ZilLOG

Application Note

Understanding the eZ80 Interrupt

Structure and Initializing
Interrupts in C and Assembly

ANO010003-1101

ZiLOG Worldwide Headquarters * 910 E. Hamilton Avenue « Campbell, CA 95008

Telephone: 408.558.8500 « Fax: 408.558.8300 « www.zilog.com

Application Note
Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly
74

.

ZiLOG

This publication is subject to replacement by a later edition. To determine whether a later edition
exists, or to request copies of publications, contact:

ZiLOG Worldwide Headquarters
910 E. Hamilton Avenue

Campbell, CA 95008

Telephone: 408.558.8500

Fax: 408.558.8300

www.zilog.com

ZiLOG is aregistered trademark of ZiLOG Inc. in the United States and in other countries. All other
products and/or service names mentioned herein may be trademarks of the companies with which
they are associated.

Information Integrity

The information contained within this document has been verified according to the general
principles of electrical and mechanical engineering. Any applicable source code illustrated in the
document was either written by an authorized ZiLOG employee or licensed consultant. Permission
to use these codes in any form, besides the intended application, must be approved through a
license agreement between both parties. ZiLOG will not be responsible for any code(s) used
beyond the intended application. Contact the local ZiLOG Sales Office to obtain necessary license
agreements.

Document Disclaimer

© 2001 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices,
applications, or technology described is intended to suggest possible uses and may be
superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A
REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY
DESCRIBED IN THIS DOCUMENT. ZiLOG ALSO DOES NOT ASSUME LIABILITY FOR
INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Except
with the express written approval ZiLOG, use of information, devices, or technology as critical
components of life support systems is not authorized. No licenses or other rights are conveyed,
implicitly or otherwise, by this document under any intellectual property rights.

AN010003-1101

Application Note
Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

Z

ZiLOG

Table of Contents
Introduction 1
DiSCUSSION 1
Interrupt Structure 1
How the eZ80 Fetches an Internal Interrupt Vector 2
Assembly Language Initialization 5
VectorTable Setup 5
Initializing the Interrupt Vector Register (I) 8
Initialization in C 9
Initializing the Interrupt Vector Register (I)inC 9
Definitions 11
Application Example 12
€Z80190 C Timer Interrupt Routine 12
CProjectTools 12
Listof FilesinC Project 12
eZ80 Assembly Timer Interrupt Routine 15
Assembly Project Tools 15
Listof Filesin Project 15
Assembly Memory Map 5
EZ80190 Webserver Evaluation Board Jumper Settings 17
SUMIMAIY . . 18
References 18
Information Integrity 19
Document Disclaimer 19
Source Code 20
e€Z80 Timer Interrupts—Assembly ProjectFiles 20
eZ80.1InC. 20
eZ80_Assembly_Timerasm. 24
eZ80 Timer Interrupts—C ProjectFiles 32
eZ80_boot.s 32
eZ80def.h 34
interrupts.c 36
interrupts.h 38
Main.C ... 39
time_PWM.C 42
Customer Feedback Form 46

AN010003-1101

Application Note

Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

List of Figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

V 4

ZiLOG
Main Assembly File L. 9
PAO Timing Waveform for C Timer Interrupt Timing Example 12
Memory Maps 13
Assembly Memory Map 15
Timer Interrupt Routine 16

AN010003-1101

Application Note

Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

List of Tables

Table 1.
Table 2.
Table 3.
Table 4.

Table 5.

V 4

ZilLOG
/O lInterrupts 2
Vectored Interrupt Operation 3
Realtek Evaluation Board Initial and Linker Settings 14
Evaluation Board Jumper Settings for All Projects—
Realtek Ethernet ControllerBoard 17
Evaluation Board Jumper Settings for all Projects
Crystal LAN Ethernet ControllerBoard 18

AN010003-1101

vi

Application Note
Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly
74

.

ZiLOG

Acknowledgements

Application and Support Engineers
Mark Thissen

System and Code Development
Mark Thissen

Introduction

This application note iss a reference on embedded software for programmers to
understand, initialize and use interrupts on the eZ80 embedded web server. This
application note, together with other eZ80 tools assists the programmer, either
new to or already familiar with ZiLOG programming, to use eZ80 interrupts. The
projects described in this application note pertain to the eZ80 Evaluation board
with the Realtek Ethernet controller. This application note contains tables with
setup information to enable the evaluation board that uses the Crystal LAN Ether-
net controller as well. The user must become familiar with the settings and set up
the memory map appropriately for whichever evaluation board is in use.

This application note addresses the following topics:

* Discussion of interrupt structure, assembly language initialization, and C
language initialization

* Application examples for both languages

Also included are source code files for timer interrupts for both Assembly and C
project files, schematics, and a customer feedback form.

Discussion

Interrupt Structure

The eZ80 family of devices are capable of 128 vectored priority interrupts from
both internal and external sources and one non-maskable interrupt (NMI). The
€Z80190 specifically is capable of providing only 43 of these vectored priority
interrupts. The eZ80190 does not support Z80 interrupt modes IMO, IM1, or IM2
because of the non-availability of the INT pin. All priority vectors are returned on
the eZ80190 internal vector bus (IVECT7:0). The eZ80190 supports NMI (Non-
Maskable Interrupt) and 43 10 interrupts. NMI has the highest priority and, as it's
name implies, can not be masked. NMI comes from a hardware pin and always
vectors to address 0x000066. Here you can code a jump vector into memory to
service the NMI request. This application note does not go into additional detail of
the NMI. For more information on NMI, see the eZ80 User’s Manual. The vectors

AN010003-1101

Application Note

Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

ZiLOG

and sources for the 43 I/O interrupts are listed in order of priority in Table 1. “Vec-
tor Table Setup” on page 5 lists the 43 internal sources, in order of their priority,
along with an explanation of the vector location in memory and their respective

setup in assembly language programming.

How the eZ80 Fetches an Internal Interrupt Vector

The following events happen when a vectored interrupt occurs:
* The 8-bit vector (Table 1) is read from the internal Vector bus (IVECT7:0)

¢ |EF1 and IEF2 (Interrupt Enable Flag) are reset to 0

What happens next depends on the chosen operating mode. See Table 2.

Table 1. I/O Interrupts

Vector Source Vector Source Vector Source Vector Source
00h MACC 1Ch Port A3 38h Port C1 54h Port D7
02h DMAO 1Eh Port A4 3Ah Port C2

04h DMA1 20h Port A5 3Ch Port C3

06h PRTO 22h Port A6 3Eh Port C4

08h PRT1 24h Port A7 40h Port C5

OAh PRT2 26h Port BO 42h Port C6

0Ch PRT3 28h Port B1 44h Port C7 Vectors 56h through
OEh PRT4 2Ah PortB2 |46h PotD0 |12 s;ecsjzjrt‘fgo?:ﬂo
10h PRT5 2Ch Port B3 48h Port D1 a null interrupt vector.
12h uzIo 2Eh Port B4 4Ah Port D2

14h uzin 30h Port BS 4Ch Port D3

16h Port AO 32h Port B6 4Eh Port D4

18h Port A1 34h Port B7 50h Port D5

1Ah Port A2 36h Port CO 52h Port D6

Terms and Definitions for Modes and Operations

* [[7:0] = The contents of the interrupt vector register (l)
* IVECTI7:0] = The contents of the eZ80’s internal vector bus
* MBASE = A programmable offset used in virtual Z80 mode

* PC(15:0) or PC(23:0) = The short or long contents of the program counter

AN010003-1101

Application Note

Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

ZiLOG

* SPL = Stack Pointer Long (24bit),SPS = Stack Pointer Short (16bit)

¢ ADL = Address/Data Long, MADL = Mixed ADL
Table 2. Vectored Interrupt Operation

Current MADL ADL
Memory Control Mode
Mode Bit Bit Operation
The Starting program counter is: {MBASE1, PC(15:0)2}
* Push the 2-byte return address, PC(15:0), onto the stack,
{MBASE,SPS3}.
* The ADL* Mode bit remains cleared to 0.
Z80 Mode |0 0 * Interrupt Vector Address is: {MBASE, I[7:0]°, IVECT[7:0[E}.
Therefore, PC(15:0)«-{MBASE, 1[7:0], IVECT[7:0]}
* The final program counter (PC [15:0]) is therefore: {MBASE,
I[7:0], IVECTI7:0]}
* The Interrupt Service Routine must end with RETI.
The Starting program counter is: PC(23:0).
* Push the 3-byte return address, PC(23:0), onto the SPL’
stack.
* The ADL Mode bit remains set to 1.
ADL Mode |0 1 * Interrupt Vector Address is: {00h, 1[7:0], IVECT[7:0]}.
Therefore, PC(23:0<-{00h, 1[7:0], IVECT[7:0]}
* The final program counter (PC [23:0]) is therefore: {00h, I[7:0],
IVECT[7:0]}
* The Interrupt Service Routine must end with RETI.
Notes:
1. MBASE = A programmable offset used in Z80 mode.
2. PC(15:0) or PC(23:0) = The short or long contents of the program counter.
3. SPS = Stack Pointer Short (16-bit)
4. ADL = Address/Data Long.
5. I[7:0] = The contents of the interrupt vector register (I).
6. IVECT[7:0] = The contents of the eZ80’s internal ector bus.
7. SPL = Stack Pointer Long (24-bit).
8. MADL = Mixed ADL.

AN010003-1101

Application Note

Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

ZiLOG

Table 2. Vectored Interrupt Operation (Continued)

Current MADL ADL
Memory Control Mode
Mode Bit Bit Operation
The Starting program counter is: (MBASE, PC(15:00)}
* Push the 2-byte return address, PC(15:0), onto the SPL stack.
* Push a 20h byte onto the SPL stack, indicating interrupting
from Z80 mode (because MADL - 1 and ADL = 0).
Z80 Mode |1 0 * Set the ADL bit to 1.
* Interrupt Vector Address is: {00h, 1[7:0], IVECTI[7:0]}
* The final progrma counter (PC [23:0]) is therefore: {00h, 1[7:0],
IVECT[7:0]}
* The Interrupt Service Routine muss end with RETI.L.
The Starting program counter is: PC(23:0).
* Push the 3-byte return address, PC(23:0), onto the SPL stack.
* Push a 03 byte onto the SPL stack, indicating an interrupt from
ADL mode (because MADL® = 1 and ADL = 1).
ADL Mode |1 1 * The ADL Mode bit remains set to 1.
* Interrupt Vector Address is: {O0h, 1[7:0], IVECT[7:0]}.
Therefore, PC(23:0)«-{00h, I[7:0], IVECTI[7:0]}
* The final program counter (PC [23:0]) is therefore: {00h, I[7:0],
IVECTI[7:0]}
* The Interrupt Service Routine must end with RETI.L.
Notes:
1. MBASE = A programmable offset used in Z80 mode.
2. PC(15:0) or PC(23:0) = The short or long contents of the program counter.
3. SPS = Stack Pointer Short (16-bit)
4. ADL = Address/Data Long.
5. 1[7:0] = The contents of the interrupt vector register (l).
6. IVECT[7:0] = The contents of the eZ80’s internal ector bus.
7. SPL = Stack Pointer Long (24-bit).
8. MADL = Mixed ADL.

