
Copyright ©2017 Zilog Inc. All rights reserved
www.zilog.com

eZ80Acclaim!® MCUs

Flash Library APIs

Reference Manual

RM001305-0317

www.zilog.com

eZ80Acclaim!® MCU
Flash Library API Reference Manual

ii
DO NOT USE IN LIFE SUPPORT

LIFE SUPPORT POLICY

ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE
EXPRESS PRIOR WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL
COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant
into the body, or (b) support or sustain life and whose failure to perform when properly
used in accordance with instructions for use provided in the labeling can be reasonably
expected to result in a significant injury to the user. A critical component is any
component in a life support device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or system or to affect its safety or
effectiveness.

Document Disclaimer

©2017 by Zilog, Inc. All rights reserved. Information in this publication concerning the
devices, applications, or technology described is intended to suggest possible uses and
may be superseded. ZILOG, INC. DOES NOT ASSUME LIABILITY FOR OR
PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION,
DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO
D O E S N O T A S S U M E LI A B I L I T Y F O R I N T E L L EC T U A L PR O P E RT Y
INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION,
DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The
information contained within this document has been verified according to the general
principles of electrical and mechanical engineering.

eZ80 and eZ80Acclaim! are registered trademarks of Zilog, Inc. All other product or
service names are the property of their respective owners.

Warning:
RM001305-0317

eZ80Acclaim!® MCU
Flash Library API Reference Manual

iii
Revision History

Each instance in the Revision History table below reflects a change to this
document from its previous version.

Date
Revision
Level Description

Page
No

Mar
2017

05 Complete re-write for ZDS-Acclaim! 5.3.0 and RZK/ZTP
2.5.0 release.

All

Sep
2010

04 Updated the copyright date and logos. All

Apr
2006

03 Added Registered trademark for eZ80 and eZ80Acclaim! All

Mar
2004

02 Deleted ’Preliminary’ from the footers and on the title page. All

Oct
2003

01 Original issue. All
RM001305-0317 Revision History

eZ80Acclaim!® MCU
Flash Library API Reference Manual

RM001305-0317 Table of Contents

iv

Table of Contents
Revision History. iii
Table of Contents . iv
Introduction .1

External Flash Overview .1
Common Flash Memory Interface .2
Zilog Flash Library Limitations .3

Zilog Flash Library Application Programming Interface 6
Advanced Topics .45

ZFL Code Segment Names .45
Building the Zilog Flash Library .50
Enabling Erase-Flag Processing .51
Supporting Flash Devices on Multiple Chip Selects 56
External Flash Low-Level (Expert) CFI API .59
CFI_Query .59
Adding Additional Command Sets .62
External Flash Direct (XFLD) API .63

Data Structures and Macros .65
Basic Data Types .65
XFL_DEVICE_INFO Structure .66
CFI_REGION Structure .68
NON_CFI_DEV Structure .68
ZFL Error Code Macros .69
ZFL Library Version .69

Customer Support. .70

eZ80Acclaim!® MCU
Flash Library API Reference Manual

1

Introduction
The eZ80Acclaim! and eZ80Acclaim Plus! families of microcontrollers
and microprocessors can be used to access parallel NOR-Flash devices
for storing data and/or executing code. To modify the contents of these
external Flash memories, it is necessary to issue a sequence of individual
commands instead of simply changing the contents of the target memory
location(s) as done with RAM. Developers can choose to implement their
own routines to manipulate external Flash, or use the Application Pro-
gramming Interface (API) of the Zilog Flash Library (ZFL) to eliminate
this task.

ZFL is designed to be used with Flash devices that support the Common
Flash Memory Interface (CFI) Specification. The library can also be used
with Flash devices that are not CFI-compliant if the application provides
information regarding the device’s geometry. For the eZ80F9x series of
devices, the ZFL API also includes support for programming internal
Flash and the Flash information page.

External Flash Overview

A Flash device that is erased will have all bits in all bytes within Flash set
to 1. Programming Flash involves changing one or more bits from 1 to 0.
Once a bit has been programmed (i.e. set to 0), it must be erased to set it
back to 1. Flash devices typically do not allow individual bits or bytes to
be erased. Instead, the device implements a command that can be used to
erase the entire Flash (which can take tens of seconds, depending on the
size of Flash), or a smaller unit of Flash referred to as an erase block, a
sector, or a page. This document uses the term erase block to refer to the
smallest unit of Flash that can be erased.

Due to the way Flash devices are erased, modifying a single byte of data
within a programmed section of Flash involves copying the entire block
to RAM, modifying the byte(s) of interest, erasing the corresponding
RM001305-0317 Introduction

eZ80Acclaim!® MCU
Flash Library API Reference Manual

2

block in Flash, and the reprogramming the erased block. This process
requires the programmer to create a lookup table containing the location
of each erase block in external Flash to determine which block(s) must be
updated. The lookup table is derived from information in the datasheet of
the applicable Flash device. To support multiple Flash devices, it is neces-
sary to create multiple lookup tables.

When multiple different Flash devices need to be supported, applications
typically use the manufacturer and device ID codes of these Flash devices
to select the appropriate lookup table containing the location of all erase
blocks. However, this is often insufficient as some Flash vendors have
device identification codes that can be one or more bytes long, but are not
necessarily located in contiguous addresses within Flash, further compli-
cating the process of selecting the appropriate lookup table.

The process of trying to obtain the Flash device’s manufacturer and
device ID codes is a non-trivial task because different Flash devices from
different vendors use different commands to force the Flash memory into
a mode of operation where these values can be obtained. Therefore, the
Flash driver must first assume it knows the command set implemented by
the external Flash device before it can obtain the manufacturer and device
ID codes to identify the Flash device and hence, its implemented com-
mand set.

Common Flash Memory Interface

The Zilog Flash Library can significantly simplify the process of obtain-
ing the Flash device’s erase block and command set parameters if the
device supports the Common Flash Memory Interface (CFI). Flash
devices that are CFI-compliant implement a special CFI query mode of
operation. When the device is in CFI Query mode, the host is able to
obtain information about the size and location of every erase block within
Flash, eliminating the need for the programmer to manually create a
lookup table. CFI Query mode also allows the host to determine the com-
RM001305-0317 Introduction

eZ80Acclaim!® MCU
Flash Library API Reference Manual

3

mand set that the Flash device implements to erase and program blocks of
Flash.

All CFI-compliant devices use the same 1-cycle command sequence to
place Flash in CFI query mode1 regardless of Flash manufacturer or sup-
ported command set. Doing so allows ZFL to determine the device’s
geometry and command set in a consistent manner for all CFI-compliant
devices without the use of lookup tables or assuming the device imple-
ments a particular command set.

1There are exceptions. Some manufactures use multi-cycle command
sequences to enter CFI Query mode contrary to the CFI specification.
Such devices are not recognized as CFI-compliant by the ZFL and can
only be supported using an application-provided lookup table.

Zilog Flash Library Limitations

Due to the extremely large number of external Flash devices, it is impos-
sible to exhaustively test ZFL to ensure compatibility with every single
device. That said, ZFL has been tested with each of the following Zilog
development kits and modules utilizing the specified external Flash
device.

Table 1. Development Kits Tested with Zilog Flash Library

eZ80 Development
Kit/ Module External Flash Drive Notes

eZ80F91x150MODG Spansion S29GL064N CFI-compliant device

eZ80F910300KITG Spansion S29GL064N CFI-compliant device

eZ80L925148MODG Spansion S29GL064N CFI-compliant device

Note:
RM001305-0317 Introduction

eZ80Acclaim!® MCU
Flash Library API Reference Manual

4

It is expected that ZFL will support other CFI-compliant devices not
listed in the previous table subject to the following limitations:

• ZFL will only recognize a device as CFI-compliant if it can be placed
in CFI Query mode using the 1-cycle command sequence described
in the Common Flash Memory Interface (CFI) Specification, Release
2.0 December 1, 2001 document.

– Non-CFI compliant devices are only supported using an
application-provided lookup table as described in the XFL_Init
API.

• ZFL currently only supports the following command sets (as defined
in the CFL specification):

– AMD/Fujitsu Standard Command Set (identification code
0x0002).

– Intel Standard Command Set (code 0x0003).

• ZFL and the eZ80Acclaim! and eZ80Acclaim Plus! families of
devices only support 8-bit Flash devices (CFI driver interface code
0x0000) and 16-bit Flash devices that can be configured to operate in
8-bit mode (CFI driver interface code 0x0002).

• ZFL assumes that any Flash device that supports the Intel Standard
command set lists the device’s erase blocks regions from lowest
physical Flash address to highest physical address such that the first
erase block pertains to Flash offset 0x000000.

• ZFL only supports AMD-compatible top-boot Flash devices if the
CFI Query information includes a version 1.1 (or later) primary
vendor extension table with the Top/Bottom Boot Sector Flag set to
0x03 (top boot).

– AMD-compatible Flash devices typically list the geometry table
as if the device were a bottom-boot device, even if the device is
actually a top-boot device. Therefore, unless the AMD primary
vendor extension table is present and indicates the device is a top-
boot device, the ZFL driver will assume the device is bottom-
RM001305-0317 Introduction

eZ80Acclaim!® MCU
Flash Library API Reference Manual

5

boot and will not automatically reverse the order of the erase
blocks.

If a Flash device does not meet these requirements, the ZFL driver will
not be able to determine the device’s geometry or implemented command
set without an application-provided lookup table (see the XFL_Init API
for more information).
RM001305-0317 Introduction

eZ80Acclaim!® MCU
Flash Library API Reference Manual

6

Zilog Flash Library Application Pro-
gramming Interface

This section describes the Zilog Flash Library Application Programming
Interface (API). For more information, click the API of interest in the
table below. API routines prefixed with XFL_ pertain to external Flash
devices. API routines prefixed with IFL_ pertain to internal Flash and are
only available when using the Zilog Flash Library for the eZ80F9x series
of microprocessors. API routines prefixed with ZFL_ are applicable to
both the internal and external Flash library routines. API routines prefixed
with XFLD pertain to external Flash devices on select Zilog development
kits.

