
AN017903-0208
Abstract
This Application Note describes how to use the User
Datagram Protocol (UDP) to exchange data, typically
less than 1500 bytes, between a eZ80F91 web server
and a PC client. The eZ80F91 web server is Zilog’s
eZ80F91 microcontrollers unit (MCU) that executes
the Zilog TCP/IP stack (ZTP), which supports the
UDP protocol. The Application Note describes a
client-side implementation that sends a input, and a
server-side implementation that receives the client
request and sends an appropriate response.

The source code for this Application
Note is contained in the AN0179-
SC01.zip file, available on the
www.zilog.com.

Zilog Product Overview
This section contains brief overviews of the Zilog
products used in this Application Note, which
includes the award-winning eZ80AcclaimPlus!™

MCU and the full-feature ZTP software suite.

eZ80AcclaimPlus!™ MCU Family
Overview
The eZ80AcclaimPlus! family of microcontrollers
includes Flash and non-Flash products. The Flash-
based eZ80AcclaimPlus! MCU device number
eZ80F91, and eZ80Acclaim!® device eZ80F92 and
eZ80F93, are an exceptional value for designing high
performance embedded applications. With speeds up
to 50 MHz and an on-chip Ethernet MAC (eZ80F91
only), you have the performance necessary to execute
complex applications supporting networking func-
tions quickly and efficiently. Combining on-chip
Flash and SRAM, eZ80AcclaimPlus! devices pro-
vide the memory required to implement communica-

tion protocol stacks and achieve flexibility when
performing in-system updates of application firm-
ware. Zilog also offers two eZ80® devices without
Flash memory: the eZ80L92 and eZ80190 micropro-
cessors.

ZTP Overview
The ZTP integrates a rich set of networking services
with an efficient real-time operating system (RTOS).
The operating system is a compact preemptive multi-
tasking, multithreaded kernel with inter-process com-
munications (IPC) support and soft real-time
attributes. Table 1 lists the standard network proto-
cols implemented as part of the embedded TCP/IP
protocol stack in ZTP.

Many TCP/IP application protocols are designed
using the client-server model. The final stack size is
link-time configurable and determined by the proto-
cols included in the build.

Discussion
This section provides a brief overview of the UDP
protocol and lists the UDP-related API functions
available in ZTP. ZTP is Zilog’s TCP/IP software
suite1 that includes UDP among other protocols.

Note:

Table 1. Standard Network Protocols in ZTP

HTTP TFTP SMTP Telnet IP PPP

DHCP DNS TIMEP SNMP TCP UDP

ICMP IGMP ARP RARP

1For more details on ZTP, refer to Zilog TCP/IP Software
Suite Programmer’s Guide Reference Manual
(RM0008).
Application Note
Data Communication with the eZ80F91 MCU
Using the User Datagram Protocol
Copyright ©2008 by Zilog®, Inc. All rights reserved.
www.zilog.com

http://www.zilog.com
http://www.zilog.com
http://www.ZiLOG.com

Data Communication with the eZ80F91 MCU Using the User Datagram Protocol
User Datagram Protocol
The User Datagram Protocol is an IETF standard
transport layer protocol that runs on the IP layer of
the TCP/IP stack. It is defined by RFC 768 as a pro-
tocol for sending messages to application programs
with a minimum of protocol mechanisms. The RFC
also mentions the inherent unreliable nature of the
UDP protocol—it is transaction-oriented but data-
gram delivery is not guaranteed. Therefore, UDP
applications transfer data between a client and server
without any acknowledgement of the communica-
tion. In such a case, user-applications must ensure
that messages are sent and received reliably by using
an error recovery method.

Thus UDP provides a connection-less method that is
fast but inherently less reliable than data transfer over
TCP sockets. However data bytes can be easily
exchanged between networked nodes. Some of the
applications that use UDP by default are Ping,
SNMP, and DNS. Because the time required for
transferring data via UDP is less, transport of audio
and video data streams over UDP in embedded
systems is gaining popularity.

