
ZiLOG Worldwide Headquarters • 532 Race Street • San Jose, CA 95126
Telephone: 408.558.8500 • Fax: 408.558.8300 • www.ZiLOG.com

Application Note

Thermostat Demo Using
the eZ80Acclaim!™ MCU

AN016804-0504

http://www.ZiLOG.com
http://www.ZiLOG.com

AN016804-0504

This publication is subject to replacement by a later edition. To determine whether a later edition
exists, or to request copies of publications, contact:

ZiLOG Worldwide Headquarters
532 Race Street
San Jose, CA 95126
Telephone: 408.558.8500
Fax: 408.558.8300
www.zilog.com

ZiLOG is a registered trademark of ZiLOG Inc. in the United States and in other countries. All other
products and/or service names mentioned herein may be trademarks of the companies with which they are
associated.

Information Integrity
The information contained within this document has been verified according to the general principles of
electrical and mechanical engineering. Any applicable source code illustrated in the document was either
written by an authorized ZiLOG employee or licensed consultant. Permission to use these codes in any
form, besides the intended application, must be approved through a license agreement between both
parties. ZiLOG will not be responsible for any code(s) used beyond the intended application. Contact the
local ZiLOG Sales Office to obtain necessary license agreements.

Document Disclaimer
©2004 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices,
applications, or technology described is intended to suggest possible uses and may be superseded.
ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY
OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZiLOG
ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED
IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR
OTHERWISE. Except with the express written approval ZiLOG, use of information, devices, or technology
as critical components of life support systems is not authorized. No licenses or other rights are conveyed,
imp l i c i t l y o r o the rw ise , by th i s document under any in te l l ec tua l p rope r ty r igh ts .

http://www.zilog.com

AN016804-0504 Table of Contents

iii

Application Note
Thermostat Demo Using the eZ80Acclaim!™ MCU

Table of Contents
List of Figures . iv
List of Tables .v
Abstract . 1
ZiLOG Product Overview . 1

eZ80Acclaim!™ MCU Family Overview . 1
ZiLOG TCP/IP Software Suite Overview . 1

Discussion . 2
Advantages of Using Java . 3
An Embedded HTTP Webserver . 3
Reading and Writing to the Embedded Webserver 5

Thermostat Implementation Using eZ80Acclaim!™ . 6
Temperature Control . 6

Hardware Architecture . 6
Software Implementation . 7

Development of Java Applets . 7
Development of the Embedded Firmware . 8
Adding and Integrating Thermostat Demo Files to ZTP 13

Demonstration . 19
Requirements . 19
Setup . 19
Settings . 20
Procedure . 21

Summary . 23
Appendix A—Reference . 24
Appendix B—Flowcharts . 25

AN016804-0504 List of Figures

iv

Application Note
Thermostat Demo Using the eZ80Acclaim!™ MCU

List of Figures
Figure 1. Overview of Thermostat Demo using eZ80Acclaim!™ 2
Figure 2. Hardware Block Diagram for Thermostat Demo 6
Figure 3. Control Panel for Temperature Sensor . 9
Figure 4. Control Panel for LEDs - I . 10
Figure 5. Control Panel for LEDs - II . 11
Figure 6. Setup for Thermostat Demo . 20
Figure 7. Flowchart for the Main Routine . 25
Figure 8. Flowchart for the Thermostat Applet and LCD Update 26

AN016804-0504 List of Tables

v

Application Note
An SPI Temperature Sensor Interface with the Z8 Encore!® SPI Bus

List of Tables
Table 1. Standard Network Protocols in ZTP . 2

Table 2. List of References . 24

1

Application Note
Thermostat Demo Using the eZ80Acclaim!™ MCU
Abstract
The Thermostat Demo illustrates how easy it is to develop Internet-enabled pro-
cess control and monitoring applications by embedding Java elements on an
eZ80Acclaim!™ microcontroller. A variety of languages are used in the design and
specification of hardware and software for embedded electronic systems. The
integration of hardware and software components for this Demo is implemented
using dissimilar languages. The Thermostat drivers described in this Application
Note are written in the C language. A Graphical User Interface (GUI) for the
embedded system is developed using Java applets. The Thermostat Demo is thus
a Java-enabled process control application that uses the Internet.

With this Java-based demo application, the user can monitor and manipulate the
Thermostat-based control system in real time and can display dynamic tempera-
ture values.

The source code file (saved in the WinZip format) associated with this Application
Note is AN0168-SC01.zip, and is available on the ZiLOG website.

ZiLOG Product Overview
This section contains brief overviews of the ZiLOG products used in this Applica-
tion Note, which includes the award-winning eZ80Acclaim!™ microcontrollers and
the full-featured ZiLOG TCP/IP software suite.

eZ80Acclaim!™ MCU Family Overview
The eZ80Acclaim!™ family of microcontrollers includes Flash and non-Flash
products. The Flash-based eZ80Acclaim!™ MCUs, device numbers
eZ80F91,eZ80F92, and eZ80F93, are an exceptional value for customers design-
ing high performance embedded applications. With speeds up to 50MHz and an
on-chip Ethernet MAC (eZ80F91 only), designers have the performance neces-
sary to execute complex applications supporting networking functions quickly and
efficiently. Combining on-chip Flash and SRAM, eZ80Acclaim!™ devices provide
the memory required to implement communication protocol stacks and achieve
flexibility when performing in-system updates of application firmware.

