structure Members

Member Name Description

pNum References the little-endian array of bytes representing the value of
the big number.

NumBytes Indicates the number of bytes in the big number.

MaxBytes Indicates the maximum size (in bytes) of the big number. A big num-
ber cannot grow beyond MaxBytes without being reallocated.
RM004707-1211 Data Structures

ZTP Network Security SSL Plug-In
Reference Manual

7

ASN1_Enc_Data

typedef struct ASN1_ENC_DATA_S
{

SSL_BYTE Encoding;
SSL_WORD Length;
SSL_BYTE *pData;

} ASN1_ENC_DATA;

An ASN1_ENC_DATA block describes a block of ASN.1-encoded data.
The data must be encoded using ASN.1 distinguished encoding rules
(DER) and can be Base64-encoded. ASN.1 DER-encoded data is indi-
cated when the encoding member has the value DER_ENCODED_DATA.
Base64 ASN.1 DER-encoded data is indicated when the encoding mem-
ber has the value BASE64_DER_ENCODED_DATA (or equivalently
PEM_ENCODED_DATA).

This data structure contains the Ephemeral Diffie-Hellman parameters
used by the SSLv3 and TLSv1 servers.

Table 5. ASN1_ENC_DATA Structure Members

Member Name Description

Encoding Specifies the encoding method of the data block. The only permissible
values are:
DER_ENCODED_DATA, BASE64_DER_ENCODED_DATA and
PEM_ENCODED_DATA.

pData References a block of opaque data bytes.

Length Number of bytes of data in the opaque data block.
RM004707-1211 Data Structures

ZTP Network Security SSL Plug-In
Reference Manual

8

Cert_Chain

typedef struct CERT_CHAIN
{
 SSL_BYTE Depth;

SSL_BYTE Encoding; // DER or PEM
SSL_X509_S *pX509; // System defined

(use
// NULLPTR)

SSL_DATA_BLOCK_S PrivKey; // Must be in
same// encoding scheme

SSL_DATA_BLOCK_S Cert[MAX_CERTIFICATE_CHAIN_LENGTH];
} CERT_CHAIN;

With the ZTP Network Security SSL Plug-In, all SSL servers are required
to have a X.509 certificate and a corresponding private key (anonymous
cipher suites are not supported). Additionally, the SSLv3 and TLSv1 pro-
tocols allow the server to present prospective clients with a hierarchical
chain of certificates which can be used to authenticate the server. In
SSLv2, the certificate chain is permitted to have only one entry.

The CERT_CHAIN data structure is used to communicate the server’s cer-
tificate chain to the underlying SSL protocol during initialization.

Table 6. CERT_CHAIN Structure Members

Member Name Description

Depth Identifies the number of certificates in the Cert array. The value of
MAX_CERTIFICATE_CHAIN_LENGTH macro (currently defined to 4)
defines the maximum number of entries permitted in the Cert array.
For SSLv2 servers, this field must have a value of 1.

Encoding Specifies the encoding of all certificates in the Cert array and the
PrivateKey. The only permissible values are:
DER_ENCODED_DATA, BASE64_DER_ENCODED_DATA and
PEM_ENCODED_DATA.
RM004707-1211 Data Structures

ZTP Network Security SSL Plug-In
Reference Manual

9

pX509 This member is initialized by the SSL layer during initialization. When
defining a CERT_CHAIN data structure, set the value of this member
to NULLPTR.

PrivateKey This SSL_DATA_BLOCK_S structure contains the private key corre-
sponding to the first certificate in the Cert array (i.e., the server’s cer-
tificate). The data encoding of the private key is specified by the
Encoding structure member.

Cert[] This is an array of certificate ordered such that the first certificate in
the chain, Cert[0], contains the server’s X.509 certificate. Subse-
quent entries in the chain contain the X.509 certificate of the entity
that signed the previous certificate. The last entry in the chain is typi-
cally the self-signed certificate of a certificate authority.
The data encoding of all certificates is specified by the Encoding
structure member.
The number of entries in the Cert array will correspond to the value
of the Depth parameter.

Table 6. CERT_CHAIN Structure Members (Continued)

Member Name Description
RM004707-1211 Data Structures

ZTP Network Security SSL Plug-In
Reference Manual

10
SSL_X509_S

typedef struct SSL_X509_S
{

SSL_BYTE Flags;
 SSL_BYTE Version;

SSL_BN *pSerialNumber;
SSL_BYTE SignatureID;

 SSL_DATA_BLOCK_S Issuer;
SSL_DATA_BLOCK_S Subject;
SSL_DWORD NotValidBefore;
SSL_DWORD NotValidAfter;
SSL_BYTE PKAlgorithmID;
SSL_BN *pSignature;
SSL_DATA_BLOCK_S DerCert;
SSL_BN *pPublicKeyInfo;
SSL_DATA_BLOCK_S KeyExchangeParams;
SSL_DATA_BLOCK_S TBSCert;
SSL_PKI PKI;

} SSL_X509_S;

Internally, the ZTP Network Security SSL Plug-In uses an SSL_X509_S
data structure to contain information about ASN.1 DER-encoded X.509
certificates.

Application programmers must not initialize SSL_X509_S data
structures. These data structures will be created and destroyed by the SSL
layer during system initialization and while processing a certificate chain
received from a remote SSL server. When a certificate chain is processed,
the last entry in the chain is typically a self-signed root certificate.

The ZTP Network Security SSL Plug-In creates an SSL_X509_S structure
and pass it as a parameter on the call to the VerifyCertificate callback
routine. The data in the SSL_X509_S certificate must be treated as read-only
when examined by an application program in the VerifyCertificate
callback routine. If any data in the SSL_X509_S certificate is modified, the
RM004707-1211 Data Structures

ZTP Network Security SSL Plug-In
Reference Manual

11
SSL layer might fail to operate and can even crash the entire system. Table 7
lists the SSL_X509_S structure members.

Table 7. SSL_X509_S Structure Members

Member Name Description

Flags Bits within this field are used to identify the results of processing on
this certificate, see Table 8 for more information.

Version Indicates the X.509 certificate version number.

pSerialNumber The pNum member of the SSL_BN structure references the serial
number of the X.509 certificate.

SignatureID This value indicates the algorithm used to generate the signature.
The ZTP Network Security SSL Plug-In understands only the fol-
lowing signature algorithms:
OID_MD5_WITH_RSA_ENCRYPTION
OID_SHA1_WITH_RSA_ENCRYPTION
OID_ID_DSA_WITH_SHA1
If the certificate uses any other value for the SignatureID, it is set
to OID_UNKNOWN.

NotValidBefore 32-bit time stamp (UTC time) indicating the date and time at which
or after which, the certificate is deemed valid.
This field will be 0 if the certificate uses GeneralizedTime or the
SSL layer is unable to parse the certificate time stamp.

NotValidAfter 32-bit time stamp (UTC time) indicating the date and time after
which, the certificate is no longer valid.
This field will be 0 if the certificate uses GeneralizedTime or the
SSL layer is unable to parse the certificate time stamp.

Issuer This field contains the ASN.1 DER- encoded data that identifies the
entity that issued this certificate.

Subject This field contains the ASN.1 DER- encoded data which identifies
the subject of the certificate. In the context of SSL, the subject is
the server that presented this certificate.
RM004707-1211 Data Structures

ZTP Network Security SSL Plug-In
Reference Manual

12
PKAlgorithmID Identifies the PKI algorithm which can be used to authenticate the
certificate owner (Subject). The ZTP Network Security SSL Plug-
In understands only the following PKI algorithms:
OID_RSA_ENCRYPTION
OID_ID_DSA
OID_DH_PUBLIC_NUMBER

pSignature Contains a digitally signed string that contains the digest of the
TBSCert data. The digest algorithm (hash function) and signature
algorithm are indicated by the SignatureID field.

DerCert References an opaque data block of the entire ASN.1 DER-
encoded X.509 certificate.

pPublicKeyInfo Contains the ASN.1 DER- encoded public key of the entity present-
ing this certificate (Subject). The public key algorithm is indicated
by the PKIAlgorithmID structure member.

KeyEx-
changeParams

Contains the ASN.1 DER- encoded parameters associated with the
PKIAlgorithmID.

TBSCert References the ASN.1 DER data which is digested and then
signed by the certificate Issuer to produce the pSignature cer-
tificate. The TBSCert contains the raw encoding of the certificate
version, serial number, issuer, subject and public key as well as
other parameters.

PKI See the SSL_PKI structure definition on page 15.

Table 7. SSL_X509_S Structure Members (Continued)

Member Name Description
RM004707-1211 Data Structures

ZTP Network Security SSL Plug-In
Reference Manual

13
Table 8. SSL_X509_S Flags

Flag Description

SSL_X509_PARSED_OK If this flag is set, it indicates that the ASN.1 cer-
tificate encoding is acceptable and contains the
following fields:
• Version
• Serial Number
• Signature Algorithm
• Issuer
• Valid From
• Valid Until
• Subject
• Public Key Algorithm (and any associated

parameters)
• Public Key
• Signature

SSL_X509_DATE_VALID If this flag is set, it indicates that the current sys-
tem time stamp is between the Not Valid
Before and Not Valid After fields of the
X.509 certificate.

SSL_X509_SIGNATURE_VERIFIED If this flag is set, it indicates that the Signa-
ture field matches the digest of the TBS Cert
data

SSL_X509_SELF_SIGNED If this flag is set, it indicates that the certificate is
self-signed (i.e., the Issuer and Subject are
identical).

SSL_X509_PERMANENT If this flag is set, the certificate will not be
deleted by the SSL layer after it is parsed. Appli-
cation programs are permitted to set this flag in
the VerifyCertificate callback.
RM004707-1211 Data Structures

ZTP Network Security SSL Plug-In
Reference Manual

14
SSL_X509_UNKNOWN_SIG_ALG If this flag is set, it indicates that the SSL layer
does not support the SignatureID algorithm.
In this instance, the SignatureID will be
OID_UNKNOWN.

SSL_X509_TRUSTED If this flag is set, it indicates that the SSL layer is
uses this certificate. The SSL layer will trust cer-
tificates that have the following flags set:
SSL_X509_PARSED_OK,
SSL_X509_DATE_VALID and
X509_SIGNATURE_VERIFIED
unless the VerifyCertificate callback rou-
tine indicates that the certificate should not be
trusted. Conversely any certificate that the
VerifyCertificate callback routine indi-
cates to be trusted will always be trusted
regardless of the certificate’s flags.

Table 8. SSL_X509_S Flags (Continued)

Flag Description
RM004707-1211 Data Structures

ZTP Network Security SSL Plug-In
Reference Manual

15
SSL_PKI

typedef struct SSL_PKI
{

SSL_BYTE Algorithm;
PKI_Encrypt Encrypt; // RSA only
PKI_Decrypt Decrypt;
PKI_Sign Sign; // RSA & DSA
PKI_Verify Verify;
PKI_Agree Agree; // DH & DHE
PKI_Free Free;
union
{
 RSA_PARAMS Rsa;
 DSA_PARAMS Dsa;
 DH_PARAMS Dh;
} Params;

} SSL_PKI;

Within each X.509 certificate structure created by the ZTP Network Secu-
rity Plug-In, there is an SSL_PKI structure. This SSL_PKI structure is
used in conjunction with the associated certificate to authenticate the
owner of the certificate and create a secret shared key used by the SSL cli-
ent and server to encrypt all application data sent during the SSL session.
This structure must not be modified by application programs.