Table 2. Zilog Flash Library API Routines

Zilog Flash Library API Description

IFL_Erase Erases all pages of internal Flash and
optionally the information page

IFL_ErasePages Erases one or more page of internal Flash

IFL_EraseInfoPage Erases the entire information page

IFL_GetPage Obtains the page number corresponding to an
address within internal Flash

IFL_Init Initializes the eZ80F9x Internal Flash Library

IFL_IsAddrValid Determines if specified address range resides
within internal Flash

IFL_IsInfoPageAddrValid Determines if specified address range resides
within the Information Page

IFL_PageErase Erases the page of internal Flash containing
the specified address
RM001305-0317 Zilog Flash Library Application Programming Interface

eZ80Acclaim!® MCU
Flash Library API Reference Manual

7

IFL_Program Programs one or more bytes in internal Flash

IFL_ProgramInfoPage Programs one or more bytes in the
information page

IFL_Read Reads one or more bytes of data from internal
Flash

IFL_ReadInfoPage Reads one or more bytes of data from the
information page

XFL_BlockErase Erases a single block of external Flash

XFL_EraseBlocks Erases one or more contiguous blocks of
external Flash

XFL_EraseDevice Erase the entire external Flash device

XFL_GetDeviceInfo Obtains basic information about the external
Flash device

XFL_GetGeometry Obtains information about the size of all
erase blocks in the external Flash device

ZFL_GetVersion Returns the Zilog Flash library version
number

XFL_Init Initializes the external Flash Library

XFL_Program Programs one or more byte of data in the
external Flash device

XFL_Read Reads one or more bytes of data from internal
Flash

XFL_ReadCFI Reads CFI Query response data from the
external Flash device

Table 2. Zilog Flash Library API Routines (Continued)

Zilog Flash Library API Description
RM001305-0317 Zilog Flash Library Application Programming Interface

eZ80Acclaim!® MCU
Flash Library API Reference Manual

8

IFL_Init

Header File:

#include "FlashLib.h"

Prototype:

INT8

IFL_Init

(

 UINT8 FlashProtect

);

XFL_ResetEraseFlags Sets the state of all erase block flags to the
not-erased state

XFLD_Erase Erases a block of external Flash on select
Zilog development kits

XFLD_Program Programs one or more bytes of external Flash
on select Zilog development kits

XFLD_Query Obtains external Flash manufacturer and
device identification codes on select Zilog
development kits

XFLD_Read Copies one or more bytes of data from
external Flash device to RAM memory
buffer. Implemented as a macro that invokes
the ZFL_Read API

ZFL_Read Copies one or more bytes of data from
external Flash device to RAM memory buffer

Table 2. Zilog Flash Library API Routines (Continued)

Zilog Flash Library API Description
RM001305-0317 Zilog Flash Library Application Programming Interface

eZ80Acclaim!® MCU
Flash Library API Reference Manual

9

Parameters:

FlashProtect: Value written to the eZ80F9x Flash write/erase
protection register.

Return Value:

ZFL_ERR_SUCCESS is returned if no error occurs.

Description:

The IFL_Init routine must be called before any other ZFL API pertain-
ing to internal Flash for proper operation of the library. This routine ini-
tializes the eZ80F9x internal Flash frequency divider assuming the target
processor is operating at the highest supported system clock frequency.

The Flash write/erase protection register is initialized with the value of
the FlashProtect parameter. Each bit in the FlashProtect register specifies
whether the corresponding block of Flash should be protected from acci-
dental write and/or erase operations. Calls made to the IFL_Erase,
IFL_ErasePage, and IFL_Program APIs will fail if the targeted
page(s) reside within a protection-block whose corresponding bit is set in
the Flash write/erase protection register. For more information, please
refer to the appropriate eZ80F9x product specification.

IFL_IsAddrValid

Header File:

#include "FlashLib.h"

Prototype:

INT8

IFL_IsAddrValid

(

 HANDLE hAddr,

 UINT24 Len
RM001305-0317 Zilog Flash Library Application Programming Interface

eZ80Acclaim!® MCU
Flash Library API Reference Manual

10
);

Parameters:

hAddr: 24-bit address to validate.

Len: 24-bit count of the number addresses (starting with hAddr) to
include in the address range to be validated by this API.

Return Value:

ZFL_ERR_SUCCESS is returned if the address range specified by
the hAddr and Len parameters resides within eZ80F9x internal
Flash.

ZFL_ERR_ADDRESS is returned if any portion of the address
range specified by the hAddr and Len parameters does not reside
within eZ80F9x internal Flash.

Description:

This routine is used to test whether the entire address range corresponding
to the hAddr and Len parameters, hAddr to (hAddr + Len -1), resides
within eZ80F9x internal Flash.
RM001305-0317 Zilog Flash Library Application Programming Interface

eZ80Acclaim!® MCU
Flash Library API Reference Manual

11
IFL_IsInfoPageAddrValid

Header File:

#include "FlashLib.h"

Prototype:

INT8

IFL_IsInfoPageAddrValid

(

 HANDLE hAddr,

 UINT24 Len

);

Parameters:

hAddr: 24-bit address to validate.

Len: 24-bit count of the number addresses (starting with hAddr) to
include in the address range to be validated by this API.

Return Value:

ZFL_ERR_SUCCESS is returned if the address range specified by
the hAddr and Len parameters resides within the eZ80F9x Flash
information page.

ZFL_ERR_ADDRESS is returned if any portion of the address
range specified by the hAddr and Len parameters does not reside
within the eZ80F9x Flash information page.

Description:

This routine is used to test whether the entire address range corresponding
to the hAddr and Len parameters, hAddr to (hAddr + Len -1), resides
within the eZ80F9x Flash information page.
RM001305-0317 Zilog Flash Library Application Programming Interface

eZ80Acclaim!® MCU
Flash Library API Reference Manual

12
IFL_GetPage

Header File:

#include "FlashLib.h"

Prototype:

UINT8

IFL_GetPage

(

 HANDLE hAddr

);

Parameters:

hAddr: 24-bit internal Flash address to be converted to a page number.

Return Value:

Page Number: 8-bit value indicating the 0-based page number
containing the address corresponding to the hAddr parameter.

Description:

The IFL_GetPage API is used to obtain the page number corresponding to
an address in eZ80F9x internal Flash. This routine performs no validation of
the hAddr parameter and will return meaningless values if the hAddr parame-
ter does not reside within internal Flash. The IFL_IsAddrValid API should
be used to determine if the target address is within the address space of inter-
nal Flash before this API is called, if the validity of the address is unknown.

The range of values returned by this API is dependent upon which eZ80F9x
series Zilog Flash Library is linked with the application. There are 128 pages
of internal Flash on the eZ80F91 and eZ80F92 microcontroller. Conse-
quently, this API will return a value between 0 and 127 when running on
either microcontroller. The eZ80F93 has 64 pages of internal Flash and there-
fore, this API will return a value between 0 and 63 when executed on an
RM001305-0317 Zilog Flash Library Application Programming Interface

eZ80Acclaim!® MCU
Flash Library API Reference Manual

13
eZ80F93 device. Each page of Flash on the eZ80F91 is 2 KB in size while
Flash pages on the eZ80F92 and eZ80F93 MCUs are each 1 KB in size.

IFL_Erase

Header File:

#include "FlashLib.h"

Prototype:

INT8

IFL_Erase

(

 BOOL EraseIP

);

Parameters:

EraseIP: Boolean parameter that specifies whether the information
page should also be erased when erasing all pages of eZ80F9x
internal Flash.

Return Value:

ZFL_ERR_SUCCESS is returned if all pages of internal Flash (and
optionally the information page) are successfully erased.

ZFL_ERR_ERASE is returned if one or more bits in the Flash
write/erase protection register is set.

Description:

The IFL_Erase API erases all pages of eZ80F9x internal Flash memory,
resetting all bits to the non-programmed state (binary value of 1). If the Era-
seIP parameter is non-zero (TRUE), then, in addition to erasing internal
Flash, the information page is also erased.

The erase operation will fail if the write-protect pin (nWP) available on the
eZ80F91 is asserted, or if any of the 8 protection-blocks is in the write-protect
RM001305-0317 Zilog Flash Library Application Programming Interface

eZ80Acclaim!® MCU
Flash Library API Reference Manual

14
state (i.e. the corresponding bit in the Flash write/erase protection register is
set).

IFL_ErasePages

Header File:

#include "FlashLib.h"

Prototype:

INT8

IFL_ErasePage

(

 HANDLE hAddr,

 UINT8 NumPages

);

Parameters:

hAddr: Address within eZ80F9x internal Flash of the first page to be
erased.

NumPages: Specifies the number of pages of internal Flash to be
erased starting with the page corresponding to hAddr.

Return Value:

ZFL_ERR_SUCCESS is returned if the specified number of pages
of internal Flash are successfully erased.

ZFL_ERR_ADDRESS is returned if the address passed in the
hAddr parameter does not reside within eZ80F9x internal Flash or an
attempt is made to erase a page beyond the end of internal Flash.

ZFL_ERR_ERASE is returned if one or more pages of Flash could
not be erased.
RM001305-0317 Zilog Flash Library Application Programming Interface

eZ80Acclaim!® MCU
Flash Library API Reference Manual

15
Description:

The IFL_ErasePages API erases a contiguous subset of the pages
within eZ80F9x internal Flash. The hAddr parameter specifies an address
within the first page of internal Flash to be erased and the NumPages
parameter specifies the total number of contiguous pages to erase, starting
with the page containing hAddr.

The erase operation will fail if an attempt is made to erase a page that
does not reside within internal Flash, or an attempt is made to erase a page
that is within a protection-block whose write-protect bit is set, or if an
attempt is made to erase a page within the eZ80F91 boot-block (first
32 KB of internal Flash on the eZ80F91) and the write protect pin (nWP)
is asserted.

IFL_EraseInfoPage

Header File:

#include "FlashLib.h"

Prototype:

INT8

IFL_EraseInfoPage

(

 void

);

Parameters:

None

Return Value:

ZFL_ERR_SUCCESS is returned if the information page is
successfully erased.
RM001305-0317 Zilog Flash Library Application Programming Interface

eZ80Acclaim!® MCU
Flash Library API Reference Manual

16
Description:

The IFL_EraseInfoPage API erases both rows of the eZ80F9x infor-
mation page setting all bits to 1. After this API has been called, the
IFL_ProgramInfoPage API can be called to program bytes within the
information page.

IFL_PageErase

Header File:

#include "FlashLib.h"

Prototype:

INT8

IFL_ErasePage

(

 HANDLE hAddr

);

Parameters:

hAddr: Address within eZ80F9x internal Flash of the page to be
erased.

Return Value:

ZFL_ERR_SUCCESS is returned if the internal Flash page
containing hAddr is successfully erased.

ZFL_ERR_ADDRESS is returned if the address passed in the
hAddr parameter does not reside within eZ80F9x internal Flash.

ZFL_ERR_ERASE is returned if the target page of Flash could not
be erased.
RM001305-0317 Zilog Flash Library Application Programming Interface

eZ80Acclaim!® MCU
Flash Library API Reference Manual

17
Description:

The IFL_PageErase API is used to erase the page of Flash containing
the specified target address (hAddr). The hAddr parameter does not have
to be aligned to the start of a page of eZ80F9x internal Flash.

The erase operation will fail if an attempt is made to erase a page that
does not reside within internal Flash, or an attempt is made to erase a page
that is within a protection-block whose write-protect bit is set, or if an
attempt is made to erase a page within the eZ80F91 boot-block (first
32 KB of internal Flash on the eZ80F91) and the write protect pin (nWP)
is asserted.

IFL_Program

Header File:

#include "FlashLib.h"

Prototype:

INT8

IFL_Program

(

 HANDLE hDst,

 HANDLE hSrc,

 UINT24 Len

);

Parameters:

hDst: Address of first byte of internal Flash to be programmed.

hSrc: References memory buffer containing the data to be
programmed into internal Flash.

