
ZiLOG Developer Studio II—
eZ80Acclaim!®

UM014423-0607

User Manual

DO NOT USE IN LIFE SUPPORT

LIFE SUPPORT POLICY
ZiLOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF
THE PRESIDENT AND GENERAL COUNSEL OF ZiLOG CORPORATION.

As used herein
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)
support or sustain life and whose failure to perform when properly used in accordance with instructions for
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A
critical component is any component in a life support device or system whose failure to perform can be
reasonably expected to cause the failure of the life support device or system or to affect its safety or
effectiveness.

Document Disclaimer
©2007 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices,
applications, or technology described is intended to suggest possible uses and may be superseded. ZiLOG,
INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY
OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT.
ZiLOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY
INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR
TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this
document has been verified according to the general principles of electrical and mechanical engineering.

Z8, Z8 Encore!, eZ80, and eZ80Acclaim!, and Z8 Encore! XP are registered trademarks of ZiLOG, Inc. All other product or
service names are the property of their respective owners.

Warning:
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!®

iii
Revision History

Date
Revision
Level Section Description

April 2006 21 All Updated for ZDS II 4.10.0 release.

September
2006

22 “Anonymous Labels” on page 222

“Warning and Error Messages” on page 168

“Warning and Error Messages” on page 286

Chapters 2 and 5

Appendix D, “Using the Command
Processor”

“Setup” on page 96

“Firmware Upgrade” on page 120

“Project Settings—Debugger Page” on
page 95 and “New Project” on page 39

“Flash Loader” on page 115

Added new section for CR 6971.

Added a note for CR 5661.

Added a note for CR 5661.

Changed Select Active Configuration to Select
Build Configuration.

Updated.

Updated step 6.

Added path for Ethernet Smart Cable upgrade
instructions.

Added description of the Use Page Erase
Before Flashing check box.

Added description of the Use Page Erase check
box.

June 2007 23 All Updated for ZDS II 4.11.0 release.
UM014423-0607 Revision History

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

iv
Table of Contents
Introduction . xvii

ZDS II System Requirements . xvii
Supported Operating Systems . xvii
Recommended Host System Configuration . xvii
Minimum Host System Configuration .xviii
When Using the USB Smart Cable .xviii
When Using the Ethernet Smart Cable .xviii
When Using the Serial Smart Cable .xviii
When Using ZPAK II .xviii

ZiLOG Technical Support .xviii
Before Contacting Technical Support . xix

Getting Started . 1
Installing ZDS II . 1
Developer’s Environment Tutorial . 1

Create a New Project . 2
Add a File to the Project . 6
Set Up the Project . 8
Save the Project . 13

Using Non-Simulator Debug Tools . 14
Using the Integrated Development Environment . 15

Toolbars . 16
File Toolbar . 16
Build Toolbar . 18
Find Toolbar . 21
Command Processor Toolbar . 22
Bookmarks Toolbar . 22
Debug Toolbar . 23
Debug Windows Toolbar . 27

Windows . 29
Project Workspace Window . 29
Edit Window . 30
Output Windows . 34

Menu Bar . 37
File Menu . 37
Edit Menu . 47
View Menu . 53
Project Menu . 54
Build Menu . 107
UM014423-0607 Table of Contents

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

v

Debug Menu . 111
Tools Menu . 114
Window Menu . 129
Help Menu . 130

Shortcut Keys . 131
File Menu Shortcuts . 131
Edit Menu Shortcuts . 131
Project Menu Shortcuts . 132
Build Menu Shortcuts . 132
Debug Menu Shortcuts . 132

Using the ANSI C-Compiler . 134
Language Extensions . 135

Interrupt Support . 135
Placement Directives . 142
Inline Assembly . 143
fract Keyword . 144
Char and Short Enumerations . 146
Supported New Features from the 1999 Standard . 147