The set of valid function pointers depend on the PKI algorithm extracted
from the associated certificate. This algorithm determines which crypto-
graphic operations are performed with the certificate.

The Sign and Decrypt operations can be performed only if private key cor-
responding to the public key in the certificate is known.

Note:
RM004707-1211 Data Structures

ZTP Network Security SSL Plug-In
Reference Manual

16
Table 9. SSL_PKI Structure Members

Member Name Description

Algorithm Identifies the PKI algorithm which will be used to authenticate the
owner of the certificate and establish a secret shared key used to
encrypt all SSL session data.
In this implementation, the only permissible values are:
SSL_PKI_RSA,
SSL_PKI_DHE_DSS and
SSL_PKI_DH.

Encrypt Used to encrypt a block of data with the RSA public key found in the
certificate. This function pointer is only valid when the Algorithm
member is SSL_PKI_RSA.

Decrypt Used to decrypt a block of data with the RSA private key. This function
pointer is valid only when the Algorithm member is SSL_PKI_RSA.

Sign Used to sign a block of data using either an RSA or a DSA private key.
This function pointer is valid when the Algorithm member is
SSL_PKI_RSA or SSL_PKI_DHE_DSS.

Verify Used to verify the signature of a block of data using either an RSA or a
DSA public key. This function pointer is valid when the Algorithm
member is SSL_PKI_RSA or SSL_PKI_DHE_DSS.

Agree Used to establish a shared secret via the Diffie-Hellman key agree-
ment algorithm. This function pointer is only valid when the Diffie-Hell-
man key agreement algorithm is used.

Free Used to release the resource held in the Params member.

Params The contents of this field will be either an RSA_PARAMS,
DSA_PARAMS, or DH_PARAMS structure depending on the Algorithm
structure member.
RM004707-1211 Data Structures

ZTP Network Security SSL Plug-In
Reference Manual

17
RSA_Params

typedef struct RSA_PARAMS
{

SSL_BN *pModulus;
SSL_BN *pPublicExp;
SSL_BN *pPrivateExp;
SSL_BN *pPrime1;
SSL_BN *pPrime2;
SSL_BN *pExp1;
SSL_BN *pExp2;
SSL_BN *pCoefficient;

} RSA_PARAMS;

This structure is used to contain the RSA public and private key
corresponding to an X.509 certificate in which the PKIAlgorithmID is
OID_RSA_ENCRYPTION. The owner of the certificate possesses both the
public and private key. The entity that receives the certificate will only be
able to extract the public key parameters.
RM004707-1211 Data Structures

ZTP Network Security SSL Plug-In
Reference Manual

18
DSA_Params

typedef struct DSA_PARAMS
{

SSL_BN *p; // Prime Modulus
SSL_BN *g; // Generator (base used for

// exponentiation)
SSL_BN *q; // prime factor of p

// (such that p = j*q + 1)
SSL_BN *x; // DSA Private Key
SSL_BN *Y; // DSA Public Value (Y = g^x mod p)

} DSA_PARAMS;

This structure contains the DSA public value and private key correspond-
ing to an X.509 certificate in which the PKIAlgorithmID is
OID_ID_DSA. The owner of the certificate will possess both the public
and private key. The entity that receives the certificate will only be able to
extract the public key parameters.
RM004707-1211 Data Structures

ZTP Network Security SSL Plug-In
Reference Manual

19
DH_Params

typedef struct DH_PARAMS
{

SSL_BN *p; // Prime Modulus
SSL_BN *g; // Generator (base used for

// exponentiation)
SSL_BN *q; // prime factor of p (such

// that p = j*q + 1)
SSL_BN *x; // DH Private Key
SSL_BN *Y; // DH Public value(Y = g^x mod

// p)
SSL_BOOL IsEphemeral; // If TRUE, x (and Y) can be

// changed
} DH_PARAMS;

This structure is used to contain the DH public value and private key cor-
responding to an X.509 certificate in which the PKIAlgorithmID is
OID_DH_PUBLIC_NUMBER. The owner of the certificate possess both the
public and private key. The entity that receives the certificate will only be
able to extract the public key parameters.
RM004707-1211 Data Structures

ZTP Network Security SSL Plug-In
Reference Manual

20
PKI_Init

typedef SSL_STATUS (* PKI_Init) (struct SSL_X509_S *
pX509, struct ASN1_ENC_DATA_S * pPrivateKey);

The PKI_Init structure is a function pointer used in the construction of
the PKIGen table. Each of the PKI algorithms has one PKI_init func-
tion pointer supported by the ZTP Network Security SSL Plug-In. These
function pointers are:

• rsa_init

• dsa_init

• dh_init

There is also a NullPki_init function pointer which can be used in the
PKIGen table to disable support for the corresponding PKI algorithm.

The default PKIGen table found in the pki_conf.c file is shown below.

PKI_Init PkiGen[SSL_MAX_PKI] =
{

NullPki_init,
rsa_init, // To disable RSA, replace this

// entry with NullPki_init
dsa_init, // To disable DSA, replace this

// entry with NullPki_init
dh_init // To disable DH, replace this

// entry with NullPki_init
};

To disable support for the corresponding PKI algorithm, replace the algo-
rithm entry in the PKIGen table with NullPki_init.
RM004707-1211 Data Structures

ZTP Network Security SSL Plug-In
Reference Manual

21
PKI_DheInit

typedef SSL_STATUS (* PKI_DheInit) (struct SSL_X509_S
*pX509, struct ASN1_ENC_DATA_S *pDheParams, DH_PARAMS
*pDh);

To enable Ephemeral Diffie-Hellman support, the global function pointer
variable must reference the dhe_init routine. To disable support for
Ephemeral Diffie-Hellman cipher suites, the global function pointer is set
to NULLPTR.
RM004707-1211 Data Structures

ZTP Network Security SSL Plug-In
Reference Manual

22
SSL_Hash

typedef struct SSL_HASH_S
{

SSL_BYTE HashType;
SSL_WORD DigestSize;
SSL_WORD BlockSize;
HASH_UPDATE Update;
HASH_FINAL Final;
HASH_FREE Delete;

} SSL_HASH;

The SSL_HASH structure is used to access digest functions supported by
the ZTP Network Security SSL Plug-In. Application programmers also
use these digest functions. The set of digest functions included in a proj-
ect is determined by the entries in the HashGen array. For more informa-
tion, see the HASH_New structure definition on page 24.

An SSL_HASH structure is dynamically created by calling a function
pointer of type HASH_NEW.

Table 10. SSL_HASH Structure Members

Member Name Description

HashType Identifies the digest algorithm implemented by this structure. The
HashType is set when the structure is created. The only permissible
values are:
SSL_HASH_NULL
SSL_HASH_MD5
SSL_HASH_HMAC_MD5
SSL_HASH_SHA1
SSL_HASH_HMAC_SHA1

DigestSize Identifies the number of bytes of output produced by the digest algo-
rithm.

BlockSize Identifies the block size of the digest algorithm.
RM004707-1211 Data Structures

ZTP Network Security SSL Plug-In
Reference Manual

23
The prototypes for the function pointers are:

typedef SSL_STATUS (*HASH_UPDATE)(struct SSL_HASH_S
*pHash, SSL_BYTE *pData, SSL_WORD Length);

typedef SSL_STATUS (*HASH_FINAL) (struct SSL_HASH_S
*pHash, SSL_BYTE *pData, SSL_WORD Length);

typedef void (*HASH_FREE) (struct SSL_HASH_S *pHash);

By using the SSL_HASH structure, a single orthogonal API is used to gen-
erate the digests using any of the supported digest algorithms. For more
information, see the HASH_New structure definition on page 24.

Update Function pointer to supply more input data to the digest algorithm.

Final Function pointer that returns the output of the digest algorithm.

Free Function pointer to release the resources associated with this struc-
ture.

Table 10. SSL_HASH Structure Members

Member Name Description
RM004707-1211 Data Structures

ZTP Network Security SSL Plug-In
Reference Manual

24
HASH_New

typedef struct SSL_HASH_S * (* HASH_NEW) (SSL_BYTE *
pKey, SSL_WORD KeyLen);

The HASH_NEW function pointer is used in the construction of the HashGen
table, see hash_conf.c. There is one entry in the HashGen table for each
digest algorithms supported by ZTP Network Security SSL Plug-In. The
SSL library uses entries in the HashGen table to dynamically create
SSL_HASH structures based on the appropriate digest algorithm. Applica-
tion programs also use the HashGen table to allocate SSL_HASH structures
for their own purposes.

The default HashGen table is shown below (see hash_conf.c):

HASH_NEW HashGen[SSL_MAX_HASH] =
{

NullHash_New,
MD5_New,
HMAC_MD5_New,
SHA1_New,
HMAC_SHA1_New

};

Support for a digest algorithm is removed by replacing the corresponding
table entry with NullHash_New. However, some versions of the SSL
protocol do not function unless the corresponding digest algorithm is
available. Table 11 shows which digest algorithms must be supported to
allow proper operation of the corresponding SSL protocol.

Table 11. Digest Routines by SSL Protocol Version

SSL Protocol Mandatory Digest Algorithms

SSLv2 NullHashNew, MD5

SSLv3 NullHashNew, MD5, SHA1

TLSv1 NullHashNew, MD5, HMAC_MD5, SHA1, HMAC_SHA1
RM004707-1211 Data Structures

ZTP Network Security SSL Plug-In
Reference Manual

25
The HTTP server in ZTP v2.3.0 and later releases also uses the MD5 algo-
rithm to authenticate HTTP clients. This authentication does not use SSL,
but uses a special version of the HashGen array which contains only an
entry for the MD5 algorithm (all other entries are specified as NULL).
Therefore, the hash_conf.c file contains two versions of the HashGen
array. The first version of the HashGen array is used only in ZTP projects
which do not include SSL but require HTTP authentication. These projects
must define a symbol named MD5_HTTP to use the non-SSL version of the
HashGen array. The second version of the HashGen array is used when
SSL support is required. This applies to ZTP systems regardless of
whether HTTP authentication is required or not. To use the SSL version of
the HashGen array, the MD5_HTTP symbol must not be defined.

The HashGen table provides an orthogonal API that can be used to digest
data using any of the supported algorithms.

For example, the code fragment below will compute the MD5 digest of
“abc”.