Len: Number of bytes of data to be programmed into internal Flash.
RM001305-0317 Zilog Flash Library Application Programming Interface

eZ80Acclaim!® MCU
Flash Library API Reference Manual

18
Return Value:

ZFL_ERR_SUCCESS is returned if all bytes of data were
successfully programmed into ez80F9x internal Flash.

ZFL_ERR_ADDRESS is returned if an attempt is made to program
a memory location that does not reside within internal Flash.

ZFL_ERR_WRITE is returned if an attempt is made to program a
byte of data within a protected block.

ZFL_ERR_VERIFY is returned if the value programmed into
internal Flash does not match the corresponding value in the array
referenced by hSrc.

Description:

The IFL_Program API is used to program one or more contiguous bytes
of eZ80F9x internal Flash. Once a bit of Flash has been programmed (set
to 0), it cannot be set to 1 using the IFL_Program API. Instead, the page
containing the programmed bit(s) needs to be erased (all bits set to 1)
using either the IFL_Erase or IFL_ErasePage API.

The programming operation will fail if any of the addresses targeted for
programming are not within the address space of eZ80F9x internal Flash,
or if the page containing the target addresses is write-protected. When a
bit in the flash write/erase protection register is set, the corresponding set
of 16 internal Flash pages is write-protected and this API cannot be used
to program any memory locations within the protected pages. Refer to the
IFL_Init API description for more information.

If the eZ80F91 write protect pin (nWP) is asserted, it is not possible to
call this API to program any locations within the first 32 KB of internal
Flash regardless of whether bit 0 in the Flash write/erase protection regis-
ter is set.
RM001305-0317 Zilog Flash Library Application Programming Interface

eZ80Acclaim!® MCU
Flash Library API Reference Manual

19
IFL_ProgramInfoPage

Header File:

#include "FlashLib.h"

Prototype:

INT8

IFL_ProgramInfoPage

(

 HANDLE hDst,

 HANDLE hSrc,

 UINT24 Len

);

Parameters:

hDst: Offset of the first byte in the eZ80F9x information page to be
programmed.

hSrc: References memory buffer containing the data to be
programmed into the information page.

Len: Number of bytes of data to be programmed into the information
page.

Return Value:

ZFL_ERR_SUCCESS is returned if all bytes of data were
successfully programmed into the eZ80F91 Flash information page.

ZFL_ERR_ADDRESS is returned if an attempt is made to program
a memory location that does not reside within the information page.

Description:

The IFL_ProgramInfoPage API is used to program contiguous bytes
of data in the eZ80F9x Flash information page. Once a bit of Flash in the
information page has been programmed (set to 0), it cannot be set to 1
RM001305-0317 Zilog Flash Library Application Programming Interface

eZ80Acclaim!® MCU
Flash Library API Reference Manual

20
using the IFL_ProgramInfoPage API. Instead, the entire information
page must be erased using either the IFL_Erase or
IFL_EraseInfoPage API.

IFL_Read

Header File:

#include "FlashLib.h"

Prototype:

INT8

IFL_Read

(

 HANDLE hDst,

 HANDLE hSrc,

 UINT24 Len

);

Parameters:

hDst: References memory buffer into which data read from internal
Flash is copied.

hSrc: Address of the first byte of data to be read from internal Flash.

Len: Number of bytes of data to read.

Return value:

ZFL_ERR_SUCCESS is returned if the data is successfully read
from internal Flash.

ZFL_ERR_ADDRESS is returned if an attempt is made to read a
memory location that does not reside within Internal Flash.
RM001305-0317 Zilog Flash Library Application Programming Interface

eZ80Acclaim!® MCU
Flash Library API Reference Manual

21
Description:

The IFL_Read API can be used to read multiple contiguous bytes of data
from eZ80F9x internal Flash. Applications that do not require the Flash
Library to validate the source address range can call the memcpy API to
read data from internal Flash instead of using this API.

IFL_ReadInfoPage

Header File:

#include "FlashLib.h"

Prototype:

INT8

IFL_Read

(

 HANDLE hDst,

 HANDLE hSrc,

 UINT24 Len

);

Parameters:

hDst: References memory buffer into which data read from the
information page is copied.

hSrc: Offset of the first byte of data in the information page to be
read.

Len: Number of bytes of data to read from the information page.
RM001305-0317 Zilog Flash Library Application Programming Interface

eZ80Acclaim!® MCU
Flash Library API Reference Manual

22
Return value:

ZFL_ERR_SUCCESS is returned if the information page data is
successfully read.

ZFL_ERR_ADDRESS is returned if an attempt is made to read a
memory location that does not reside within the information page.

Description:

The IFL_ReadInfoPage API can be used to read multiple contiguous
bytes of data from the eZ80F9x Flash information page. Application pro-
grams typically use the information page to store program parameters
independently of the application image. Data can be programmed into the
information page using the IFL_ProgramInfoPAge API.

XFL_Init
Header File:

#include "FlashLib.h"

Prototype:

INT8

XFL_Init

(

);

UINT8 ChipSelect,

NON_CFI_DEV * pNonCFI
RM001305-0317 Zilog Flash Library Application Programming Interface

eZ80Acclaim!® MCU
Flash Library API Reference Manual

23
Parameters:

ChipSelect: Specifies the chip select of the external Flash device.
Typically, a value of 0 is used to indicate Chip Select 0 (CS0).

pNonCFI (input): Optional parameter that specifies the set of non-
CFI-compatible Flash devices the XML should support. If only CFI-
compliant devices (subject to the limitations described in Zilog Flash
Library Limitations) will be used, set this parameter to NULLPTR to
indicate that support for non-CFI-compliant Flash devices is not
required.

Return value:

ZFL_ERR_SUCCESS is returned if no error occurs.

ZFL_ERR_INVALID_PARAMETER is returned if the specified
chip select is not configured for a memory-mapped device or is not
enabled.

ZFL_ERR_UNSUPPORTED_CMDSET indicates that the device
is CFI-compliant, but implements a command set that is not
supported by ZFL.

ZFL_ERR_UNSUPPORTED_DEVICE indicates the external
Flash device is not CFI-compliant, and is either not on the list of non-
CFI-compliant devices referenced by the pNonCFI parameter, or does
not implement a supported command set.

ZFL_ERR_TOO_MANY_ERASE_BLOCKS is returned if the
external Flash contains more than MAX_EB_STATUS_BYTES*8 erase-
blocks. Only applicable when MAX_EB_STATUS_BYTES is non-zero.

ZFL_ERR_FAILURE is returned if ZFL is unable to read the
device’s manufacturer and device ID codes.
RM001305-0317 Zilog Flash Library Application Programming Interface

eZ80Acclaim!® MCU
Flash Library API Reference Manual

24
Description:

The XFL_Init API should be called before calling any other XFL API
for proper operation of the External Flash Library.

Typically, the target HW platform is designed such that CS0 is connected
to the external Flash device. Therefore, in most situations, the ChipSe-
lect parameter should be set to 0. However, if there is a secondary Flash
device on the target HW platform, the value of the ChipSelect parame-
ter should match the target chip select signal. The chip select parameter
must always be between 0 and 3 since the eZ80Acclaim! and
eZ80Acclaim Plus microcontrollers have only four chip select signals.

By default, ZFL can only be used with one external Flash device at a time.
After completing all Flash operations on chip select x (CSx), the
XFL_Init API can be called again to initiate Flash operations on chip
select y (CSy). If it is necessary to use ZFL with multiple Flash devices
simultaneously, refer to the Supporting Flash Devices on Multiple Chip
Selects section for more information.

Subject to the limitations described in the Zilog Flash Library Limitations
section, the Zilog Flash Library will support most CFI-compliant AMD–
and Intel-compatible Flash devices. However, older designs that use non-
CFI-compliant devices cannot be used with the ZFL driver unless that
application provides information about the device’s geometry in the list
referenced by the pNonCFI parameter. The devices referenced by the
pNonCFI parameter are also required to implement one of the command
sets supported by ZFL as determined by entries in the CmdSetTable. For
more information on supporting non-CFI Flash devices, refer to the
description of the NON_CFI_DEV Structure and the Adding Additional
Command Sets advanced topic.

If the Flash device is successfully initialized, this API will return a value
of ZFL_ERR_SUCCESS, allowing other external Flash API functions to be
called. If this API does not return a value of ZFL_ERR_SUCCESS, the
application should not attempt to call any other external Flash API.
RM001305-0317 Zilog Flash Library Application Programming Interface

eZ80Acclaim!® MCU
Flash Library API Reference Manual

25
ZFL_GetVersion

Header File:

#include "FlashLib.h"

Prototype:

UINT16

ZFL_GetVersion

(

 void

);

Parameters:

None

Return value:

Major | Minor: The Zilog Flash Library version number as a 16-bit
unsigned integer.

Description:

This API is used to obtain the 16-bit version number of the Zilog Flash
Library API. The upper byte of the version number is the major version
number and the lower byte contains the minor version number. As an
example, a return value of 0x0200 indicates version 2.0 of the Zilog
Flash Library.
RM001305-0317 Zilog Flash Library Application Programming Interface

eZ80Acclaim!® MCU
Flash Library API Reference Manual

26
XFL_GetDeviceInfo

Header File:

#include "FlashLib.h"

Prototype:

INT8

XFL_GetDeviceInfo

(

 XFL_DEVICE_INFO * pDev

);

Parameters:

pDev (output): Pointer to an XFL_DEVICE_INFO data structure the
library initializes with information about the underlying Flash device
and chip select.

Return value:

ZFL_ERR_SUCCESS is returned if no error occurs.

ZFL_ERR_INVALID_PARAMETER is returned if the specified
chip select is not configured for a memory-mapped device or is not
enabled, or if the pDev parameter is 0.

Description:

This API is used to obtain information about the external Flash device,
such as the size (in bytes) of Flash, the manufacturer and device ID codes,
and the command set implemented by the external Flash controller. For
more information about all of the parameters obtained from this API,
refer to the description of the XFL_DEVICE_INFO Structure.
RM001305-0317 Zilog Flash Library Application Programming Interface

eZ80Acclaim!® MCU
Flash Library API Reference Manual

27
XFL_GetGeometry

Header File:

#include "FlashLib.h"

Prototype:

INT8

XFL_GetGeometry

(

);

Parameters:

pDevInfo (output): Pointer to an XFL_DEVICE_INFO data
structure the library initializes with information about the underlying
Flash device and chip select.

pNumRegions (input, output): On input, indicates the maximum
number of (uninitialized) entries in the array of CFI_REGION
structures referenced by the pRegions parameter. On output,
indicates the number of erase block regions in the external Flash
device.

pRegions (output): Upon successful return, the array referenced by
the pRegions parameter contains information about each erase block
region in the external Flash device.

Return value:

ZFL_ERR_SUCCESS is returned if no error occurs.

ZFL_ERR_INVALID_PARAMETER is returned if the
XFL_Init API was not called, or did not succeed, or if either of the
pNumRegions or pRegions parameters is 0.

XFL_DEVICE_INFO * pDevInfo,

UINT8 * pNumRegions,

CFI_REGION * pRegions
RM001305-0317 Zilog Flash Library Application Programming Interface

eZ80Acclaim!® MCU
Flash Library API Reference Manual

28
Description:

This API is used to obtain information about each erase block region in
the external Flash device. Each region contains one or more erase blocks
that are the smallest unit of Flash that can be erased using the
XFL_EraseBlocks API.