AN010003-1101

Application Note
Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

ZiLOG

Assembly Language Initialization

Vector Table Setup

kkkkkkkkkkkkkkhkkhkkhkkkhkhkkhkkhkhkkkhkhkkhkhkhkkhkhkkkhkkkkhkhkhkkhkhkkkhkhkhkkhkkhkkkhkkhkkhkkhkkkkhhkkhkkhkkhkkhkkhhkkhkkhkkhkkkkhkkkhkkkkkkx

Interrupt Vector Table

;This ZMASM Assembler Directive allows you to align your table on an even 256 byte

.align256 boundary
int vect tbl: ;Label name representing 16 bit start of Interrupt Vector Table

dw macc_vect ;16 bit vector for Multiply Accumulate Engine (Vector of int vect tbl + 00)

dw dmaO_vct ;16 bit vector for Direct Memory Access Controller0 (Vector of int vect tbl + 02)
dw dmal_vct ;16 bit vector for Direct Memory Access Controllerl (Vector of int_vect_tbl + 04)
dw prtO_vct ;16 bit vector for Programmable Reload Timer0 (Vector of int_ vect_tbl + 06)

dw prtl_vct ;16 bit vector for Programmable Reload Timerl (Vector of int_vect_tbl + 08

dw prt2 vect ;16 bit vector for Programmable Reload Timer2 (Vector of int vect tbl + O0A)

dw prt3 _vect ;16 bit vector for Programmable Reload Timer3 (Vector of int vect tbl + 0C)

dw prt4 vect ;16 bit vector for Programmable Reload Timer4 (Vector of int vect tbl + OE)

dw prt5_vect ;16 bit vector for Programmable Reload Timer5 (Vector of int vect_tbl + 10)

dw uziO_vct ;16 bit vector for Universal ZiLOG Interface0 (Vector of int vect_tbl + 12)

dw uzil_vct ;16 bit vector for Universal ZiLOG Interfacel (Vector of int_vect_tbl + 14)

dw pta0O_vct ;16 bit vector for PortA bit0 (Vector of int vect tbl + 16)
dw ptal vect ;16 bit vector for PortA bitl (Vector of int vect tbl + 18)
dw pta2 vect ;16 bit vector for PortA bit2 (Vector of int vect tbl + 1A)
dw pta3_vct ;16 bit vector for PortA bit3 (Vector of int_vect_tbl + 1C)
dw pta4_vct ;16 bit vector for PortA bit4 (Vector of int_vect_tbl + 1E)
dw pta5_vct ;16 bit vector for PortA bit5 (Vector of int_vect_tbl + 20)
dw pta6_vct ;16 bit vector for PortA bité (Vector of int vect tbl + 22)
dw pta7_vct ;16 bit vector for PortA bit7 (Vector of int vect tbl + 24)
dw ptb0_vect ;16 bit vector for PortB bit0 (Vector of int vect tbl + 26)
dw ptbl vect ;16 bit vector for PortB bitl (Vector of int vect tbl + 28)
dw ptb2_vct ;16 bit vector for PortB bit2 (Vector of int_vect_tbl + 2A)
dw ptb3_vct ;16 bit vector for PortB bit3 (Vector of int_vect_tbl + 2C)
dw ptb4_vct ;16 bit vector for PortB bit4 (Vector of int_vect_tbl + 2E)

dw ptb5 vect ;16 bit vector for PortB bit5 (Vector of int vect tbl + 30)

AN010003-1101

Application Note

Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

ptb6_vct
ptb7_vct
ptcO_vct
ptcl_vct
ptc2_vct
ptc3_vct
ptc4_vct
ptc5_vcect
ptc6_vct
ptc7_vct
ptd0_vct
ptdl_vct
ptd2_vct
ptd3_vct
ptd4_vct
ptd5_vct
ptdé_vct
ptd7_vct

null isr

;16 bit

;16 bit
;16 bit
;16 bit
;16 bit
;16 bit
;16 bit
;16 bit
;16 bit
;16 bit
;16 bit
;16 bit
;16 bit
;16 bit
;16 bit
;16 bit
;16 bit
;16 bit

;16 bit

vector for

vector for
vector for
vector for
vector for
vector for
vector for
vector for
vector for
vector for
vector for
vector for
vector for
vector for
vector for
vector for
vector for

vector for

null vectors

Interrupt Vector Table

PortB

PortB

PortC

PortC

PortC

PortC

PortC

PortC

PortC

PortC

PortD

PortD

PortD

PortD

PortD

PortD

PortD

PortD

bite

bit7

bito

bitl

bit2

bit3

bit4

bits

bite

bit7

bito

bitl

bit2

bit3

bit4

bits

bite

bit7

(RESERVED)

(Vector of int vect tbl

(Vector
(Vector
(Vector
(Vector
(Vector
(Vector
(Vector
(Vector
(Vector
(Vector
(Vector
(Vector
(Vector
(Vector
(Vector
(Vector
(Vector

for

of

of

of

of

of

of

of

of

of

of

of

of

of

of

of

of

of

(int

int vect tbl
int_vect_tbl
int_vect_tbl
int_vect_tbl
int vect tbl
int vect tbl
int vect tbl
int_vect_tbl
int_vect_tbl
int_vect_tbl
int vect tbl
int vect tbl
int vect tbl
int_vect_tbl
int_vect_tbl

int_vect_tbl

+

+

32)
34)
36)
38)
33)
3¢)
3E)
40)
42)
44)
46)
48)
41)
40)
4E)
50)

52)

int vect tbl + 54)

ZiLOG

_vect_tbl + 56 through 126)

B s T e L L e S L s e e e e S e S e e e

dw null_isr

Vector Locations 0xxx56 through OxxxFE are reserved and must be coded in the
table to point to a null interrupt routine as follows:

;16 bit vector pointing to an ISR labeled “null_isr:’

And somewhere in the code in 16-bit space:

null_isr:

ei

reti

;re-enable interrupts

;return from interrupt

You can use an interrupt jump table in Assembly language as well as in C. The

previous example does not use this technique. Later, when we look at a routine to
set this up this example in C, we use a routine that uses a jump table to allow us to
locate the actual ISR anywhere in the 24-bit memory map. In the previous exam-

AN010003-1101

Application Note
Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

7 4
y 7

ZiLOG

ple, the ISR must be located in 16-bit memory space. Take a brief look below at how to
setup an interrupt jump table in assembly. The included Assembly example code uses
the jump table technique.

Interrupt Jump Table

int_vect_tbl: ;Label name representing 16 bit start of Interrupt Vector Table

dw

dw

jump_tbl + 0 ;16 bit vector for Multiply Accumulate Engine (Vector of int_vect_tbl + 00)

;16 bit vector for Direct Memory Access Controller0 (Vector of int_vect tbl +

j tbl 5
jump + 02)

) ;16 bit vector for Direct Memory Access Controllerl (Vector of int vect tbl +
jump_tbl + A - -

04)
jump_tbl + F ;16 bit vector for Programmable Reload Timer0 (Vector of int_vect_ tbl + 06)
jump tbl + 14 ;16 bit vector for Programmable Reload Timerl (Vector of int vect tbl + 08)
jump tbl + 19 ;16 bit vector for Programmable Reload Timer2 (Vector of int vect tbl + 0A)
jump tbl + 1E ;16 bit vector for Programmable Reload Timer3 (Vector of int vect tbl + 0C)
jump_tbl + 23 ;16 bit vector for Programmable Reload Timer4 (Vector of int_vect_tbl + OE)
jump_tbl + 28 ;16 bit vector for Programmable Reload Timer5 (Vector of int_vect_ tbl + 10)

Assemble the table as in the example above. These parameters could all point to a single
null vector routine if you are not using the particular interrupts.

At the address of jump_tbl in the 16-bit space, code another table with the Op Code of
jump.lil (6BC3) and the 24-bit vector corresponding to the actual ISR (5 bytes total).

AN010003-1101

Application Note
Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

Z

ZiLOG

jump_ tbl:
jp.1il ;This assembles the appropriate two byte Op Code
Lable Name of ISR plus 3-byte vector to the appropriate 24-bit
memory location. Jump_ tbl + 0
jp.1il

Lable Name of ISR iJump_tbl + 5
jp.1lil

Lable Name of ISR ijump_tbl -+ A

jp.1lil »

Lable Name of ISR ijump_tbl -+ F
This table may contain only one entry (null_isr for example). It may contain multi-
ple entries depending on how many ISRs you use.

Initializing the Interrupt Vector Register ()

The interrupt vector register (1) is used to point to the high byte (A15-A8) of the 16
bit address of the interrupt vector table. For Assembly language, the | register can
only be loaded from the accumulator as follows:

1d a, HIGH ;Load High Byte of interrupt vector table address into the
int vect tbl Accumulator
1d i a ;Load the Interrupt Vector Register with the High Byte of the

Interrupt Vector Table

The demonstration software that runs from ZDS/ZDI uses the Interrupt Jump
Table technique.To make sure that your ISRs can reside anywhere within the 24-
bit memory map perform the following steps.

In the main assembly file (see Figure 1)
1. Cut the statement “ segment code_data”, line 226 of the code.
2. Paste it below one, two, or all three of the ISRs.

This action allows the ISRs to be assembled in 16-bit space as opposed to higher
than address FOO0Oh or in 20-bit space. No matter where the ISR is located, the
interrupt jump table locates it correctly.

AN010003-1101

Application Note

Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

7, ZIL0G Developer Studio - [e280_Assembly_Timer] M=l 3

Eile Edit “iew Project Build Tool: ‘wWindow Help

ZiLOG

=121 x|

lozE|sme|ae

| | e B e e o e a s

~J =l
gquent code data
timer_isr:
inl a, (TMF_CTLO) sRead CTLO to clear pending interrupt
1d.il a, (intermediate_ticks) sBead in counter wariable
inc a ;inc wariable
1d.il (intermediate_ticks),a ;3ave it
cp 50 ;Test wariable. Is it 50 yet?
jr =, toggle A0 sTes, toggle A0
jr isr_exit Mo, return
toggle A0:
inl a, (PA_DR) :Bead in Ph data register
®or a,0l sToggle bit
outd (PA DR),a ;Write back to port
1d a,0
1d.il {intermediate ticks),a sClear time counter
isr_exict:
el sre-ehahle interrupts
reti.l ;RBeturn from Interrupt J
i o ol ol e ol ol ol e ol e ol ol ol el ol ol el o i i ol ol e ol ol e ol el el i o ol o
= timer_isrl: -
I 4 I I 3
£1I [4 [*IT, puitd £ Debug A Find b oTF
S
Ready = |Ln227, Col 26 y

Figure 1. Main Assembly File

Initialization in C

Initializing the Interrupt Vector Register (I) in C

In this section we define the various interrupt tables to reside in a certain predeter-
mined space (see “Definitions” on page 11). The _asm() C function allows the pro-
grammer to directly insert assembly code from the C source file into the assembly
file. The \tinserts a tab character into the assembly file being generated. The \t
can also represent a space or physical tab.

Note: The code samples in this section are color-coded. Green denotes offset
comment and blue is for C proprietary language. Black denotes user code.

AN010003-1101

Application Note
Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

Z

ZiLOG

_asm(\tld a, 0xxx) ;Load High Byte of interrupt vector table address into the Accumulator

_asm(\tld 1i,a) ;Load the Interrupt Vector Register with the High Byte of the Interrupt Vector Table

And again, somewhere in the code

#pragma interrupt

void isr null (void)

{

}
This code becomes the null interrupt vector and gives the program a place to vec-
tor to and return from if a spurious interrupt occurs. The #pragma interrupt

ensures the interrupt routine in the assembily file is terminated with ei followed by
reti.