SSL_BYTE Buffer[100];
SSL_HASH *pHash;
pHash = HashGen[SSL_HASH_MD5](NULLPTR, 0);
pHash->Update(pHash, “abc”, 3);
pHash->Final(pHash, Buffer, pHash->DigestSize);
pHash->Free(pHash);

The same code fragment is used to compute the SHA1 digest of “abc” by
changing the index into the HashGen table from SSL_HASH_MD5 to
SSL_HASH_SHA1. The HashGen table is indexed using one of the follow-
ing macros:

• SSL_HASH_NULL

• SSL_HASH_MD5

• SSL_HASH_HMAC_MD5

Note:
RM004707-1211 Data Structures

ZTP Network Security SSL Plug-In
Reference Manual

26
• SSL_HASH_SHA1

• SSL_HASH_HMAC_SHA1

The pKey and KeyLen parameters are used only for the keyed digest rou-
tines SSL_HASH_HMAC_MD5 and SSL_HASH_HMAC_SHA1. For MD5 and
SHA1, the pKey and KeyLen parameters must be set to NULLPTR and 0,
respectively.
RM004707-1211 Data Structures

ZTP Network Security SSL Plug-In
Reference Manual

27
SSL_Cipher

typedef struct SSL_CIPHER
{

SSL_BYTE Algorithm;
SSL_WORD KeyLength;
SSL_WORD BlockSize;
SSL_BYTE CipherMode;
CIPHER_TRANSFORM Transform;
CIPHER_FREE Delete;

} SSL_CIPHER;

A cipher is used to encrypt and decrypt data using a symmetric shared
secret. The encryption process transforms a plain-text data block into
cipher-text using a secret key. The decryption process transforms the
cipher-text back into plain-text using the same secret key. Because both
entities possess the same key, the cipher algorithm is said to be symmet-
ric.

The ZTP Network Security SSL Plug-In uses an SSL_CIPHER structure
to encrypt and decrypt data using any of the supported symmetric cipher
algorithms. Application programs can also use the symmetric cipher algo-
rithms for their own purpose.

The set of cipher algorithms included in a project is determined by the
entries in the CipherGen array; see the CIPHER_New structure defini-
tion on page 30 for more information. An SSL_CIPHER structure is cre-
ated by calling a function pointer of type CIPHER_NEW.
RM004707-1211 Data Structures

ZTP Network Security SSL Plug-In
Reference Manual

28
The prototypes for the function pointers are:

typedef SSL_STATUS (*CIPHER_TRANSFORM)
(

struct SSL_CIPHER *pCipher,
SSL_BYTE *pDecoded,
SSL_BYTE *pEncoded,
SSL_WORD Length

);
typedef void (*CIPHER_FREE)

Table 12. SSL_CIPHER Structure Members

Member Name Description

Algorithm Identifies the symmetric cipher algorithm implemented by this struc-
ture. The Algorithm type is set when the structure is created.
The only permissible values are:
SSL_CIPHER_NULL,
SSL_CIPHER_RC4,
SSL_CIPHER_DES,
SSL_CIPHER_3DES and
SSL_CIPHER_AES.

KeyLength Identifies the number of bytes in the symmetric key. This is indepen-
dent of the value of the key (for example, if the key is
0x00,0x00,0x00,0x00, then the KeyLength will be 4).

BlockSize For stream ciphers (for example, RC4), this field will be 1. For Block-
Ciphers (DES, 3DES and AES) identifies the number of input bytes
transformed by one invocation of the algorithm.

CipherMode Indicates if the SSL_CIPHER is used to encrypt or decrypt data. The
only permissible values are:
SSL_CIPHER_MODE_BULK_DECRYPT and
SSL_CIPHER_MODE_BULK_ENCRYPT.

Transform Function pointer used to either encrypt or decrypt a given block of
data.

Delete Function pointer to release resources associated with this structure.
RM004707-1211 Data Structures

ZTP Network Security SSL Plug-In
Reference Manual

29
(
struct SSL_CIPHER *pCipher

);

By using the SSL_CIPHER structure, a single orthogonal API is used to
encrypt or decrypt data using any of the supported symmetric cipher algo-
rithms. For more information, see the CIPHER_New structure definition
on page 30.
RM004707-1211 Data Structures

ZTP Network Security SSL Plug-In
Reference Manual

30
CIPHER_New

typedef struct SSL_CIPHER *(* CIPHER_NEW)
(

SSL_BYTE CipherMode,
SSL_BYTE *pKey,
SSL_WORD KeyLen,
SSL_BYTE *InitVector,
SSL_WORD IV_Len

);

The CIPHER_NEW function pointer is used in the construction of
CipherGen table, see cipher_conf.c. There is one entry in the
CipherGen table for each symmetric CipherGen algorithms supported
by ZTP Network Security SSL Plug-In. The SSL library uses entries in
the CipherGen table to create SSL_CIPHER structures based on the
appropriate cipher algorithm. You can also use the CipherGen table to
allocate SSL_CIPHER structures for their own purposes.

The default CipherGen table is shown below, see cipher_conf.c.

CIPHER_NEW CipherGen[SSL_MAX_CIPHERS] =
{

NullCipher_New,
RC4_New,
DES_New,
DES3_New,
AES_New

};

Support for a cipher algorithm is removed by replacing the corresponding
table entry with NullCipher_New. However, the SSL protocol requires
both the client and server to support at least one common cipher algo-
rithm. If a given client and server do not share a common cipher algo-
rithm, it will not be possible to establish an SSL session.

The CipherGen table provides an orthogonal API that is used to encrypt
or decrypt data using any of the supported algorithms.
RM004707-1211 Data Structures

ZTP Network Security SSL Plug-In
Reference Manual

31
For example, the code fragment below will encrypt the plain text message
“Hello” using an RC4 symmetric key of length 16 bytes (128 bits).

#define KEY_SIZE 16
extern SSL_BYTE *pKey;
extern SSL_BYTE *pIV;
SSL_BYTE Buffer[100];
SSL_Cipher *pCipher;

pCipher = CipherGen[SSL_CIPHER_RC4]
(

SSL_CIPHER_MODE_BULK_ENCRYPT,
pKey, KEY_SIZE,
pIV, RC4_IV_SIZE_BYTES);

pCipher->Transform(pCipher, Buffer, “Hello”, 5);
pCipher->Delete(pCipher);

The same code fragment is used to encrypt data using AES by changing
the index into the CipherGen table from SSL_CIPHER_RC4 to
SSL_CIPHER_AES. In addition, the AES_IV_SIZE_BYTES macro is used
to specify the size of the AES initialization vector. The CipherGen table
is indexed using one of the following macros:

• SSL_CIPHER_NULL

• SSL_CIPHER_RC4

• SSL_CIPHER_DES

• SSL_CIPHER_3DES

• SSL_CIPHER_AES

The InitVector and IV_Len parameters are not required by the RC4
cipher algorithm and will be ignored. Table 13 describes the limitations
and restrictions on the input parameters based on the cipher algorithm.

Note:
RM004707-1211 Data Structures

ZTP Network Security SSL Plug-In
Reference Manual

32
Table 13. Key and Initialization Vector Sizes by Cipher

Cipher Key Size Initialization Vector Size

RC4 Arbitrary SSL (between 1 and 256
bytes) uses 16-byte RC4 keys (i.e.,
RC4_128)

Must be 0; i.e.,
RC4_IV_SIZE_BYTES

DES Must be DES_KEY_SIZE_BYTES Must be DES_IV_SIZE_BYTES

3DES Must be DES3_KEY_SIZE_BYTES Must be DES3_IV_SIZE_BYTES

AES Must be one of these values:
AES_128_KEY_SIZE_BYTES
AES_192_KEY_SIZE_BYTES
AES_256_KEY_SIZE_BYTES

SSL does not use AES_192

AES_IV_SIZE_BYTES
RM004707-1211 Data Structures

ZTP Network Security SSL Plug-In
Reference Manual

33
SSL_CS_Info

typedef struct SSL_CS_INFO
{

SSL_WORD CipherSuite;
SSL_BYTE KeyAlg;
SSL_BYTE CipherAlg;
SSL_BYTE HashAlg;
SSL_BOOL IsExport;
SSL_BYTE KeySize;
SSL_BYTE IVSize;
SSL_BYTE MacSize;
SSL_BOOL IsValid;

} SSL_CS_INFO;

The SSL handshake protocols are used to determine a set of compatible
cryptographic algorithms which are used for authentication, privacy (i.e.,
encryption) and message integrity. These goals are accomplished with a
key exchange algorithm, a cipher and a digest (hash) algorithm. This tuple
is called a Cipher Suite (SSLv2 used the term Cipher Kind to describe a
cipher and a digest function as RSA was the only key exchange algorithm
supported.)

The ZTP Network Security SSL Plug-In uses a SSL_CS_INFO structure
to identify a particular cipher suite regardless the version of the SSL pro-
tocol used. SSL_CS_INFO structures are also used to build tables of
cipher suites that identify the combination of key exchange algorithm,
cipher and digest supported by each of the SSL protocols.
RM004707-1211 Data Structures

ZTP Network Security SSL Plug-In
Reference Manual

34
Table 14. SSL_CS_INFO Structure Members

Member Name Description

CipherSuite Code used to identify a particular Cipher Suite (see Cipher-
Suite.h).

KeyAlg Identifies the PKI key exchange algorithm for this Cipher Suite. Valid
values are:
SSL_PKI_RSA
SSL_PKI_DHE_RSA
SSL_PKI_DHE_DSS
SSL_PKI_DH

CipherAlg Identifies the symmetric cipher used to encrypt data. Valid values are:
SSL_CIPHER_RC4
SSL_CIPHER_DES
SSL_CIPHER_3DES
SSL_CIPHER_AES

HashAlg Identifies the digest algorithm for this Cipher Suite. Valid values are:
SSL_HASH_MD5
SSL_HASH_SHA1

IsExport1 Set to TRUE if the size of the private key used in the key exchange
algorithm is less than or equal to 512 bits.

KeySize2 Indicates the number of bits in the (expanded) symmetric key used by
the CipherAlg.

IVSize Size of the Initialization Vector for the Cipher Algorithm. This initializa-
tion vector is internally generated by the SSL protocol.

Notes:
1. The SSLv3 and TLSv1 servers implemented in the ZTP Network Security SSL Plug-In do not

support the generation of temporary RSA or Ephemeral Diffie-Hellman keys. Therefore, these
cipher suites will be selected only in the Server Hello message, if the size of the modulus in the
corresponding public key is less than or equal to 512 bits. However, the SSLv3 and TLSv1 cli-
ents implemented in the ZTP Network Security SSL Plug-In will establish connections with serv-
ers using temporary RSA keys.

2. All export ciphers initially generate a 40-bit symmetric key expanded to the default key size for
the given cipher algorithm.
RM004707-1211 Data Structures

ZTP Network Security SSL Plug-In
Reference Manual

35
MacSize Size of the message authentication code used to verify the integrity
application data.

IsValid If TRUE, indicates that this Cipher Suite is used to establish an SSL
session. If FALSE, this Cipher Suite cannot be used to establish an
SSL session.