ZiLOG also offers two eZ80Acclaim!™ devices without Flash memory: the
eZ80L92 and eZ80190 microprocessors.

ZiLOG TCP/IP Software Suite Overview
The ZiLOG TCP/IP Software Suite (ZTP) integrates a rich set of networking ser-
vices with an efficient real-time operating system (RTOS). The operating system is
a compact preemptive multitasking, multithreaded kernel with inter-process com-
munications (IPC) support and soft real-time attributes. Table 1 lists the standard
AN016804-0504 Abstract

http://www.zilog.com

2

Application Note
Thermostat Demo Using the eZ80Acclaim!™ MCU
network protocols implemented as part of the embedded TCP/IP protocol stack in
ZTP.

Many TCP/IP application protocols are designed using the client-server model.
The final stack size is link-time configurable and determined by the protocols
included in the build.

Discussion
The Thermostat Demo illustrates how to develop an Internet-based application to
control or monitor processes by combining the advantage offered by Java’s
robustness with a real-time embedded system that talks to low level drivers.
Implementing Java compensates for the drawbacks of an embedded system,
such as, lack of a file system, restricted memory, and lack of multithreading capa-
bility, to name a few.

The architecture and design of the Thermostat Demo incorporates a GUI using
Java applets to connect to the embedded environment. The user interface is a
Java applet. The real-time and device-specific processes are written in C. The
Java GUI obtains the data from the low-level embedded software code (C) and
presents the data in a client browser. The flow of data from the embedded envi-
ronment to the Java-based GUI is depicted in Figure 1.

Table 1. Standard Network Protocols in ZTP

HTTP TFTP SMTP Telnet IP PPP

DHCP DNS TIMEP SNMP TCP UDP

ICMP IGMP ARP RARP

Figure 1. Overview of Thermostat Demo using eZ80Acclaim!™

PC

GUI
(Java Applet)

HTTP- Client Application

BrowserIE or Netscape

TCP-IP Stack

Data Link Layer

eZ80F91 Development Board
(eZ80F9100200ZC0)

Thermostat Board

HTTP- Server

Firmware

TCP-IP Stack (ZiLOG)

Data Link Layer

LCD Display
Switches

LEDs

INTERNET/LAN/WAN

eZ80F91

Module
AN016804-0504 Discussion

3

Application Note
Thermostat Demo Using the eZ80Acclaim!™ MCU
The Thermostat Demo described in this Application Note isolates the real-time
control sections of an embedded application from its Java-based sections, while
allowing information to flow freely between the two sections.

An embedded system that uses a Java applet for its graphical user interface
requires system software that supports TCP/IP with an HTTP web server running
over it that serves HTML pages referring to the Java applet, and the code for the
Java applet. The embedded system does not require a Java Virtual Machine. The
user can access the embedded system via any Java-enabled web browser.

A request to read an HTML page loads a GUI applet into the browser and starts
executing it. The applet opens a socket and connects to the main application in
the embedded system. The main application, written in C, opens a socket and lis-
tens for a connection by the applet. When a connection is made, messages can
be sent back and forth between the applet and the main application in response to
a user request to see data or change settings.

The Java Virtual Machine that executes the GUI applet actually runs on the web
browser, and not on the embedded system.

Advantages of Using Java
The advantages of using a Java applet are briefly described below.

• The applet is stored as a file in the web server that does not require additional
memory from an embedded device to operate; the restricted memory on the
embedded system is neatly sidestepped.

• An embedded system vendor can be assured that customers have access to a
web browser no matter what computer platform they choose to access the
embedded system from; Java applets are platform independent and can
provide cross-platform GUIs.

• The Java GUI technique works well on a slow network connection, such as a
serial line; at a time many clients are served efficiently.

• A Java-based GUI is a much better solution than customized client software,
because there is no need to ship any client side media or client side
installation instructions with the product; there is no additional cost, because
there is no need for OS upgrades or technical support for the client side
software. Only one version of the Java-based GUI software is required, and
this version is stored in ROM/Flash in the embedded system.

An Embedded HTTP Webserver
HTTP web servers use a standard synchronous request or response design run-
ning over the TCP/IP, identical to classical client or server architecture. When a
client makes a request to an HTTP server, it sends an HTTP request message.
The HTTP request message includes the client request, as well as information
AN016804-0504 Advantages of Using Java

4

Application Note
Thermostat Demo Using the eZ80Acclaim!™ MCU
about the client ’s capabilities. The HTTP response is similar to the request,
except that it is composed of two parts—the response header and the response
body. The response body represents the result of the initial request. A single blank
line in this HTTP response file separates the response header from the response
body.

Most web server software do not work well in embedded systems. The require-
ments for a web server designed to run on a workstation differs from that of
designed to run in an embedded system. Features such as the presence of log
files and larger memory footprint in non-embedded web servers are a definite hin-
drance when it comes to implementing an embedded web server. Embedded web
servers lay emphasis on reducing memory footprint while increasing efficiency,
reliability and providing mechanisms to generate dynamic data.

Embedded systems do not typically serve a multitude of static web pages. Internet
appliances and embedded systems, in general, require web servers that enhance
their existing functionality without impinging on vital device resources or requiring
a redesign. Because many of these systems are cost-constrained, memory and
CPU resources are usually at a premium. It is vital that embedded web servers
offer minimal memory requirements and are efficient. The requirements for an
embedded web server include:

• Memory usage

• Dynamic page refreshing/update

• Web page storage in Flash or ROM

These concepts are elaborated below.