A standard UDP datagram consists of a source and a
destination IP address, the type of protocol and the
data length. Figure 1 displays the UDP datagram and
its components.

UDP API Functions Available in ZTP
Table 2 lists the APIs available for applications using
the UDP layer of ZTP.

Developing the UDP Application
This section explains how to interface the eZ80F91
MCU with the PC in order to exchange UDP data
packets.

Hardware Interfacing
Figure 2 is a block diagram displaying the setup con-
necting the eZ80 development platform and the PC.
The eZ80F91 MCU contains the ZTP software suite
that makes it function as a web server.

Figure 1. The UDP Datagram

IP Header UDP Header UDP Data

UDP Source Port No. UDP Destination Port No. UDP Message Length UDP Checksum
2 bytes 2 bytes 2 bytes 2 bytes

IP Datagram

UDP Datagram

Table 2. ZTP-UDP API Services

API Name Description
Open() Opens a UDP socket for Data transfer
Control() Provides UDP-specific device control

function
Read() Receives a UDP data packet
Write() Sends a UDP data packet
Close() Closes the UDP socket signalling the

end of communication

Figure 2. Block Diagram of the Setup
Connecting the eZ80F91 MCU and the PC

ZPAK -II

4 Port HUB

RS-232

Ethernet

J3

P1

J4 ZDI

P2 Ethernet
Ethernet

Ethernet

PC
eZ80

Development

Platform

®

eZ80F91 Development Kit

(eZ80F910200ZC0)

LAN/WAN/INTERNET
AN017903-0208 Page 2 of 11

Data Communication with the eZ80F91 MCU Using the User Datagram Protocol
Software Implementation
The software implementation consists of two parts,
briefly described below.

Client-side Implementation—The file, Client-
main.c (available in AN0179-SC01.zip file),
runs on the PC client and is coded in ANSI C. For
details of this implementation, see Client-Side
Implementation. The flowchart for the client-side
software is displayed in Figure 3 on page 9.

Server-side Implementation—Th e se rv e r- s i de
software is implemented as a thread in the ZTP stack,
and runs on the eZ80F91 web server. For details of
this implementation, see Server-Side Implementa-
tion. The flowchart for the server-side software is
displayed in Figure 4 on page 10.

The client and server exchange data messages in the
form of UDP datagrams.

The following sections describe the details of the
client-side and the server-side implementations.

Client-Side Implementation
The following tasks comprise the client-side
implementation present in the Clientmain.c file:

• The standard APIs available with the
Microsoft Windows’ TCP/IP s tack are
included in the Clientmain.c file using the
statement,

#include <winsock2.h>.

• A buffer size of 100 bytes is allocated for the
incoming and outgoing UDP messages in the
variables inBufferSize and outBuffer-
Size, respectively. Initialization of the
Windows-side socket is accomplished using
the WSAStartup() function; an error message
is printed on failure to initialize.

• The eZ80F91 server address (in IPv4 format)
i s s t o r e d i n t h e v a r i a b l e ser-
vAddr.sin_addr.s_addr. This IP address

is assigned by the LAN network system
administrator for every PC on the network. The
Clientmain.c file contains a default IP
address that should be changed to the IP
address specific to you.

• The server-side UDP port number (default
value = 5009) is stored in the variable
servAddr.sin_port and can be changed to
any other available port number.

• The client-side port number (default value =
50 06) i s s to r ed i n t h e va r i a b l e
local.sin_port. This default value can be
changed according to the availability of port
numbers on the PC.

When Clientmain.c program is executed, an
input menu, is displayed at the DOS prompt. The
input is then formatted into a UDP packet/datagram
and sent to the server using the ZTP-UDP API
send(). A typical UDP datagram formed by the
send() API is displayed in Figure 1 on page 2.

The section, Server-Side Implementation, describes
how the server handles the UDP datagram. The
recv() API is used to collect the response from
server; the response is stored in the buffer memory.
When the client successfully receives a response
from the server, the socket is closed and the received
data is printed in the DOS window along with the
number of bytes received.