Table 14. SSL_CS_INFO Structure Members (Continued)

Member Name Description

Notes:
1. The SSLv3 and TLSv1 servers implemented in the ZTP Network Security SSL Plug-In do not

support the generation of temporary RSA or Ephemeral Diffie-Hellman keys. Therefore, these
cipher suites will be selected only in the Server Hello message, if the size of the modulus in the
corresponding public key is less than or equal to 512 bits. However, the SSLv3 and TLSv1 cli-
ents implemented in the ZTP Network Security SSL Plug-In will establish connections with serv-
ers using temporary RSA keys.

2. All export ciphers initially generate a 40-bit symmetric key expanded to the default key size for
the given cipher algorithm.
RM004707-1211 Data Structures

ZTP Network Security SSL Plug-In
Reference Manual

36
SSL Constants

This section presents tables which list significant constants used by the
SSL handshake protocols and cryptographic libraries. Table 15 lists the
types of SSL constants.

Table 16 through Table 21 lists the SSL constants and their values.

Table 15. Constants by Category

Type of Constant

Status Codes

Digest Algorithm Identifiers

Cipher Algorithm Identifiers

PKI Algorithm Identifiers in PKIGen Array

PKI Algorithm Identifiers in SSL_CS_INFO Structure

X.509 Public Algorithm Identifiers

Table 16. Status Codes

Constant Value

SSL_SUCCESS 0

SSL_FAILURE –1

Table 17. Digest Algorithm Identifiers

Constant Value

SSL_HASH_NULL 0

SSL_HASH_MD5 1

SSL_HASH_HMAC_MD5 2
RM004707-1211 Data Structures

ZTP Network Security SSL Plug-In
Reference Manual

37
SSL_HASH_SHA1 3

SSL_HASH_HMAC_SHA1 4

Table 18. Cipher Algorithm Identifiers

Constant Value

SSL_CIPHER_NULL 0

SSL_CIPHER_RC4 1

SSL_CIPHER_DES 2

SSL_CIPHER_3DES 3

SSL_CIPHER_AES 4

Table 19. PKI Algorithm Identifiers in PKIGen Array

Constant Value

SSL_PKI_NULL 0

SSL_PKI_ID_RSA 1

SSL_PKI_ID_DSA 2

SSL_PKI_ID_DH 3

Table 20. PKI Algorithm Identifiers in SSL_CS_INFO Structure

Constant Value

SSL_PKI_NULL 0

SSL_PKI_RSA 1

SSL_PKI_DH 2

Table 17. Digest Algorithm Identifiers (Continued)

Constant Value
RM004707-1211 Data Structures

ZTP Network Security SSL Plug-In
Reference Manual

38
SSL_PKI_DHE_RSA 3

SSL_PKI_DHE_DSS 4

Table 21. X.509 Public Algorithm Identifiers

Constant Value

OID_RSA_ENCRYPTION 1

OID_ID_DSA 2

OID_DH_PUBLIC_NUMBER 3

Table 20. PKI Algorithm Identifiers in SSL_CS_INFO Structure

Constant Value
RM004707-1211 Data Structures

ZTP Network Security SSL Plug-In
Reference Manual

39
API Definitions

This chapter describes the APIs that are provided by ZTP Network Secu-
rity SSL Plug-In. Click the links below to learn more about each of these
APIs.

• Initialize_SSL – see page 40

• SSL2_ClientInit – see page 42

• SSL2_ServerInit – see page 44

• SSL3_ClientInit – see page 47

• SSL3_ServerInit – see page 49

• TLS1_ClientInit – see page 53

• TLS1_ServerInit – see page 55

• VerifyCertificate – see page 58

• free_x509_certificate – see page 62
RM004707-1211 API Definitions

ZTP Network Security SSL Plug-In
Reference Manual

40
Initialize_SSL

Include
#include “SSL.h”

Library

ssl_rzk.lib for use with ZTP 1.6.0 and later

Prototype
SSL_STATUS Initialize_SSL(void);

Description

This Initialize_SSL() API initializes the SSL interface layer
exposed to upper layer applications. This API is called before using any
other SSL-related APIs. The SSL interface layer is similar to the TCP
interface of the underlying ZTP system but provides seamless integration
of the SSL handshake protocols. Therefore, application programs which
are written to use the TCP interface can be easily migrated to SSL. For
more information, refer to ZTP Network Security SSL Plug-In User Man-
ual (UM0201).

Argument(s)

None

Return Value(s)

SSL_SUCCESS Indicates that the API is executed successfully.

SSL_FAILURE Indicates that the API is not executed successfully.
Possible reasons for the failure are insufficient mem-
ory or the unavailability of kernel resources to repre-
sent all SSL devices/sockets.
RM004707-1211 API Definitions

http://www.zilog.com/docs/ez80acclaim/software/um0201.pdf
http://www.zilog.com/docs/ez80acclaim/software/um0201.pdf

ZTP Network Security SSL Plug-In
Reference Manual

41
Usage Scenario

After Initialize_SSL() is called and before any upper layer applica-
tions attempt to use the SSL interface, it is necessary to initialize one or
more of the SSL handshake protocols by calling any of the following
APIs:

• SSL2_ClientInit

• SSL2_ServerInit

• SSL3_ClientInit

• SSL3_ServerInit

• TLS1_ClientInit

• TLS1_ServerInit

Example

The following example initializes the SSL interface layer.

Initialize_SSL();

See Also

SSL2_ClientInit SSL2_ServerInit

SSL3_ClientInit SSL3_ServerInit

TLS1_ClientInit TLS1_ServerInit
RM004707-1211 API Definitions

ZTP Network Security SSL Plug-In
Reference Manual

42
SSL2_ClientInit

Include
#include “SSL.h”

Library

ssl_rzk.lib for use with ZTP 1.6.0 and later.

Prototype
SSL_STATUS SSL2_ClientInit(void);

Description

This API initializes the client-side of the SSL version 2 handshake proto-
col. If this API is not called then it is not possible for the ZTP Network
Security SSL Plug-In to establish any SSLv2 sessions in client mode. In
client-only mode, applications will only be able to establish SSLv2 ses-
sions with remote SSLv2 servers.

The SSLv2 protocol implemented in the ZTP Network Security SSL
Plug-In allows multiple client and server sessions to operate at the same
time, but this causes an extra processing burden on the system.

Argument(s)

None.

Return Value(s)

SSL_SUCCESS Indicates that the API is executed successfully.

SSL_FAILURE Indicates that the API did not complete successfully.
RM004707-1211 API Definitions

ZTP Network Security SSL Plug-In
Reference Manual

43
Usage Scenario

This API must only be called after calling the Initialize_SSL API (see
page 40). This API must be called before establishing any SSL sessions
with remote SSLv2 servers. Do not call this API multiple times.

Example

The following example initializes the client-side of the SSLv2 handshake
protocol.

Initialize_SSL();
SSL2_ClientInit();

See Also

Initialize_SSL SSL2_ServerInit

SSL3_ClientInit SSL3_ServerInit

TLS1_ClientInit TLS1_ServerInit
RM004707-1211 API Definitions

ZTP Network Security SSL Plug-In
Reference Manual

44
SSL2_ServerInit

Include
#include “SSL.h”

Library

ssl_rzk.lib for use with ZTP 1.6.0 and later.

Prototype
SSL_STATUS SSL2_ServerInit
(

struct CERT_CHAIN *pCertChain,
ASN1_ENC_DATA *pDheParams

);

Description

The SSL2_ServerInit() API initializes the server-side of the SSL ver-
sion 2 handshake protocol. If this API is not called then it is not possible
for the ZTP Network Security SSL Plug-In to establish any SSLv2 ses-
sions in server mode. In server mode, applications will only be able to
establish SSLv2 sessions initiated by remote clients.

The SSLv2 protocol implemented in the ZTP Network Security SSL
Plug-In allows multiple client and server sessions to operate simultane-
ously, but this causes an extra processing burden on the system.

The pCertChain parameter references a certificate chain which contains
the server’s X.509 certificate. For SSLv2, the certificate chain must only
contain a single RSA certificate and private key. This certificate will be
shared by all SSLv2 servers. After processing the certificate in the certificate
chain, the SSL library calls the VerifyCertificate callback routine to
determine if the certificate should be trusted. If the VerifyCertificate
callback returns SSL_SUCCESS, the SSL library accepts the certificate and
marks it as a permanent certificate.
RM004707-1211 API Definitions

ZTP Network Security SSL Plug-In
Reference Manual

45
Since SSLv2 does not support the Diffie-Hellman key exchange algo-
rithm, the pDheParams parameter is specified as NULLPTR.

Argument(s)

Return Value(s)

Usage Scenario

This API must be called only after calling the Initialize_SSL API (see
page 40). This API must be called before starting any SSLv2 servers
(including the supplied HTTPS server). Do not call this API multiple
times.

This routine requires significant stack space. Zilog recommends that this
API has to be called only from a task which has a 1 KB run-time stack.

Example

The following example initializes the server side of the SSLv2 handshake
protocol.

extern CERT_CHAIN SSL2_CertChain;
Initialize_SSL();
SSL2_ServerInit(&SSL2_CertChain, NULLPTR);

pCertChain Contains the SSLv2 server’s RSA certificate and pri-
vate key. The chain must include only one certificate.

pDheParams For SSLv2 this parameter is initialized to NULLPTR.

SSL_SUCCESS Indicates that the API is executed successfully.

SSL_FAILURE Indicates that the API is not completed successfully.
Possible reasons for the failure are invalid certificate,
or more than one certificate in the certificate chain.
RM004707-1211 API Definitions

ZTP Network Security SSL Plug-In
Reference Manual

46
See Also

Initialize_SSL SSL2_ClientInit

TLS1_ServerInit VerifyCertificate
RM004707-1211 API Definitions

ZTP Network Security SSL Plug-In
Reference Manual

47
SSL3_ClientInit

Include
#include “SSL.h”

Library

ssl_rzk.lib for use with ZTP 1.6.0 and later.

Prototype
SSL_STATUS SSL3_ClientInit(void);

Description

The SSL3_ClientInit() API initializes the client-side of the SSL ver-
sion 3 handshake protocol. If this API is not called then it is not possible
for the ZTP Network Security SSL Plug-In to establish any SSLv3 ses-
sions in client mode. In client-only mode, applications will only be able to
establish SSLv3 sessions with remote SSLv3 servers.

The SSLv3 protocol implemented in the ZTP Network Security SSL
Plug-In allows multiple client and server sessions to operate at the same
time, but this causes an extra processing burden on the system.

Argument(s)

None.

Return Value(s)

SSL_SUCCESS Indicates that the API is executed successfully.

SSL_FAILURE Indicates that the API did not complete successfully.
RM004707-1211 API Definitions

ZTP Network Security SSL Plug-In
Reference Manual

48
Usage Scenario

This API must be called only after calling the Initialize_SSL API (see
page 40) and before establishing any SSL sessions with remote SSLv3
servers. Do not call this API multiple times.

Example

The following example initializes the client side of the SSLv3 handshake
protocol.

