
Technical Note

Using Serial Multi-Drop with
eZ80Acclaim!� MCUs
TN001401-0603
General Overview

This Technical Note discusses setting up devices in ZiLOG�s eZ80Acclaim!� product line
for 9-bit multi-drop mode. This setup consists of one master device and two or more slave
devices sharing the same serial bus. Each slave or peripheral is assigned a unique address
and command set. The master then sends out each unique address one packet at a time
and waits for a slave response or time-out.

The companion source code file to this Technical Note is TN0014-SC01.

Discussion

Figure 1 shows how this system is configured:

This system can be configured as a single-ended or differential interface. The single-ended
configuration must be carefully considered so as to not damage the slave output drives. One
consideration is to configure the slave outputs as open drain. A second is to use opto-cou-
plers.

Both slave devices should power up and configure their serial ports in multi-drop mode.
These slaves then wait and listen for their respective device addresses. The master device
powers up and configures its serial port in multi-drop mode, then starts a main polling loop
to each slave device for status. The master can also send down commands to a slave for it
to perform. The eZ80Acclaim!� device used for the next example is the eZ80F91 microcon-

Figure 1. Multi-Drop Master/Slave Configuration

eZ80Acclaim!
Device 1

Master

Slave Job
Status Display

eZ80Acclaim!
Device 2 Slave

eZ80Acclaim!
Device 3 Slave

Slave 2
Input

Slave 2
Output

Master

4—8-bit Data Bus

Slave Return

Slave 3
Input

Slave 3
Output
Technical Note 1

http://www.zilog.com/docs/ez80acclaim/appnotes/tn0014-sc01.txt

Using Serial Multi-Drop with eZ80Acclaim!� MCUs
troller. The core clock frequency used is 50Mhz. The diagram in Figure 2 illustrates the code
flow from the point of view of the master.

To talk to a slave device, the master sends out a command byte and a checksum byte, then
waits for a return message and checksum from the slave device. The first byte sent from the
master also includes a ninth bit set to tell the slave devices that this nine-bit byte is an
address byte. This byte also encodes the command bytes/bits to that slave. The checksum
byte is calculated by adding the command/address byte and all data bytes. The checksum
byte is not included in the summation.

The following code fragment is an example of a data command from a master to a slave.

0x10 A ninth bit is set to tell slaves address/command byte
The upper four bits are the slave address. The lower four
bits are command bits.
Command 0 is a get slave status.

0x10 The checksum byte for this simple get slave 1 status.

The master waits for data to return. When the slave sets the ninth bit, the interrupt routine
sets the Done flag to signify to other parts of the code that a full slave message is ready. A
time-out timer should be enabled to time-out slaves that are not present or are not ready.
An example of a slave device sending back a status message is shown in the code fragment
below.

0x01 The ninth bit is turned off; the slave tells the master
that it is ready to poll status data 01.

0x01 The ninth bit is set, telling the master message complete
with checksum 01.

Figure 2. Multi-Drop Master/Slave Configuration

Poll Interrupt
Output Slave

address X
X = X + 1

Return

Enable Interrupts
Start Polling

Update Display

Power Up
Initial Hardware

Wait for
DONE
Flag

Timer ISR
Every 100 ms

The DONE Flag is set
when the slave sends
data with the 9th bit set.
Technical Note TN001401-0603 2

Using Serial Multi-Drop with eZ80Acclaim!� MCUs
On a time domain plot, the above transfer would resemble what is depicted in Figure 3.

Source Code

The remainder of this TN Note lists the source code that performs this master/slave opera-
tion. This code runs within the master device. Make sure to include any other hardware or
power-up routines required to bring your system up before entering "main".

// Define some variables

short power_on = 0;
short poll_even;
short powerup;
static volatile short byte_pos = 0;
volatile short done;
volatile int mdb_buff[36];
volatile polling_enabled;

void main(void)
{

power_on=1;
powerup=1; // Some power up flags
poll_even = 1; // This bit controls what slave to poll.

// 0 would be slave 1, a 1 would be slave 2.
MDB_ACK_PENDING=0; // This flag signals we are waiting for a

slave
// to return a message

byte_pos = 0; // This is a byte counter to tell how
// many bytes the slave has sent us

done = 0; // This tell us data is ready to read from a
// slave device.

mdb_buff[0] = 0xff; //
mdb_buff[1] = '/0'; // Buff to hold slave return bytes.