The following is the sethandler function prototype:

void sethandler (void (*) (void), unsigned char) ;

The sethandler function takes two arguments:

* The address of the actual interrupt service routine
* The unsigned character, vector

The sethandler function returns nothing.

The following function is the sethandler:

AN010003-1101

Application Note
Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

y 11

ZiLOG

void sethandler (void (*handler) (void), unsigned char vector)
{

void** ptr;

ptr=(void*) (INTERRUPT JUMP_TABLE+vector/2*5) ;

/* vector 0 / 2 * 5 = 0 + interrupt jump table E100 = E100
vector 2 / 2 * 5 = 5 + interrupt jump table E100 = E105
vector 4 / 2 * 5 = A + interrupt jump table E100 = E10A

point vector to the jump table by physically writing the
vector into the jump table into the vector tablex*/

* ((unsigned short*) (INTERRUPT TABLE+vector))=ptr;

/* Therefore, this is what memory would look like starting at
the interrupt table E000:
00 E1 05 E1 OA E1 OF E1 14 El........... */

/* Write the jp.lil Op Code in big endian format to the jump table */
* ((unsigned short*)ptr)=0xc35b;

/* Increment the pointer by two*
ptr=(void**) (INTERRUPT JUMP_TABLE+vector/2*5+2);

/* Write the address of the isr handler into the jump table */
*ptr=handler;

}

Definitions

INTERRUPT_TABLE, INTERRUPT_JUMP_TABLE, and vector are all predefined
in the code somewhere:

Example:

#define INTERRUPT_TABLE 0x00e000
#define INTERRUPT JUMP_TABLE 0x00e100
#define VECTOR_TIMERO 0x06
#define VECTOR_TIMER1 0x08

It is here that we define the INTERRUPT_TABLE to be EO00h (€Z280190 internal
RAM), the INTERRUPT_JUMP_TABLE to be E100h (€280190 internal RAM), and
the VECTOR_TIMERQO to be 06h. Also program the “I” register with OxEO.

The eZ80190’s internal RAM locates both an interrupt vector table (OxE000) and
an interrupt jump table (OXxE100). The Interrupt Vector table must be aligned on an
even 256-byte boundary. Upon receiving an interrupt, the eZ80 reads the appro-
priate 16-bit vector from the interrupt_table. The eZ80 vectors to the
interrupt_jump_table and reads and executes a 24-bit jump to any memory loca-
tion in the 24-bit map.

AN010003-1101

Application Note
Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

V 4

ZiLOG

Application Example

e€Z80190 C Timer Interrupt Routine

This program runs from ZDS/ZDI with the eZ80 Evaluation board. It uses the
eZ80190 running at 40MHz, and initializes two Timers, TMRO and TMR1, to inter-
rupt every 10mS. TimerQ uses a period counter, and a time high and time low reg-
ister to implement a Modulated PWM routine on PAO and PA2. PA2 is
implemented as the inverse of PAO. The period time of the modulated waveform is
100mS and modulates through 9 iterations from 1/10 on and 9/10 off to 9/10 on
and 1/10 off. One complete iteration of the modulated routine looks as follows,
with PA2 being exactly the opposite. See Figure 2.

L A |
—>!‘100ms}<—

- 900mS

v

Figure 2. PAO Timing Waveform for C Timer Interrupt Timing Example
Timer1 uses a 10X Counter to toggle portA1 every 100mS. The initial settings for
the eZ80 and the memory map are outlined below. Two versions of initial settings
with memory map variations have been used to demonstrate that no matter where
the ISR's are located (be it 16 bit space or 24 bit space) that the jump table can be
used to properly set the vector locations.
C Project Tools
* C Compiler >> eZ80CC1.01
e ZDS >> 3.65Beta, Tab Setting>> C Files =4, .sfiles=8
e EZ8019000100ZCO >> eZ80 Evaluation Board with Realtek Ethernet
Controller
List of Files in C Project
* eZ80boot.s
* main.c
* time_pwm.c
* interrupts.c
C project <Dependencies>
* ez80def.h

AN010003-1101

Application Note

Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

V4

ZilLOG
* ez80.h
* interrupts.h
C Memory Maps
Figure 3 illustrates the initial and secondary memory map settings.
Initial Settings 1 FFFFFF Initial settings 2 FFFFFF
Not Used
200000
Not Used 1FFFFF
User RAM
100000
100000
OFFFFF
User RAM Not Used
000000 000000

Note:

Figure 3. Memory Maps

When using the eZ80 Evaluation Kit with the Realtek Ethernet Controller, it

is no longer possible to split the two 512K RAM’s because the RAM’s are
now enabled with CS1 only. When using the Realtek board, please set
CS1, the PC and the Stack pointers appropriately. See Table 3 for a list of
settings that work with the Realtek board for both the C and Assembly
projects. The following two sets of settings can also be used.

C Project 1 Initial Settings

SPL
SPS
PC

CS0
C$1

OFFFFFh

FFFFh

0000h

Not used, all zeros

Lower Bound = 0, Upper Bound = OF, Control Register = 28

AN010003-1101

13

Application Note

Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

e (CS2 Not used, all zeros

¢ (CS3 Not used, all zeros
C Project 1 LINKER Settings

e EXTIO 0000hto FFFFh

* INTIO 0000hto 00FFh

* ROM 000000h to OFFFFFh
C Project 2 Initial Settings

e SPL 1FFFFFh

e SPS FFFFh

* PC 100000h

e (CSO Not used, all zeros

Z

ZiLOG

e CS1 Lower Bound = 10, Upper Bound = 1F, Control Register = 28

e (CS2 Not used, all zeros
* (CS3 Not used, all zeros
C Project 2 LINKER Settings
e EXTIO 0000hto FFFFh
* INTIO 0000hto 00FFh

* ROM 100000h to 1FFFFFh

Table 3. Realtek Evaluation Board Initial and Linker Settings

C and Assembly Initial Settings with Realtek Ethernet Controller |Linker Settings

SPS FFFFh EXTIO 0000 to FFFFh

SPL OFFFFFh INTIO 0000 to 00FFh

PC 0000h ROM 000000 to OFFFFFh
CSOo Not used, all zeros

Cs1 Lower Bound = 00h, Upper Bound - OFh, Control = 28h

CS2 Not used, all zeros

Cs3 Not used, all zeros

AN010003-1101

14

Application Note
Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

4
, 15

ZiLOG

eZ80 Assembly Timer Interrupt Routine

This routine runs from ZDS/ZDI using the eZ80 evaluation board and initializes
Timers 0 and 1 to interrupt every 10mS from an eZ80 running at 40MHz. TimerQ'’s
ISR outputs a pulse on PortAO every 10mS*50 or 0.5s.

Total Wave form period = 1s. Timer1’s ISR toggles portA1 every 10mS*100 or

1second. Total Wave Form Period = 2 Seconds. See Figure 5.

Assembly Project Tools

e ZDS >> 3.65Beta, Tab Setting>>38

e EZ8019000100ZCO >> eZ80 Evaluation Board with Realtek Ethernet
Controller

List of Files in Project

* eZ80_assembly_timer.asm

* ez80.inc

Assembly Memory Map

Figure 4 illustrates the initial and secondary memory map settings.

Initial Settings

FFFFFF
Not Used

100000

OFFFFF
User RAM

000000

Figure 4. Assembly Memory Map

AN010003-1101

Application Note

Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

4
16

ZiLOG

Assembly Project Initial Settings

SPL
SPS
PC

CSO0
Cs1
CS2
CS3

OFFFFFh

FFFFh

0000h

Not used, all zeros

Lower Bound = 0, Upper Bound = OF, Control Register = 28
Not used, all zeros

Not used, all zeros

LINKER Settings

EXTIO ooo0oh to FFFFh

INTIO o0000h to 00FFh

ROM

000000h tO OFFFFFh

Assembly Project Output

PAO

»| 1 Second Period

PA1

]]

L 2 Second Period
[

[
'

Grayed area = Time on. White area = Time off

Figure 5. Timer Interrupt Routine

AN010003-1101

Application Note

Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

EZ80190 Webserver Evaluation Board Jumper Settings

Table 4. Evaluation Board Jumper Settings for All Projects—
Realtek Ethernet Controller Board

Jumper # ON OFF Don’t Care
J1 1-2

J2 X

J3 X

J4 X

J5 2-3

J7 X

J10 2-3

J11 X

ZiLOG

AN010003-1101

17

Application Note

Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

Summary

Z

ZiLOG

Table 5. Evaluation Board Jumper Settings for all Projects
Crystal LAN Ethernet Controller Board

Jumper # ON OFF Don’t Care
J1 X

J2 X

J3 1-2

J4 X

J5 X

J7 1-2

J8 X

J9 X

Note: For a Crystal LAN board that has been programmed with a Flash Loader
and a application running from Flash, you may have to remove J8 to get
the ZDS project started. Keep in mind that to run the Flash Loader or
application programmed into Flash, that the J8 jumper must be replaced.

This application note together with the software resources provided, ZDS, ZPAK,
and the eZ80 evaluation board, provide a clean example of how programmers can
set up and initialize interrupts in both C and Assembly environments. These are
only simple examples and can be embellished upon depending on the application
needs. This application note is meant as a basis to understand how the interrupt
structure works and how to initialize, setup, and locate interrupts tables and
ISR’s. If you are having difficulty locating something in memory, consult the .map
file. The .map file is one of the surest ways to discover if you are locating code or
data where you think you are within the available memory space.

References
* Source Code Listing

* Appendix B — eZ80190 Evaluation Board Schematics

AN010003-1101

18

Application Note

Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

Z

ZiLOG

Information Integrity

The information contained within this document has been verified according to the
general principles of electrical and mechanical engineering. Any applicable source
code illustrated in the document was either written by an authorized ZiLOG
employee or licensed consultant. Permission to use these codes in any form
besides the intended application, must be approved through a license agreement
between both parties. ZiLOG is not responsible for any code(s) used beyond the
intended application. Contact your local ZiLOG Sales Office to obtain necessary
license agreements.

Document Disclaimer

©2001 by ZILOG, Inc. All rights reserved. Information in this publication concerning the
devices, applications, or technology described is intended to suggest possible uses and
may be superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A
REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR
TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZiLOG ALSO DOES NOT ASSUME
LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY
MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED
HEREIN OR OTHERWISE. Except with the express written approval of ZiLOG, use of
information, devices, or technology as critical components of life support systems is not
authorized. No licenses are conveyed, implicitly or otherwise, by this document under any
intellectual property rights.

AN010003-1101

19

Application Note

Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

ZiLOG

Source Code

eZ80 Timer Interrupts—Assembly Project Files

eZ80. Inc.