Initialize_SSL();
SSL3_ClientInit();

See Also

Initialize_SSL SSL3_ServerInit

TLS1_ClientInit TLS1_ServerInit
RM004707-1211 API Definitions

ZTP Network Security SSL Plug-In
Reference Manual

49
SSL3_ServerInit

Include
#include “SSL.h”

Library

ssl_rzk.lib for use with ZTP 1.6.0 and later.

Prototype
SSL_STATUS SSL3_ServerInit
(

struct CERT_CHAIN *pCertChain,
ASN1_ENC_DATA *pDheParams

);

Description

The SSL3_ServerInit() API initializes the server-side of the SSL ver-
sion 3 handshake protocol. If this API is not called then it is not possible
for the ZTP Network Security SSL Plug-In to establish any SSLv3 ses-
sions in server mode. In server mode, applications will only be able to
establish SSLv3 sessions initiated by remote clients.

The SSLv3 protocol implemented in the ZTP Network Security SSL
Plug-In allows multiple client and server sessions to operate simultane-
ously, but this causes extra processing burden on the system.

The pCertChain parameter references a certificate chain which contains
the server’s X.509 certificate and private key. Any intermediate certificate
authority certifies and terminates in a self-signed root certificate. A certif-
icate in the chain is followed by the issuer’s certificate. A self-signed cer-
tificate is not followed by any other certificates as it is issued for and
issued by the same entity. Currently, the maximum number of certificates
allowed in the certificate chain is four. The server’s certificate is shared
by all SSLv3 servers in the system.
RM004707-1211 API Definitions

ZTP Network Security SSL Plug-In
Reference Manual

50
As certificates in the certificate chain are processed, the SSL library calls
the VerifyCertificate callback for any certificate which cannot be
implicitly trusted (or if the SSL_PresentAllCertificates configura-
tion variable is set to TRUE). If the VerifyCertificate callback rou-
tine returns SSL_SUCCESS for all certificates, the SSL library accepts the
certificate chain and mark the first entry in the chain (the server’s certifi-
cate) as a permanent certificate.

The pDheParams pointer references the Diffie-Hellman parameters
which are used for all Ephemeral Diffie-Hellman (DHE) Cipher suites. If
this parameter is set to NULLPTR then SSLv3 servers will not be able to
establish sessions using any of the DHE cipher suites.

If the pDheParams pointer is set to NULLPTR, SSLv3 clients will be able
to establish sessions using Ephemeral Diffie-Hellman parameters, pro-
vided that the global pDheInit function pointer is not set to NULLPTR.

The Diffie-Hellman parameters must be an ASN.1 DER-encoded
sequence of two integers:

1. The prime modulus (p)

2. The generator (g)

These parameters may optionally be Base64-encoded.

Note:
RM004707-1211 API Definitions

ZTP Network Security SSL Plug-In
Reference Manual

51
Argument(s)

Return Value(s)

Usage Scenario

This API must be called only after calling the Initialize_SSL API (see
page 40) and before starting any SSLv3 servers (including the supplied
HTTPS server). Do not call this API multiple times.

This routine requires significant stack space. Zilog recommends that this
API has to be called only from a task that has a 1 KB run-time stack.

Example

The following example initializes the server-side of the SSLv3 handshake
protocol.

extern CERT_CHAIN SSL3_CertChain;
extern ASN1_ENC_DATA SSL3_DhParams;
SSL3_ServerInit(&SSL3_CertChain, &SSL3_DhParams);

pCertChain Contains the SSLv3 server’s certificate and private
key followed by the certificate(s) of any intermediate
certificate authorities and terminating in the self-
signed root certificate.

pDheParams SSLv3 servers reference an ASN.1 DER- encoded
(and optionally Base64-encoded) sequence of 2 inte-
gers (p and g). If Ephemeral Diffie-Hellman cipher
suites are not required, set this parameter to
NULLPTR.

SSL_SUCCESS Indicates that the API is executed successfully.

SSL_FAILURE Indicates that the API is not completed successfully.
Possible reasons for the failure are invalid certificate,
or more than four certificates in the certificate chain.
RM004707-1211 API Definitions

ZTP Network Security SSL Plug-In
Reference Manual

52
See Also

Initialize_SSL SSL3_ClientInit

TLS1_ServerInit VerifyCertificate
RM004707-1211 API Definitions

ZTP Network Security SSL Plug-In
Reference Manual

53
TLS1_ClientInit

Include
#include “SSL.h”

Library

ssl_rzk.lib for use with ZTP 1.6.0 and later.

Prototype
SSL_STATUS TLS1_ClientInit(void);

Description

The TLS1_ClientInit() API initializes the client-side of the TLSv1
handshake protocol. If this API is not called then it is not possible for the
ZTP Network Security SSL Plug-In to establish any TLSv1 sessions in
client mode. In client-only mode, applications will establish only TLSv1
sessions with remote TLSv1 servers.

The TLSv1 protocol implemented in the ZTP Network Security SSL
Plug-In allows multiple client and server sessions to operate simultane-
ously, but this causes an extra processing burden on the system.

Argument(s)

None.

Return Value(s)

SSL_SUCCESS Indicates that the API is executed successfully.

SSL_FAILURE Indicates that the API did not complete successfully.
RM004707-1211 API Definitions

ZTP Network Security SSL Plug-In
Reference Manual

54
Usage Scenario

This API must only be called after calling the Initialize_SSL API (see
page 40) and before attempting to establish any SSL sessions with remote
TLSv1 servers. Do not call this API multiple times.

Example

The following example initializes the client-side of the TLSv1 handshake
protocol.

Initialize_SSL();
TLSv1_ClientInit();

See Also

Initialize_SSL TLS1_ServerInit

SSL3_ClientInit SSL3_ServerInit
RM004707-1211 API Definitions

ZTP Network Security SSL Plug-In
Reference Manual

55
TLS1_ServerInit

Include
#include “SSL.h”

Library

ssl_rzk.lib for use with ZTP 1.6.0 and later.

Prototype
SSL_STATUS TLS1_ServerInit
(

struct CERT_CHAIN *pCertChain,
ASN1_ENC_DATA *pDheParams

);

Description

The TLS1_ServerInitAPI() initializes the server-side of the TLS ver-
sion 1 handshake protocol. If this API is not called then it is not possible
for the ZTP Network Security SSL Plug-In to establish any TLSv1 ses-
sions in either client or server mode. In server mode, applications will
only be able to establish TLSv1 sessions initiated by remote clients.

The TLSv1 protocol implemented in the ZTP Network Security SSL
Plug-In allows multiple client and server sessions to operate at the same
time, but this will place extra processing burden on the system.

The pCertChain parameter references a certificate chain which contains
the server’s X.509 certificate and private key. Any intermediate certificate
authority certifies and terminates in a self-signed root certificate. A certif-
icate in the chain is followed by the issuer’s certificate. A self-signed cer-
tificate is not followed by any other certificates since it was issued for and
issued by the same entity. Currently, the maximum number of certificates
allowed in the certificate chain is four. The server certificate will be
shared by all TLSv1 servers in the system.
RM004707-1211 API Definitions

ZTP Network Security SSL Plug-In
Reference Manual

56
As certificates in the certificate chain are processed, the SSL library will
call the VerifyCertificate callback for any certificate that cannot be
implicitly trusted (or if the SSL_PresentAllCertificates configura-
tion variable is set to TRUE). If the VerifyCertificate callback
returns SSL_SUCCESS for all certificates, the SSL library will accept the
certificate chain and mark the first entry in the chain (the servers certifi-
cate) as a permanent certificate.

The pDheParams pointer references the Diffie-Hellman parameters that
are used for all DHE Cipher suites. If this parameter is set to NULLPTR
then TLSv1 servers will not establish sessions using any of the DHE
Cipher suites.

Even if the pDheParams pointer is set to NULLPTR, TLSv1 clients will
still be able to establish sessions using Ephemeral Diffie-Hellman parame-
ters provided that the global pDheInit function pointer is not NULLPTR.

The Diffie-Hellman parameters must be an ASN.1 DER-encoded
sequence of two integers: the prime modulus (p) and the generator (g).
The parameters are optionally Base64-encoded.

Argument(s)

pCertChain Contains the TLSv1 server’s certificate and private
key followed by the certificate(s) of any intermediate
certificate authorities and terminating in the self-
signed root certificate.

pDheParams TLSv1 servers, references an ASN.1 DER- encoded
(and optionally Base64-encoded) sequence of two
integers (p and g). If Ephemeral Diffie-Hellman
cipher suites are not required, set this parameter to
NULLPTR.

Note:
RM004707-1211 API Definitions

ZTP Network Security SSL Plug-In
Reference Manual

57
Return Value(s)

Usage Scenario

This API must be called only after calling the Initialize_SSL API (see
page 40) and before starting any TLSv1 servers (including the supplied
HTTPS server). Do not call this API multiple times.

This routine requires significant stack space. Zilog recommends that this
API has to be called only from a task which has a 1 KB run-time stack.

Example

The following example initializes the client-side of the TLSv1 handshake
protocol.

extern CERT_CHAIN TLS1_CertChain;
extern ASN1_ENC_DATA TLS1_DhParams;
TLS1_ServerInit(&TLS1_CertChain, &TLS1_DhParams);

See Also

SSL_SUCCESS Indicates that the API is executed successfully.

SSL_FAILURE Indicates that the API is not completed successfully.
Possible reasons for the failure are invalid certificate,
or more than four certificates in the certificate chain.

Initialize_SSL TLS1_ClientInit

VerifyCertificate
RM004707-1211 API Definitions

ZTP Network Security SSL Plug-In
Reference Manual

58
VerifyCertificate

Include
#include “ez80_x509.h”

Library
None.

Prototype
SSL_STATUS VerifyCertificate
(

SSL_X509_S *pX509
);

Description

When the SSL library processes certificate chains, it performs basic integ-
rity checks on the certificate and updates the Flags field within the
SSL_X509_S structure as appropriate. See Table 8 on page 13 for a list-
ing of valid flags. If the SSL_X509_TRUSTED flag is not set or if the
SSL_PresentAllCertificates configuration variable is set to TRUE
(see ssl_conf.c), then the SSL library calls this API with a reference to
the certificate being processed.

The SSL library will implicitly trust certificates. When processing an
untrusted certificate (i.e., one that does not have the SSL_X509_TRUSTED
flag set), the SSL layer will set the SSL_x509_TRUSTED flag if it is also
determines that the following flags are set:

• SSL_X509_PARSED_OK

• SSL_X509_DATE_VALID

• SSL_X509_SIGNATURE_VERIFIED

If any of these flags are not set, or if the
SSL_PresentAllCertificates configuration variable is set to
RM004707-1211 API Definitions

ZTP Network Security SSL Plug-In
Reference Manual

59
TRUE, then the VerifyCertificate callback routine is called. Once a
local permanent server certificate (one that has the
SSL_X509_PERMANENT flag set) is verified, the callback routine will not
be called for that certificate.