Type Sizes . 147
Predefined Macros . 148

Examples . 148
Calling Conventions . 149

Function Call Mechanism . 149
Special Cases . 151

Calling Assembly Functions from C . 152
Function Naming Convention . 152
Variable Naming Convention . 152
Argument Locations . 153
Return Values . 153
Preserving Registers . 153

Calling C Functions from Assembly . 153
Assembly File . 154
Referenced C Function Prototype . 154

Command Line Options . 154
Run-Time Library . 154
Pseudoinstruction Macros Generated by the C-Compiler . 156

UEXT HL (Unsigned Extension) . 156
SEXT HL (Signed Extension) . 156
LD BC,DE . 156

Startup Files . 157
Segment Naming . 158
UM014423-0607 Table of Contents

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

vi
Linker Command Files for C Programs . 158
Linker Referenced Files . 159
Linker Symbols . 160
Sample Linker Command File . 161

ANSI Standard Compliance . 164
Freestanding Implementation . 164
Deviations from ANSI C . 165

Locating Variables at Specific Addresses: Older Method . 167
Assembly File . 167
C File . 168

Warning and Error Messages . 168
Preprocessor Warning and Error Messages . 168
Front-End Warning and Error Messages . 171
Optimizer Warning and Error Messages . 179
Code Generator Warning and Error Messages . 181

Using the Macro Assembler . 182
Address Spaces and Segments . 182

Allocating Processor Memory . 183
Address Spaces . 183
Segments . 184
Assigning Memory at Link Time . 186

Output Files . 186
Source Listing (.lst) Format . 186
Object Code (.obj) File . 187

Source Language Structure . 187
General Structure . 188
Assembler Rules . 189

Expressions . 192
Arithmetic Operators . 192
Relational Operators . 193
Boolean Operators . 193
HIGH and LOW Operators . 193
HIGH16 and LOW16 Operators . 194
Decimal Numbers . 194
Hexadecimal Numbers . 194
Binary Numbers . 195
Octal Numbers . 195
Character Constants . 195
Operator Precedence . 195

Directives . 196
ALIGN . 197
UM014423-0607 Table of Contents

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

vii
.COMMENT . 197
CPU . 198
Data Directives . 199
DEFINE . 203
DS . 205
END . 205
EQU . 205
INCLUDE . 206
LIST . 207
NEWPAGE . 207
NOLIST . 207
ORG . 208
SEGMENT . 208
TITLE . 209
VAR . 209
XDEF . 210
XREF . 210
Structures and Unions in Assembly Code . 210

Conditional Assembly . 216
IF . 216
IFDEF . 217
IFSAME . 218
IFMA . 218

Macros . 219
MACRO Definition . 219
Concatenation . 219
Macro Invocation . 220
Local Macro Labels . 220
Optional Macro Arguments . 221
Exiting a Macro . 221
Delimiting Macro Arguments . 222

Labels . 222
Anonymous Labels . 222
Local Labels . 223
Importing and Exporting Labels . 223
Label Spaces . 223

Addressing Modes . 224
Representing Immediate Value . 225

Source Language Syntax . 225
Compatibility Issues . 229
Troubleshooting the Assembler . 229
UM014423-0607 Table of Contents

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

viii
Warning and Error Messages . 230
Using the Linker/Locator . 235

Linker Interactions with the Compiler and Assembler . 236
eZ80Acclaim! Address Spaces . 238
Segments . 238

Linker Configurations . 240
Standard Configuration . 241
All RAM Configuration . 242
Copy to RAM Configuration . 244
Custom Configuration . 244
Deprecated Custom Configuration . 245
Components Used in All Linker Configurations . 245

Invoking the Linker . 246
Linker Commands . 247

<outputfile>=<module list> . 248
CHANGE . 248
COPY . 249
DEBUG . 251
DEFINE . 251
FORMAT . 251
GROUP . 252
HEADING . 252
LOCATE . 252
MAP . 253
MAXHEXLEN . 253
MAXLENGTH . 253
NODEBUG . 254
NOMAP . 254
NOWARN . 254
ORDER . 254
RANGE . 255
SEARCHPATH . 255
SEQUENCE . 256
SORT . 256
SPLITTABLE . 256
UNRESOLVED IS FATAL . 257
WARN . 257
WARNING IS FATAL . 258
WARNOVERLAP . 258