Server-Side Implementation
The following tasks comprise the server-side imple-
mentation present in the file udp_ez80.c. The file
udp_ez80.c contains the test(), udpnormal(),
and normal() functions.

• The main thread of XINU executes the
test() function upon initialization. This
action sets up a command, udptest, in ZTP’s
shell structure.

• The udptest command, along with an argu-
ment, calls the udpnormal() function, which
creates a thread—the normal() function—in
AN017903-0208 Page 3 of 11

Data Communication with the eZ80F91 MCU Using the User Datagram Protocol
the XINU environment, with priority number
20.

• The IP address of the client PC and the UDP
port numbers for both the client PC and server
are supplied as arguments to the ZTP-UDP
API open() function.

• The server sends a message upon receiving
input for the menu displayed at the Windows
DOS prompt. The message—This is message
number one/This is message number two—is
sent by the server depending on the number
entered by you.

• This message is first copied into the xgram
data structure and then sent using the ZTP-
UDP API write() function. The size of the
UDP packet is determined from the argument
provided with the udptest command in
HyperTerminal (see Executing the UDP Demo
Application on page 7). The run-time errors,
including socket open error, memory unavail-
able, or UDP read and write failure, are printed
in the HyperTerminal along with the error
codes to simplify debugging.

Adding and Integrating UDP Demo-
Specific Files to ZTP
The UDP Demo described in this Application Note
requires the eZ80 development platform with an
eZ80AcclaimPlus! microprocessor/controller and the
ZTP stack. For the Demo execution, some of the files
specific to the demo must be added and integrated to
the ZTP stack before the stack is downloaded onto
the eZ80 development platform. This section
describes how to add the Demo files to the ZTP
stack.

The Demo files that must be added to the ZTP project
files are in the AN0179-SC01.zip file, available
for download at www.zilog.com. The Demo files are
of the following types:

• C (*.c) files

The ZTP stack is available on the Zilog website and
can be downloaded to a PC with a user-registration

key. ZTP can be installed in any location as specified
by you; its default location is C:\Program
Files\ZiLOG.

Follow the steps below to add and integrate the UDP
Demo files to the ZTP stack:

1. Download ZTP, browse to the location where
ZTP is downloaded, and open the \web-
site.Acclaim folder.

2. Download the AN0179-SC01.zip file and
extract its contents to a folder on your PC (this
folder is referred to as \UDP_Demo folder in
the rest of the Application Note). Notice the
two extracted folders within the \UDP_Demo
folder:

\Server side_Demo

\Client side_Demo

3. Select and copy all the *.c, and *.h, files
located in the \UDP_Demo\Server
side_Demo folder and paste them into the
..\ZTP\Demo directory.

4. Launch ZDS II, and open the Acclaim-
Demo.pro file available in the path:
..\ZTP\Demo directory.

5. Add the udp_ez80.c file located in the
..\UDP_Demo\Server side_Demo folder
to the project, using the sequence of steps:
Project → Add Files.

6. Open the udp_ez80.c file from within
ZDS II. Change the client IP address and port
number in the following line of code:

if((dev = open(UDP,
"192.1.6.75:5006",(char *)
5009)) == SYSERR)

where,

192.1.6.75:5006 must be substituted
with the IP address and the port number of the
client machine being used, and

5009 must be substituted with the port num-
ber assigned to the eZ80F91 web server.
AN017903-0208 Page 4 of 11

http://www.zilog.com

Data Communication with the eZ80F91 MCU Using the User Datagram Protocol
7. Open the main.c file of the AcclaimDemo
project and enter the IP address for the
eZ80F91 module in the following BootInfo
structure definition:

struct BootInfo Bootrecord = {

 "192.168.1.1",/* Default IP
address */

 "192.168.1.4",/* Default Gate-
way */

 "192.168.1.5",/* Default Timer
Server */

 "192.168.1.6",/* Default File
Server */

 "",

 "192.168.1.7",/* Default Name
Server */

 "",

 0xffffff00UL/* Default Subnet
Mask */

 };

The Bootrecord variable contains the net-
work parameters and settings (in the four-octet
dotted decimal format) that are specific to the
local area network at Zilog as default.