A CFI-compliant Flash device can contain up to 255 regions requiring a
maximum of 255 entries in the array referenced by the pRegions param-
eter. However, Flash devices typically only contain a few regions, so it is
not necessary for the caller to allocate a maximum sized buffer to store
the theoretical maximum number of erase block regions in external Flash.
Consequently, the 8-bit value referenced by the pNumRegions parameter
on input to this API should be set to the maximum number of
CFI_REGION data structures that can be stored in the array referenced by
the pRegions parameter.

The actual number of CFI_REGION data structures ZFL stores in the
array will be the smaller of the actual number of erase block regions in
external Flash, and the maximum size of the pRegions array as deter-
mined by the pNumRegions parameter on input. Upon return, the 8-bit
value referenced by the pNumRegions output parameter will contain the
actual number of erase block regions in the external Flash device, regard-
less of how many entries were written to the pRegions array. For more
information, refer to the description of the CFI_REGION Structure.
RM001305-0317 Zilog Flash Library Application Programming Interface

eZ80Acclaim!® MCU
Flash Library API Reference Manual

29
XFL_BlockErase

Header File:

#include "FlashLib.h"

Prototype:

INT8

XFL_BlockErase

(

 HANDLE hAddr

);

Parameters:

hAddr: Arbitrary pointer referencing any memory location within
the block of external Flash to be erased.

Return value:

ZFL_ERR_SUCCESS is returned if no error occurs.

ZFL_ERR_INVALID_PARAMETER is returned if the
XFL_Init API was not called, or did not complete successfully.

ZFL_ERR_ADDRESS is returned if the hAddr parameter is not
located within the external Flash device.

ZFL_ERR_ERASE is returned if one or more blocks of Flash are
not successfully erased.
RM001305-0317 Zilog Flash Library Application Programming Interface

eZ80Acclaim!® MCU
Flash Library API Reference Manual

30
Description:

This API is used to erase a single block of external Flash. hAddr is an
arbitrary pointer to any memory location within the address space
assigned to the external Flash device, as determined by the setting of cor-
responding chip select upper and lower bound registers. It is not neces-
sary for hAddr to reference the first memory location within the block to
be erased. The external Flash controller will erase the entire (erase) block
in which hAddr resides.

ZFL disables interrupts while the external Flash device is erased. This is
done to prevent software failure that can occur if an interrupt is processed
while the external Flash device is not in read-array mode.

XFL_EraseDevice

Header File:

#include "FlashLib.h"

Prototype:

INT8

XFL_EraseDevice

(

 void

);

Parameters:

None
RM001305-0317 Zilog Flash Library Application Programming Interface

eZ80Acclaim!® MCU
Flash Library API Reference Manual

31
Return value:

ZFL_ERR_SUCCESS is returned if no error occurs.

ZFL_ERR_INVALID_PARAMETER is returned if the
XFL_Init API was not called, or did not complete successfully.

ZFL_ERR_ERASE is returned if one or more blocks of Flash are
not successfully erased.

ZFL_ERR_FAILURE is returned for Flash devices implementing
the Intel standard command set with the default build of the Flash
Library.

Description:

This API sets every bit in every erasable block of external Flash in the
non-programmed state (binary 1). Depending on the storage capacity of
Flash, the erase operation could take tens of seconds (or more) to com-
plete. The XFL_EraseDevice API does not return to the caller until all
blocks of Flash have been successfully erased, or until the operation is
aborted due to an error.

ZFL disables interrupts while the external Flash device is erased. This is
done to prevent software failure that can occur if an interrupt is processed
while the external Flash device is not in read-array mode. Be aware the if
external Flash is erased and Flash was mapped to address 0x0, then inter-
rupts that occur on non-eZ80F91 devices (including NMI and/or reset
vectors) could cause the system to fail to operate as expected. Use caution
when calling this API since all application code residing in external Flash
will get destroyed as the Flash is erased and can no longer be executed by
the eZ80 CPU.

Flash devices that implement the Intel standard command set do not
include a command capable of erasing the entire Flash device in one oper-
ation. If the Zilog Flash Library is built with erase-flag processing support
(as described in the Enabling Erase-Flag Processing section), ZFL will

Note:
RM001305-0317 Zilog Flash Library Application Programming Interface

eZ80Acclaim!® MCU
Flash Library API Reference Manual

32
erase the Intel Flash device by issuing multiple commands to erase one
block of Flash at a time. However, the default build of ZFL does not
include support for erase-block processing and therefore this API will
return ZFL_ERR_FAILURE when attempting to erase Flash devices imple-
menting the Intel standard command set with the default build of ZFL.

XFL_EraseBlocks

Header File:

#include "FlashLib.h"

Prototype:

INT8

XFL_EraseBlocks

(

 HANDLE hAddr,

 UINT24 NumBlocks

);

Parameters:

hAddr: Arbitrary pointer referencing the first (or only) erase block to
be erased.

NumBlocks: The number of consecutive (erase) blocks to erase
beginning with the erase block referenced by hAddr.
RM001305-0317 Zilog Flash Library Application Programming Interface

eZ80Acclaim!® MCU
Flash Library API Reference Manual

33
Return value:

ZFL_ERR_SUCCESS is returned if no error occurs.

ZFL_ERR_INVALID_PARAMETER is returned if the
XFL_Init API was not called, or did not complete successfully.

ZFL_ERR_ADDRESS is returned if the hAddr parameter is not
located within the external Flash device or one of the blocks implied
by the NumBlocks parameter lies outside the address spaces of the
external Flash device.

ZFL_ERR_ERASE is returned if one or more blocks of Flash are
not successfully erased.

Description:

This API is not included in the default build of the Zilog Flash Library.
The XFL_EraseBlocks API is only available if the library was compiled
with the MAX_EB_STATUS_BYTES macro set to a non-zero value to
enable erase-flag processing as described in the Modifying the Maximum
Number of Erase Blocks section.

The XFL_EraseBlocks API is used to erase a subset of the total number
of erase blocks in external Flash. hAddr is an arbitrary pointer to any
memory location within the address space assigned to the external Flash
device, as determined by the setting of corresponding chip select upper
and lower bound registers. It is not necessary for hAddr to reference the
first memory location of the first erase block to be erased. The external
Flash controller will erase the entire (erase) block in which hAddr
resides.

If the NumBlocks parameter is 0, this API does nothing. If NumBlocks is
non-zero, it specifies the number of consecutive erase blocks, beginning
with the block referenced by hAddr to be erased. It is not necessary for
the consecutive erase blocks to reside in the same erase block region (i.e.
it is not necessary for all erase blocks targeted by the command to have
the same size). As each block is erased, the ZFL automatically advances
hAddr to the start of the next block and attempts to erase that block. If at
RM001305-0317 Zilog Flash Library Application Programming Interface

eZ80Acclaim!® MCU
Flash Library API Reference Manual

34
any point during the process of erasing all NumBlocks, hAddr references
an erase block not located within the address space of the underlying chip
select, then the erase operation is aborted and a return code of
FL_ERR_ADDRESS is returned.

ZFL disables interrupts while the external Flash device is erased. This is
done to prevent software failure that can occur if an interrupt is processed
while the external Flash device is not in read-array mode.

XFL_Program

Header File:

#include "FlashLib.h"

Prototype:

INT8

XFL_Program

(

 HANDLE hDst,

 HANDLE hSrc,

 UINT24 Len

);

Parameters:

hDst: Arbitrary pointer referencing the first (or only) byte in Flash to
be programmed.

hSrc: Arbitrary pointer referencing an area of memory containing the
data value(s) to be programmed into Flash.

Len: The number of bytes of data from the buffer referenced by hSrc
to be programmed into external Flash starting at the memory location
referenced by hDst.
RM001305-0317 Zilog Flash Library Application Programming Interface

eZ80Acclaim!® MCU
Flash Library API Reference Manual

35
Return value:

ZFL_ERR_SUCCESS is returned if no error occurs.

ZFL_ERR_INVALID_PARAMETER is returned if the
XFL_Init API was not called, or did not complete successfully.

ZFL_ERR_ADDRESS is returned if the memory location
referenced by the hDst parameter is not located within the external
Flash device, or one of the addresses implied by the Len parameter
lies outside the address spaces of the external Flash device.

ZFL_ERR_WRITE is returned if a failure occurs while
programming any of the locations in external Flash targeted by this
command.

Description:

This API is used to change one or more bits in one or more consecutive
bytes of external Flash from the erased state (binary 1) to the programmed
state (binary 0). This API cannot be used to change the state of any pro-
grammed bits to the erased state. Erasing bits of external Flash can only
be accomplished using the XFL_EraseDevice, XFL_BlockErase, or
XFL_EraseBlocks API.

The Zilog Flash Library disables interrupts while programming the exter-
nal Flash device to prevent application interrupt handlers from attempting
to access the Flash device while it is not in read-array mode. It is only
possible to execute code from within external Flash or read application
data when the Flash is in read-array mode.
RM001305-0317 Zilog Flash Library Application Programming Interface

eZ80Acclaim!® MCU
Flash Library API Reference Manual

36
XFL_Read

Header File:

#include "FlashLib.h"

Prototype:

INT8

XFL_Read

(

 HANDLE hDst,

 HANDLE hSrc,

 UINT24 Len

);

Parameters:

hDst: References memory buffer into which data read from external
Flash is copied.

hSrc: Address of the first byte of data to be read from external Flash.

Len: Number of bytes of data to read.

Return value:

ZFL_ERR_SUCCESS is returned if the data is successfully read
from internal Flash.

ZFL_ERR_ADDRESS is returned if an attempt is made to read a
memory location that does not reside within Internal Flash.

ZFL_ERR_INVALID_PARAMETER is returned if the
XFL_Init API was not called, or did not complete successfully.
RM001305-0317 Zilog Flash Library Application Programming Interface

eZ80Acclaim!® MCU
Flash Library API Reference Manual

37
Description:

The XFL_Read API can be used to read multiple contiguous bytes of data
from external Flash. Applications that do not require the Flash Library to
validate the source address range can call the memcpy API to read data
from external Flash instead of using this API.

XFL_ResetEraseFlags

Header File:

#include "FlashLib.h"

Prototype:

INT8

XFL_ResetEraseFlags

(

 void

);

Parameters:

None

Return value:

ZFL_ERR_SUCCESS is returned if no error occurs.

ZFL_ERR_INVALID_PARAMETER is returned if the
XFL_Init API was not called, or did not complete successfully.

Description:

This API is not included in the default build of the Zilog Flash Library.
The XFL_ResetEraseFlags API is only available if the library was
compiled with the MAX_EB_STATUS_BYTES macro set to a non-zero
value to enable erase-flag processing as described in the Modifying the
Maximum Number of Erase Blocks section.
RM001305-0317 Zilog Flash Library Application Programming Interface

eZ80Acclaim!® MCU
Flash Library API Reference Manual

38
When the ZFL has been compiled to support erase-flag processing, the
XFL_ResetEraseFlags API is used to reset all erase-flags to the non-
erased state (binary value of 0). This API does not erase any blocks of
external Flash. For more information, refer to the Enabling Erase-Flag
Processing section.