Linker Expressions . 258
+ (Add) . 259
UM014423-0607 Table of Contents

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

ix
& (And) . 260
BASE OF . 260
COPY BASE . 261
COPY TOP . 261
/ (Divide) . 261
FREEMEM . 261
HIGHADDR . 262
LENGTH . 262
LOWADDR . 262
* (Multiply) . 262
Decimal Numeric Values . 262
Hexadecimal Numeric Values . 263
| (Or) . 263
<< (Shift Left) . 263
>> (Shift Right) . 263
- (Subtract) . 263
TOP OF . 264
^ (Bitwise Exclusive Or) . 264
~ (Not) . 264

Using Modified ZDS II Startup Modules . 264
Directives for All Configurations . 265

Sample Linker Map File . 267
Troubleshooting the Linker . 283

How do I speed up the linker? . 284
How do I generate debug information without generating code? 284
How can I debug code already programmed in ROM? . 284
How much memory is my program using? . 286
How do I determine the size of my actual hex code? . 286

Warning and Error Messages . 286
Using the Debugger . 290

Status Bar . 291
Code Line Indicators . 292
Debug Windows . 292

Registers Window . 292
Special Function Registers Window . 293
Clock Window . 294
Memory Window . 295
Watch Window . 300
Locals Window . 302
Call Stack Window . 303
Symbols Window . 304
UM014423-0607 Table of Contents

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

x

Disassembly Window . 305
Simulated UART Output Window . 306

Using Breakpoints . 306
Inserting Breakpoints . 307
Viewing Breakpoints . 307
Moving to a Breakpoint . 308
Enabling Breakpoints . 308
Disabling Breakpoints . 309
Removing Breakpoints . 309

Debug Tools . 310
Cycle-Accurate Instruction Set Simulator . 310
Non-Simulator Debug Tools . 310

Targets . 311
RAM-Based Targets . 311
ROM/Flash-Based Targets . 311

ZiLOG Standard Library Notes and Tips 312
What is ZSL? . 313
Which on-chip peripherals are supported? . 313
Where can I find the header files related to ZiLOG Standard Libraries? 313
What is the zsldevinit.asm file? . 313
What initializations are performed in the zsldevinit.asm file? 313
What calls the open_periphdevice() function? . 313
When I use ZiLOG Standard Libraries in my application and build from

the command line, why do I see unresolved errors? . 314
I do not use the standard boot-up module, but I have manually included

ZiLOG Standard Libraries. When I link my code with the library, why
do I get an unresolved symbols error? . 314

Where can I get the ZSL source files? . 314
I need to change the ZSL source code. How can I generate a new library

with these changes included? . 314
How can I use standard I/O calls like printf() and getch()? . 315
What is the difference between the Interrupt mode and the Poll mode

in the UARTs? . 315
What are the default settings for the UART device? . 315
How can I change the default UART settings for my application? 315
I am using the UART in the interrupt mode. Why do I seem to lose some

of the data when I try to print or try to receive a large amount of data? 316
When I call open_UARTx() function by configuring it in INTERRUPT mode,

the control never comes back to my program and my program behaves
indifferently. Why is this? . 316

Where can I find sample applications that demonstrate the use of ZSL? 316
UM014423-0607 Table of Contents

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

xi
I have used init_uart() and other functions provided in the RTL. Do I need
to change my source code because of ZSL? . 317