Application programs are allowed to modify the source code which imple-
ments this routines (see Certificate.c). This is done to perform addi-
tional validation of the certificate or to contact a certificate revocation
server to determine if the certificate is retired. However, the certificate ref-
erenced by pCertificate must not be modified. The only exception is
that the SSL_X509_PERMANENT flag can be set (but not cleared) by the
VerifyCertificate callback to indicate that the certificate is not to be
deleted after it has been verified. In this instance, the application calls the
free_x509_certificate API to release resources associated with the
certificate when it is no longer required. Applications must be aware that
the SSL library will allocate a new SSL_X509_S structure each time a
remote server sends its certificate chain. Therefore, even if the application
already accepted the remote server’s certificate from a previous invocation
of the VerifyCertificate callback, the SSL library will continue to
call the VerifyCertificate callback routine each time a new
SSL_X509_S structure is created that references the same x.509 certificate
data from the same server. This will happen even if the application sets the
SSL_X509_PERMANENT flag the last time the VerifyCertificate call-
back routine was called.

A local SSL server’s certificate that is the first certificate in the chain passed
to any of SSL2_ServerInit (see page 44), SSL3_ServerInit (see page 49), or
TLS1_ServerInit (see page 55) routines must never be released by an appli-
cation. Otherwise, the SSL server owning that certificate will not operate
properly, and could crash the system. Therefore, an application must not
release a certificate with a call to free_x509_certificate unless the
application sets the certificate’s SSL_X509_PERMANENT flag in the Veri-
fyCertificate callback.

Note:
RM004707-1211 API Definitions

ZTP Network Security SSL Plug-In
Reference Manual

60
If this routine returns SSL_SUCCESS, the SSL library sets the
SSL_X509_TRUSTED flag. In this instance, the SSL library continues to
use the certificate to establish an SSL session. If this routine returns
SSL_FAILURE, the SSL library deletes the certificate (unless the
SSL_X509_PERMANENT flag is set). In this instance, if the certificate is
used to establish an SSL connection, the handshake protocol fails and an
SSL session is not established.

Argument(s)

Return Value(s)

Example
SSL_STATUS VerifyCertificate(SSL_X509_S *pCertificate
)
{

// Accept the certificate
return(SSL_SUCCESS);

}

pCertificate References an SSL_X509_S structure containing infor-
mation regarding the certificate to be verified. This struc-
ture must not be modified by the VerifyCertificate
callback routine.

SSL_SUCCESS Instructs the SSL library to accept the certificate and
continue to establish the SSL session.

SSL_FAILURE Instructs the SSL library to destroy the certificate and
does not allow an SSL session to be established that
uses this certificate.
RM004707-1211 API Definitions

ZTP Network Security SSL Plug-In
Reference Manual

61
See Also

free_x509_certificate SSL2_ServerInit

SSL3_ServerInit TLS1_ServerInit
RM004707-1211 API Definitions

ZTP Network Security SSL Plug-In
Reference Manual

62
free_x509_certificate

Include
#include “SSL.h”
#include “ez80_x509.h”

Library
ssl_rzk.lib for use with ZTP 1.6.0 and later.

Prototype
void free_x509_certificate (

SSL_X509_S *pCertificate);

Description

The free_x509_certificate() API releases resources associated
with an SSL_X509_S structure. The only certificates that an application
can release are those for which the application explicitly set the
SSL_X509_PERMANENT flag in the VerifyCertificate callback rou-
tine. Once an application calls this API, it must not attempt to access any
fields within the SSL_X509_S structure referenced by pCertificate.

Argument(s)

Return Value(s)

None.

Example
extern SSL_X509_S *pCert;
free_x509_certificate(pCert);

pCertificate References the SSL_X509_S structure to be released.
RM004707-1211 API Definitions

ZTP Network Security SSL Plug-In
Reference Manual

63
See Also

VerifyCertificate
RM004707-1211 API Definitions

ZTP Network Security SSL Plug-In
Reference Manual

64
SSL Configuration

This section describes the global variables used to configure SSL hand-
shake protocols. Table 22 provides a brief usage description for each of
these configuration variables.

Table 22. SSL Configuration Variables

Configuration Variable Usage

SSL_MAX_SESSION_CACHE_
ENTRIES

Maximum size of SSL session cache.

SSL_CACHE_TIMEOUT Maximum lifetime of an inactive SSL session cache
entry measured in 10 ms ticks.

SSL_Debug_level Controls the amount of diagnostic information printed
to the console.

SSL_VerifySignatures Controls whether the SSL library will verify signatures
on certificates and temporary session parameters.

SSL_PresentAllCertificates Determines if the VerifyCertificate callback
function is called for all certificates or only for suspect
certificates.

NumSSL2_CipherSuites Specifies the number of cipher suites configured for
the SSLv2 protocol.

pSSL2_CipherSuites References an array of NumSSL2_CipherSuites
SSL_CS_INFO structures.

NumSSL3_CipherSuites Specifies the number of cipher suites configured for
the SSLv3 protocol.

pSSL3_CipherSuites References an array of NumSSL3_CipherSuites
SSL_CS_INFO structures.

NumTLS1_CipherSuites Specifies the number of cipher suites configured for
the TLSv1 protocol.

pTLS1_CipherSuites References an array of NumTLS1_CipherSuites
SSL_CS_INFO structures.
RM004707-1211 SSL Configuration

ZTP Network Security SSL Plug-In
Reference Manual

65
HashGen Determines the set of available digest algorithms.

CipherGen Determines the set of available symmetric cipher
algorithms.

PKIGen Determines the set of available public key algorithms.

pDheInit Determines if Ephemeral Diffie-Hellman cipher suites
can be supported.

DheParams Contains a server’s Ephemeral Diffie-Hellman param-
eters (p and g).

CertChain Contains a server’s certificate chain.

Table 22. SSL Configuration Variables (Continued)

Configuration Variable Usage
RM004707-1211 SSL Configuration

ZTP Network Security SSL Plug-In
Reference Manual

66
SSL_MAX_Session_Cache_Entries

Default Configuration
SSL_BYTE SSL_MAX_SESSION_CACHE_ENTRIES = 8;

Source File
ssl_conf.c

Description

Establishing an SSL session on an 8-bit processor is a time consuming
process because of the complexity of the asymmetric key exchange algo-
rithm used to arrive at a shared secret between the client and server.
Therefore, after the SSL layer establishes a session it stores information
regarding the session in a temporary data store called an SSL session
cache. The next time the same client and server attempt to establish a ses-
sion, information can be extracted from the cache, thereby avoiding the
need to use the asymmetric key exchange algorithm. This can dramati-
cally decrease the time required to establish subsequent SSL sessions.

The SSL_MAX_SESSION_CACHE_ENTRIES configuration variable deter-
mines the maximum size of the session cache. If this variable is set to 0,
the session cache will be disabled and all SSL sessions will have to exe-
cute an asymmetric key exchange algorithm.

During the SSL handshake, the client checks if the local session cache
contains an entry for the target server socket. If it does it will attempt to
reuse the session identifier. Similarly the server will check for an entry in
the session cache from the client with a matching session ID. If the ses-
sion has not expired, then the server allows the session to be established
using information contained within the cache entry and avoiding the
asymmetric computation. See the SSL_Cache_Timeout API on page 68.

If the SSL session cache is full and a new entry has to be added for the
session which was just established, the SSL layer will destroy the oldest
RM004707-1211 SSL Configuration

ZTP Network Security SSL Plug-In
Reference Manual

67
entry in the cache and reuse that entry to store information about the new
session.

In the current release, each entry in the session cache requires 110 bytes
of storage.

See Also

SSL_Cache_Timeout
RM004707-1211 SSL Configuration

ZTP Network Security SSL Plug-In
Reference Manual

68
SSL_Cache_Timeout

Default Configuration
SSL_DWORD SSL_CACHE_TIMEOUT = 30000; /* measured in
10 ms ticks */

Source File
ssl_conf.c

Description

When an entry is added to the SSL session cache, it is time-stamped with
the current system time. Each time the SSL layer searches and locates this
entry, its time-stamp is reset and the entry is moved to the beginning of
the cache. This ensures that the most recently accessed session cache
entry is always located at the beginning of the cache.

When searching for a session cache entry, the SSL library examines the
time-stamp of all entries in the cache and delete any entries which are
older than SSL_CACHE_TIMEOUT.

If the end of the session cache is reached and the appropriate entry cannot
be located and the cache is not yet full, a new entry will be created and
added to the beginning of the cache.

If end of the cache is reached and the appropriate entry is not located and
the cache is full, the SSL library will destroy the entry at the end of the
cache and reuse the entry to store information about the new SSL session.
The reused entry is then moved to the beginning of the cache.

The default value of the SSL_CACHE_TIMEOUT ensures that a cache entry
will remain valid for five minutes from the last time that it was accessed.

See Also

SSL_MAX_Session_Cache_Entries
RM004707-1211 SSL Configuration

ZTP Network Security SSL Plug-In
Reference Manual

69
SSL_Debug_level

Default Configuration
SSL_BYTE SSL_Debug_level = SSL_DEBUG_ERROR;

Source File
ssl_conf.c

Description

The SSL library includes a significant number of debug messages which
can (optionally) be displayed on the console during operation. The
amount of information displayed is controlled by the value of
SSL_Debug_level configuration variable as shown in Table 23.

Table 23. SSL_Debug_level Settings

SSL_Debug_level Setting Description

SSL_DEBUG_NONE All debug messages are suppressed.

SSL_DEBUG_ERROR Only Error messages are displayed.

SSL_DEBUG_WARNING Only Error and Warning messages are displayed.

SSL_DEBUG_INFO Display all debug messages.
RM004707-1211 SSL Configuration

ZTP Network Security SSL Plug-In
Reference Manual

70
SSL_VerifySignatures

Default Configuration
SSL_BOOL SSL_VerifySignatures = TRUE;

Source File
ssl_conf.c

Description

Each time the SSL library encounters a certificate chain, one of the integ-
rity checks performed is to verify the certificate’s signature. This occurs
during local SSL server initialization and upon receipt of a remote
server’s certificate chain. See SSL2_ServerInit, SSL3_ServerInit, or
TLS1_ServerInit for more details. Similarly when a remote SSL server
sends a Key Exchange message containing PKI algorithm parameters, the
SSL handshake protocol verifies the signature on the parameters.

Each signature verification involves the use of an asymmetric operation
using the server’s public key. These operations are computationally
expensive requiring significant CPU processing time. This can add a
noticeable delay in establishing SSL sessions.

To speed up SSL session establishment, the verification of these signa-
tures are disabled by setting the SSL_VerifySignatures configuration
variable to FALSE. This will instruct the SSL layer to assume that all sig-
natures are valid but potentially reduces system security.

If the SSL_VerifySignatures variable is set to FALSE, then it will not
be possible for the routine that processes X.509 certificates to set the
SSL_X509_SIGNATURE_VERIFIED flag. As a result, for each X.509 cer-
tificate encountered, the VerifyCertificate callback function is
called.