XFL_ReadCFI

Header File:

#include "FlashLib.h"

Prototype:

INT8

XFL_ReadCFI

(

 UINT24 Offset

 HANDLE hDst,

 UINT16 Len

);

Parameters:

Offset: Specifies the offset of the first byte of data to be read from the
CFI Query table.

hDst: Arbitrary pointer that references a buffer in RAM into which
data read from the CFI Query table is written.

Len: Number of bytes of data to read from the CFI Query table
(starting at the specified Offset) and written into the memory buffer
referenced by hDst.
RM001305-0317 Zilog Flash Library Application Programming Interface

eZ80Acclaim!® MCU
Flash Library API Reference Manual

39
Return value:

ZFL_ERR_SUCCESS is returned if no error occurs.

ZFL_ERR_INVALID_PARAMETER is returned if the
XFL_Init API was not called, or did not complete successfully or if
the external Flash device is not CFI-compliant.

Description:

This API is used to read data from the CFI query table. Flash devices that
are not CFI-compliant typically do not contain a CFI query table that can
be read using this API. Therefore, an error is returned if this API is called
to read CFI query table data from a device that is not CFI compliant.

The default starting offset of the CFI query table is CFI_OFS_QRY_ID
(0x010) as defined in CFI.h. Applications can optionally use this com-
mand to obtain the standard low-level CFI information for the external
Flash device such as programming voltage minimum and maximum val-
ues or vendor-specific information contained in an optional vendor-speci-
fied extended query table by supplying the appropriate Offset and Len
parameters.

The Zilog Flash Library disables interrupts while reading data from the
CFI query table to prevent application interrupt service routines from
attempting to access the external Flash while it is in CFI query mode of
operation. Program code can only execute from external Flash when
Flash is in read-array mode.

XFLD_Erase

Header File:

#include "FlashLib.h"

Prototype:

INT8

XFLD_Read
RM001305-0317 Zilog Flash Library Application Programming Interface

eZ80Acclaim!® MCU
Flash Library API Reference Manual

40
(

 HANDLE hAddr

);

Parameters:

hAddr: Arbitrary pointer referencing any memory location within
the block of external Flash to be erased.

Return value:

ZFL_ERR_SUCCESS is returned if no error occurs.

ZFL_ERR_ERASE is returned if the block of Flash containing
hAddr is not erased.

Description:

This API is used to erase a single block of external Flash. hAddr is an
arbitrary pointer to any memory location within the address space
assigned to the external Flash device (as determined by the setting of cor-
responding chip select upper and lower bound registers). It is not neces-
sary for hAddr to reference the first memory location within the block to
be erased. The external Flash controller will erase the entire (erase) block
in which hAddr resides.

ZFL disables interrupts while the external Flash device is erased. This is
done to prevent software failure that can occur if an interrupt is processed
while the external Flash device is not in read-array mode.

XFLD_Program

Header File:

#include "FlashLib.h"

Prototype:

INT8

XFLD_Program
RM001305-0317 Zilog Flash Library Application Programming Interface

eZ80Acclaim!® MCU
Flash Library API Reference Manual

41
(

 HANDLE hDst,

 HANDLE hSrc,

 UINT24 Len

);

Parameters:

hDst: Arbitrary pointer referencing the first (or only) byte in Flash to
be programmed.

hSrc: Arbitrary pointer referencing an area of memory containing the
data value(s) to be programmed into Flash.

Len: The number of bytes of data from the buffer referenced by hSrc
to be programmed into external Flash starting at the memory location
referenced by hDst.

Return value:

ZFL_ERR_SUCCESS is returned if no error occurs.

ZFL_ERR_VERIFY is returned if an Intel Flash device was
programmed without error but one or more bytes read back from
external Flash did not match the corresponding value in the buffer
referenced by hSrc.

ZFL_ERR_WRITE is returned if a failure occurs while
programming any of the locations in external Flash targeted by this
command.

Description:

This API is used to change one or more bits in one or more consecutive
bytes of external Flash from the erased state (binary 1) to the programmed
state (binary 0). This API cannot be used to change the state of any pro-
grammed bits to the erased state.
RM001305-0317 Zilog Flash Library Application Programming Interface

eZ80Acclaim!® MCU
Flash Library API Reference Manual

42
The Zilog Flash Library disables interrupts while programming the exter-
nal Flash device to prevent application interrupt handlers from attempting
to access the Flash device while it is not in read-array mode. It is only
possible to execute code from within external Flash or read application
data when the Flash is in read-array mode.

XFLD_Query

Header File:

#include "FlashLib.h"

Prototype:

UINT16

XFLD_Query

(

 HANDLE hAddr

);

Parameters:

hAddr: Arbitrary pointer referencing any memory location within
the address space of the external Flash device to be queried.

Return value:

Man_ID | Dev_ID is returned if no error occurs.

Description:

This API is used to obtain the 8-bit manufacturer identification code
(Man_ID) and 8-bit device identification code (Dev_ID) of the
external Flash device containing the hAddr parameter.

ZFL disables interrupts while the external Flash device is queried.
This is done to prevent software failure that can occur if an interrupt
is processed while the external Flash device is not in read-array mode.
RM001305-0317 Zilog Flash Library Application Programming Interface

eZ80Acclaim!® MCU
Flash Library API Reference Manual

43
XFLD_Read

Header File:

#include "FlashLib.h"

Prototype:

INT8

XFLD_Read

(

 HANDLE hDst,

 HANDLE hSrc,

 UINT24 Len

);

Parameters:

hDst: References memory buffer into which data read from external
Flash is copied.

hSrc: Address of the first byte of data to be read from external Flash.

Len: Number of bytes of data to read.

Return value:

ZFL_ERR_SUCCESS is always returned.

Description:

The XFLD_Read API can be used to read multiple contiguous bytes
of data external Flash. Internally this routine calls the C run-time-
library memcpy API to read data from external Flash.
RM001305-0317 Zilog Flash Library Application Programming Interface

eZ80Acclaim!® MCU
Flash Library API Reference Manual

44
ZFL_Read

Header File:

#include "FlashLib.h"

Prototype:

INT8

ZFL_Read

(

 HANDLE hDst,

 HANDLE hSrc,

 UINT24 Len

);

Parameters:

hDst: References memory buffer into which data read from external
Flash is copied.

hSrc: Address of the first byte of data to be read from external Flash.

Len: Number of bytes of data to read.

Return value:

ZFL_ERR_SUCCESS is always returned.

Description:

The ZFL_Read API can be used to read multiple contiguous bytes of
data external Flash. Internally this routine calls the C run-time-library
memcpy API to read data from external Flash.
RM001305-0317 Zilog Flash Library Application Programming Interface

eZ80Acclaim!® MCU
Flash Library API Reference Manual

45
Advanced Topics

ZFL Code Segment Names

The default build of the Zilog Flash Library uses a mix of standard and
non standard segment names to distinguish between segments that may
require additional linker directives to be added to the project settings
based on build configuration. The ZFL code segments are described in
this section.

CODE

The default ZFL code segment is named CODE and contains routines that
do not directly erase or program external Flash, or otherwise place exter-
nal Flash into a mode that does not support normal read-access to Flash.
On the eZ80F91, the default ZFL code segment also contains routines that
manipulate the internal Flash information page.

The name of the ZFL default code segment can be changed to ZFL_CODE
by uncommenting the ZFL_CODE_SEG definition in FlashLib.h and
rebuilding the appropriate Zilog Flash Library as described in Building
the Zilog Flash Library. In this instance, applications will typically need
to include a linker directive to control the placement of the ZFL_CODE
code segment. This step is typically not required when the default ZFL
code segment is named CODE.

ZFL_nEXT_Flash

ZFL routines that directly program or erase external Flash and ZFL rou-
tines that place the external Flash in a state which does not support normal
read access are grouped in a code segment named ZFL_nEXT_Flash.
Because it is not possible to execute code from external Flash unless
external Flash is in normal read-access mode, the ZFL_nEXT_Flash seg-
ment must not be located in external Flash. Applications that manipulate
external Flash and are built using the Flash or Copy to RAM build config-
RM001305-0317 Advanced Topics

eZ80Acclaim!® MCU
Flash Library API Reference Manual

46
uration typically require additional linker directives to control the place-
ment of the ZFL_nEXT_Flash code segment.

ZFL_nINT_Flash

On the eZ80F92 and eZ80F93 microcontrollers, ZFL routines that manip-
ulate the internal Flash information page are grouped in a code segment
named ZFL_nINT_Flash. Because it is not possible to execute code
from eZ80F92/eZ80F93 internal Flash that manipulates the information
page, this code segment must not be located within eZ80F92/eZ80F93
internal Flash. Applications targeting the eZ80F92/eZ80F93 using the
Flash or Copy to RAM build configurations will typically need to include
a linker directive to control the placement of the ZFL_nINT_Flash code
segment.

On the eZ80F91, it is possible to access the Flash information page from
code executing in internal Flash. Therefore, the only ZFL routine con-
tained in the ZFL_nINT_Flash code segment in the eZ80F91 Flash
library is the IFL_Erase Flash API that erases all of internal Flash (and
optionally the Flash information page) which requires that the
IFL_Erase routine must not be located in internal Flash.

The IFL_Erase API is always located in the ZFL_nINT_Flash code
section regardless of which eZ80F9x Flash library is linked to the applica-
tion. Therefore, applications that call the IFL_Erase API may require
additional linker directives to ensure the ZFL_nINT_Flash code seg-
ment is not located within internal Flash.

Linking the Zilog Flash Library

Applications that link the Zilog Flash Library can be built using one of the
standard build configurations supported in the ZDS IDE – RAM, Flash, or
Copy to RAM. Depending on which build configuration is used, it may be
necessary to add linker directives to the project settings to locate non-
standard ZFL code segments into select areas of memory.
RM001305-0317 Advanced Topics

eZ80Acclaim!® MCU
Flash Library API Reference Manual

47
RAM Build Configuration

When the RAM build configuration is used, all ZFL routines execute
from RAM. Typically, there are no restrictions on where ZFL routines are
located within RAM (for example, internal versus external RAM) and it is
not necessary to add linker directives to the project settings when the
RAM build configuration is used.

Flash Build Configuration

When the Flash build configuration is used, all ZFL routines execute from
Flash and applications that need to erase/program external Flash or access
the eZ80F92/eZ80F93 information page using the ZFL API will typically
need to include directives to control the placement of one or more of the
ZFL code segments. Typically, the ZFL_nEXT_Flash code segment will
need to be located in RAM or internal Flash (not applicable to eZ80L92-
based applications) and the ZFL_nINT_Flash code segment will need to
be located in RAM or external Flash (only required with projects target-
ing the eZ80F92/eZ80F93).

The following procedure can be used with projects configured to use the
Flash build configuration to add the necessary linker directives to locate
select ZFL routines in internal Flash (eZ80F9x) or RAM (eZ80L92 or
eZ80F9x).