C Standard Library . 318
Standard Header Files . 319

Errors <errno.h> . 320
Standard Definitions <stddef.h> . 320
Diagnostics <assert.h> . 320
Character Handling <ctype.h> . 321
Limits <limits.h> . 322
Floating Point <float.h> . 322
Mathematics <math.h> . 324
Nonlocal Jumps <setjmp.h> . 326
Variable Arguments <stdarg.h> . 326
Input/Output <stdio.h> . 327
General Utilities <stdlib.h> . 328
String Handling <string.h> . 330

Standard Functions . 332
abs . 333
acos . 333
asin . 333
assert . 334
atan . 334
atan2 . 335
atof . 335
atoi . 336
atol . 336
bsearch . 336
calloc . 337
ceil . 338
cos . 338
cosh . 339
div . 339
exp . 340
fabs . 340
floor . 340
fmod . 341
free . 341
frexp . 342
getchar . 342
gets . 343
isalnum . 343
UM014423-0607 Table of Contents

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

xii
isalpha . 343
iscntrl . 344
isdigit . 344
isgraph . 344
islower . 345
isprint . 345
ispunct . 345
isspace . 346
isupper . 346
isxdigit . 346
labs . 347
ldexp . 347
ldiv . 347
log . 348
log10 . 348
longjmp . 349
malloc . 349
memchr . 350
memcmp . 350
memcpy . 351
memmove . 351
memset . 351
modf . 352
pow . 352
printf . 353
putchar . 356
puts . 356
qsort . 356
rand . 357
realloc . 358
scanf . 358
setjmp . 361
sin . 362
sinh . 362
sprintf . 363
sqrt . 363
srand . 364
sscanf . 364
strcat . 364
strchr . 365
strcmp . 365
UM014423-0607 Table of Contents

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

xiii
strcpy . 366
strcspn . 366
strlen . 367
strncat . 367
strncmp . 367
strncpy . 368
strpbrk . 368
strrchr . 369
strspn . 369
strstr . 370
strtod . 370
strtok . 371
strtol . 372
tan . 373
tanh . 373
tolower . 373
toupper . 374
va_arg . 374
va_end . 375
va_start . 376
vprintf . 377
vsprintf . 377

Running ZDS II from the Command Line . 379
Building a Project from the Command Line . 379
Running the Compiler from the Command Line . 380
Running the Assembler from the Command Line . 380
Running the Linker from the Command Line . 380
Assembler Command Line Options . 381
Compiler Command Line Options . 383
Librarian Command Line Options . 385
Linker Command Line Options . 385

Using the Command Processor . 387
Sample Command Script File . 391
Supported Script File Commands . 392

add file . 392
batch . 392
bp . 393
build . 393
cancel all . 393
cancel bp . 393
cd . 394
UM014423-0607 Table of Contents

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

xiv
checksum . 394
debugtool copy . 394
debugtool create . 394
debugtool get . 395
debugtool help . 395
debugtool list . 395
debugtool save . 395
debugtool set . 396
debugtool setup . 396
defines . 396
delete config . 397
examine (?) for Expressions . 397
examine (?) for Variables . 398
exit . 398
fillmem . 399
go . 399
list bp . 399
loadmem . 399
log . 400
makfile or makefile . 400
new project . 400
open project . 401
option . 401
print . 407
pwd . 407
quit . 407
rebuild . 408
reset . 408
savemem . 408
set config . 408
step . 409
stepin . 409
stepout . 409
stop . 409
target copy . 409
target create . 410
target get . 410
target help . 410
target list . 410
target options . 411
target save . 411
UM014423-0607 Table of Contents

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

xv
target set . 411
target setup . 412
wait . 412
wait bp . 412

Running the Flash Loader from the Command Processor . 412
Displaying Flash Help . 413
Setting Up Flash Options . 413
Executing Flash Commands . 414
Examples . 414

Compatibility Issues . 416
Asssembler Compatibility Issues . 416
Compiler Compatibility Issues . 419