Memory Usage
One of the most important requirements for an embedded web server is small
memory footprint. The web server use very little memory (code, stack, and heap),
and it must not fragment memory. Many embedded devices employ simple mem-
ory allocations that cannot combine fragmented memory effectively. Because web
servers must often respond to requests to serve pages, simple memory alloca-
tions can cause problems. When the memory used to serve a page is freed, it can
be useless, as it cannot be merged with adjacent memory blocks on the heap. To
solve this problem, embedded web servers should use only statically allocated or
pre-allocated memory blocks.

Dynamic Page Refreshing/Update
An embedded device features only a small number of pages in memory, and often
refreshes the page contents on the fly. The web pages display ever-changing
information about device status, values read by sensors, and any other data avail-
able to the device.
AN016804-0504 An Embedded HTTP Webserver

5

Application Note
Thermostat Demo Using the eZ80Acclaim!™ MCU
Web Page Storage in Flash or ROM
Many embedded systems do not feature disk drives, yet they must be accessed
and controlled via the web. In such cases, a method of storing web pages in ROM
is required. Embedded web servers should be able to access HTML, Java
applets, image files, and any other web contents stored in Flash memory or ROM.

Reading and Writing to the Embedded Webserver
To communicate over a network using Java programs, the Socket or URL classes
provided in the java.net package are used. The underlying TCP and UDP lay-
ers are not a concern. Socket is one end-point of a two-way communication link
between two programs running on the network. URL is a Uniform Resource Loca-
tor that is a pointer to a resource on the World Wide Web.

The java.net package provides two socket-related classes—Class Socket and
Class ServerSocket—that implement the client side and the server side of a net-
work connection, respectively. Class Socket implements the client side of a two-
way connection between the Java program and another program on the network,
while Class ServerSocket provides a system-independent implementation of the
server side of a client/server socket connection. The Thermostat Demo imple-
ments only the Socket class because the server program is implemented in C,
and not in Java.

Java programs that interact over the Internet can also use URLs to find Internet
resources. Java programs use Class URL in the java.net package to represent
a URL address. Java applets use a URL to reference and connect to these net-
work resources. If the server supports a protocol that a URL recognizes (for exam-
ple, http), the URL can be used to create a URL Connection to the server (which
normally connects via the Port 80 socket) to manage protocol-specific communi-
cation.

Sockets can be used regardless of whether the server supports a protocol that
recognizes a URL or not, but while using a socket to contact an HTTP server,
some of the details managed by the URL must be entered manually by the user.
When a user wants to avoid using established protocols, communication accord-
ing to user specifications can be effectively managed via sockets.

For more information regarding sockets and URLs, please visit:

http://java.sun.com/j2se

Thermostat Implementation Using eZ80Acclaim!™
To understand the Thermostat implementation, it is necessary to first look at how
the temperature is controlled by the eZ80Acclaim!™ MCU before getting to the
details of the hardware and the software implementations.
AN016804-0504 Reading and Writing to the Embedded Webserver

http://java.sun.com/j2se/1.4.1/docs/api/java/net/Socket.html

6

Application Note
Thermostat Demo Using the eZ80Acclaim!™ MCU
Temperature Control
This section discusses how the eZ80Acclaim!™ processor controls the tempera-
ture. The Java applet features buttons that allow the user to send commands to
the processor to control the temperature around the temperature sensor, for set-
ting the Thermostat control parameters, such as upper and lower temperature set
points. A screenshot of the GUI implemented using a Java applet is shown in
Figure 3 on page 9.

The upper and lower set point values are passed to the embedded HTTP server
using the Java socket connections that invoke the CGI script. The processor
obtains these values via the firmware interface that use the CGI script. The pro-
cessor continuously (every two seconds) reads the temperature of the sensor and
switches on/off the bulb or the fan to maintain the temperature within these set
limits. The new temperature values are sent via the CGI-Firmware interface to the
HTTP webserver, where the temperature values in the Java applet are updated
and finally displayed on the screen. The processor also updates the temperature
values on the LCD display unit every two seconds.

Hardware Architecture
Figure 2 is a block diagram of the hardware architecture featuring the eZ80®
Development Platform and the Thermostat Board.

The pins PB4, PB5, and PB6 on the eZ80F91 MCU are connected to the LEDs on
the Thermostat Board. The LCD Module is used as a memory map device, with
0x800002 as the memory address. The PAL (Programmable Array Logic) unit is
used for address decoding. Refer to Figure 2 for details of the LCD connection.

Figure 2. Hardware Block Diagram for Thermostat Demo

PB5

PB6

PB3

PB4

SCL

SDA

Thermostat Board

S3

eZ80F91 Development Board

(eZ80F910200ZC0)

D3

Character LCD

Module

MAX6625

eZ80F91 MCU

9-Bit

Temperature

Sensor with

I C Serial

Interface

2
LAMP

FAN

SWITCHES

S2S1

PB0

PB1

PB2

PB7

D2D1

LEDs

DATA Bus

ADDRESS Bus

PAL

+

Buffer

DATA Bus
AN016804-0504 Temperature Control

7

Application Note
Thermostat Demo Using the eZ80Acclaim!™ MCU
The LCD module displays the changing temperature of the temperature sensor
dynamically.