// Start out with FF,NULL

// I2C_Lcd_position (LINE10, COL1);
// Routine to set the position of the cursor on the display
I2C_putstring ("Slave Status"); // Functions to display data on a

Figure 3. Multi-Drop Master/Slave Configuration

9 Bits Data 0x01
Master

Looking for slave

Slave 1 returns data

Slave

9 Bits Data 01 CS

8 Bits Data 0x01 9 Bits Data 01 CS
Technical Note TN001401-0603 3

Using Serial Multi-Drop with eZ80Acclaim!� MCUs
// LCD display Slave status

// Set up COM port 1 for 9600 baud

init_com1(); // Int MDB com port
init_timer1(); // 100ms Timer to poll MDB devices
delay(); // A little software delay

_ei(); // Turn on interrupt system

powerup=0; // Tell everyone we are all powered up.
polling_enabled=1; // This turns on the ISR MDB polling routine

// At this point this "master" device will poll slave address 1 then
// slave address 2 and back to slave 1 every 100mS with the poll ISR
// routine.

do { // Just do this forever
if (done) // Has a the slave device sent us data

{
Update_Display(); // Yes update our display
Done = 0; // Just make sure to clear the done flag for

// next access
}

} while(1);

} // end of main

/**
* Initialize timer1 to interrupt every 10ms
*
* 16 bit time constant is not big enough for 100ms interrupts,
* so we will use additional intermediate counter to count
* every 10 ticks.
*/

void init_timer1(void)
{

ticks1 = 0x00;
intermediate_ticks1 = 0x00;

TMR_CTL1 = 0x00;
TMR_RRL1 = 0xFF; // setup timer to interrupt every 10ms
TMR_RRH1 = 0x1F;
TMR_CTL1 = 0x0e; // timer0 = multipass, /16, interrupt enable
TMR_CTL1 |= 0x01; // enable timer
TMR_IER1 = 0x01;

}

Technical Note TN001401-0603 4

Using Serial Multi-Drop with eZ80Acclaim!� MCUs
void init_com1(void)
{

PC_ALT1 &= 0xf0; // PD0 = uart0_tx, PD1 = uart0_rx
PC_ALT2 |= 0x0F;
UART_LCTL1=0x80; // select dlab to access baud rate generators
BRG_DLRL1=0x45; / / 9600 50M/(16*9600) = 325 = 145H
BRG_DLRH1=0x01;
UART_LCTL1=0x00; // disable dlab
UART_FCTL1=0xc7; // clear tx fifo, clear rx fifo, fifo enable
UART_LCTL1=0x1B; // Say xmit 9bits, enable 9bit and set 8,1
UART_MCTL1=0x20; // Enable Multi drop mode
UART_IER1=0x05; // rx int enable, master int enable.

}

/**/
/**
* This is the timer ISR that gets called every 10ms.
*/

#pragma interrupt
void isr_timer1(void)
{

unsigned char temp;
unsigned int delay;

temp = TMR_CTL1; //read to clear pending int
temp = TMR_IIR1;

intermediate_ticks1++;
if(intermediate_ticks1 >= 10 //100mS
{
intermediate_ticks1 = 0; // Reset big loop counter for

// next time
ticks1++; // count this one
if (polling_enabled) // Is our Slave polling system on
{
if (poll_even) // Yes then check are we reading

// Slave 1 or 2
{
poll_even = 0; // reading slave 2 reset to read

// slave 1 next time
byte_pos = 0; // Reset the serial data byte

// counter
MDB_ACK_PENDING = 1;
done = 0; // Reset the done flag
UART_LCTL1=0x1B; // Say xmit 9bits, enable 9bit

// and set 8,1
UART_MCTL1=0x20; // Enable Multi drop mode
putc(0x10, uart1tx); // Slave address 1 , command "0"

// get status
Technical Note TN001401-0603 5

Using Serial Multi-Drop with eZ80Acclaim!� MCUs
putc(0x10, uart1tx); // Check sum byte
}
else
{
poll_even = 1;

byte_pos = 0;
polling_bill=1;
MDB_ACK_PENDING = 1;
done = 0;
UART_LCTL1=0x1B; // Say xmit 9bits, enable 9bit and set 8,1
UART_MCTL1=0x20; // Enable Multi drop mode
putc(0x20, uart1tx); // Slave address 2 , command "0" get status

putc(0x20, uart1tx);//Check sum byte
} //end poll even
} // end polling enable
} // end if(intermediate_ticks1 >= 10)

} // end void isr_timer1(void)

/**
* All this ISR should do is put the data into our internal fifos
*
*/

#pragma interrupt
void isr_uart1(void)
{

short temp;

temp = UART_LSR1;

if (temp & 0x04) // If this is true then the received byte is a
// "address"
// or nine bit byte.