#pragma alias . 419
#pragma noalias . 420
#pragma cpu <cpu name> . 420
#pragma globalcopy . 420
#pragma noglobalcopy . 420
#pragma globalcse . 420
#pragma noglobalcse . 420
#pragma globaldeadvar . 420
#pragma noglobaldeadvar . 420
#pragma globalfold . 421
#pragma noglobalfold . 421
#pragma intrinsics: <state> . 421
#pragma nointrinsics . 421
#pragma nobss . 421
#pragma jumpopt . 421
#pragma nojumpopt . 421
#pragma localcopy . 421
#pragma nolocalcopy . 421
#pragma localcse . 421
#pragma nolocalcse . 421
#pragma localfold . 422
#pragma nolocalfold . 422
#pragma localopt . 422
#pragma nolocalopt . 422
#pragma noopt . 422
#pragma optlink . 422
#pragma nooptlink . 422
#pragma optsize . 422
#pragma optspeed . 422
UM014423-0607 Table of Contents

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

xvi
#pragma peephole . 422
#pragma nopeephole . 422
#pragma promote . 422
#pragma nopromote . 423
#pragma sdiopt . 423
#pragma nosdiopt . 423
#pragma stkck . 423
#pragma nostkck . 423
#pragma strict . 423
#pragma nostrict . 423

Index . 424
UM014423-0607 Table of Contents

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

xvii
Introduction
This section covers the following topics:

• “ZDS II System Requirements” on page xvii

• “ZiLOG Technical Support” on page xviii

ZDS II SYSTEM REQUIREMENTS
To effectively use this software and documentation, you need a basic understanding of the
C and assembly languages, the eZ80Acclaim! architecture, and Microsoft Windows.

NOTE: The memory requirements might vary from system to system depending on the size of the
assembly or C source files. If your system has only 8 MB of RAM, C source files with
large functions and very large assembly files might cause an out-of-memory message on
your system.

Supported Operating Systems
• Windows Vista**

• Windows XP Professional

• Windows 2000 SP4

• MS Windows 98 SE

NOTE: **The USB Smart Cable is not supported on 64-bit Windows Vista. The Ethernet
Smart Cable, available separately in the Ethernet Smart Cable Accessory Kit, is
supported.

Recommended Host System Configuration
• Windows XP Professional

• Pentium III 500-MHz processor or higher

• 128-MB RAM or more

• 135-MB hard disk space (includes application and documentation)

• Super VGA video adapter

• CD-ROM drive for installation

• USB high-speed port (when using the USB Smart Cable)

• Ethernet port (when using the Ethernet Smart Cable)

• Internet browser (Internet Explorer or Netscape)
UM014423-0607 Introduction

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

xviii
Minimum Host System Configuration
• Windows 98 SE

• Pentium II 233-MHz processor

• 96-MB RAM

• 25-MB hard disk space (application only)

• Super VGA video adapter

• CD-ROM drive for installation

• USB high-speed port (when using the USB Smart Cable)

• Ethernet port (when using the Ethernet Smart Cable)

• Internet browser (Internet Explorer or Netscape)

When Using the USB Smart Cable
• High-speed USB (fully compatible with original USB)

• Root (direct) or self-powered hub connection

NOTE: The USB Smart Cable is a high-power USB device.

When Using the Ethernet Smart Cable
• Ethernet 10Base-T compatible connection

When Using the Serial Smart Cable
• RS232 communication port with hardware flow and modem control signals

NOTE: Some USB to RS232 devices are not compatible because they lack the necessary
hardware signals and/or they use proprietary auto-sensing mechanisms that prevent
the Smart Cable from connecting.

When Using ZPAK II
• Ethernet 10Base-T compatible connection

• RS232 communication port

ZILOG TECHNICAL SUPPORT
For technical questions about our products and tools or for design assistance, please use
our web page:

 http://www.zilog.com
UM014423-0607 Introduction

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

xix
You must provide the following information in your support ticket:

• Product release number (Located in the heading of the toolbar)

• Product serial number

• Type of hardware you are using

• Exact wording of any error or warning messages

• Any applicable files attached to the e-mail

To receive ZilOG Developer Studio (ZDS) II product updates and notifications, register at
the Technical Support web page.