The pins PB0, PB1 and PB2 are connected to three press button switches, S1,
S2, and S3 respectively. These switches can be used to force heating or cooling
or prevent heating or cooling of the temperature sensor. Pin PB7 connects to the
Fan that cools the temperature sensor when turned on, while pin PB3 connects to
a Lamp that heats up the temperature sensor when turned on.

MAX6625 is a 9-bit Temperature Sensor with an I2C Serial interface that is con-
nected to the SDA and SCL lines on the eZ80F91 MCU.

Software Implementation
The software implementation for the Java-based Thermostat Demo is divided into
the following sections:

Development of Java Applets: This section, on page 7, explains the implementa-
tion of the GUI in the form of several Java applets to create a socket connection,
display temperature reading, allow setting of the upper and lower temperature val-
ues, indicate the status of heating /cooling as controlled by the hardware
switches, and send inputs to control the LEDs.

Development of the Embedded Firmware: This section, on page 8, explains the
two-sided Firmware interface. One side interfaces with the CGI script inputs from
the HTTP web server, while the other side interfaces with the actual hardware
devices like the temperature sensor and the LCD panel.

Adding and Integrating Thermostat Demo Files to ZTP: The software implementa-
tion for the Java-based Thermostat Demo involves the use of the ZiLOG TCP/IP
stack (ZTP). The eZ80F91 Development Kit contains the ZiLOG TCP/IP stack
software (ZTP) that supports socket connections. This section, on page 13, con-
tains the details for adding and integrating the Thermostat Demo application with
the ZTP stack. For more details about the ZiLOG TCP/IP stack, contact the ZiLOG
help desk.

Development of Java Applets
Java applets are developed using a GUI builder (any text-based editor like Note-
pad can be used). Sun’s Java Development Kit (JDK) is used for compiling the
applet source files.

The Java applet, TstatHttpClient.class creates the socket connection to
communicate to the host computer from where the applets are loaded. When any
applet requires information from the main application, it sends a request message
via this socket. The main application responds by sending a response message
through the same socket.
AN016804-0504 Software Implementation

http://support.zilog.com/support/custom_login.asp
http://support.zilog.com/support/custom_login.asp
http://support.zilog.com/support/custom_login.asp

8

Application Note
Thermostat Demo Using the eZ80Acclaim!™ MCU
The rest of the Java applets provide control and monitoring capabilities to the
Thermostat Board on the eZ80® Development Platform. The Java applets provide
the following functionality:

• The facility to manipulate the upper and lower set points for the temperature
sensor.

• The facility to display the updated temperature values on a client web browser
in graphical and numerical formats.

• The facility to display the status of the hardware switches, which are used to
force heating or cooling or turn off the heating and cooling, on the temperature
sensor.

Development of the Embedded Firmware
The embedded firmware interfaces at two levels: at one level it interfaces between
the HTTP web server on the ZiLOG TCP/IP stack (ZTP) and the Java applets, and
at another level the embedded firmware interfaces with the actual hardware
devices on the Thermostat Board and the LCD panel.

The following sub-sections explain the details of the embedded firmware inter-
faces.

Firmware Interface to Java Applets
The firmware interface establishes communication links between the Java GUI
and the firmware. This firmware interface is written in C and developed using the
ZiLOG Development Studio (ZDSII).

Figure 3 is a screen shot of the web page using the Thermostat applet.
AN016804-0504 Development of the Embedded Firmware

9

Application Note
Thermostat Demo Using the eZ80Acclaim!™ MCU
In Figure 3, the Thermostat.class applet receives the temperature data and
displays it via the applet, on the web browser. The applet invokes the webserver’s
CGI scripts contained in the tstat_control_cgi.c to write to and read from the
HTTP webserver.

Figure 4, is a screen shot of the web page using the Button applet.

Figure 3. Control Panel for Temperature Sensor
AN016804-0504 Development of the Embedded Firmware

10

Application Note
Thermostat Demo Using the eZ80Acclaim!™ MCU
In Figure 4, the Button.class applet demonstrates how the LEDs are controlled
remotely and how the hardware-controlled Thermostat heating and cooling is dis-
played remotely. The Button applet uses the CGI script file,
java_control_cgi.c to control the LEDs and check the hardware switch inputs.

Figure 5, is a screen shot of the web page generated by an HTML form.

Figure 4. Control Panel for LEDs - I
AN016804-0504 Development of the Embedded Firmware

11

Application Note
Thermostat Demo Using the eZ80Acclaim!™ MCU
In Figure 5, The LEDs are controlled by inputs into this HTML form. The HTML
page, Control panel for LEDs-II demonstrates ON/OFF and Flash rate control
using HTML forms. The HTML form handler uses the CGI script file
switches_cgi.c.

Embedded webserver connections are established using either the Socket Class
or the URL Class available in the java.net package. The URL code segment
that can be used instead of a direct socket connection to a server is explained
here. To write to a server, a Port 80 socket connection to the server is created.
The code to obtain this socket connection is called via the getupdate() method
and the code to write to the socket is called via a sendRequest() method.

To read dynamic data, a URL to the CGI dynamic page is built on the server from
where the applets are delivered. After opening the URL connection, the data is
received in this connection. When all of the data is sent through an output stream
(by calling the getupdate() method), an input stream (in Stream) for the URL
connection reads the server’s response.