The following code is contained in the file eZ80.inc.

khkkhkkhkkhkkhkhkkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhhkhkdhkhkdhkhkkhhkhkhhkhkhhkhkhhkhkhkhkhkhkhkhkhkhkhkkhhkhkkhhkhkkhhkhkkhhkdkk,kk,kkk,kk*k*x*x*%x

* PORTA *
khkkkhkkhkkhkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhkdhhkhkkhhkhkhhkhkhhkdhkhhkhkhkhkhkhkhkhkhkhkhkkhhkhkkhhkhkkhhkkhkkhhkdkdkk,k*,kk,kk*k**x*%x
PA DR equ %96
PA DDR equ %97
PA ALT1 equ %98
PA ALT2 equ %99

khkkkhkkhkkhkkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhhkhkdhhkhkdhkhkdhhhkhhkhkhhkdkhhkhkhkhkhkhkhkhkhkhkhkkhhkhkkhhkkhkkhhkkkhhkdk,kk,kkkk,kk*kk*x*%x

*

PORTB *

khkkkhkkhkkhkhkkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhhkhkdhhkhkkhhkhkdhkhkkhhkdhkkhhkdhkhhdkhhkdkhkhkhkhkhkhkkhhkhkkhhkdhkkhhkdkkhkd,,kk,kkkk,kkk*k*x*%

PB_DR equ $9A

PB_DDR equ $%9B

PB_ALT1 equ %9C

PB_ALT2 equ %9D

EE R I S S S I I I R R S O O
*

* PORTC *

khkkkhkkhkkhkhkkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhkdhkhkdhkhkdhkhkkhhkdhkhhdkhkhkhkhkhkhkhkhkhkdhkhkkhhkdhkkhhkdkkdhkd,dkk,kkk,kk*k**%

PC_DR equ %9E
PC_DDR equ %9F
PC_ALT1 equ %A0
PC_ALT2 equ %Al

khkkkhkkhkkhkhkkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhkdhhkhkdhkhkdhkdhkhhkdkhhdkhhkdhkhkhkhkhkhkkhhkhkkhhkdhkkhhkdhkkhhkdkdkd,kk,kk*k*x*x*%x

*

PORTD *

khkkhkkhkkhkkhkhkkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhhkhkdhkhkdhkhkdhhhhkhkhhkdhkhhdhhdkhkhhkhhkhkkdhkhkhhkdhkkhhkdkdhkd,kk,*kk,kk*k**x*%x

PD_DR equ %A2
PD DDR equ A3
PD_ALT1 equ %A4
PD_ALT2 equ %AS

khkkkhkkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkdhhkhkdhhkkhhkhdhkdhkkhhkdhkhhkhkhhkdkhkhkhhhkhkdhkhkkhhkdhkkrhkdkdkdkdhkdkhk,kkk*k**

*

UARTO *

khkkkhkkhkkhkhkkhkkhkhkhkkhkhkhkhkhkhkhkhkhhkhkhhkhkdhhkhkdhkhkdhkhkhhkdhkhhkdkhhdkhhkdkhkhkhhhkhdhkhhhkdrhkdkhhkd,dhkd,kkd*kk,kx*

UART RBRO equ %CO0
UART THRO equ %CO0
BRG_DLRLO equ %CO0
BRG_DLRHO equ %C1
UART IERO equ %C1
UART TIIRO equ %C2

AN010003-1101

20

Application Note
Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

ZiLOG

UART_FCTLO equ %C2
UART_LCTLO equ %C3
UART _MCTLO equ %C4
UART_LSRO equ %C5
UART_MSRO equ %Cé6
UART_SPRO equ sC7

khkkhkkhkhkkhkhhhkhhhkhhhkhhhkhhhkhhhkhhhhhhhhhhhhhhdhddhdhddhkhhhkhhhkhhhdhhhhhhdhhhkhddddkdddddkd*x**x

* UART1 *

R EE R R R R R R R I S R I e S R T I O O
BRG DLRL1 equ
BRG DLRH1 equ
UART RBR1 equ
UART THR1 equ
UART IER1 equ
UART IIR1 equ
UART FCTL1 equ
UART LCTL1 equ
UART MCTL1 equ
UART LSR1 equ
UART MSR1 equ
UART SPR1 equ

khkkhkkhkkhkkhkhkkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhkdhkhkkhhkhkhhkdhkhhkdhkhhkdkhhkhkhkhkhkhhkhkkhhkhkkhhkhkkhhkdkkdhkdkdkk,k,kk,kk*k**x*%x

g 0gguguoug
NP O OoORr O

g g gug
o Ul W

o° o° o° o° o o° o° o o° o° o o
g
N

g
N

* UZI CONTROL *
khkkkhkkhkkhkkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkdhkhkdhhkhkkhhkhkhhkdhkhhkdkhkhkhkhkhkdkhkhkhkhhkhkkhhkhkkhhkdkkdhkdkdkd,kkk,kk*kk*x*x
UZI CTLO equ sCF

UZI CTL1 equ %DF
khkkhkkhkkhkkhkhkkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhhkhkdhkhkdhkhkkhhkhkhhkhkhhkdkhhkdkhkhkdkhkhkhkhkhkhkhhkhkhhkhkkhhkhkkdhkd,kk,,kk,kk*kk*x*%x
* I2C0 *
khkkkhkkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhkdhkhkkhhkhhhkdhhkdhkhhkdkhhkdhkhkdkhhkhkhhkhkhhkdhkhhkdkdhkdkdkd,*,kk,kk*k**x*%x
I2C_SARO equ %Cs8

I2C_XSARO equ %C9

I2C_DRO equ %CA

I2C_CTLO equ %CB

I2C_SRO equ %CC

I2C_CCRO equ %CC

I2C_SRRO equ %CD

khkkkhkkhkkhkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhkdhkhkdhkhkhhkhhhkdkhhkdkhhkdhkhkhhhkhkdhkhkhhkdhhhkdkhhkdkdkd,,kkdkk*kx*x*x

* 12C1 *
khkkhkkhkkhkkhkhkkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhkdhhkhdhkhkdhkdhhhkdkhhdhhkdhkhkdhhkhkdhkhkhhkdhkhhkdkdhkddkdhk,kk*kx*x*x
I2C SAR1 equ sD8

I2C XSAR1 equ $D9

I2C DR1 equ %DA

I2C CTL1 equ %DB

I2C_SR1 equ %DC

I2C _CCR1 equ sDC

I2C SRR1 equ %DD

khkkhkkhkkhkkhkhkkhkhkhkhkkhhkhkhkhkhkhkhkhkhkhkhhkhkhhkhkdhkhkdhkhkhhkdhhhkdkhhdkhkhkdhkhkdhkhkhdhkhkhhkhkhhkdkdhkdkrkdhhkk,kk*kkx*x*%x

AN010003-1101

21

Application Note
Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

ZiLOG
* SPIO *
khkkhkkhkhkkhkhhkhkhhhhhhkhhdhkhhhkhhhkhhhhhhhhhhhhhhdhhhhdhkhhhkhhhkhhhhhhhhhkhhhkkhddkhkdddkddkd*x**x
SPI_CTLO equ %B6
SPI_SRO equ %B7
SPI_RBRO equ %B8
SPI_ TSRO equ %B8
khkkhkkhkhkkhkhhhkhhhkhhhkhhhkhhhkhhhkhhhhhhhhhhhhhhdhddhdhddhkhhhkhhhkhhhdhhhhhhdhhhkhddddkdddddkd*x**x
* SPI1 *
khkkhkkhkkhkkhkhkkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhhkhkdhhkhkdhhkhkkhhkhkkhhkhkhhkdhkhhkhkhkhkhkhkhkhkhkhkhkhhkhkkhhkhkkhhkdkkhhkd,kk,kk,kkk,kkk,kk*x*%x
SPI CTL1 equ $%BA
SPI SR1 equ 3%BB
SPI_RBR1 equ $BC
SPI TSR1 equ $%BC
khkkhkkhkkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhkhhkhkkhhkhkhhkhkhhkhkhhkhkhkhkhkhkhkhkhkhkhkkhhkhkkhhkhkkhhkdkkdhkd,kd,*kk,kk*k**x*%x

TIMERO *

khkkhkkhkkhkkhkhkkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhkdhhkhkkhhkhkkhhkhkhhkdhkhhkhkhkhkhkhkhkdkhkhkhkkhhkhkkhhkhkkhhkdhkhhkddkk,kkkk,kk*k**x*%x
TMR_CTLO equ %80
TMR_DRLO equ %81
TMR_DRHO equ %82
TMR_RRLO equ %81
TMR_RRHO equ %82
khkkhkkhkkhkkhkhkkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhkdhkhkkhhkhkhhkdhkhhkdhkhhkdkhhkhkhkhkhkhhkhkkhhkhkkhhkhkkhhkdkkdhkdkdkk,k,kk,kk*k**x*%x
* TIMER1 *
khkkkhkkhkkhkkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkdhkhkdhhkhkkhhkhkhhkdhkhhkdkhkhkhkhkhkdkhkhkhkhhkhkkhhkhkkhhkdkkdhkdkdkd,kkk,kk*kk*x*x
TMR_CTL1 equ %83
TMR_DRL1 equ %84
TMR_DRH1 equ %85
TMR_RRL1 equ %84
TMR_RRH1 equ %85

khkkhkkhkkhkkhkhkkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhkdhkhkkhhkhkdhkdkhhkdhkkhhdkhkhkdkhkhkdkhkhkhkhhkhkkhhkdhkkhhkdkkhhkdkdkd,,kk,kk*kk*x*x

* TIMER2 *
R I R S S S I I I R O S O O O
TMR_CTL2 equ %86

TMR_DRL2 equ %87

TMR_DRH2 equ %88

TMR_RRL2 equ %87

TMR_RRH2 equ %88

EE R I S S S I I I R R S I O O
* TIMER3 *

EE R I S R I I S S S I I I R R S I O O O
TMR_CTL3 equ %89

TMR_DRL3 equ %8A

TMR_DRH3 equ %8B

TMR_RRL3 equ %8A

TMR_RRH3 equ %8B

AN010003-1101

22

Application Note
Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

ZiLOG

khkkhkkhkhkkhkhhkhkhhkhkhhhkhhhkhhhkhhhkhhhkhhhhhhhhhdhdhhhhhhkhhhkhhhkhhhhhhhhhdhhhdhhdhkhkddddddd*x**x

* TIMER4 *
khkkhkkhkhkkhkhhhkhhkhkhhhhhhhhhkhhhkhhhkhhhhhhhhhdhdhhhhdhkhhhkhhhkhhhhhhhhhkhhhkhdkdhkddkddkddkd*x**x
TMR_CTL4 equ %8C

TMR_DRL4 equ %8D

TMR_DRH4 equ %8E

TMR_RRL4 equ %8D

TMR_RRH4 equ %8E
khkkhkkhkkhkkhkhkkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhhkhkdhhkhkdhhkhkkhhkhkkhhkhkhhkdhkhhkhkhkhkhkhkhkhkhkhkhkhhkhkkhhkhkkhhkdkkhhkd,kk,kk,kkk,kkk,kk*x*%x
* TIMERS *
khkkkhkkhkkhkhkkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkdhhkhkkhhhkhhkhkhhkdhkhhhkhhkhkhkhkhkhkhkhkkhhkhkkhhkhkkhhkdkkdhkd,k,kk,,kk,kkk,k**x*%x
TMR_CTL5 equ 3%8F

TMR_DRL5 equ %90

TMR_DRH5 equ %91

TMR_RRL5 equ %90

TMR_RRH5 equ %91
khkkhkkhkkhkkhkhkkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhhkhkhhkhkdhkhdhkhkhhkdhkkhhkhkkhhkhkhhkdhkhkhkhkhkhkhkkhhkhkkhhkhkhhkdhkkdhkddkd,kkk,kk*kkx*x*x
* WDT *
khkkhkkhkkhkkhkhkkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkdhkhkdhhkhkdhhkhhhkhkhhkdhkhhkhkhkhkhkhkhkhkhkhkhkhhkhkkhhkhkkhhkdhkkdhkdkk,kk,kkk,kk*kk*x*x
WDT CTL equ %93