Before Contacting Technical Support
Before you use technical support, consult the following documentation:

• Readme.txt File

Refer to the Readme.txt file in the following directory for last minute tips and
information about problems that might occur while installing or running ZDS II:

ZILOGINSTALL\ZDSII_product_version\

where
– ZILOGINSTALL is the ZDS II installation directory. For example, the default

installation directory is C:\Program Files\ZiLOG.
– product is the specific ZiLOG product. For example, product can be ZNEO,

Z8Encore!, eZ80Acclaim!, Crimzon, or Z8GP.
– version is the ZDS II version number. For example, version might be 4.9.0 or

5.0.0.

• FAQ.html file

The FAQ.html file contains answers to frequently asked questions and other
information about good practices for getting the best results from ZDS II. The
information in this file does not generally go out of date from release to release as
quickly as the information in the readme.txt file. You can find the FAQ.html file in
the following directory:
<ZILOGINSTALL>\ZDSII_product_version\

where
– ZILOGINSTALL is the ZDS II installation directory. For example, the default

installation directory is C:\Program Files\ZiLOG.
– product is the specific ZiLOG product. For example, product can be ZNEO,

Z8Encore!, eZ80Acclaim!, Crimzon, or Z8GP.
– version is the ZDS II version number. For example, version might be 4.11.0 or

5.0.0.
UM014423-0607 Introduction

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

xx
• Troubleshooting sections
– “Troubleshooting the Assembler” on page 229
– “Troubleshooting the Linker” on page 283
UM014423-0607 Introduction

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

1

Getting Started
This chapter describes the tools that make up the eZ80Acclaim! developer’s environment
and provides a tutorial of the eZ80Acclaim! developer’s environment, so you can be work-
ing with our graphical user interface in a short time. The following topics are covered:
• “Installing ZDS II” on page 1
• “Developer’s Environment Tutorial” on page 1
• “Using Non-Simulator Debug Tools” on page 14

INSTALLING ZDS II
Perform the following procedure to install the eZ80Acclaim! developer’s environment:

1. Insert the CD in your CD-ROM drive.

2. Follow the setup instructions on your screen.

The installer displays a default location for ZDS II. You can change the location if you
want to.

DEVELOPER’S ENVIRONMENT TUTORIAL
This tutorial shows you how to use the basic features of ZiLOG Developer Studio. To
begin this tutorial, you need a basic understanding of Microsoft Windows. Estimated time
for completing this exercise is 15 minutes.

In this tour, you do the following:

• “Create a New Project” on page 2

• “Add a File to the Project” on page 6

• “Set Up the Project” on page 8

• “Save the Project” on page 13

When you complete this tour, you have a sample.lod file that is used in debugging.

NOTE: Be sure to read “Using the Integrated Development Environment” on page 15 to
learn more about all the dialog boxes and their options discussed in this tour.

For the purpose of this tutorial, your eZ80Acclaim! developer’s environment directory
will be referred to as <ZDS Installation Directory>, which equates to the following:

<ZILOGINSTALL>\ZDSII_eZ80Acclaim!_<version>\

where
UM014423-0607 Getting Started

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

2

• ZILOGINSTALL is the ZDS II installation directory. For example, the default
installation directory is C:\Program Files\ZiLOG.

• version is the ZDS II version number. For example, version might be 4.11.0 or
5.0.0.

Create a New Project
1. To create a new project, select New Project from the File menu.

From the New Project dialog box, click on the Browse button () to navigate to the
directory where you want to save your project.

The Select Project Name dialog box is displayed as shown in the following figure.