Figure 5. Control Panel for LEDs - II
AN016804-0504 Development of the Embedded Firmware

12

Application Note
Thermostat Demo Using the eZ80Acclaim!™ MCU
The CGI interface programs make use of the HTTP functions http_init(),
http_get(), http_post(), and http_request().These programs are com-
mon functions used to build the embedded HTTP webserver. The CGI script file,
input_cgi.c, passes the maximum and minimum set point values from the Java
applet to the main.c program. The functions in the main.c file, calls the appropri-
ate functions to read the temperature values from the temperature sensor on the
Thermostat Board and maintains the temperature between the upper and lower
set points, (by turning on the bulb or the fan) by dynamically upgrading the limits
set by the user using the buttons on the GUI.

The constantly changing temperature values from the temperature sensor are
read by the Java applet by invoking the CGI script, and displayed in a graphical
and numerical format on the web browser. Reading and writing to the server occur
every two seconds. A thread running in the applet controls this process.

Firmware Interface to Hardware
The firmware interface to the hardware performs the following tasks:

• Initializes the eZ80Acclaim!™ I/O ports to configure them for reading and
writing to the devices on the Thermostat Board and the LCD panel.

• The firmware interface calls the function http_init() with appropriate
parameters to build the web server. The web server creates several threads
so that multiple web servers run on multiple ports. The structure, WebPages,
defines the kinds of pages that are embedded in the website. All necessary
static and dynamic web pages that are built in this structure are defined. The
index.html and tstat_control.html are created as dynamic web pages
and the Thermostat.class is created as a static web page.

• The firmware interface initializes the I2C-temperature sensor.

• Reads the temperature from the MAX6625 Temperature Sensor using the
readtemp() function.

• The Firmware interface is used to exchange data between the temperature
sensor and a Liquid Crystal Display (LCD) panel, to display temperature
variation dynamically. The LCD panel is plugged to the port A of the eZ80F91
MCU. The LCD program initially displays the IP address of the server. When
the user requests a URL via the Browser, the program displays the set upper/
lower temperature values, and the current temperature on the LCD panel. The
temperature reading is updated every two seconds.

The Thermostat Demo code files are located in the AN0168-SC01.zip file
that is available on the ZiLOG website.

Note:
AN016804-0504 Development of the Embedded Firmware

http://www.zilog.com

13

Application Note
Thermostat Demo Using the eZ80Acclaim!™ MCU
Adding and Integrating Thermostat Demo Files to ZTP
The Thermostat Demo described in this Application Note requires the eZ80®
Development Platform that contains the eZ80F91 MCU with the ZiLOG TCP/IP
stack (ZTP), and the Thermostat Board. For the Thermostat Demo execution, the
files specific to the demo must be added and integrated to the ZTP stack before it
is downloaded onto the eZ80® Development Platform. This section contains the
details of adding the Thermostat Demo’s files to the ZTP stack.

The Thermostat Demo files that must be added to the ZTP project files are in the
AN0168-SC01.zip file available on the ZiLOG website. The Demo files are of the
following types:

• Assembly (*.asm) files

• C (*.c) files

• Header (*.h) files

• HTML (*.htm) files

• Java (*.class) files

The ZTP stack is available on the ZiLOG website and can be downloaded to a PC
with a user registration key. ZTP can be installed in any location as specified by
the user; its default location is C:\Program Files\ZiLOG.

Perform the following steps to add and integrate the Demo files to the ZTP stack:

1. Download ZTP, browse to the location where ZTP is downloaded, and open
the \website.Acclaim folder.

2. Download the AN0168-SC01.zip file and extract its contents to a folder on
your PC (this folder is referred to as \Thermostat Demo folder in the rest of
the Application Note). Notice the two extracted folders within the
\Thermostat Demo folder:
\TD_Demo

\TD_Website.Acclaim

3. Select and copy all the *.htm/*.html and *.class files in the
\Thermostat Demo\TD_Website.Acclaim folder and paste them into the
..\ZTP\website.Acclaim folder.

4. Select and copy all the *.c, *.h, and *.asm files located in the
\Thermostat Demo\TD_Demo folder and paste them into the ..\ZTP\Demo
directory.

5. Launch ZDSII and open the project file, website.pro located in the path:
..\ZTP\website.Acclaim
AN016804-0504 Adding and Integrating Thermostat Demo Files to ZTP

http://www.zilog.com
http://www.zilog.com

14

Application Note
Thermostat Demo Using the eZ80Acclaim!™ MCU
6. Now add all the *.htm and *.class files located in the ..\website.Acclaim
folder to the project, using the sequence of steps: Project → Add Files.

The *.htm files to be added are listed below:
control_page.htm

jcontrol_page.htm

ThermostatDemo.html

thermostatf.htm

tstat_control_page.htm

The *.class files to be added are listed below:
ButtonApplet.class

CustomParser.class

LEDBulb.class

messagerA.class

MiniHttpClient.class

ParamParser.class

Thermometer.class

Thermostat.class

TstatHttpClient.class

7. Open the website.c file from within ZDSII, and enter the following
prototype declarations into it:

// Thermostat pages

extern struct staticpage control_page_htm;

extern struct staticpage jcontrol_page_htm;

extern struct staticpage thermostatf_htm;

extern struct staticpage thermostat_htm;

extern struct staticpage ThermostatDemo_html;

extern struct staticpage tstat_control_page_htm;

extern int input_cgi(struct http_request *request);

extern int java_control_cgi(struct http_request *request);

extern int switches_cgi(struct http_request *request);
AN016804-0504 Adding and Integrating Thermostat Demo Files to ZTP