WDT_RR equ %94
khkkhkkhkkhkkhkhkkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhkdhkhkkhhkhkhhkdhkhhkdhkhhkdkhhkhkhkhkhkhhkhkkhhkhkkhhkhkkhhkdkkdhkdkdkk,k,kk,kk*k**x*%x
* Chip Select & WSG *
khkkkhkkhkkhkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhhkhkdhhkhkkhhkhkdhkhkkhhhkhhkhkhhkdkhhkdkhkhkhkhkhkhkkhhkhkkhhkdkkhhkdkkhkd,khhkk,kkkk,kk*k*x*%
CS_LBRO equ $A8

CS_UBRO equ 3%A9

CS_CTLO equ $AA

CS LBR1 equ 3%AB

CS_UBR1 equ 3%AC

CS_CTL1 equ %AD

CS LBR2 equ 3%AE

CS_UBR2 equ 3%AF

CS_CTL2 equ %BO

CS_LBR3 equ %B1

CS_UBR3 equ 3%B2

CS_CTL3 equ 3%B3
khkkkhkkhkkhkhkkhkkhkhkhkkhkhkhkhkhkhkhkhkhhkhkhhkhkdhkhkdhkhkdhkhdhkdhkhhkdkhhkdkhhkdhkhkdkhkhkhkdhkhhhkdhkhhkdkhhkddkd,kkkk,kk*kk*x*x
* RAM CONTROL *
khkkkhkkhkkhkhkkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhhkhkdhhkhkdhhkhkkhhkhdhkdhkkhhkhkhhdkhkhkdkhkhkhkhhkhdhkhhhkdhkkhhkdkkdhkddkd,kk,khk*kk*x*%x
RAM CTLO equ %B4

RAM CTL1 equ 3%BS
khkkhkkhkkhkkhkkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhhkhkdhhkhkdhkhkhhkhdhkdhhhkhkhhkdhhkdhkhhkhkhkhkdhkhhhkdhkkhhkdkhhkdkdkdk,kk,kk*kkx*x*%x
* DMA *
khkkkhkkhkkhkhkkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhkdhkhkdhkhdhkhkhhkdhkhhkdkhkhdhkhkdhhkhdhkhhhkdhkhhkdkdhkddkdkkdkkk,kk*x*%x
DMA SARLO equ $EE

DMA SARMO equ $EF

DMA SARHO equ $FO

DMA DARLO equ $F1

AN010003-1101

23

Application Note
Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

ZiLOG
DMA DARMO equ 3F2
DMA DARHO equ 3F3
DMA BCLO equ $F4
DMA BCHO equ $F5
DMA CTLO equ sF6
DMA SARL1 equ SF7
DMA_ SARM1 equ 3F8
DMA SARHI1 equ $F9
DMA DARL1 equ $FA
DMA DARM1 equ $FB
DMA DARHI1 equ $FC
DMA BCL1 equ $FD
DMA BCH1 equ SFE
DMA CTL1 equ SFF
khkkhkkhkkhkkhkhkkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkdhkhkkhhkhkkhhkhkkhhkdhkhhkhkhkhkhkhkhkdkhkhkhkkhhkhkkhhkhkkhhkkhkkdhkdk,kd,kkkk,kk*kk*x*%x
* MACC *

khkkkhkkhkkhkhkkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhkdhhkhkkhhkhkhhkdhkhhkhkkhhhkhkhkdkhkhkhkhkhkhkhhkhkkhhkhkkhhkdkkhhkd,k,kk,kk*kk*k*x*x*%x

MAC XSTART equ $EO

MAC XEND equ 3E1
MAC XRELOAD equ $E2
MAC LENGTH equ $E3
MAC YSTART equ $E4
MAC_ YEND equ $E5
MAC YRELOAD equ $E6
MAC CTL equ SE7
MAC ACO equ $E8
MAC AC1 equ %E9
MAC AC2 equ %EA
MAC AC3 equ $EB
MAC AC4 equ %EC
MAC_SR equ %ED

khkkkhkkhkkhkhkkhkkhkhkhkkhhkhkhkhkhkhkhkhkhkhkhhkhkdhkhkdhkhdhhkhhhkhkhhkdkhhkdkhhkdhkhkhhkhkhkkhhkhkkhhkdhkkhhkdkkdhkddkd,kk,kk*kkx*x*x

khkkhkkhkkhkkhkhkkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhkdhkhdhkhkhhkdhhhkdkkhhdkhkhkdhkhkdhkhkhkkdhkhkhhkdhkhhkdkkhhkddkd,kkk,kk*kk*x*x

eZ80_Assembly_Timer.asm

The following code is contained in the file ez80_Assembly Timer.asm.

I EEE SRR RS EE S EEEE LSRR SRR E SRR EREE RS EE SRR RS EE SRR EEEEEREEEREEEEEEEEEEEEEEEESEEEEEEEEES
I EEE SRR RS EEEEEEEE SRR SRR SR EERE RS R LSRR RS EEEREEEEEEEEEEREEEEEEEEEEEEEEEESEEEEEEEEE]
* eZ80 Assembly Timer0 Interrupt Routine Written by Mark Thissen 8/6/01.

*

* This routine runs from ZDS/ZDI using the eZ80 evaluation board and intializes
Timers 0 and 1 to interrupt

* every 10mS from an eZ80 running at 40MHz. It then outputs a pulse on PortA0

every 10mS*50 or 0.5s.

* Total Wave form period = 1ls. Timerl toggles portAl every 10mS*100 or lsecond.

Total Wave Form Period =

AN010003-1101

24

Application Note
Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

y 25

ZiLOG

2 Seconds.

ZDS >> 3.65Beta
Tab Setting >> 8

List of Files in Project

eZ80_ assembly timer.asm
ez80.1inc

khkkhkkhkkhkkhkhkkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkdhhkhkkhhkhkhhkhdhkhkhhkdhkhhkdkhkhkhkhkhkhkhhkhkhhkhkkhhkkhkhhkkhkkhkd,kk,hkk,kk*kk*k*x*%

Memory Map
khkkkhkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkkhhkhkhhkhkkhhkdkkhhkdkhkhkhkhkhhkhkhkdkhhkhkhhkhkkhhkkdkkhhkkdkhkk,kkk,khk*k**%

Initial Settings

FFFFFF

| |

| |
/7777777717777

| ///NOT USED ///|

[/7777717717177

| |

| |

| | 100000
| | OFFFFF

| USER RAM |

| |

| | 000000

khkkkhkkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhkdhkhkkhhkhkkhhkhkkhhkhkhhkhkhkhkhkhkhhdhkhkhhkdkkhhkdkhhkdkdkdkkk,kkk*k*x*

Project Initial Settings:
SPL OFFFFFh
SPS FFFFh
PC 0000h
CSo Not used, all zeros
Cs1 Lower Bound = 0, Upper Bound = 0F, Control Register = 28
Cs2 Not used, all zeros
Cs3 Not used, all zeros
LINKER Settings
EXTIO 0000 to FFFFh
INTIO 0000 to OOFFh
ROM 000000 to OFFFFFh

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
khkkkhkkhkkhkhkkhkkhkhkhkkhhkhkhkhkhhkhkhhkhkhhkhkdhhkhkdhkhkdhkhkhhkdhkhhkdkhhdkhhkdhkhhhhkhdhkhkhhkdrhkdrdkd,kdhkdkkkk,kk,kx*%

include "ez80.inc"

AN010003-1101

Application Note
Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

y 26

ZiLOG

org 0 ;eZ80 Reset Vector

.assume adl=1

define code_data, space = ROM, org = %£0000 ;Control Section starting

;at F0000h

define code data0, space = ROM, org = %100 ;Control Section starting
;at 100h

define nmi loop, space = ROM, org = %66 ;Control Section starting
;at 66h for NMI

globals on

jp.1il start ;Jump to start (0x000100)

segment code_data0

start:
di ;Ensure Interrupts Disabled
1d.1i1 sp, $FFFFF ;Init Stack Pointer
stmix ;Use eZ80 mix mode

;Note, All internal registers pertinent to program control must be initialized in the

;jcode when running from ROM. ZDS Initial Settings will no longer apply.

1d a, HIGH int vect tbl ;Get high byte of interrupt vector

;table address

1d 1i,a ;Program the Interrupt Vector Register
; (1)

1d a,o0

1d.1il1 (intermediate ticks),a ;Initialize interrupt counter

1d.1i1 (intermediate ticksl), a ;Initialize interrupt counterl

khkkhkkhkkhkkhkhkkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkdhkhkdhkhkdhkhkkhhkdhkhhkdkhhkdkhkhkhdhkhkkhhkhkhhkhkhhkdhkkhhkdkdkdkdkdkkk,kk,k*x*

* Port A Initialization
IR R E R SRR S EE SRS SR LSRR SRR R SR EERE LS EEESEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE LSS
1d a, %00
out0 (PA DDR),a ;Make PAO output
out0 (PA ALT2),a ;No special Functions
out0 (PA ALT1),a
IR R R SRR RS EE SRS EE SRR SRR LR EERE LR RS EEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE LSS
* Timer init and Enable
IR R RS SR RS EE SRS EE SRR SRR LSRR SRR LS EEESEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES
1d a, 0

out0 (TMR CTLO) ,a

out0 (TMR CTL1),a

1d a, 61h

out0 (TMR RRHO) ,a ;Timer High byte reload constant
out0 (TMR RRH1),a ;Timer High byte reload constant
1d a, 0A8h

AN010003-1101

loop:

Application Note

Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

out0 (TMR_RRLO),
out0 (TMR_RRL1),
1d a,5Eh

out0 (TMR_CTLO),
out0 (TMR_CTL1)

in0 a, (TMR_CTLO

or a,o01l

out0 (TMR_CTLO),
in0 a, (TMR_CTL1)
or a,01

out0 (TMR CTL1),

)

ei

jr loop

segment nmi_ loop

nmi_isr:

nop
retn

segment code datal

a
a

a
a
a

a

;Timer Low byte reload constant
;Timer Low byte reload constant

Clock/16,
Clock/16,

;Multi-pass mode,
;Multi-pass mode,

;Start TimerO

;Start Timerl

;jEnable Interrupts

;NMI control Section

;No Operation
;jReturn from Non-maskable Interrupt

y 27

ZiLOG

Interrupt Enable
Interrupt Enable

;Sit here and loop and wait for interrupt

khkkhkkhkkhkkhkhkkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhdhkhkdhkhkhhkhkhhkdkhhkdhhkdkdhkhkdhkhkdhkhkhhkhkkhhkdkhhkdkdhkdkdkdkkk,kk*kkx*x*%x

*

Vector Tables and ISR’s

khkkkhkkhkkhkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkdhkhdhkhdhhkdhkhkhhkdkhhkdhhkhdhkhkhhkhkhhkhkhhkhkhhkdkhhkdkddkd,k,hkdkkk,kk*kk*x*x

.align 256

int vect tbl:

dw jump tbl + 0
dw jump tbl + 0
dw jump tbl + 0
dw jump tbl + 5
dw jump_ tbl + 10
dw jump tbl + 0

dw jump tbl + 0

;This ZMASM Assembler Directive allows you to
;align your table on an even 256 byte boundary

;Label name of Interrupt Vector Table

;16 bit vector for Multiply Accumulate Engine

; (Vector of int vect tbl + 00)