Note:
RM004707-1211 SSL Configuration

ZTP Network Security SSL Plug-In
Reference Manual

71
See Also

VerifyCertificate
RM004707-1211 SSL Configuration

ZTP Network Security SSL Plug-In
Reference Manual

72
SSL_PresentAllCertificates

Default Configuration
SSL_BOOL SSL_PresentAllCertificates = FALSE;

Source File
ssl_conf.c

Description

The ZTP Network Security SSL Plug-In will only establish sessions with
trusted certificates. In this implementation, a certificate becomes trusted
when the SSL_X509_TRUSTED flag is set in the certificate's
SSL_X509_S data structure.

When the SSL layer processes certificates within a certificate chain, it
will attempt to parse the certificate, validate the starting and ending dates
on the certificate and verify the certificate’s signature. If all these basic
integrity checks are passed, the SSL layer will set the
SL_X509_PARSED_OK, SSL_X509_DATE_VALID and
SSL_X509_SIGNATURE_VERIFIED status flags. Additionally, if the cer-
tificate was not issued to and by the same entity (i.e., the certificate was
not self-signed), then the SSL_X509_SELF_SIGNED flag will not be set.
Under these conditions, the SSL layer will set the certificate’s
SSL_X509_TRUSTED flag.

Normally, the SSL layer only calls the VerifyCertificate callback
function if a certificate’s SSL_X509_TRUSTED flag is not set. However, if
the SSL_PresentAllCertificates configuration variable is set to
TRUE, the SSL layer will always call the VerifyCertificate call-
back, even for trusted certificates.

If the VerifyCertificate callback returns SSL_SUCCESS, then the SSL
layer will set the certificate’s SSL_X509_TRUSTED flag. This will allow the SSL
layer to establish a session using the certificate. If the VerifyCertificate
RM004707-1211 SSL Configuration

ZTP Network Security SSL Plug-In
Reference Manual

73
callback does not return SSL_SUCCESS, the certificate is rejected and it will not
be possible to establish an SSL session with that certificate.

The ZTP Network Security SSL Plug-In does not cache certificates from
remote servers. Therefore, if a remote server’s certificate becomes trusted,
it is used to establish a session but later destroyed. Therefore, the next time
an attempt is made to start a session with the same remote server, the
server's certificate will once again be not trusted.

See Also

VerifyCertificate SSL_X509_S

Note:
RM004707-1211 SSL Configuration

ZTP Network Security SSL Plug-In
Reference Manual

74
NumSSL2_CipherSuites

Default Configuration
SSL_BYTE NumSSL2_CipherSuites =
sizeof(SSL2_CipherSuites) / sizeof(SSL_CS_INFO);

Source File
ssl_conf.c

Description

The SSL version 2 specification defines the default set of cipher kinds or
cipher suites which may be used by the SSLv2 protocol. In the ZTP Net-
work Security SSL Plug-In, this information is contained in an array of
SSL_CS_INFO structures. Each entry in the array contains information
regarding one of the cipher suites that can be supported. The
NumSSL2_CipherSuites configuration variable is used to identify the
number of entries in this array.

If the SSLv2 protocol is not used, the NumSSL2_CipherSuites config-
uration variable should be set to 0.

See Also

SSL_CS_Info pSSL3_CipherSuites
RM004707-1211 SSL Configuration

ZTP Network Security SSL Plug-In
Reference Manual

75
pSSL2_CipherSuites

Default Configuration
SSL_CS_INFO *pSSL2_CipherSuites = SSL2_CipherSuites;

Source File
ssl_conf.c

Description

The SSL version 2 specification defines the default set of cipher kind (i.e.,
cipher suites) which is used by the SSLv2 protocol. In the ZTP Network
Security SSL Plug-In, this information is contained in an array of
SSL_CS_INFO structures. Each entry in the array contains information
regarding one of the cipher suites that can be supported. The
pSSL2_CipherSuites configuration variable is a pointer to the first
SSL_CS_INFO structure in the array.

If the SSLv2 protocol is not used, the pSSL2_CipherSuites configura-
tion variable should be set to NULLPTR.

See Also

SSL_CS_Info NumSSL2_CipherSuites
RM004707-1211 SSL Configuration

ZTP Network Security SSL Plug-In
Reference Manual

76
NumSSL3_CipherSuites

Default Configuration
SSL_BYTE NumSSL3_CipherSuites =
sizeof(SSL3_CipherSuites)/sizeof(SSL_CS_INFO);

Source File
ssl_conf.c

Description

The SSL version 3 specification defines the default set of cipher suites
that will be used by the SSLv3 protocol. In the ZTP Network Security
SSL Plug-In, this information is contained in an array of SSL_CS_INFO
structures. Each entry in the array contains information regarding one of
the cipher suites that can be supported. The NumSSL3_CipherSuites
configuration variable identifies the number of entries in this array.

If the SSLv3 protocol is not being used, the NumSSL3_CipherSuites
configuration variable must be set to 0.

See Also

SSL_CS_Info pSSL3_CipherSuites
RM004707-1211 SSL Configuration

ZTP Network Security SSL Plug-In
Reference Manual

77
pSSL3_CipherSuites

Default Configuration
SSL_CS_INFO *pSSL3_CipherSuites = SSL3_CipherSuites;

Source File
ssl_conf.c

Description

The SSL version 3 specification defines the default set of cipher suites
which is used by the SSLv3 protocol. In the ZTP Network Security SSL
Plug-In, this information is contained in an array of SSL_CS_INFO struc-
tures. Each entry in the array contains information regarding one of the
cipher suites which can be supported. The pSSL3_CipherSuites con-
figuration variable is a pointer to the first SSL_CS_INFO structure in the
array.

If the SSLv3 protocol is not being used, the pSSL3_CipherSuites con-
figuration variable must be set to NULLPTR.

In the default system configuration, the SSLv3 and TLSv1 protocols
share the same array of SSL_CS_INFO structures; i.e., they are configured
to support the same set of cipher suites, but this is not mandatory.

See Also

SSL_CS_Info NumSSL3_CipherSuites
RM004707-1211 SSL Configuration

ZTP Network Security SSL Plug-In
Reference Manual

78
NumTLS1_CipherSuites

Default Configuration
SSL_BYTE NumTLS1_CipherSuites =
sizeof(TLS1_CipherSuites)/sizeof(SSL_CS_INFO);

Source File
ssl_conf.c

Description

The TLS version 1 specification defines the default set of cipher suites
that may be used by the TLSv1 protocol. In the ZTP Network Security
SSL Plug-In, this information is contained in an array of SSL_CS_INFO
structures. Each entry in the array contains information regarding one of
the cipher suites that can be supported. The NumTLS1_CipherSuites
configuration variable identifies the number of entries in this array.

If the TLSv1 protocol is not being used, the NumTLSv1_CipherSuites
configuration variable should be set to 0.

See Also

SSL_CS_Info pTLS1_CipherSuites
RM004707-1211 SSL Configuration

ZTP Network Security SSL Plug-In
Reference Manual

79
pTLS1_CipherSuites

Default Configuration
SSL_CS_INFO *pTLS1_CipherSuites = TLS1_CipherSuites;

Source File
ssl_conf.c

Description

The TLS version 1 specification defines the default set of cipher suites
that may be used by the TLSv1 protocol. In the ZTP Network Security
SSL Plug-In, this information is contained in an array of SSL_CS_INFO
structures. Each entry in the array contains information regarding one of
the cipher suites that can be supported. The pTLS1_CipherSuites con-
figuration variable is a pointer to the first SSL_CS_INFO structure in the
array.

If the TLSv1 protocol is not used, the pTLS1_CipherSuites configura-
tion variable must be set to NULLPTR.

In the default system configuration, the SSLv3 and TLSv1 protocols
share the same array of SSL_CS_INFO structures; i.e., they are configured
to support the same set of cipher suites, but this is not mandatory.

See Also

SSL_CS_Info NumSSL3_CipherSuites
RM004707-1211 SSL Configuration

ZTP Network Security SSL Plug-In
Reference Manual

80
HashGen

Default Configuration
HASH_NEWHashGen[SSL_MAX_HASH] =
{

NullHash_New,
MD5_New,
HMAC_MD5_New,
SHA1_New,
HMAC_SHA1_New

};

Source File
hash_conf.c

Description

The HashGen array contains SSL_MAX_HASH (currently defined as 5)
HASH_NEW function pointers. There is one function pointer for each of the
digest (or hash) algorithms supported by the ZTP Network Security SSL
Plug-In. To create an SSL_HASH structure the SSL library indexes the
HashGen array using one of the Digest Algorithm Identifiers (see page
36). Then the SSL library uses the returned SSL_HASH pointer to perform
digest operations. The first entry in the table must be the NullHash_New
function pointer. The NULL hash does not perform any useful digest
function. It removes unnecessary digest routines from the final project.
For example, when only SSLv2 operation is required, it is not necessary
to include the SHA1, HMAC_MD5, or HMAC_SHA1 digest algorithms in the
system. Therefore, these entries in the HashGen array can be replaced
with the NullHash_New function pointer. See Table 11 on page 24 for a
list of digest routines that must be included for a particular version of the
SSL handshake protocol.
RM004707-1211 SSL Configuration

ZTP Network Security SSL Plug-In
Reference Manual

81
See Also

SSL_Hash HASH_New

Digest Routines by SSL Protocol Version Digest Algorithm Identifiers
RM004707-1211 SSL Configuration

ZTP Network Security SSL Plug-In
Reference Manual

82
CipherGen

Default Configuration
CIPHER_NEW CipherGen[SSL_MAX_CIPHERS] =
{

NullCipher_New,
RC4_New,
DES_New,
DES3_New,
AES_New

};

Source File
cipher_conf.c

Description

The CipherGen array contains SSL_MAX_CIPHERS (currently defined as
5) CIPHER_NEW function pointers. There is one function pointer for each
of the symmetric cipher algorithms supported by the ZTP Network Secu-
rity SSL Plug-In. To create an SSL_CIPHER structure the SSL library
indexes the CipherGen array using one of the Cipher Algorithm Identifi-
ers (see page 37). Then the SSL library uses the returned SSL_CIPHER
pointer to perform encryption/decryption operations.

The first entry in the table must be the NullCipher_New function
pointer. The NULL cipher does not perform any useful encryption opera-
tion. It removes unnecessary cipher algorithms from the final project. For
example, if none of the SSL_CS_INFO entries in the SSLv2, SSLv3, or
TLSv1 cipher suite tables specify SSL_CIPHER_AES as the symmetric
cipher algorithm, then the AES_New entry in the CipherGen array can be
replaced with the NullCipher_New function pointer. This prevents AES
code from being linked into the project.
RM004707-1211 SSL Configuration

ZTP Network Security SSL Plug-In
Reference Manual

83
See Also

SSL_Cipher CIPHER_New

Cipher Algorithm Identifiers SSL_CS_INFO Structure Members
RM004707-1211 SSL Configuration

ZTP Network Security SSL Plug-In
Reference Manual

84
PKIGen

Default Configuration
PKI_Init PkiGen[SSL_MAX_PKI] =
{

NullPki_init,
rsa_init,
dsa_init,
dh_init

};

Source File
pki_conf.c

Description

The PKIGen array contains SSL_MAX_PKI (currently defined as 4)
PKI_Init function pointers. There is one function pointer for each of the
PKI algorithms supported by the ZTP Network Security SSL Plug-In. To
initialize the SSL_PKI structure within an SSL_X509_S structure the SSL
library indexes the PKIGen array using one of the PKI Algorithm Identifi-
ers in PKIGen Array (see page 37). Then the SSL library uses the func-
tion pointers in the SSL_PKI structure to perform asymmetric key
exchange operations.