15

Application Note
Thermostat Demo Using the eZ80Acclaim!™ MCU
extern int Thermostat_cgi(struct http_request *request);

// Java Applets

extern struct staticpage Thermometer_class;

extern struct staticpage Thermostat_class;

extern struct staticpage LEDBulb_class;

extern struct staticpage ButtonApplet_class;

extern struct staticpage CustomParser_class;

extern struct staticpage messagerA_class;

extern struct staticpage MiniHttpClient_class;

extern struct staticpage ParamParser_class;

extern struct staticpage TstatHttpClient_class;

8. The website.c file contains the an array, Webpage website[], with
information on the HTML pages. Replace the last line of the array, {0,
NULL, NULL, NULL }, with the following lines:
{HTTP_PAGE_STATIC, "/Thermometer.class", "application/octect-
stream", &Thermometer_class },

{HTTP_PAGE_STATIC, "/Thermostat.class", "application/octect-
stream", &Thermostat_class },

{HTTP_PAGE_STATIC, "/LEDBulb.class", "application/octect-
stream", &LEDBulb_class },

{HTTP_PAGE_STATIC, "/ButtonApplet.class", "application/
octect-stream", &ButtonApplet_class },

{HTTP_PAGE_STATIC, "/CustomParser.class", "application/
octect-stream", &CustomParser_class },

{HTTP_PAGE_STATIC, "/messagerA.class", "application/octect-
stream", &messagerA_class },

{HTTP_PAGE_STATIC, "/MiniHttpClient.class", "application/
octect-stream", &MiniHttpClient_class },

{HTTP_PAGE_STATIC, "/ParamParser.class", "application/octect-
stream", &ParamParser_class },

{HTTP_PAGE_STATIC, "/TstatHttpClient.class", "application/
octect-stream", &TstatHttpClient_class },
AN016804-0504 Adding and Integrating Thermostat Demo Files to ZTP

16

Application Note
Thermostat Demo Using the eZ80Acclaim!™ MCU
{HTTP_PAGE_STATIC, "/control_page.htm", "text/html",
&control_page_htm },

{HTTP_PAGE_DYNAMIC, "/cgi-bin/switches", "text/html", (struct
staticpage*)&switches_cgi },

{HTTP_PAGE_DYNAMIC, "/cgi-bin/java_control","text/
html",(struct staticpage*)&java_control_cgi },

{HTTP_PAGE_DYNAMIC, "/Thermostat.html", "text/html", (struct
staticpage*)&Thermostat_cgi },

{HTTP_PAGE_STATIC, "/jcontrol_page.htm", "text/html",
&jcontrol_page_htm },

{HTTP_PAGE_STATIC, "/thermostatf.htm", "text/html",
&thermostatf_htm },

{HTTP_PAGE_STATIC, "/tstat_control_page.htm", "text/html",
&tstat_control_page_htm },

{HTTP_PAGE_DYNAMIC, "/Data.html", "text/html", (struct
staticpage*)&input_cgi },

{0, NULL, NULL, NULL }

9. From within ZDSII, open the left.htm file under \Web Files. Search for
CGI Calculator and locate the following line:
 CGI
Calculator<p>Site
Info

10. Replace the with the following peice of HTML code, to create a
link from the default eZ80Acclaim!™ web page to the Thermostat Demo web
page.
Thermostat Demo

 Temp.Sensor</
a>

 LED
Ctrl Panel-I

 LED
Ctrl Panel-II

11. Build the website.pro project to obtain the new library file,
Acclaim_website.lib. Copy this library file to the path: ..\ZTP\libs.
AN016804-0504 Adding and Integrating Thermostat Demo Files to ZTP

17

Application Note
Thermostat Demo Using the eZ80Acclaim!™ MCU
Please note that the ..ZTP\libs folder already contains an
Acclaim_website.lib file and it must be replaced with the newly
generated file. Click Yes to replace the file.

12. Close the website.pro project.

13. In ZDSII, open the AcclaimDemo.pro file available in the path:
..\ZTP\Demo.

14. Add all the *.c, *.h, and *.asm files located in the ..\Thermostat
Demo\TD_Demo folder to the project, using the sequence of steps: Project →
Add Files.

The *.c, *.h and *.asm files to be added are listed below:
timer_isr.asm

LCD_API.h

initialization.c

input_cgi.c

java_control_cgi.c

LCD_API_port.c

switches_cgi.c

temp_read.c

Thermostat_cgi.c

tstat_control_cgi.c

15. Open the main.c file of the AcclaimDemo project and add the following
include file:
#include <LCD_API.h>

16. In the main.c file, observe the following BootInfo structure definition:
struct BootInfo Bootrecord = {

 "192.168.1.1",/* Default IP address */

 "192.168.1.4",/* Default Gateway */

 "192.168.1.5",/* Default Timer Server */

 "192.168.1.6",/* Default File Server */

 "",

 "192.168.1.7",/* Default Name Server */

 "",

Note:
AN016804-0504 Adding and Integrating Thermostat Demo Files to ZTP

18

Application Note
Thermostat Demo Using the eZ80Acclaim!™ MCU
 0xffffff00UL/* Default Subnet Mask */

 };

The Bootrecord variable contains the network parameters and settings (in
the four-octet dotted decimal format) that are specific to the local area
network at ZiLOG as default.

Modify the above structure definition with appropriate IP addresses within
your local area network.