;16 bit vector for Direct Memory Access Controller0
; (Vector of int vect tbl + 02)

;16 bit vector for Direct Memory Access Controllerl
; (Vector of int vect tbl + 04)
;16 bit vector for Programmable
; (Vector of int vect tbl + 06)
;16 bit vector for Programmable
; (Vector of int vect tbl + 08)
;16 bit vector for Programmable
;Vector of int wvect tbl + O0A)
;16 bit vector for Programmable
; (Vector of int vect tbl + 0Q)

Reload TimeroO

Reload Timerl

Reload Timer2

Reload Timer3

AN010003-1101

Application Note

Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

dw

dw

dw

dw

dw

dw

dw

dw

dw

dw

dw

dw

dw

dw

dw

dw

dw

dw

dw

dw

dw

dw

dw

dw

jump_tbl
jump_tbl
jump_tbl
jump_tbl
jump tbl
jump tbl
jump tbl
jump tbl
jump tbl
jump tbl
jump tbl
jump tbl
jump tbl
jump tbl
jump tbl
jump tbl
jump tbl
jump tbl
jump tbl
jump tbl
jump tbl
jump tbl
jump tbl

jump tbl

;16 bit vector for
;Timer4 (Vector of
;16 bit vector for
;Timer5 (Vector of
;16 bit vector for

jInterface0 (Vector of int vect tbl + 12)

Programmable Reload

int vect tbl + OE)

Programmable Reload

int vect tbl + 10)
Universal ZiLOG

;16 bit vector for Universal ZiLOG
;jInterfacel (Vector of int vect tbl + 14)

;16 bit vector for
;int_vect tbl + 16)
;16 bit vector for
;int_vect tbl + 18)
;16 bit vector for
;int_vect tbl + 1A)
;16 bit vector for
;int_vect tbl + 1Q)
;16 bit vector for
;int_vect tbl + 1E)
;16 bit vector for
;int_vect tbl + 20)
;16 bit vector for
;int_vect tbl + 22)
;16 bit vector for
;int _vect tbl + 24)
;16 bit vector for
;int vect tbl + 26)
;16 bit vector for
;int vect tbl + 28)
;16 bit vector for
;int vect tbl + 2A)
;16 bit vector for
;int vect tbl + 20C)
;16 bit vector for
;int vect tbl + 2E)
;16 bit vector for
;int vect tbl + 30)
;16 bit vector for
;int vect tbl + 32)
;16 bit vector for
;int vect tbl + 34)
;16 bit vector for
;int vect tbl + 36)
;16 bit vector for
;int vect tbl + 38)
;16 bit vector for
;int vect tbl + 3A)
;16 bit vector for
;int vect tbl + 30C)

PortA bito0

PortA bitl

PortA bit2

PortA bit3

PortA bit4

PortA bits

PortA bité

PortA bit7

PortB bito0

PortB bitl

PortB bit2

PortB bit3

PortB bit4

PortB bits

PortB bité

PortB bit7

PortC bit0

PortC bitl

PortC bit2

PortC bit3

(Vector

(Vector

(Vector

(Vector

(Vector

(Vector

(Vector

(Vector

(Vector

(Vector

(Vector

(Vector

(Vector

(Vector

(Vector

(Vector

(Vector

(Vector

(Vector

(Vector

of

of

of

of

of

of

of

of

of

of

of

of

of

of

of

of

of

of

of

of

ZiLOG

AN010003-1101

28

dw

dw

dw

dw

dw

dw

dw

dw

dw

dw

dw

dw

dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw

khkkkhkkhkkhkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhkhhkhkdhkhkdhkhkkhhkhkhhdhkhhkdkhhkdhkhdhkhkhkhhkhdhkdhhhkdrhkdkdhkdhkdkhk*khkk,kx*

jump_tbl
jump_tbl
jump_tbl
jump_tbl
jump tbl
jump tbl
jump tbl
jump tbl
jump tbl
jump tbl
jump tbl
jump tbl

jump tbl
jump tbl
jump tbl
jump tbl
jump tbl
jump tbl
jump tbl
jump tbl
jump tbl
jump tbl
jump tbl
jump tbl
jump tbl
jump tbl
jump tbl
jump tbl
jump tbl
jump tbl
jump tbl
jump tbl
jump tbl

+ 4+ 4+ + + o+ o+ ++

o

O O O O O O O O O OO O0OO0OO0OOLOOLOOL oo o o

;16 bit vector for PortC

;int _vect tbl + 3E)

;16 bit vector for PortC

;int _vect tbl + 40)

;16 bit vector for PortC

;int vect tbl + 42)

;16 bit vector for PortC

;int vect tbl + 44)

;16 bit vector for PortD

;int_vect tbl + 46)

;16 bit vector for PortD

;int_vect tbl + 48)

;16 bit vector for PortD

;int_vect tbl + 4A)

;16 bit vector for PortD

;int_vect tbl + 4CQ)

;16 bit vector for PortD

;int_vect tbl + 4E)

;16 bit vector for PortD

;int_vect tbl + 50)

;16 bit vector for PortD

;int _vect tbl + 52)

;16 bit vector for PortD bit7

;int vect tbl + 54)

;16
;16
;16
;16
;16
;16
;16
;16
;16
;16
;16
;16
;16
;16
;16
;16
;16
;16
;16
;16
;16

bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit

null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null

vectors
vectors
vectors
vectors
vectors
vectors
vectors
vectors
vectors
vectors
vectors
vectors
vectors
vectors
vectors
vectors
vectors
vectors
vectors
vectors
vectors

bit4
bits
bite
bit7
bit0
bitl
bit2
bit3
bit4
bits

bite

(RESERVED)
(RESERVED)
(RESERVED)
(RESERVED)
(RESERVED)
(RESERVED)
(RESERVED)
(RESERVED)
(RESERVED)
(RESERVED)
(RESERVED)
(RESERVED)
(RESERVED)
(RESERVED)
(RESERVED)
(RESERVED)
(RESERVED)
(RESERVED)
(RESERVED)
(RESERVED)
(RESERVED)

(

Application Note
Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

4 /

ZiLOG

(Vector of

(Vector of

(Vector of

(Vector of

(Vector of

(Vector of

(Vector of

(Vector of

(Vector of

(Vector of

(Vector of

Vector of
for (int vect tbl
for (int vect tbl
for (int vect tbl
for (int vect tbl
for (int vect tbl
for (int vect tbl
for (int vect tbl
for (int vect tbl
for (int vect tbl
for (int vect tbl
for (int vect tbl
for (int vect tbl
for (int vect tbl
for (int vect tbl
for (int vect tbl
for (int vect tbl
for (int vect tbl
for (int vect tbl
for (int vect tbl
for (int vect tbl
for (int vect tbl

B T T T T S S e S S e e T T T T

AN010003-1101

29

Application Note
Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

y 30

ZiLOG

jump_ tbl:

jp.1il1l null isr ;Jump to Null ISR
jp.1il timer isr ;Jump to TimerO ISR
jp.1il timer isrl ;Jump to Timerl ISR

kkhkhkhkkhkkhhkhkkhhhkkhhhkhdhhhhhhdhdhhhdhhhddhhdhhhddhhhdhhhddhhdhhddhddhhkhdhhddhhddhrdddhrddrddxix*x
*kkhkkhkhkkhkkhkhkhkkhkhkhkkhhhkhkhhkhkkhdhhkkhkhhkkhkkhhhkhk*x
* These ISR’s reside in 20 bit space as defined by segment

code data
EE R I R I S I O I O O S I O

segment code_ data

timer isr:

in0 a, (TMR_CTLO) ;Read CTLO to clear pending interrupt
1d.il a, (intermediate ticks) ;Read in counter variable
inc a ;inc variable
1d.il (intermediate ticks),a ;save it
cp 50 ;Test variable. 1Is it 50 yet?
jr z, toggle A0 ;Yes, toggle A0
jr isr exit ;No, return
toggle AO0:
in0 a, (PA_DR) ;Read in PA data register
xor a,01 ;Toggle bit
out0 (PA DR),a ;jWrite back to port
1d a, o0

1d.il (intermediate ticks),a ;Clear time counter

isr exit:
ei;re-enable interrupts
reti.l;Return from Interrupt

khkkhkkhkkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkdhkhkdhkhdhhkhkkhhkhkkhhkdhkhhkdkhkhkdhkhkhkhkhkhkkhhkhkhhkhkkhhkdkkhhkd,kdkd,,kk,kk*kkx*x*%x

timer isrl:

in0 a, (TMR_CTL1) ;Read CTL1 to clear pending interrupt
1d.il a, (intermediate ticksl) ;Read in counter variable
inc a ;inc variable
1d.il1 (intermediate ticksl),a ;save it
cp 100 ;Test variable. 1Is it 100 yet?
jr z, toggle Al ;Yes, toggle Al
jr isrl exit ;No, return
toggle Al:
in0 a, (PA_DR) ;Read in PA data register
xor a,02 ;Toggle bit
out0 (PA DR),a ;Write back to port
1d a,0

AN010003-1101

Application Note
Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

ZiLOG

1d.il (intermediate ticksl),a ;Clear time counter
isrl exit:

el ;re-enable interrupts

reti.l ;Return from Interrupt

khkkhkkhkhkkhkhhkhkhhkhkhhhhhhkhhhkhhhkhhhkhhhhhhhhdhhhdhhhhdhkhhhkhhhkhhhhhhhhhkhhhhddkhdkddkd*kd*k**x

null isr:
el ;re-enable interrupts
reti.l ;return from interrupt

khkkhkkhkkhkkhkhkkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhkkhhkhdhkhkkhhkhkkhhdkhhkdkhkhkdkhkhkhhhkhdhkhkkhhkdhkhhkdkkhhkd,kdkk,kkkk*kk*k*x*%

intermediate ticks: db [1]10 ;Timer count variable

intermediate ticksl: db [1]0 ;Timerl count variable
PR I I R R R R R R R R R R R R R R I I I I I S I I I S I S I S R I I S I I S b S b

end ;End of Assembly

AN010003-1101

31

Application Note
Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

74
y 32

ZiLOG

eZ80 Timer Interrupts—C Project Files

eZ80_boot.s

The following code is contained in the file ezg0_boot.s.
;**

i * ez80Boot: C Runtime Startup
i * Copyright (c) ZiLOG, 1999

;**

define .nbss, space=ROM
;**

.sect ".nbss" ; In case no-one else names it
;**

.INITSIM .equ 0 ; Using simulator?

.1f .INITSIM

.assume ADL=0
define .simstart, SPACE=ROM, org=0
segment .simstart
jp.1lil _c_into
.endif
define .startup, space=ROM
.sect ".startup" ; This should be placed properly
.def _c_into
.def _exit
.ref _main
.ref .BSS BASE, .BSS LENGTH
.ref .TOSPS
.ref . TOSPL
.INITBSS .equ 1 ;Zero the .bss section ?
.INITCOPY .equ 1 ;Copy the initialized tabels?
.assume ADL=1

;**********************************

; Program entry point
;**********************************

_c_into0:

ld.sis sp, . TOSPS ; Setup SPS

1d.1i1 sp, . TOSPL ; Setup SPL

call.il c intl ; Call the init with ADL=1
__exit:

jr $ P ?