{
mdb_buff[byte_pos] = UART_RBR1;// Save the Data in our rec. buff
byte_pos++; // Ready for next byte to store
done = 1; // Tell others we have a command

// string ready for a slave.
}
if (temp & 0x01) // If this is true the we have

// just plan old 8 bit data
{
mdb_buff[byte_pos] = UART_RBR1;// Save the Data in our rec. buff
byte_pos++; // Ready for next byte to store
}

while(UART_LSR1 & 0x20) { // TX int

if(! fifo_empty(uart1tx->fifo))
{ // and we still have stuff to
Technical Note TN001401-0603 6

Using Serial Multi-Drop with eZ80Acclaim!� MCUs
// send ...
UART_THR1=fifo_get(uart1tx->fifo);// send it.
}
else

{ // otherwise ...
UART_IER1&=0xfd; // disable tx interrupts
break;
}
}

}

/**
* Display the slave status
*
*/

void Update_Display(void)
{

polling_enabled=0; // Stop polling until we get this
// done.

byte_pos = byte_pos-1; // Remove one count, ISR sets up
// for next byte.

for (i=0; i<byte_pos; i++) // Display all slave bytes
{
*buffy='\0';
c = mdb_buff[i]; // read byte from buffer
bin_to_ascii(c, buffy); // convert to ascii
I2C_putstring(buffy); // output to display
if (i == 9) // This display can only have 10

// char. On a line
I2C_Lcd_position(col1,row4);// go to next line

}
byte_pos = 0; // Reset byte counter
polling_enabled=1; // Reenable polling

}// end update_display

/**/
// This section converts the binary value c into it's ascii representation
// in hex. It will append the two ascii characters at the end of *buff
// If you want to save it at the start of buff, make buff[0]='\0';
// This function will also null terminate the string.

void bin_to_ascii(unsigned char c, char *buff) {

while(*buff)
{
buff++;
}

if(((c >> 4) & 0x0f) <= 9) {
Technical Note TN001401-0603 7

Using Serial Multi-Drop with eZ80Acclaim!� MCUs
*buff++ = ((c >> 4) & 0x0f) + '0';
} else {

*buff++ = ((c >> 4) & 0x0f) + 'A' - 10;
}

if((c & 0x0f) <= 9) {
*buff++ = (c & 0x0f) + '0';

} else {
*buff++ = (c & 0x0f) + 'A' - 10;

}

*buff='\0';
}

Technical Note TN001401-0603 8

Using Serial Multi-Drop with eZ80Acclaim!� MCUs
This publication is subject to replacement by a later edition. To determine whether a later edition
exists, or to request copies of publications, contact:

ZiLOG Worldwide Headquarters
532 Race Street
San Jose, CA 95126
Telephone: 408.558.8500
Fax: 408.558.8300
www.zilog.com

ZiLOG is a registered trademark of ZiLOG Inc. in the United States and in other countries.
All other products and/or service names mentioned herein may be trademarks of the
companies with which they are associated.

Information Integrity
The information contained within this document has been verified according to the general
principles of electrical and mechanical engineering. Any applicable source code illustrated
in the document was either written by an authorized ZiLOG employee or licensed
consultant. Permission to use these codes in any form, besides the intended application,
must be approved through a license agreement between both parties. ZiLOG will not be
responsible for any code(s) used beyond the intended application. Contact the local
ZiLOG Sales Office to obtain necessary license agreements.

Document Disclaimer
©2003 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the
devices, applications, or technology described is intended to suggest possible uses and
may be superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A
REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR
TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZiLOG ALSO DOES NOT ASSUME
LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY
MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED
HEREIN OR OTHERWISE. Except with the express written approval ZiLOG, use of
information, devices, or technology as critical components of life support systems is not
authorized. No licenses or other rights are conveyed, implicitly or otherwise, by this
document under any intellectual property rights.
Technical Note TN001401-0603 9

http://www.zilog.com

	Using Serial Multi-Drop with eZ80Acclaim!™ MCUs Technical Note
	General Overview
	Discussion
	Source Code