17. In the main.c file, add the following function prototypes and global variables:
//prototype functions

extern void reg_init_function(void);

extern void tstat_function();

//global declarations

unsigned char flash_mask,jflash_mask;

unsigned char flash_rate,
flash_speed_entry,jflash_rate,jflash_speed_entry;

unsigned char LED1_status,LED2_status,LED3_status,jout_hold;

int ambient_temp,upper_setpoint,lower_setpoint,j;

char temp_rising,bypass_counter;

unsigned char io_hold,io_work;

long delay_count=0;

int temp;

int
temp_low_byte,temp_high_byte,temp_degrees_f,temp_degrees_c;

int i2c_shiftreg,i2c_count,i2c_error,ok;

18. At the end of the main.c file, add the following lines of code:
reg_init_function();

LCD_init ();

LCD_prints("Zilog Acclaim!");// Print a string

LCD_setposition(1,0);

LCD_prints("IP");

LCD_setposition(1,3);

LCD_prints(Bootrecord.myip);// Print a string
AN016804-0504 Adding and Integrating Thermostat Demo Files to ZTP

19

Application Note
Thermostat Demo Using the eZ80Acclaim!™ MCU
while(1)

{

tstat_function();

sleep(2);

}

19. Save the files and close the project.

Demonstration
This section contains the requirements and instructions to set up the Thermostat
Demo and run it.

Requirements
The requirements are classified under hardware and software.

Hardware
• eZ80F91 Development Kit (eZ80F910200ZCO)

• Thermostat Board (eZ801900100ZAC) along with a 9-volt power supply

• PC with an Internet Browser

Software
• ZiLOG Developer Studio II—IDE for eZ80Acclaim! (ZDSII)

• ZiLOG’s TCP/IP stack (ZTP)

• Project file for the Thermostat Demo for eZ80Acclaim!™(AcclaimDemo.pro)
located within the AN0168-SC01.zip file.

Setup
The basic setup to assemble the Thermostat Demo is illustrated in Figure 6. This
setup illustrates the connections between the PC, LAN/WAN/Internet and the
eZ80F91 Development Kit.
AN016804-0504 Demonstration

20

Application Note
Thermostat Demo Using the eZ80Acclaim!™ MCU
Settings

HyperTerminal Settings
• Set HyperTerminal to 57.6 Kbps Baud and 8-N-2, with no flow control

Jumper Settings
For eZ80® Development Platform
• J11, J7, J2 are ON

• J3, J20, J21, J22 are OFF

• For J14, connect 2 and 3

• For J19, MEM_CEN1 is ON, and CS_EX_IN, MEM_CEN2, and MEM_CEN3
are OFF

For the eZ80F91 Module on eZ80® Development Platform
• JP3 is ON

Figure 6. Setup for Thermostat Demo

PC

4 Port HUB

J3

P1
ETHERNET

ETHERNET

RS-232 ZPAK-II

ETHERNET

INTERNET/LAN/WAN

J4 ZDI

eZ80F91 Development Kit

with

Thermostat Board

P2 ETHERNET
AN016804-0504 Settings

21

Application Note
Thermostat Demo Using the eZ80Acclaim!™ MCU
Procedure
The procedure to build and run the Thermostat Demo is described in this section.

1. Ensure that the required Thermostat Demo files are added and integrated to
ZTP before proceeding. See section Adding and Integrating Thermostat
Demo Files to ZTP on page 13, for details.

2. Make the connections as per Figure 6. Follow the jumper settings provided
in the section on Jumper Settings above.

3. Connect the 9-volt power supply to the eZ80F91 Development Kit and the
Thermostat Board separately.

4. Connect the 5-volt power supply to ZPAKII and the 7.5-volt power supply to
the Ethernet HUB.

5. Launch the HyperTerminal and follow the settings provided in the
HyperTerminal Settings section on page 20.

6. From within the HyperTerminal, press z repeatedly, and then press the reset
button on ZPAKII to view the menu to set the ZPAKII IP address.

7. Enter H to display help menu, and follow the menu instructions to obtain the
IP address for ZPAKII in order to download the Demo file. This ZPAKII IP
address must be entered in the ZDSII.

8. Launch ZDSII–for eZ80Acclaim!™ and open the Thermostat Demo project
file (AcclaimDemo.pro) located in the path: ..\ZTP\Demo.

9. Open the main.c file. Ensure that the BootInfo structure contains
information that is relevant to your network configuration. Use the IP
address in the structure to browse the Internet to view the Thermostat Demo
web pages.

10. Build the project and download the resulting file to the eZ80F91 Module on
the eZ80® Development Platform using ZDSII.

11. Run the Thermostat Demo. Refer to Running the Thermostat Demo section
below.

Running the Thermostat Demo
1. Launch the Internet Browser on the PC. Enter the IP address specified in

main.c. The Index.html page is displayed.

2. Click on the Temp. Sensor link in the left pane. The Control Panel for
Temperature Sensor page is displayed. Observe the temperature
displayed in graphical and numerical form. Observe the upper and lower
limits set for the temperature.
AN016804-0504 Procedure

22

Application Note
Thermostat Demo Using the eZ80Acclaim!™ MCU
3. Click on the DECREASE UPPER/DECREASE LOWER/INCREASE
UPPER/INCREASE LOWER, buttons to change the upper/lower limits of
the temperature. Observe the temperature reading.