AN010003-1101

Application Note

Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

.assume ADL=1

_c_intl:
Jif .INITBSS

e Initialize the

1d
1d
or
sbc
jr
$S:
1d
1d
1d
dec
1d
sbc
jr
1d
1d
1dir
¢ _bss done:

hl, .BSS LENGTH
bc, 0

a,a

hl,bc

Z, _C_bss done

hl, .BSS BASE
bc, .BSS_LENGTH
(hl),0

bc

hl,o0

hl,bc

Z, C_bss done
hl, .BSS BASE
de, .BSS BASE+1

y 33

ZiLOG

.BSS section to zero

; Check for non-zero length
*

*

*

; .BSS is zero-length

; [hl]l=.bss

; 1lst byte’s taken care of

; Just 1 byte
; reset hl
; [del=.bss+1

.endif ; .INITBSS

Lif . INITCOPY ; Copy Initialized tabels

.ref .DATA BASE ; Address of initialized data section

.ref .DATA COPY ; Address of initialized data section copy
.ref .DATA LENGTH ; Length of initialized data sectrion

j------ Copy the initialized data section

1d
1d
or
sbc
jr
$5:
1d
1d
1d
loaddata:
add hl, bc
push hl
or a, a
sbc hl,bc

hl, .DATA LENGTH ; Check for non-zero length
bec, 0 P *

a,a HE

hl,bc i *

z,_c_data_done ; .DATA is zero-length

hl, .DATA COPY ; [hl]l=.data_copy

de, .DATA BASE ; [del=.data

bc, .DATA LENGTH ; [bcl= data length

; Load 64k at a time.

AN010003-1101

Application Note

Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

ldir

push hl

pop bc

pop hl

or a,a

sbc hl,bc
jr z, _c_data done
push bc
push hl

pop bc

pop hl

jr loaddata

_c_data_done:
.endif

push

add
push

pop
1d
call
pop
ret.1l

eZ80def.h

hl,o0
hl
ix,0
ix, sp
ix

hl
de, 0
main
af

A 34

ZiLOG

; Copy the data section
; load next address to bc

; load end address to hl

; reset cary flag
; check if done transfer

; hl=NULL
; argv[0] = NULL

; 1x=&argv[0]

; &argv[0]
; argc==0
; main()

; clean the stack
; return with ADL=0

The following code is contained in the file ezgodef . h.

/**

* ez80def.h

*

**/

#ifndef _EZB8ODEF_H
#define _EZBODEF_H

#include <ez80.h>

#define di ()
#define el ()
#define VECTOR_TIMERO

#define VECTOR TIMER1

_asm("\tdi");
_asm("\tei");

0x06
0x08

AN010003-1101

Application Note
Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

ZiLOG

#define VECTOR_UARTO 0x12
#define VECTOR_UART1 0x14
#define RAM CTLO (*((__INTIO volatile unsigned char *)0xb4))
#define RAM CTL1 (*((__INTIO volatile unsigned char *)0xb5))

#define TMR_CTLO (*((__ INTIO volatile unsigned char ¥*)))
#define TMR DRLO (*((__ INTIO volatile unsigned char ¥*)))
#define TMR_DRHO (*((__ INTIO volatile unsigned char *)0x82))
#define TMR_RRLO (*((__ INTIO volatile unsigned char ¥*)))
#define TMR_RRHO (*((__ INTIO volatile unsigned char ¥*)))

#define TMR_CTL1 (*((__ INTIO volatile unsigned char ¥*)))
#define TMR _DRL1 (*((__ INTIO volatile unsigned char ¥*)))
#define TMR _DRH1 (*((__ INTIO volatile unsigned char *)0x85))
(* ((*)))
(% ((*)))

#define TMR_RRL1 __INTIO volatile unsigned char 0x84

#define TMR RRHI1 __INTIO volatile unsigned char 0x85

#define PA DR (* ((__INTIO volatile unsigned char *)0x96))
#define PA DDR (* ((__INTIO volatile unsigned char *)0x97))
#define PA ALT1 (*((__INTIO volatile unsigned char *)0x98))
#define PA ALT2 (*((__INTIO volatile unsigned char *)0x99))
#define PB DR (*((__INTIO volatile unsigned char *)0x9a))
#define PB_DDR (*((__INTIO volatile unsigned char *)0x9b))
#define PB_ALT1 (*((__INTIO volatile unsigned char *)0x9c))
#define PB ALT2 (*((__INTIO volatile unsigned char *)0x9d))
#define PC DR (*((__INTIO volatile unsigned char *)0x9e))
#define PC DDR (*((__INTIO volatile unsigned char *)0x9f))
#define PC_ALT1 (*((__INTIO volatile unsigned char *)0xa0))
#define PC_ALT2 (*((__INTIO volatile unsigned char *)O0Oxal))
#define PD DR (*((__INTIO volatile unsigned char *)0xa2))
#define PD_DDR (*((__INTIO volatile unsigned char *)0xa3))
#define PD ALT1 (*((__INTIO volatile unsigned char *)0xa4))
#define PD_ALT2 (* ((__INTIO volatile unsigned char *)0xa5))
#define UART RBRO (*((__INTIO volatile unsigned char *)0xcO0))
#define UART THRO (*((__INTIO volatile unsigned char *)0xcO0))
#define BRG_DLRLO (*((__INTIO volatile unsigned char *)0xcO0))
#define BRG_DLRHO (*((__INTIO volatile unsigned char *)0Oxcl))
#define UART IERO (*((__INTIO volatile unsigned char *)0Oxcl))
#define UART IIRO (*((__INTIO volatile unsigned char *)0xc2))
#define UART FCTLO (*((__INTIO volatile unsigned char *)0xc2))
#define UART LCTLO (*((__INTIO volatile unsigned char *)0xc3))
#define UART MCTLO (*((__INTIO volatile unsigned char *)0xc4))
#define UART LSRO (*((__INTIO volatile unsigned char *)0xc5))

AN010003-1101

Application Note
Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

ZiLOG

#define UART_MSRO (*((__INTIO volatile unsigned char *)0xcé6))
#define UART_SPRO (*((__INTIO volatile unsigned char *)0xc7))
#define I2C_SARO (*((__INTIO volatile unsigned char *)0xc8))
#define I2C_XSARO (*((__INTIO volatile unsigned char *)0xc9))
#define I2C DRO (*((__INTIO volatile unsigned char *)0xca))
#define I2C _CTLO (*((__INTIO volatile unsigned char *)0xcb))
#define I2C_SRO (*((__INTIO volatile unsigned char *)O0xcc))
#define I2C_SRRO (*((__INTIO volatile unsigned char *)0xcd))
#define UZI_CTLO (*((__INTIO volatile unsigned char *)0xcf))
#define UART RBR1 (*((__INTIO volatile unsigned char *)0xd0))
#define UART THRI1 (*((__INTIO volatile unsigned char *)0xd0))
#define BRG_DLRL1 (*((__INTIO volatile unsigned char *)0xd0))
#define BRG_DLRH1 (*((__INTIO volatile unsigned char *)0xdl))
#define UART IER1 (* ((__INTIO volatile unsigned char *)0xdl))
#define UART IIR1 (*((__INTIO volatile unsigned char *)0xd2))
#define UART_FCTL1 (*((__ INTIO volatile unsigned char *)0xd2))
#define UART_LCTL1 (*((__ INTIO volatile unsigned char *)0xd3))
#define UART_MCTL1 (*((__ INTIO volatile unsigned char *)0xd4))
#define UART LSR1 (*((__INTIO volatile unsigned char *)0xd5))
#define UART MSR1 (*((__INTIO volatile unsigned char *)0xdé))
#define UART SPR1 (*((__INTIO volatile unsigned char *)0xd7))
#define I2C SAR1 (*((__INTIO volatile unsigned char *)0xd8))
#define I2C XSAR1 (*((__INTIO volatile unsigned char *)0xd9))
#define I2C DR1 (*((__INTIO volatile unsigned char *)0xda))
#define I2C CTL1 (*((__INTIO volatile unsigned char *)0xdb))
#define I2C SR1 (*((__INTIO volatile unsigned char *)0xdc))
#define I2C _SRR1 (*((__INTIO volatile unsigned char *)0xdd))
#define UZI CTL1 (*((__INTIO volatile unsigned char *)0xdf))
#endif

khkkhkkhkkhkkhkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhkdhkhkkhhkhkhhkhkkhhkhkkhhkdkhkhkhkhkhkhhkhkhkdhkhkkhhkdhkkhhkdkkhhkdhkd,kkk,kk*k*x*x*x

interrupts.c

The following code is contained in the file interrupts.c.\

/**

* interrupts.c
*

These are interrupt routines for the eZ80

Since interrupt table and interrupt routines must be within
first 64k boundary, the following allows interrupt
routines to be located anywhere within the 16MB address space.

To do this, two tables are setup in the on-board sram which
is at O0OE000 to OOFFFF

L I T T B S

AN010003-1101

Application Note
Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

y 37

ZiLOG

The first table is the interrupt vector table. It lies

at 00E000 to OOEOFF (or wherever INTERRUPT TABLE is defined

to point to in interrupts.h) and contains vectors into the next
interrupt "jump" table.

*
*
*
*
*
* The second table lies from 00E100 to O0O0E37f (or wherever

* INTERRUPT JUMP_TABLE points to in interrupts.h). It is a table

* of jp.1il instructions to the 24 bit address of the actual interrupt
* routine. Each entry is 5 bytes. The first two bytes are the opcode

* 0x5b, O0xc3 which is the jp.lil pneumonic. The next three bytes are

* the 24 bit address of the interrupt routine.

*
*
*
*
*

The sethandler function will automatically place an isr routine
in the interrupt "jump" table.

***/

#include "interrupts.h"
extern void isr null (void) ;
extern void _asm(char *);

#pragma interrupt
void isr null (void)

{
}

/**

* This function sets up the interrupts tables on the eZ80. It will
initialize each vector in the interrupt vector table to point to
its corresponding entry in the interrupt "jump" table. It
calls the sethandler function and initializes all the 128 eZ80
interrupt vectors to point to isr null.

*
*
*
*
*
* Lastly, it initializes the eZ80’s "i" register with the high

* byte of the interrupt vector table or in this case, "EO"

*
**/

void init interrupts (void)
int 1i;
//initialize all interrupt vectors to null isr

for(i=0; 1 < 256; 1+=2)

{
}

_asm("\tld a,%e0\n\tld i,a");

sethandler (&isr null, i) ;

AN010003-1101

}

Application Note
Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

y 38

ZiLOG

/**

}

*

This function places an interrupt handler in the interrupt
"jump" table.

You only need to pass it the actual interrupt vector number
along with the ISR handler address. It Will compute the offset
into the interrupt jump table and set it accordingly.

***/

void sethandler (void (*handler) (void), unsigned char vector)

{

void** ptr;

ptr=(void*) (INTERRUPT JUMP TABLE+vector/2*5) ;

/* vector 0 / 2 * 5 = 0 + interrupt jump table E100 E100
vector 2 / 2 * 5 = 5 + interrupt jump table E100 E105
vector 4 / 2 * 5 = A + interrupt jump table E100 = E10A

point vector to the jump table by physically writing the
vector into the jump table into the vector table*/

* ((unsigned short*) (INTERRUPT TABLE+vector))=ptr;
/* Therefore, this is what memory would look like starting at
the interrupt table E000:

00 E1 05 E1 OA E1 OF E1 14 E1........... x /

/* Write the jp.lil opcode in big endian format to the jump table */
* ((unsigned short*)ptr)=0xc35b;

/* Increment the pointer by two*/
ptr:(void**)(INTERRUPT_JUMP_TABLE+vector/2*5+2);

/* Write the address of the isr handler into the jump table */
*ptr=handler;

/**/

interrupts.h

The following code is contained in the files interrupts.h.