Figure 1. Select Project Name Dialog Box

2. Use the Look In drop-down list box to navigate to the directory where you want to
save your project. For this tutorial, place your project in the following directory:

<ZDS Installation Directory>\samples\Tutorial

If ZiLOG Developer Studio was installed in the default directory, the actual path
would be
C:\Program Files\ZiLOG\ZDSII_eZ80Acclaim!_4.11.0\samples\Tutorial

3. In the File Name field, type sample for the name of your project.

The eZ80Acclaim! developer’s environment creates a project file. By default, project
files have the .zdsproj extension (for example, <project name>.zdsproj). You do
not have to type the extension .zdsproj. It is added automatically.

4. Click Select to return to the New Project dialog box.
UM014423-0607 Getting Started

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

3

5. In the Project Type field, select Standard because the sample project uses .c files.

6. In the CPU Family drop-down list box, select eZ80Acclaim!.

7. In the CPU drop-down list box, select eZ80F91.

8. In the Build Type drop-down list box, select Executable to build an application.

Figure 2. New Project Dialog Box

9. Click Continue.

The New Project Wizard dialog box is displayed. It allows you to modify the initial
values for some of the project settings during the project creation process.
UM014423-0607 Getting Started

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

4

Figure 3. New Project Wizard Dialog Box—Build Options Step

10. Accept the defaults by clicking Next.

The Target and Debug Tool Selection step of the New Project Wizard dialog box is
displayed.

11. Select the eZ80F91ModDevKit_RAM target.
UM014423-0607 Getting Started

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

5

Figure 4. New Project Wizard Dialog Box—Target and Debug Tool Selection Step

12. Click Next.

The Target Memory Configuration step of the New Project Wizard dialog box is
displayed.

13. Change the Linker Address Spaces fields as follows:
– ROM: 000000-00FFFF
– ExtIO: 0-FFFF
– FlashInfo: 0-FF
– RAM: 010000-01FFFF
– IntIO: 0-FF
UM014423-0607 Getting Started

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

6

Figure 5. New Project Wizard Dialog Box—Target Memory Configuration Step

14. Click Finish.

ZDS II creates a new project named sample. Three empty folders are displayed in the
Project Workspace window (Standard Project Files, External Dependencies, and Web
Files) on the left side of the integrated development environment (IDE).

Add a File to the Project
In this section, you add the provided C source file main.c to the sample project.

1. From the Project menu, select Add Files.

The Add Files to Project dialog box is displayed.
UM014423-0607 Getting Started

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

7

Figure 6. Add Files to Project Dialog Box

2. From the Add Files to Project dialog box, use the Look In drop-down list box to
navigate to the following directory:

<ZDS Installation Directory>\samples\Tutorial

3. Select the main.c file and click Add.

The main.c file is then displayed under the Standard Project Files folder in the
Project Workspace window on the left side of the IDE.
UM014423-0607 Getting Started

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

8

Figure 7. Sample Project

NOTE: To view any of the files in the Edit window during the tutorial, double-click on the
file in the Project Workspace window.

Set Up the Project
Before you save and build the sample project, check the settings in the Project Settings
dialog box.

1. From the Project menu, select Settings.

The Project Settings dialog box is displayed. It provides various project configuration
pages that can be accessed by selecting the page name in the pane on the left side of
the dialog box. There are several pages grouped together for the C (Compiler) and
Linker that allow you to set up subsettings for that tool. For more information, see
“Settings” on page 55.

2. In the Configuration drop-down list box in the upper left corner of the Project Settings
dialog box, make sure the Debug build configuration is selected
UM014423-0607 Getting Started

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

9

For your convenience, the Debug configuration is a predefined configuration of
defaults set to enable the debugging of program code. For more information on project
configurations such as adding your own configuration, see “Set Active Configuration”
on page 108.