1. From the Project menu, select Settings and click Commands under
the Linker heading on the left side of the Project Settings dialog.

2. On the right side of the Project Settings dialog, ensure that the
Always Generate From Settings radio button is enabled and that
the Additional Directives checkbox is selected.

3. Click the Edit… button. Select between one of the following options
(a through d) depending on which eZ80 device is being targeted.

a) For eZ80F91, enter the following directive to locate ZFL routines
that program or erase external Flash in internal Flash:

RANGE ZFL_nEXT_Flash $0: $03FFFF
RM001305-0317 Advanced Topics

http://www.zilog.com/index.php?option=com_product&task=iframe
http://www.zilog.com/index.php?option=com_product&task=iframe
http://www.zilog.com/index.php?option=com_product&task=iframe
http://www.zilog.com/index.php?option=com_product&task=iframe
http://www.zilog.com/index.php?option=com_product&task=iframe

eZ80Acclaim!® MCU
Flash Library API Reference Manual

48
b) For eZ80F92, enter the following directives to locate ZFL routines
that program or erase external Flash in internal Flash and ZFL
routines that manipulate the Flash information page in the first
1 MB of external Flash between 0x100000 and 0x1FFFFF:

RANGE ZFL_nEXT_Flash $0: $01FFFF
RANGE ZFL_nINT_Flash $100000: $1FFFFF

c) For eZ80F93, enter the following directives to locate ZFL routines
that program or erase external Flash in internal Flash and ZFL
routines that manipulate the Flash information page in the first
1 MB of external Flash between 0x100000 and 0x1FFFFF:

RANGE ZFL_nEXT_Flash $0: $00FFFF
RANGE ZFL_nINT_Flash $100000: $1FFFFF

d) For eZ80L92, enter the following directive to locate ZFL routines
that program or erase external Flash in RAM:

CHANGE ZFL_nEXT_Flash is DATA

4. After adding the necessary linker directives, click OK to close the
Additional Linker Directives dialog and then click OK again to close
the Project Settings dialog.

5. If prompted to rebuild the project, click Yes; otherwise, click
Rebuild All or the Rebuild All icon in the Build menu.

Copy to RAM build Configuration

When the Copy to RAM build configuration is used, the ZDS default
CODE segment is copied from external and/or internal Flash to RAM at
startup allowing routines in the CODE segment to execute from RAM.
However, ZFL routines that are not located in the default CODE segment
(such as those routines in the ZFL_nEXT_Flash, ZFL_nINT_Flash, and
if used, the ZFL_CODE segments) will remain resident in Flash unless the
project settings are modified to include linker directives that explicitly
relocate non-default ZFL code segments into RAM.
RM001305-0317 Advanced Topics

eZ80Acclaim!® MCU
Flash Library API Reference Manual

49
The following procedure can be used with projects configured to use the
Copy to RAM build configuration to add the necessary linker directives to
locate select ZFL code segments in RAM.

1. From the Project menu, select Settings and click Commands under
the Linker heading on the left side of the Project Settings dialog.

2. On the right side of the Project Settings dialog, ensure that the
Always Generate From Settings radio button is enabled and that
the Additional Directives checkbox is checked.

3. Click the Edit… button. Select between one of the following options
(a through d), depending on which eZ80 device is being targeted.

a) For eZ80F91, enter the following directive to locate ZFL routines
that program or erase external Flash in RAM:

CHANGE ZFL_nEXT_Flash is CODE

b) For eZ80F92 or eZ80F93, enter the following directives to locate
ZFL routines that program or erase external Flash, and routines
manipulate the Flash information page in RAM:

CHANGE ZFL_nEXT_Flash is CODE
CHANGE ZFL_nINT_Flash is CODE

c) For eZ80L92, enter the following directive to locate ZFL routines
that program or erase external Flash in RAM:

CHANGE ZFL_nEXT_Flash is CODE

4. After adding the necessary linker directives, click OK to close the
Additional Linker Directives dialog and then click OK again to close
the Project Settings dialog.

5. If prompted to rebuild the project click Yes; otherwise, click Rebuild
All or the Rebuild All icon in the Build menu.
RM001305-0317 Advanced Topics

eZ80Acclaim!® MCU
Flash Library API Reference Manual

50
Building the Zilog Flash Library

Most users will not need to rebuild the Zilog Flash Library. The library is
typically only rebuilt to add a low-level Flash command set (as described
in the Adding Additional Command Sets section), or to enable the use of
erase-flags (Enabling Erase-Flag Processing), or possibly to enable simul-
taneous support for multiple Flash devices (Supporting Flash Devices on
Multiple Chip Selects).

The Zilog Flash Library (ZFL) is built using the Zilog Development Stu-
dio II (ZDS II) integrated development environment (IDE) for the eZ80®
family of microprocessors and microcontrollers. To rebuild the ZFL, use
the following procedure:

1. Launch the ZDS II – eZ80Accalim! 5.3.0 (or later version) IDE.

2. Navigate to the <ZDS II Install
directory>\applications\FlashLibrary folder and open the
appropriate eZ80F9x_Flash.zdsproj or eZ80_Flash.zdsproj
project file depending on the target platform.

3. From the Build configuration pull-down, select either the Debug or
Release build, as shown in Figure 1.

The Debug build includes debug information that can be used to
single step library API routines when linked with an application

Figure 1. Select Build Configuration
RM001305-0317 Advanced Topics

eZ80Acclaim!® MCU
Flash Library API Reference Manual

51
program. The Release build does not contain debug information, but
is otherwise identical to the Debug library build.

4. From the Build menu, select Rebuild All or click the Rebuild All
icon to regenerate the library.

5. Copy the FlashLibrary\Debug\ez80F9x_FlashD.lib (or
eZ80_FlashD.lib for eZ80L92) or
FlashLibrary\Release\eZ80F9x_Flash.lib (or
eZ80_Flash.lib for eZ80L92), depending on whether the Debug
or Release build configuration was selected in step 3, to a folder
where your application expects to find ZFL. For the
FlashLoader_App sample project, the library file should be copied
to the <ZDS II Install directory>\applications\Lib
folder.

After rebuilding the appropriate Flash Library, rebuild all applications
that use ZFL to ensure any changes made to the library source code are
included in each application.

Enabling Erase-Flag Processing

The Zilog Flash Library can optionally be compiled to use a 1-bit flag,
called an erase-flag, to track whether or not a block of external Flash has
been erased. After an erasable block of external Flash has been erased
(via the XFL_BlockErase, XFL_EraseBlocks, or XFL_EraseDevice
APIs), the associated erase-flag(s) is placed in the erased state (i.e. the
erase flag is set to binary 1). After the XFL_Init or
XFL_ResetEraseFlags API routines are called, all erase flags are
placed in the not-erased state (i.e. all erase flags are reset to binary 0).

When the XFL_Program API is called and erase flag processing has been
enabled, the Flash library will automatically erase all blocks of Flash tar-
geted by the program command if the block’s erase flags is in the not-
erased state. If the Flash blocks are successfully erased, the associated
erase flags are placed in the erased state. The XFL_Program API will not
RM001305-0317 Advanced Topics

eZ80Acclaim!® MCU
Flash Library API Reference Manual

52
automatically erase a block of Flash targeted by the program command if
its erase flag is in the erased state (or if the use of erase flag processing
has not been enabled). This ensures that an erase block is erased the first
time the XFL_Program API is called to program one or more bytes of
data in that erase block; however, it prevents the block from being erased
on subsequent calls to the XFL_Program API targeting that same erase
block.

The concept of erase flags was introduced in version 1.0 of the Zilog
Flash Library (the status byte of the MEMORY_T data structure was used as
a 1-bit flag indicating whether the associated block of external Flash had
been erased). The use of erase flags can eliminate the need for the appli-
cation programmer to know the location of each erasable block in external
Flash in some circumstances. However, including erase flag processing
support in the ZFL increases the size of the library and therefore the size
of the user application. Also, the use of erase flags does not eliminate the
need for the application to decide when an erasable block of external
Flash needs to be erased and whether or not a subset of the data previ-
ously programmed into the block needs to be saved and programmed into
the block again after it has been erased. These operations require the
application programmer to know the location of the underlying block(s)
of Flash reducing the utility of erase-flags. For these reasons, version 2.0
(and later) of the ZFL does not include support for erase flags in the
default build of the library.

The value of the MAX_EB_STATUS_BYTES macro (defined in .\Flash-
Library\XFL_Internal.h) determines whether ZFL includes support
for processing erase flags. By default, the value of
MAX_EB_STATUS_BYTES is 0, which disables the use of erase flags. To
include support for erase flag processing, it is necessary to change the
value of the MAX_EB_STATUS_BYTES to a non-zero value as described in
the Modifying the Maximum Number of Erase Blocks section.
RM001305-0317 Advanced Topics

eZ80Acclaim!® MCU
Flash Library API Reference Manual

53
Modifying the Maximum Number of Regions

The Zilog Flash Library is able to support external Flash devices with up
to CFI_MAX_REGIONS regions. Each region contains one or more blocks
or erasable Flash called an erase block. An erase block is the smallest unit
of external Flash that can be erased. Each region of Flash contains erase
blocks of identical size but adjacent regions contain erase blocks of differ-
ent sizes.

Typical Flash devices only contain a few erase blocks; however, the CFI
specification allows for a Flash device to contain up to 255 erase blocks.
To reduce the size of the data structure ZFL uses to store information
about each region, the default implementation of the Flash library sup-
ports Flash devices with up to CFI_MAX_REGIONS.

If the Zilog Flash Library is used with a CFI-compliant Flash device that
contains more than CFI_MAX_REGIONS regions, the XFL_Init API will
return a status of ZFL_ERR_TOO_MANY_REGIONS, indicating that the
library needs to be rebuilt after increasing the value of the
CFI_MAX_REGIONS macro definition using the procedure below:

1. Launch the ZDS II – eZ80Accalim! 5.3.0 (or later version) IDE.

2. Navigate to the <ZDS II Install directory>
\applications\FlashLibrary folder and open the appropriate
eZ80F9x_Flash.zdsproj or eZ80_Flash.zdsproj project file,
depending on the target platform.

3. In the Workspace window on the left side of the IDE, expand the
External Dependencies section and double-click the CFI.h header
file.

4. Press CTRL + F or select Find in the Edit menu and type
CFI_MAX_REGIONS.

5. Increase or decrease the value of the macro definition as appropriate.
The value of the CFI_MAX_REGIONS macro definition should be at
least 1 and should be less than or equal to 255.
RM001305-0317 Advanced Topics

eZ80Acclaim!® MCU
Flash Library API Reference Manual

54
Modifying the Maximum Number of Erase Blocks

The Zilog Flash Library is able to support Flash devices with up to
MAX_EB_STATUS_BYTES * 8 erase blocks. The number of erase block
status bytes (MAX_EB_STATUS_BYTES) determines the maximum num-
ber of erase flags the library supports. The default build of ZFL sets the
value of the MAX_EB_STATUS_BYTES macro to 0, as defined
in.\FlashLibrary\XFL_Internal.h, disabling the use of erase flags
as described in the Enabling Erase-Flag Processing section. To enable
erase flag processing, set the value of MAX_EB_STATUS_BYTES to be at
least 1/8th of the total number of erasable blocks within the external Flash
device and always round up to the next even byte. For example, if the
external Flash contains 9 erase blocks, then MAX_EB_STATUS_BYTES
should be set to 2 to enable erase flag processing.