4. On the Demo Thermostat Board, hold down switch S1. The bulb glows, and
heats the temperature sensor. Observe that the temperature reading rises
above the set upper limit as long as the S1 switch is held down.

5. Hold down switch S2. The fan rotates, and cools the temperature sensor.
Notice that the temperature reading falls below the set lower limit as long as
the S2 switch is held down.

6. Hold down switch S3. Neither the light bulb nor the fan work. Notice that the
temperature reading reaches the ambient temperature irrespective of the set
upper and lower limits and remains steady as long as the S3 switch is held
down.

7. Click on the LED Ctrl Panel - I link in the left pane of the Browser window.
The Control Panel for LEDs - I page is displayed.

8. Switch on the LEDs using the ON button. Click on the Flash Rate buttons to
specify the rate for blinking, and click the Flash button to activate blinking.
On the Board, notice that all the LEDs are on and are blinking at the rate
specified.

9. Switch off the LEDs using the OFF button. Notice that the LEDs on the
Board are switched off.

10. On the Demo Thermostat Board, hold down switch S1. The bulb glows. The
Switch Indicator for HEAT ON turns green, indicating that the S1 switch on
the Thermostat Board is ON. Repeat this for the remaining switches and
observe the effects.

11. Click on the LED Ctrl Panel - II link in the left pane of the Browser window.
The Control Panel for LEDs - II page is displayed.

12. Enter 1 in all the fields, to turn the LEDs ON.

13. In the Flash text box, enter 1 to make the LEDs blink. Turning the blinking
on is possible only for those LEDs that are ON.

14. In the Flash rate text box, enter a number between 1-100 to set the blinking
at a specified rate. Entering 1 sets the blinking to the fastest rate while
entering 100 sets it to the slowest rate.

15. Click the Send LED Settings and Get Status Info button to effect the
changes and obtain an LED status report.
AN016804-0504 Procedure

23

Application Note
Thermostat Demo Using the eZ80Acclaim!™ MCU
Summary
This Application Note highlights the eZ80Acclaim!™ MCU’s capability to perform
as efficient embedded web servers by demonstrating an Internet-enabled process
control and monitoring application in the form of a Thermostat Demo that embeds
Java elements on the eZ80Acclaim!™ microcontroller.

The Thermostat Demo is a Java-enabled process control application that uses the
Internet. With this Java-based demo application, the user can monitor and manip-
ulate a control system in real time and display values dynamically.

The advantage of using eZ80Acclaim!™ with Java is that platform independence
is achieved with a Java GUI as a client application, and real-time processes are
controlled and monitored by the eZ80Acclaim!™ MCU interacting with the hard-
ware devices.

AN016804-0504 Summary

AN016804-0504 Appendix A—Reference

24

Application Note
Thermostat Demo Using the eZ80Acclaim!™ MCU

Appendix A—Reference
Further details about the eZ80F91 MCU, ZDSII, ZPAKII and the Thermostat Board
can be found in the references listed in Table 2.

Table 2. List of References

Topic Document Name

eZ80Acclaim!™ MCU eZ80F91 MCU Product Specification (PS0192)

Thermostat Board Thermostat Application Module Product User Guide (PUG0014)

ZDSII for eZ80Acclaim!™ MCUs ZiLOG Developer Studio II - eZ80Acclaim!™ User Manual (UM0144)

ZPAK II ZPAK II Debug Interface Tool Product User Guide (PUG0015)

ZTP ZiLOG TCP/IP Software Suite Programmer’s Guide Reference Manual
(RM0008)

25

Application Note
Thermostat Demo Using the eZ80Acclaim!™ MCU
Appendix B—Flowcharts
This appendix contains the flowcharts for the Thermostat Demo implementation
on the eZ80F91 MCU.

Figure 7 illustrates the flowchart for the main routine.

Figure 7. Flowchart for the Main Routine

START

Initialize Telnet Server;

Initialize HTTP Server;

Initialize SNMP Server.

Initialize Character LCD Module;

Update LCD with IP Address.

Read and update the temperature

to control the Cooling and Heating

(Fan and Bulb) of the temperature

Sensor.

Wait for 2 seconds
AN016804-0504 Appendix B—Flowcharts

26

Application Note
Thermostat Demo Using the eZ80Acclaim!™ MCU
Figure 8 illustrates the flowchart for the Thermostat Applet and LCD update.

Figure 8. Flowchart for the Thermostat Applet and LCD Update

START

1. Update Upper and Lower Set Points from the Applet

2. Read the current temperature

3. Update Applet with current temperature

4. Update the LCD with current temperature value and

current Upper and Lower Set Points

Wait for 2 seconds
AN016804-0504 Appendix B—Flowcharts

	Thermostat Demo Using the eZ80Acclaim!™ MCU Application Note
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	ZiLOG Product Overview
	eZ80Acclaim!™ MCU Family Overview
	ZiLOG TCP/IP Software Suite Overview

	Discussion
	Advantages of Using Java
	An Embedded HTTP Webserver
	Reading and Writing to the Embedded Webserver

	Thermostat Implementation Using eZ80Acclaim!™
	Temperature Control

	Hardware Architecture
	Software Implementation
	Development of Java Applets
	Development of the Embedded Firmware
	Adding and Integrating Thermostat Demo Files to ZTP

	Demonstration
	Requirements
	Setup
	Settings
	Procedure

	Summary
	Appendix A - Reference
	Appendix B - Flowcharts