Modify the above structure definition
with appropriate IP addresses within
your local area network.

8. In the main.c file, add the following function
prototypes and global variables:

//prototype functions

void test (void);

9. In the same main.c file, after the line
shell_init(fd);, add the function,
test();.

10. Open the eZ80_HW_Config.c file and
change the default MAC address (provided by
ZTP) such that each eZ80 development
platform on the LAN contains a unique MAC
address. The following line of code is present
in the eZ80_HW_Config.c file:

const BYTE f91_mac_addr [EP_ALEN]
= {0x00, 0x90, 0x23, 0x00, 0x0F,
0x91};

In the 6-byte MAC address displayed above,
the first three bytes must not be modified; the
last three bytes can be used to assign a unique
MAC address to the eZ80 development
platform.

11. Open the ipw_ez80.c file. For this applica-
tion, DHCP is disabled; therefore, ensure the
following:

b_use_dhcp = FALSE

12. Save and close the AcclaimDemo project.

Compiling and Building the Client-
Side Project
Follow the steps below to compile and build the
client-side project:

1. Launch the Microsoft Visual C++ IDE and
open the file Clientmain.c (located in
the\UDP_Demo\Client side_Demo folder).

2. Set the IP address and the port number of the
eZ80F91 web server in this file, as explained in
Client-Side Implementation on page 3.

3. From within the Microsoft Visual C++ IDE
navigate to File → New → Projects.

4. Select Win32 Console Application from the
list in the left panel and provide a project name
and path for the client-side project.

5. Click OK. The Win32 Console Application
dialog box is displayed.

6. Select An Empty Project radio button in
answer to the question on the kind of project to
be created; click FINISH to close the Win32
Console Application dialog box.

7. Navigate to Project → Add to Project →
Files. Browse to the Clientmain.c file and
add it to the client-side project.

Note:
AN017903-0208 Page 5 of 11

Data Communication with the eZ80F91 MCU Using the User Datagram Protocol
8. Navigate to Project → Settings → Link and
add the library file, ws2_32.lib in the
Object/library module text field.

9. Compile and build the client-side project.

10. Save and close the client-side project.

To execute the client-side program, see Executing
the UDP Demo Application on page 7

Demonstrating the UDP
Application
This section contains the requirements and instruc-
tions required to setup and run the UDP Demo. The
Demo demonstrates the exchange of datagrams
between the eZ80F91 MCU running ZTP (with UDP
services) and a PC client running the UDP services of
Microsoft Windows-based TCP/IP stack.

Setup
The basic setup to assemble the Demo is displayed in
Figure 2 on page 2. This setup displays the
connections between the PC, LAN/WAN/Internet,
and the eZ80 Development Platform with the
eZ80F91 Module.

The requirements are classified under hardware and
software.

Hardware Requirements
The hardware requirements to execute the UDP
Demo are as follows:

• eZ80F91 Development Kit, which includes the
following:
– eZ80 Development Platform
– eZ80F91 Module
– 9 V DC Power Supply
– ZPAKII Debug Interface Module, with

power supply
– 4-port 10 BaseT Ethernet Hub with power

supply

• PC with HyperTerminal and Microsoft Visual
C++ IDE

Software Requirements
The software requirements to execute the UDP Demo
are as follows:

• Zilog Developer Studio II—IDE for
eZ80Acclaim! (ZDS II)

• Zilog’s TCP/IP Software Suite (ZTP)

• Microsoft Visual C++ IDE to build the client-
side program

Settings
HyperTerminal Settings
The HyperTerminal settings include:

• Set HyperTerminal to 57.6 kbps Baud and 8-
N-1, with no flow control

Jumper Settings
For the eZ80 Development Platform are as follows:

• J2 is ON

• J3, J7, J11, J20, J21, J22 are OFF

• For J14, connect 2 and 3

• For J19, CS_EX_IN is ON, MEM_CEN1 and,
MEM_CEN2, and MEM_CEN3 are OFF

For the eZ80F91 Module on the eZ80 development
platform are as follows:

• JP3 is OFF

Procedure
Follow the procedure below to setup the UDP Demo
application prior to execution:

1. Ensure that the required Demo files are added
and integrated to ZTP before proceeding. For
details, see Adding and Integrating UDP
Demo-Specific Files to ZTP on page 4.
AN017903-0208 Page 6 of 11

Data Communication with the eZ80F91 MCU Using the User Datagram Protocol
2. Make the connections as per Figure 2 on page
2. Follow the jumper settings provided in
Jumper Settings.

3. Connect the 9 V power supply to the eZ80F91
Development Kit.

4. Connect the 5 V power supply to ZPAKII and
the 7.5 V power supply to the Ethernet HUB.

5. Launch the HyperTerminal and follow the set-
tings provided in the HyperTerminal Settings
section.

6. From within the HyperTerminal, press z
repeatedly, and then press the reset button on
ZPAKII to view the menu to set the ZPAKII IP
address.

7. Enter H to display help menu, and follow the
menu instructions to obtain the IP address for
ZPAKII in order to download the Demo file.
This ZPAKII IP address must be entered in the
ZDS II.

8. Launch ZDS II—eZ80Acclaim! and open the
Demo project file (AcclaimDemo.pro)
located in the path: ..\ZTP\Demo.

9. Open the main.c file. Ensure that the
BootInfo structure contains information that
is relevant to your network configuration.

10. Build the AcclaimDemo project and download
the resulting file to the eZ80F91 Module on the
eZ80 development platform, using ZDS II.

11. Open the file Clientmain.c in Microsoft
Visual C++ IDE. Ensure that the IP address
and port number of the eZ80F91 web server in
this file are set as explained in Client-Side
Implementation on page 3.

12. Compile and build the Clientmain.c file
into a new project as explained in Compiling
and Building the Client-Side Project on page 5.

13. Run both the client- and server-side projects.
For more information, see Executing the UDP
Demo Application.

Executing the UDP Demo
Application
Follow the below procedure to execute and test the
UDP Demo application.

1. Execute the AcclaimDemo by clicking the GO
icon in the ZDS II tool bar.

2. Execute Clientmain.c from Microsoft
Visual C++ IDE by pressing CTRL+F5. A
DOS window opens up as the user-interface
with the following menu:

Menu: :

1. Read Flash message1

2. Read Flash message2

Enter 1 or 2

3. In the HyperTerminal console, at the prompt,
enter

udptest 100

to execute the normal() thread on the
eZ80F91 web server. The argument 100
specifies the size of the UDP packet.

4. In the DOS window, enter either number 1 or 2
after the menu display and press Enter. The
number is sent as a UDP message to the
eZ80F91 web server.

The response (a UDP packet) is parsed by the
PC client-side program and is printed in the
DOS window. Observe that the message,

This is message number one

is displayed at the DOS prompt when 1 is
entered.

And,

This is message number two

is displayed at the DOS prompt when 2 is
entered.

5. To exit from the program, make the HyperTer-
minal window active, press Enter, and close
all running programs.
AN017903-0208 Page 7 of 11

Data Communication with the eZ80F91 MCU Using the User Datagram Protocol
Summary
This Application Note demonstrates the exchange of
datagrams between a PC client and the eZ80F91 web
server using the UDP layer of ZTP stack. Compared
to TCP, UDP functions are easy to use and provide a
faster way of exchanging messages. UDP is benefi-
cial for eZ80F91-based products, provided that all
the errors arising in this kind of transaction are taken
care of.

The source code for programs provided in this Appli-
cation Note for both the client-side and the server-
side, can be used as templates, to build complex
applications. UDP is the underlying protocol for
SNMP, TFTP, BOOTP, TIMEP and DNS protocol
layers, all of which are supported in ZTP.