/**

AN010003-1101

Application Note
Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

y 39

ZiLOG

* interrupts.h
*

**/

#ifndef _INTERRUPTS H

#define _INTERRUPTS H

#define INTERRUPT TABLE 0x00e000
##define INTERRUPT JUMP TABLE 0x00el1l00
#define ei() _asm("\tei");

#define di() _asm("\tdi");

void sethandler (void (*) (void), unsigned char) ;
void init interrupts(void) ;

#endif /* _INTERRUPTS H */

Main.c

The following code is contained in the file Main.c.
/**

eZ80190 C Timer Interrupt Routine by Mark Thissen 8/7/01

This program is set up to run from ZDS/ZDI with the eZ80 Evaluation board.
It utilizes the eZ80190 running at 40MHz., and initializes two Timers,

TMRO and TMR1l, to interrupt every 10mS. TimerO utilizes a period counter,
and a time high and time low register to implement a Modulated PWM routine
on PAO and PA2. PA2 is simply implemented as the inverse of PA0O. The period
time of the modulated waveform is 100mS and modulates through 9 iterations
from 1/10 on and 9/10 off to 9/10 on and 1/10 off.

The initial settings for the eZ80 and the memory map are outlined below.
Two versions of initial settings with memory map variations have been
utilized to demonstrate that no matter where the ISR’s are located

(be it 16 bit space or 24 bit space) that the jump table can be used

to properly set the vector locations.

C Compiler >> eZ80CC1l.01
ZDS >> 3.65Beta
Tab Setting >> C Files = 4, .s files = 8

List of Files in Project

eZ80boot.s
main.c

time pwm.c
interrupts.c
<Dependenciess

L I S T I S T I R S R S . I N R S

AN010003-1101

Application Note
Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

ZiLOG

ez80def.h
ez80.h
interrupts.h

khkkhkkhkhkkhkhhkkhkhhhkhhhkhhhkhhhkhhhkhhhkhhhhhhhhhdhhdhkhhhkhhhkhhhkhhhkhhhdhhhkhdkkhdkdkdkkddk**x*

* % o ok F F F

Memory Maps
*

khkkkhkkhkkhkkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkdhkhkhhkhkkhhkdhkkhhkdkhhkhkhkhkhhkhkdkhkhkhkkhhkhkkhhkk,kkdhkd,kkdkd,kkkk,kk*kk*x*%x

C Memory Maps

Initial Settingsl Initial Settings2
FFFFFF FFFFFF

//// NOT USED /////

| | | |

| | | |

| | | |

| | 20000 | |

| | | 1FFFFF | |

| //// NOT USED ///// | | | 200000
| | | | 1FFFFF
| | | |

| | | USER RAM |

| | | |

| | | | 100000
| | 100000 | | OFFFFF
| | OFFFFF | | |

| | | |

| USER RAM | | //// NOT USED ////|

| | | |

| | | |

| | | |

| | 000000 | | 000000

khkkkhkkhkkhkhkkhkhkhkhkkhkhkhkhkhkhkhkhkhhkhkhhkhkhhkhkdhkhkdhkhkhhdkhhkdhhkdkhkhkhkhkhkhhkhkhkkhhkdhkhhkdkdhkdkkdhkdkkkk,kk*kk*x*x

*

*

* Project Initial Settingsl:

* SPL OFFFFFh

* SPS FFFFh

* PC 0000h

* CSo Not used, all zeros
* Cs1 Lower Bound = 0, Upper Bound = 0F, Control Register = 28
* Cs2 Not used, all zeros
* CSs3 Not used, all zeros
* LINKER Settings

* EXTIO 0000 to FFFFh

AN010003-1101

Application Note

Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

INTIO
ROM

0000 to O0OFFh
000000 to OFFFFFh

ZiLOG

41

Rk b Sk b S S R I R I R R R R R S b b i R R R R R R O R R R Ik R i R I R R R I O

*

* Project Initial Settings2:

* SPL 1FFFFFh

* SPS FFFFh

* PC 100000h

* Cso Not used, all zeros
* Cs1 Lower Bound = 10, Upper Bound = 1F, Control Register = 28
* Cs2 Not used, all zeros
* Cs3 Not used, all zeros
* LINKER Settings

* EXTIO 0000 to FFFFh

* INTIO 0000 to OOFFh

* ROM 100000 to 1FFFFFh

*

***/

#include "ez80def.h"
#include "interrupts.h"
void init timer (void) ;
void init timerl (void) ;

int main(void)
{
unsigned int i,k,vy,z;
RAM CTLO=0xcO;
RAM CTL1=0x00;
PA DDR &= 0x78;
PA ALT2 &= 0x78;
PA ALT1 &= 0x78;

init interrupts() ;
ei();

init timer () ;

init timerl();

for(i=0;1i<256;i++)

{

for (k=0;k<256;k++)

{

45min.

//enable on-chip sram

//make PAO - PA2 outputs

// This is one long loop, almost

for (y=0;y<256;y++)

for(z=0;2<100;z++) ;

}

AN010003-1101

Application Note
Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

Z.
y 42

ZiLOG

time_PWM.c

The following code is contained in the file time PwWM. c.
/**

* time pwm.c

*

* This will setup timerO to output a modulated PWM waveform

* on PAO and it’s inverse on PA2. The Routine goes through 9
* iterations of the period from 1/10 (10mS) on, to 9/10 (90mS)
* off through 9/10 (90mS) on to 1/10 (10mS) off.

* PAl toggles under interrupt service from Timerl every 100mS.
*
*
*

***/

#include "ez80def.h"

void timer0 on off (void);

extern void isr timerl (void) ;

extern void isr timeroO (void) ;

extern void sethandler (void (*) (void), unsigned char) ;
unsigned char intermediate ticks;

unsigned char period, t lo, t hij;

/**

* This will initialize timer0 to interrupt every 1l0ms

*

* 16 bit time constant is not big enough for 100ms interrupts,
* go we will use additional intermediate counter to count
*
*

every 10 ticks.
***/

void init timer (void)
sethandler (&isr timer0,VECTOR TIMERO); /*Pass the address of
isr timero0
and the vector number

to be
placed into the interrupt jump table */
PA DR = 0;
period = 9;
t hi = 0;
t lo = 0;

AN010003-1101

Application Note
Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

y 43

ZiLOG

TMR CTLO = 0x00;
TMR_RRHO = 0x61; //setup timer to interrupt every 10ms
TMR_RRLO = 0xa8;

TMR_CTLO 0x5e; //timer0 = multipass, /16, interrupt enable
TMR_CTLO |= 0x01; //enable timer

}
/

***/

void init timerl (void)
{
intermediate ticks=0x00;
sethandler (&isr timerl,VECTOR TIMER1); /*Pass the address of
isr timerl
and the vector number
to be
placed into the interrupt jump table */
TMR_CTL1 = 0x00;

TMR _RRH1 = 0x61; //setup timer to interrupt every 10ms
TMR_RRL1 = 0Oxa8;

TMR _CTL1 = 0x5e; //timer0 = multipass, /16, interrupt enable
TMR_CTL1 |= 0x01; //enable timer

}

/**

* These Timer ISR’s get called every 10ms.
**/

#pragma interrupt
void isr_ timer0 (void)

{

unsigned char temp;

if (t_lo == 0) //Switch case every 100mS

{

switch (period)

{

case 1: t hi = 9;

t lo = 1;
timer0 on off () ;
break;

case 2: t hi = 8;
t lo = 2;
timer0 _on off ();
break;

case 3: t hi = 7;

AN010003-1101

}

Application Note
Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

ZiLOG

t lo = 3;
timer0 _on off () ;
break;

case 4: t _hi = 6;
t lo = 4;
timer0 _on off () ;
break;

case 5: t _hi = 5;
t lo = 5;
timer0 _on off ();
break;

case 6: t hi = 4;
t lo = 6;
timer0 _on off () ;
break;

case 7: t_hi = 3;
t lo = 7;
timer0 _on off () ;
break;

case 8: t hi = 2;
t lo = 8;
timer0 on off () ;
break;

case 9: t hi = 1;
t lo = 9;
timer0 on off () ;
break;

}

else

{

timer0 _on off () ;

}

temp=TMR CTLO; //read to clear pending int

/**/

#pragma interrupt
void isr_ timerl (void)

{

unsigned char temp;
temp=TMR CTL1; //read to clear pending int

intermediate ticks++;
if (intermediate ticks >= 10)

{

intermediate ticks=0;

AN010003-1101

44

}

Application Note

Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

A

PA DR

= 0x02;

//toggle PAl every 100mS

ZiLOG

/***/

/ /Make
/ /Make

/ /Make
/ /Make

//End of Period?

//Next Case
//End of Case Modulation

void timer0 on off (void)
{
if (t_hi != 0)
{
PA DR |= 0x01;
PA DR &= OXFB;
t hi --;
}
else
{
PA DR &= OXFE;
PA DR |= 0x04;
t lo --;
}
if (t_1lo == 0)
{
period --;
if (period <= 0)
{
period = 9;
}
}
}

PAO
PA2

PAO
PA2

High
Low

Low
High

AN010003-1101

45

Application Note
Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly

Z.
46

ZiLOG

Customer Feedback Form

If you experience any problems while operating this product, or if you note any
inaccuracies while reading this Application Note, please copy and complete this
form, then mail or fax it to ZiLOG (see Return Information, below). We also wel-
come your suggestions!

eZ80190 Webserver Date Code
Serial # or Board Fab #/Rev. #
Software Version

Document Number

Host Computer Description/Type

Customer Information

Name Country
Company Phone
Address Fax
City/State/Zip E-Mail

Return Information

ZiLOG

System Test/Customer Support

910 E. Hamilton Avenue, Suite 110, MS 4-3
Campbell, CA 95008

Fax: (408) 558-8536

ZILOG World Wide Customer Support Center

Problem Description or Suggestion

Provide a complete description of the problem or your suggestion. If you are
reporting a specific problem, include all steps leading up to the occurrence of the
problem. Attach additional pages as nec

AN010003-1101

	Understanding the eZ80 Interrupt Structure and Initializing Interrupts in C and Assembly
	Table of Contents
	List of Figures
	List of Tables

	Acknowledgements
	Introduction
	Discussion
	Interrupt Structure

	How the eZ80 Fetches an Internal Interrupt Vector
	Assembly Language Initialization
	Vector Table Setup

	Initializing the Interrupt Vector Register (I)
	Initialization in C

	Initializing the Interrupt Vector Register (I) in C
	Definitions
	Application Example
	eZ80190 C Timer Interrupt Routine

	C Project Tools
	List of Files in C Project
	eZ80 Assembly Timer Interrupt Routine

	Assembly Project Tools
	List of Files in Project
	Assembly Memory Map
	EZ80190 Webserver Evaluation Board Jumper Settings
	Summary

	References
	Information Integrity
	Document Disclaimer
	Source Code
	eZ80 Timer Interrupts—Assembly Project Files

	eZ80. Inc.
	eZ80_Assembly_Timer.asm
	eZ80 Timer Interrupts—C Project Files

	eZ80_boot.s
	eZ80def.h
	interrupts.c
	interrupts.h
	Main.c
	time_PWM.c
	Customer Feedback Form