Typical Flash devices contain between a few dozen erase blocks for
smaller Flash devices, and up to a few hundred erase blocks for very large
Flash devices. However, it is theoretically possible for a CFI-compliant
Flash device to contain up to 255 regions with each region containing up
to 65536 erase blocks. Such a Flash device would have an enormous stor-
age capacity and would require 16,711,680 erase flags requiring ZFL to
be rebuilt with MAX_EB_STATUS_BYTES set to 2,088,960, requiring over
2 MB of external RAM.

If the Zilog Flash Library is used with a CFI-compliant Flash device that
contains more than MAX_EB_STATUS_BYTES *8 erase blocks, the
XFL_Init API will return a status of
ZFL_ERR_TOO_MANY_ERASE_BLOCKS, indicating that the library needs
to be rebuilt after increasing the value of the MAX_EB_STATUS_BYTES
macro definition using the following procedure:

1. Launch the ZDS II – eZ80Accalim! 5.3.0 (or later version) IDE.

2. Navigate to the <ZDS II Installation folder>
\applications\FlashLibrary folder and open the appropriate
eZ80F9x_Flash.zdsproj or eZ80_Flash.zdsproj project file,
depending on the target platform.
RM001305-0317 Advanced Topics

eZ80Acclaim!® MCU
Flash Library API Reference Manual

55
3. In the Workspace window on the left side of the IDE, expand the
External Dependencies section and double click the
XFL_Internal.h header file.

4. Press CTRL+ F or select Find from the Edit menu and type
MAX_EB_STATUS_BYTES.

5. Increase or decrease the value of the macro definition as appropriate.
The value of the MAX_EB_STATUS_BYTES macro definition should
be at least (Max Erase Blocks +7) /8, where Max Erase Blocks is
determined by the target external Flash device. A value of 0 is used to
prevent ZFL from automatically erasing a block of Flash the first time
the XFL_Program API is called to program one or more bytes in the
erase block.

If the value of the MAX_EB_STATUS_BYTES macro is 0 when the Zilog
Flash Library is rebuilt, the library will not include the
XFL_ResetEraseFlags or XFL_EraseBlocks API routines. These
API functions are only available if ZFL is compiled to support erase-flag
processing.
A further consequence of setting the MAX_EB_STATUS_BYTES to 0 is that
the XFL_EraseDevice API will return ZFL_ERR_FAILURE if an
attempt is made to erase an external Flash device that implements the
Intel standard command set. This occurs because the Intel standard com-
mand set does not actually include a command to erase the entire device.
If MAX_EB_STATUS_BYTES is non-zero, ZFL calls the
XFL_EraseBlocks API to erase all blocks in the external Flash.

6. Proceed to step 4 in the Building the Zilog Flash Library section.

Note:
RM001305-0317 Advanced Topics

eZ80Acclaim!® MCU
Flash Library API Reference Manual

56
Supporting Flash Devices on Multiple Chip Selects

The default build of the Zilog Flash Library can support only one external
Flash device connected to one of the eZ80’s chip select signals (CS0 to
CS3). Typically, the system is designed such that CS0 is connected to the
only external Flash device in the system. However, some systems could
have multiple external Flash devices connected to other chip selects.

Since the default build of ZFL only supports a single external Flash
device, applications that need to access multiple external Flash devices
must call the XFL_Init API each time the application switches between
Flash devices. For example, to erase the Flash devices on CS0 and CS2
and then program a block of Flash on CS0, the application would have to
use issue the following commands:

Alternatively, if the application needs to frequently switch between multi-
ple external Flash devices, the ZFL library will have to be rebuilt, increas-
ing the maximum number of Flash devices that can be supported using the
following procedure:

1. Launch the ZDS II – eZ80Accalim! 5.3.0 (or later version) IDE.

2. Navigate to the <ZDS II Install directory>
\applications\FlashLibrary folder and open the appropriate
ZFL project file.

3. In the Workspace window on the left side of the IDE, expand the
External Dependencies section and double-click the FlashLib.h
header file.

XFL_Init(0, 0); // Initialize ZFL for use with CS0
XFL_EraseDevice(); // Erase CS0 Flash
XFL_Init(2, 0); // Initialize ZFL for use with CS2
XFL_EraseDevice(); // Erase CS2 Flash
XFL_Init(0, 0); // Initialize ZFL for use with CS0
XFL_Program // Program CS0 Flash (parameters not shown)
RM001305-0317 Advanced Topics

eZ80Acclaim!® MCU
Flash Library API Reference Manual

57
4. Press CTRL + F or select Find in the Edit menu and type
XFL_MAX_CHIP_SELECT_NUM.

5. Increase or decrease the value of the macro definition as appropriate.
The value of the XFL_MAX_CHIP_SELECT_NUM macro definition
must be equal to 1 + (the highest external Flash chip select number).
For example, if CS0 and CS2 are connected to Flash devices, the
value of the XFL_MAX_CHIP_SELECT_NUM macro should be 3.

6. Proceed to step 4 in the Building the Zilog Flash Library section.

If ZFL is modified to maintain the state of multiple external Flash devices
using the procedure above, the first parameter of all ZFL API functions
must be the chip select number of the target Flash device. For example, if
the value of XFL_MAX_CHIP_SELECT_NUM is 1 and only chip select 2 is
connected to external Flash, the XFL_Init API should only be called
with the ChipSelect parameter set to 2 but the XFL_Program API does
not have to specify which chip select is targeted by the API because ZFL
is only maintaining state about one external chip select (CS2). However, if
both CS2 and CS3 are connected to an external Flash device,
XFL_MAX_CHIP_SELECT_NUM should be set to 4 and the XFL_Init API
needs to be called twice using ChipSelect parameters of 2 and 3 to
identify which chip select is targeted by the Init call. In this instance, the
first parameter passed to the XFL_Program API must be the chip select
number of the external Flash device to be programmed.

The listing below shows the ZFL function prototypes used when the size
of XFL_MAX_CHIP_SELECT_NUM is greater than 1.

ZFL API functions that require a ChipSelect parameter when
XFL_MAX_CHIP_SELECT_NUM is not 1 have the parameter shown in red
below. When XFL_MAX_CHIP_SELECT_NUM is 1, the ChipSelect

Note:
RM001305-0317 Advanced Topics

eZ80Acclaim!® MCU
Flash Library API Reference Manual

58
parameter must not be included in the call to the corresponding API func-
tion call.

extern INT8 FL_GetDeviceInfo(UINT8 ChipSelect,

 FL_DEVICE_INFO * pDev);

extern INT8 FL_GetGeometry(UINT8 ChipSelect,

 FL_DEVICE_INFO * pDev,

 UINT8 * pNumRegions,

 CFI_REGION * pRegions);

extern INT8 FL_EraseDevice(UINT8 ChipSelect);

extern INT8 FL_BlockErase(UINT8 ChipSelect,

 HANDLE hAddr);

extern INT8 FL_Program(UINT8 ChipSelect,

 HANDLE hDst,

 HANDLE hSrc,

 UINT24 Len);

extern INT8 FL_Read(UINT8 ChipSelect,

 HANDLE hDst,

 HANDLE hSrc,

 UINT24 Len);

extern INT8 FL_ReadCFI(UINT8 ChipSelect,

 UINT24 Offset,

 HANDLE hDst,

 UINT16 Len);

extern INT8 FL_EraseBlocks(UINT8 ChipSelect,

 HANDLE hAddr,

 UINT24 NumBlocks);
RM001305-0317 Advanced Topics

eZ80Acclaim!® MCU
Flash Library API Reference Manual

59
extern INT8 FL_ResetEraseFlags(UINT8 ChipSelect);

External Flash Low-Level (Expert) CFI API

Developers with strong C programming skills that have experience with
external parallel (NOR) Flash devices can utilize the External Flash Low-
Level CFI API. This low-level API contains a single library function and
allows the developer to access routines to program and erase external
Flash using function pointers. The low-level API can only be used with
CFI-compliant Flash devices.

CFI_Query

Header File:

#include "XFL_Internal.h"

Prototype:

INT8

CFI_Query

(

 FLASH_DEV_INFO * pDev

);

Parameters:

pDev: References a FLASH_DEV_INFO structure with the
pDev → Public.pBaseAddress structure member referencing the
first memory location in the target external Flash device. No other
member of the structure needs to be initialized prior to calling this
API.

Return value:

ZFL_ERR_SUCCESS is returned if no error occurs.
RM001305-0317 Advanced Topics

eZ80Acclaim!® MCU
Flash Library API Reference Manual

60
ZFL_ERR_UNSUPPORTED_CMDSET indicates that the device
is CFI-compliant, but implements a command set that is not
supported by the ZFL driver.

ZFL_ERR_UNSUPPORTED_DEVICE indicates the external
Flash device is not CFI-compliant, or does not implement a supported
command set.

Description:

This function reads the CFI Query table in a CFI-compliant external
Flash device. If the CFI-compliant external Flash implements a
supported command set, the fpQuery, fpErase, fpEraseBlock,
and fpProgram function pointers in the structure referenced by pDev
are initialized. After the function pointers are initialized, they can be
de-referenced to program and erase the underlying Flash device.

Type definitions for the function pointers are contained in the
<ZDS II Install directory>\applications\
FlashLibrary\Src\XFL_Internal.h header file, as shown
below.

/*

 * Flash Algorithm function pointer definitions

 */

typedef INT8 (* FP_FLASH_QUERY)

 (struct FLASH_DEV_INFO_s * pDev);

typedef INT8 (* FP_FLASH_ERASE)

 (struct FLASH_DEV_INFO_s * pDev);

typedef INT8 (* FP_FLASH_ERASE_BLOCK)

 (struct FLASH_DEV_INFO_s * pDev, HANDLE hDst);
RM001305-0317 Advanced Topics

eZ80Acclaim!® MCU
Flash Library API Reference Manual

61
typedef INT8 (* FP_FLASH_PROGRAM)

 (struct FLASH_DEV_INFO_s * pDev, HANDLE hDst,

 HANDLE hSrc, UINT8 Len);

The fpQuery function pointer is used to set the Public.ManId and
Public.DevId members of the structure referenced by pDev. Some
Flash command sets refer to the command used to obtain the manufac-
turer and device identification codes as the Autoselect, Read ID, or as SW
ID command instead of a Query command as used in this document.

The fpErase function pointer is used to erase all erase blocks in the
external Flash device. The fpEraseBlock function pointer is used to
erase a single erase block in external Flash. The fpProgram function
pointer is used to program one or more bytes in external Flash.

The default ZFL implementation of the Query, Erase, EraseBlock, and
Program algorithms for the AMD and Intel standard command sets dis-
ables external interrupts while the external Flash is not in read-array mode
to prevent system failure that could occur if the system attempted to acti-
vate an ISR located in external Flash.