References
The documents associated with eZ80Acclaim!®, and
eZ80AcclaimPlus!™ family of products are listed
below:

• The full text of the RFC 768 is available at the
URL http://www.ietf.org/rfc/rfc768.txt

• eZ80F91 MCU Product Specification
(PS0192)

• Zilog Developer Studio II—eZ80Acclaim!
User Manual (UM0144)

• Zilog TCP/IP Software Suite Programmer’s
Guide Reference Manual (RM0008)
AN017903-0208 Page 8 of 11

http://www.ietf.org/rfc/rfc768.txt

Data Communication with the eZ80F91 MCU Using the User Datagram Protocol
Appendix A—Flowcharts
This Appendix displays the flowcharts for the UDP application implementation described in this Application
Note.

Figure 3 displays the flowchart for the client-side program, Clientmain.c.

Figure 3. Flowchart for the Client-Side Program

Start

Is initialization

successful?

No

No

No

No

Yes

Yes

Print error message

Allocate memory buffer

End

Is memory

available?

Print error message

End

Set server IP address

and UDP port number

Open UDP socket using

Windows socket API

Is the socket open?

Print error message

Print error message

End

End

Yes

Yes

Set local IP address

and UDP port number

Is port binding

successful?

Read menu number input

Send menu number

to the server via UDP

Print data received from

the server on console

Infinite Loop

Read data from the

server via UDP

Initialize Windows UDP

socket using

WSAstartup() command
AN017903-0208 Page 9 of 11

Data Communication with the eZ80F91 MCU Using the User Datagram Protocol
Figure 4 displays the flowchart for the execution of the UDP-related thread, the normal() function.

Figure 4. Flowchart for the UDP Thread, the normal() Function

Start

No

End

Yes

In
fi
n

it
e

L
o
o

p

Initialize MCU and ZTP

Call test() function

Add command

udptest to shell

Is the command

udptest received? No

Resume other

XINU tasks

Yes

Create a thread in XINU

based on the client IP

address and the port number

with a memory buffer

Yes

Is UDP open()
function successful?

No

Send data through

UDP back to client

Free memory buffer,

and close UDP port

Is UDP write

successful?

Procure data relevant

to menu number

Read menu number from

client through UDP
AN017903-0208 Page 10 of 11

AN017903-0208 Page 11 of 11
11

Data Communication with the eZ80F91 MCU Using the User Datagram Protocol

DO NOT USE IN LIFE SUPPORT

LIFE SUPPORT POLICY
ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)
support or sustain life and whose failure to perform when properly used in accordance with instructions for
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A
critical component is any component in a life support device or system whose failure to perform can be
reasonably expected to cause the failure of the life support device or system or to affect its safety or
effectiveness.

Document Disclaimer
©2008 by Zilog, Inc. All rights reserved. Information in this publication concerning the devices,
applications, or technology described is intended to suggest possible uses and may be superseded. ZILOG,
INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY
OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT.
ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY
INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR
TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this
document has been verified according to the general principles of electrical and mechanical engineering.
Z8, eZ80, eZ80Acclaim!, and eZ80AcclaimPlus! are registered trademarks of Zilog, Inc. All other product
or service names are the property of their respective owners

Warning:

	Data Communication with the eZ80F91 MCU Using the User Datagram Protocol
	Abstract
	Zilog Product Overview
	eZ80AcclaimPlus!™ MCU Family Overview
	ZTP Overview

	Discussion
	User Datagram Protocol
	UDP API Functions Available in ZTP

	Developing the UDP Application
	Hardware Interfacing
	Software Implementation
	Adding and Integrating UDP Demo- Specific Files to ZTP
	Compiling and Building the Client- Side Project

	Demonstrating the UDP Application
	Setup
	Settings
	Procedure
	Executing the UDP Demo Application

	Summary
	References
	Appendix A-Flowcharts