The first entry in the table must be the NullPki_init function pointer. The
NullPki_init routine does not perform any useful operation. It removes
unnecessary cipher algorithms from the final project. For example, if only
SSLv2 operation is required then only RSA support is required and the
dsa_init routine can be replaced with NullPki_init. This prevents the
DSA code from being linked into the project.
RM004707-1211 SSL Configuration

ZTP Network Security SSL Plug-In
Reference Manual

85
See Also

SSL_PKI PKI_Init

PKI Algorithm Identifiers in
SSL_CS_INFO Structure

PKI Algorithm Identifiers in
PKIGen Array
RM004707-1211 SSL Configuration

ZTP Network Security SSL Plug-In
Reference Manual

86
pDheInit

Default Configuration
PKI_DheInitpDheInit = dhe_init;

Source File
pki_conf.c

Description

The pDheInit function pointer determines if Ephemeral Diffie-Hellman
(DHE) cipher suites will be supported by the SSLv3 and TLSv1 hand-
shake protocols. These cipher suites are prefixed with either
TLS_DHE_DSS or TLS_DHE_RSA (the equivalent SSLv3 cipher suites are
prefixed with SSL_DHE_DSS or SSL_DHE_RSA). By default, this function
pointer references the dhe_init routine which indicates that Ephemeral
Diffie-Hellman Cipher Suites will not be supported.

For SSLv3 servers and TLSv1 servers that contain SSL_CS_INFO struc-
tures in which the KeyAlg structure member is set to either
SSL_PKI_DHE_RSA or SSL_PKI_DHE_DSS. The pDheInit function
pointer must refer the dhe_init routine or else the Ephemeral Diffie-
Hellman cipher suite will not be supported.

If support for DHE cipher suites is not required, then the pDheInit func-
tion pointer must be set to NULLPTR.

See Also

PKI_DheInit PKI_Init

PKI Algorithm Identifiers in
SSL_CS_INFO Structure

PKI Algorithm Identifiers in PKIGen
Array

Note:
RM004707-1211 SSL Configuration

ZTP Network Security SSL Plug-In
Reference Manual

87
DheParams

Default Configuration
SSL_BYTE DH_Params_Pem[] = {"\
MIGKAkEA3uxiDPwIuoU6r22inWehs84FBTvrD8bQufdCltw6RAoV+D
M5PHkyMLoH\
KEThy65yDANqA0s4tukYX+jEg98IFQJBAKK+9mbWv9G6WqQExbjrjx
KUJG863bYR\
QlwmO9kd6hs6rQDa1g1E5UQ9SOrUcs6cLGzuSQYE+0K8G7UEknvAKT
YCAgCg"};

ASN1_ENC_DATA DheParams =
{

PEM_ENCODED_DATA,
sizeof(DH_Params_Pem)-1,
DH_Params_Pem

};

Source File
dh_params.c

Description

TLSv1 or SSLv3 servers which are configured to use Ephemeral Diffie-
Hellman cipher suites require that a variable of type ASN1_ENC_DATA be
created that contains the server’s Ephemeral Diffie-Hellman parameters
(generator g and prime modulus p). By default the SSLv3 and TLSv1
servers use the same parameters, but it is possible to use different DHE
parameters for each server.

If client-only operation is required for either the SSLv3 or TLSv1 hand-
shake protocols, then it is not necessary to create a variable of type
ASN1_ENC_DATA containing DHE parameters. When operating in client
mode, the remote server’s DHE parameters is used to establish the ses-
sion.
RM004707-1211 SSL Configuration

ZTP Network Security SSL Plug-In
Reference Manual

88
See Also

PKI_DheInit ASN1_Enc_Data

DH_Params TLS1_ServerInit
RM004707-1211 SSL Configuration

ZTP Network Security SSL Plug-In
Reference Manual

89
CertChain

Default Configuration

/*
 * RSA self-signed Certificate (512-bit)
 */
SSL_BYTE cert_data[] = {"\
MIIB5jCCAZCgAwIBAgIQytdHl3HrbqhC6ugpKKHldjANBgkqhkiG9w0B
AQQFADA7\
MTkwNwYDVQQDHjAAZQBaADgAMABBAGMAYwBsAGEAaQBtACEAKABUAE0A
KQAgAFIA\
bwBvAHQAIABDAEEwHhcNMDUwOTA4MDIwNDI1WhcNMDYwOTA4MDIwNDI0
WjA7MTkw\
NwYDVQQDHjAAZQBaADgAMABBAGMAYwBsAGEAaQBtACEAKABUAE0AKQAg
AFIAbwBv\
AHQAIABDAEEwXDANBgkqhkiG9w0BAQEFAANLADBIAkEA5YWRoD1Upa8g
ZY2pQ+9F\
6SanLwNmXab2GEH1KossK3V+flrMCBTEoAB+eIeA+vKmuBeX6tDbcAOD
s3llgz0P\
4QIDAQABo3AwbjBsBgNVHQEEZTBjgBAWVXuaCu63gahlvbuVpWEzoT0w
OzE5MDcG\
A1UEAx4wAGUAWgA4ADAAQQBjAGMAbABhAGkAbQAhACgAVABNACkAIABS
AG8AbwB0\
ACAAQwBBghDK10eXcetuqELq6CkooeV2MA0GCSqGSIb3DQEBBAUAA0EA
WZtSSD6A\
wUWylmF9e3z2egpyWBdSMGoyUC+thoMCKCnii19qS6HiyVunSrseY7WF
X9CMDVcv\
g3CKGZg3rwWAsg=="};

SSL_BYTE key_data[] = {"\
MIIBPQIBAAJBAOWFkaA9VKWvIGWNqUPvRekmpy8DZl2m9hhB9SqLLCt1
fn5azAgU\
xKAAfniHgPryprgXl+rQ23ADg7N5ZYM9D+ECBAABAAECQQC1UWBqwyik
vwWL1G58\
gYCsIGIAjOIIaAaPwUNpuYpKRUcqvThgSS+oPhnpap6D1GGwvsulVJUS
OWjd6MVt\
jwLxAiEA/XmOYqdd5yTIft/A6SGpVU2C/
PQJ1fX+q7+x51D0VqUCIQDnzuyqQ5t1\
RM004707-1211 SSL Configuration

ZTP Network Security SSL Plug-In
Reference Manual

90
Cb1sp1hVHQdeVgr7yiul8lwXeEX1/
ntLjQIhALJzMK39vJtthwXji1HWE/vtLQne\
2Unb/
OZ3d80tbkfNAiEAmG7iAjTjDVuSTNjepVmpdsduAZU4jq+JD4Xvu4vU2
CEC\
ICqRZp3qGT2JjzyxyY48XnYTVof7ep0fvMw9yHHfh8Mx"};

CERT_CHAIN CertChain =
{
 1, // 1 certificate

// in this chain
 BASE64_DER_ENCODED_DATA, // All certs and

// keys are in PEM
// format

 NULLPTR, // Created by SSL
// layer when the
// chain is parsed

 {key_data, sizeof(key_data)-1}, // Private Key
 { {cert_data, sizeof(cert_data)-1}, // Root

// Certificate
 {NULLPTR, 0},
 {NULLPTR, 0},
 {NULLPTR, 0} }
};

Source File
Certificate.c

Description

When one of the SSL servers in the ZTP Network Security SSL Plug-In is
initialized, a pointer to a CERT_CHAIN data structure containing the
server’s certificate chain must be passed as a parameter. Servers for each
of the SSL handshake protocols have a unique certificate chain, but the
default configuration uses the same certificate for all servers.

If client-only operation is required for one of the SSL handshake proto-
cols, it is not necessary to define a server certificate chain.
RM004707-1211 SSL Configuration

ZTP Network Security SSL Plug-In
Reference Manual

91
When the server’s certificate chain is defined, the CERT_CHAIN variable
must contain a private key. When the server’s certificate chain is sent to a
remote client through the handshake protocol, the private key will not be
transmitted.

See Also

Cert_Chain SSL_X509_S

TLS1_ServerInit
RM004707-1211 SSL Configuration

ZTP Network Security SSL Plug-In
Reference Manual

RM004707-1211 Customer Support

92

Customer Support

To share comments, get your technical questions answered, or report
issues you may be experiencing with our products, please visit Zilog’s
Technical Support page at http://support.zilog.com.

To learn more about this product, find additional documentation, or to dis-
cover other facets about Zilog product offerings, please visit the Zilog
Knowledge Base at http://zilog.com/kb or consider participating in the
Zilog Forum at http://zilog.com/forum.

This publication is subject to replacement by a later edition. To determine
whether a later edition exists, please visit the Zilog website at http://
www.zilog.com.

http://support.zilog.com
http://zilog.com/kb
http://zilog.com/forum
http://www.zilog.com
http://www.zilog.com

	ZTP Network Security SSL Plug-In
	Revision History
	Table of Contents
	Introduction
	About this Manual
	Intended Audience
	Manual Organization
	Related Documents
	Manual Conventions
	Safeguards

	ZTP Network Security Plug-In
	About SSL

	Data Structures
	Basic SSL Data Types
	Constructed SSL Data Types
	SSL_Data_Block_S
	SSL_BN
	ASN1_Enc_Data
	Cert_Chain
	SSL_X509_S
	SSL_PKI
	RSA_Params
	DSA_Params
	DH_Params
	PKI_Init
	PKI_DheInit
	SSL_Hash
	HASH_New
	SSL_Cipher
	CIPHER_New
	SSL_CS_Info
	SSL Constants

	API Definitions
	Initialize_SSL
	SSL2_ClientInit
	SSL2_ServerInit
	SSL3_ClientInit
	SSL3_ServerInit
	TLS1_ClientInit
	TLS1_ServerInit
	VerifyCertificate
	free_x509_certificate

	SSL Configuration
	SSL_MAX_Session_Cache_Entries
	SSL_Cache_Timeout
	SSL_Debug_level
	SSL_VerifySignatures
	SSL_PresentAllCertificates
	NumSSL2_CipherSuites
	pSSL2_CipherSuites
	NumSSL3_CipherSuites
	pSSL3_CipherSuites
	NumTLS1_CipherSuites
	pTLS1_CipherSuites
	HashGen
	CipherGen
	PKIGen
	pDheInit
	DheParams
	CertChain

	Customer Support