When an interrupt is processed on the eZ80F92, eZ80F93, eZ80L92, and
eZ80190 devices, the first level interrupt table must reside within the first
64 KB of memory. If the interrupt vector table is located in external Flash
(a must for the eZ80L92 and eZ80190 processors), the eZ80 CPU will not
be able to access the vector table while the external Flash is being erased,
programmed, or queried.

Note:
RM001305-0317 Advanced Topics

eZ80Acclaim!® MCU
Flash Library API Reference Manual

62
Adding Additional Command Sets

The default build of the Zilog Flash Library contains support for the
AMD and Intel standard command set. If additional command sets are
required, use the following procedure.

1. Create routines to implement the function pointers described in the
External Flash Low-Level (Expert) CFI API section. This file should
be created in the <ZDS II Install directory>
\applications\FlashLibrary folder.

2. Launch the ZDS II – eZ80Accalim! 5.3.0 (or later version) IDE.

3. Navigate to the <ZDS II Install directory>
\applications\FlashLibrary folder and open the appropriate
ZFL project file.

4. In the Workspace window on the left of the IDE, right-click
Standard Project Files and select Add File to Project…. In the
Add Files To Project dialog, navigate to the folder containing the
file created in Step 1.

5. Double-click the XFL_CmdSet.c file and add an entry to the
CmdSetTable array for the newly created command set. Be sure to
add the command set to the address-sensitive or address-insensitive
sections as appropriate. For example, if the XXX command set is
added, the new entry in the CmdSetTable array should look similar
to the following:

{

 0x1234,

 XXX_QueryDevice,

 XXX_EraseDevice,

 XXX_EraseBlock,

 XXX_Program

 },
RM001305-0317 Advanced Topics

eZ80Acclaim!® MCU
Flash Library API Reference Manual

63
In the above array, 0x1234 represent the Vendor Command Set and
Control Interface ID Code assigned in the CFI specification for the
command set implemented in Step 1. The four function names listed
in the CmdSetTable entry being created must match the function
names used in Step 1.

6. Add Function prototypes for the command set created in Step 1 to the
XFL_Internal.h header file.

7. Proceed to step 4 in the Building the Zilog Flash Library section.

External Flash Direct (XFLD) API

Applications that only need to interface with the external Flash device
located on select Zilog development kits can use the Direct External Flash
(XFLD) API to minimize the amount of library code added to the project.
Because the ZFLD API provides only basic serves, the application must
implement its own address management and error checking.

The XFLD API is described in Table 3.

The XFLD API is implemented as a set of macros that reference AMD or
Intel Flash algorithms based on the Zilog Development kit that the appli-

Table 3. XFLD API Description

XFLS API Description

XFLD_Erase Erases a block of external Flash.

XFLD_Program Programs one or more bytes of external Flash.

XFLD_Query Obtain Flash manufacturer and device identification
codes.

XFLD_Read Copies one or more bytes of memory from the
external Flash to a RAM memory buffer.
RM001305-0317 Advanced Topics

eZ80Acclaim!® MCU
Flash Library API Reference Manual

64
cation targets. The application must include a DEV_KIT= linker command
that specifies a supported Zilog Development kit. For example, an appli-
cation targeting the eZ80F910300KITG development kit would include
the following linker directive to use the XFLD API:

DEV_KIT=eZ80F91_99C1322

Where eZ80F91_99C1322 is the development kit ID defined in the <ZDS
II install directory>\applications\Inc\eZ80DevKit.h
header file. Note that the development kit ID is silkscreened on all Zilog
development kits.

Based on the value of the DEV_KIT linker symbol, the <ZDS II
install directory>\applications\Inc\FlashLib.h header
file defines the low-level AMD or Intel Flash routine that is used to
implement each XFLD API. For example, the eZ80F91_99C1322 devel-
opment kit uses the following mappings:

If the XFLD macros are mapped to an incompatible set of low-level Flash
routines, the XFLD will fail to operate as expected (or at all).

#define XFLD_Erase AMD16_EraseBlock
#define XFLD_Program AMD16_Program
#define XFLD_Query AMD16_Query
#define XFLD_Read ZFL_Read

Note:
RM001305-0317 Advanced Topics

eZ80Acclaim!® MCU
Flash Library API Reference Manual

65
Data Structures and Macros
This section describes the primary data structures and macros used by the
Zilog Flash Library. For the most up-to-date information and descriptions,
refer to the header files in the <ZDS II Install
directory>\applications\Inc folder.

Basic Data Types

/*

 * Basic data types

 */

typedef unsigned char UINT8;

typedef unsigned short int UINT16;

typedef unsigned int UINT24;

typedef unsigned long int UINT32;

typedef signed char INT8;

typedef signed short int INT16;

typedef signed int INT24;

typedef signed long int INT32;

typedef void * HANDLE;

#define NULLPTR (void *) 0

typedef UINT8 BOOL;
RM001305-0317 Data Structures and Macros

eZ80Acclaim!® MCU
Flash Library API Reference Manual

66
XFL_DEVICE_INFO Structure

typedef struct XFL_DEVICE_INFO_S

{

 /*

 * External Flash chip select number (0..3)

 */

 UINT8 CSx;

/*

* If the external Flash device supports the
* Common Flash memory Interface, the Is_CFI flag
* is set to TRUE. In this instance, the Regions
* array contains valid information about the
* device. Otherwise, the Is_CFI flag is FALSE
* and the Regions array will only contain
* information about the (legacy) Flash device if
* it was used on an old Zilog development kit.

*/

 BOOL Is_CFI;

/*

* Legacy Flash identification information.Before
* Flash devices started including CFI support,
* applications had to use the Manufacturer and
* Device ID codes to index a static lookup table
* to find the location of Flash erase blocks and
* determine which Flash algorithms to use for
* programming and erasing the device. When CFI-
* compatible Flash devices are used, the device
* geometry can be determined at run time without
* the use of lookup tables.

*/
RM001305-0317 Data Structures and Macros

eZ80Acclaim!® MCU
Flash Library API Reference Manual

67
UINT8 ManId;

UINT8 DevId;

/*

* Flash devices typically implement a standard
* set of algorithms to erase and program Flash.
* The Zilog Flash Library can only be used if the
* device implements a supported command set
* (see FL_CmdSet_Conf.c for a list of supported
* command sets and CFI.h for the
* CMD_SET_xxx identifier codes).
*/

 UINT16 CmdSet;

/*

* The Base and End addresses of external Flash
* are determined based on the chip select
* settings while the Size is the maximum storage
* capacity of the external Flash device in Bytes.
* If the entire Flash is visible in the eZ80
* address space then
* (pEndAddr+1 - pBaseAddr) = Size.

*/

 UINT8 * pBaseAddr;

 UINT8 * pEndAddr;

 UINT32 Size;

} XFL_DEVICE_INFO;
RM001305-0317 Data Structures and Macros

eZ80Acclaim!® MCU
Flash Library API Reference Manual

68
CFI_REGION Structure

/*

 * CFI Geometry Information

 */

typedef struct CFI_REGION_s

{

 /*

 * Each Flash region is composed of 1 or more
* erase blocks of the same size. The NumBlocks
* value is 1 less than the actual number of
* blocks in the region (each region contains
* between 1 and 65536 erase blocks). The size of
* each erase block is determined by multiplying
* BlockSize by 256 bytes. A BlockSize of 0
* indicates each erase block is 128-bytes long.

 */

 UINT16 NumBlocks;

 UINT16 BlockSize;

} CFI_REGION;

NON_CFI_DEV Structure

typedef struct NON_CFI_DEV

{

 UINT8 ManId;

 UINT8 DevId;

/*

 * The structure members used to describe the
* non-CFI device geometry are a subset of the
RM001305-0317 Data Structures and Macros

eZ80Acclaim!® MCU
Flash Library API Reference Manual

69
* geometry information in the CFI_GEOMETRY
* structure in CFI.h.

 */

 UINT8 SizeExp;

UINT8 NumRegions;

 CFI_REGION * pRegions;

} NON_CFI_DEV;

ZFL Error Code Macros

ZFL Library Version

#define ZFL_VERSION 0x0200

#define ZFL_ERR_SUCCESS 0
#define ZFL_ERR_FAILURE –1
#define ZFL_ERR_VPP –2
#define ZFL_ERR_WRITE –3
#define ZFL_ERR_ERASE –4
#define ZFL_ERR_SUSPEND –5
#define ZFL_ERR_ADDRESS –6
#define ZFL_ERR_VERIFY –7
#define ZFL_ERR_UNSUPPORTED_CMD_SET –8
#define ZFL_ERR_UNSUPPORTED_DEVICE –9
#define ZFL_ERR_INVALID_PARAMETER –10
#define ZFL_ERR_TOO_MANY_ERASE_BLOCKS –11
#define ZFL_ERR_TOO_MANY_REGIONS –12
RM001305-0317 Data Structures and Macros

eZ80Acclaim!® MCU
Flash Library API Reference Manual

70
Customer Support
For answers to technical questions about the product, documentation, or
any other issues with Zilog’s offerings, please visit Zilog’s Knowledge
Base at http://www.zilog.com/kb.

For any comments, detail technical questions, or reporting problems,
please visit Zilog’s Technical Support at http://support.zilog.com.
RM001305-0317 Customer Support

http://www.zilog.com/kb
http://support.zilog.com

	Revision History
	Flash Library APIs
	Table of Contents
	Introduction
	External Flash Overview
	Common Flash Memory Interface
	Zilog Flash Library Limitations

	Zilog Flash Library Application Programming Interface
	IFL_Init
	IFL_IsAddrValid
	IFL_IsInfoPageAddrValid
	IFL_GetPage
	IFL_Erase
	IFL_ErasePages
	IFL_EraseInfoPage
	IFL_PageErase
	IFL_Program
	IFL_ProgramInfoPage
	IFL_Read
	IFL_ReadInfoPage
	XFL_Init
	ZFL_GetVersion
	XFL_GetDeviceInfo
	XFL_GetGeometry
	XFL_BlockErase
	XFL_EraseDevice
	XFL_EraseBlocks
	XFL_Program
	XFL_Read
	XFL_ResetEraseFlags
	XFL_ReadCFI
	XFLD_Erase
	XFLD_Program
	XFLD_Query
	XFLD_Read
	ZFL_Read

	Advanced Topics
	ZFL Code Segment Names
	Linking the Zilog Flash Library
	RAM Build Configuration
	Flash Build Configuration
	Copy to RAM build Configuration

	Building the Zilog Flash Library
	Enabling Erase-Flag Processing
	Modifying the Maximum Number of Regions
	Modifying the Maximum Number of Erase Blocks

	Supporting Flash Devices on Multiple Chip Selects
	External Flash Low-Level (Expert) CFI API
	CFI_Query
	Adding Additional Command Sets
	External Flash Direct (XFLD) API

	Data Structures and Macros
	Basic Data Types
	XFL_DEVICE_INFO Structure
	CFI_REGION Structure
	NON_CFI_DEV Structure
	ZFL Error Code Macros
	ZFL Library Version

	Customer Support