3. Select the General page.

4. Deselect the Generate Debug Information check box.

Figure 8. General Page of the Project Settings Dialog Box

5. Select the Assembler page.

6. Make sure that the Generate Assembly Listing Files (.lst) and Jump Optimization
check boxes are selected.
UM014423-0607 Getting Started

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

10
Figure 9. Assembler Page of the Project Settings Dialog Box

7. Select the Code Generation page.

8. Select the Limit Optimizations for Easier Debug check box.
UM014423-0607 Getting Started

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

11
Figure 10. Code Generation Page of the Project Settings Dialog Box

9. Select the Output page.

10. Make certain that both the IEEE 695 and Intel Hex32 - Records check boxes are
selected.
UM014423-0607 Getting Started

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

12
Figure 11. Output Page of the Project Settings Dialog Box

11. Click OK to save all the settings on the Project Settings dialog box.

The Development Environment will prompt you to build the project when changes are
made to the project settings that would effect the resulting build program. The
message is as follows: “The project settings have changed since the
last build. Would you like to rebuild the affected files?”

12. Click Yes to build the project.

The developer’s environment builds the sample project.

13. Watch the compilation process in the Build Output window.
UM014423-0607 Getting Started

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

13
Figure 12. Build Output Window

When the Build completed message is displayed in the Build Output window, you
have successfully built the sample project and created a sample.lod file to debug.

Save the Project
You need to save your project. From the File menu, select Save Project.
UM014423-0607 Getting Started

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

14
USING NON-SIMULATOR DEBUG TOOLS
ZDS supports the use of a number of target communication debug tools as well as an
instruction set simulator. At a given time, one of the available debug tools can be config-
ured to be used with a project.

ZDS for the eZ80Acclaim! supports the following non-Simulator debug tools:

• USB Smart Cable

• Ethernet Smart Cable

• Serial Smart Cable

• ZPAK II

Use the following procedure to configure the project to use various supported debug tools:

1. Create a new project or open an existing project.

2. From the Project menu, select Settings.

The Project Settings dialog box is displayed.

3. Select the Debugger page.

4. In the Debug Tool area, select the desired debug tool from the Current drop-down list
box.

5. Click Setup in the Debug Tool area.

Refer to “Debug Tool” on page 102 for details about configuring the debug tool.

6. Click OK to accept any changes to debug tool settings.

7. Click OK to close and save the settings for the Project Settings dialog box.
UM014423-0607 Getting Started

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

15
Using the Integrated Development Environ-
ment

The following sections discuss how to use the integrated development environment (IDE):

• “Toolbars” on page 16

• “Windows” on page 29

• “Menu Bar” on page 37

• “Shortcut Keys” on page 131

To effectively understand how to use the developer’s environment, be sure to go through
the tutorial in “Developer’s Environment Tutorial” on page 1.

After the discussion of the toolbars and windows, this chapter discusses the menu bar from
left to right—File, Edit, View, Project, Build, Debug, Tools, Window, and Help—and the
dialog boxes accessed from the menus. For example, the Project Settings dialog box is dis-
cussed as a part of the Project menu section.

Figure 13. eZ80Acclaim! Integrated Development Environment (IDE) Window

For a table of all the shortcuts used in the eZ80Acclaim! developer’s environment, see
“Shortcut Keys” on page 131.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

16
TOOLBARS
The toolbars give you quick access to most features of the eZ80Acclaim! developer’s
environment. You can use these buttons to perform any task.

NOTE: There are cue cards for the toolbars. As you move the mouse pointer across the toolbars,
the main function of each button is displayed. Also, you can drag and move the toolbars to
different areas on the screen.

The following toolbars are available:

• “File Toolbar” on page 16

• “Build Toolbar” on page 18

• “Find Toolbar” on page 21

• “Command Processor Toolbar” on page 22

• “Bookmarks Toolbar” on page 22

• “Debug Toolbar” on page 23

• “Debug Windows Toolbar” on page 27

NOTE: For more information on debugging, see “Using the Debugger” on page 290.

File Toolbar
The File toolbar allows you to perform basic functions with your files using the following
buttons:

• “New Button” on page 17

• “Open Button” on page 17

• “Save Button” on page 17

• “Save All Button” on page 17

• “Cut Button” on page 17

• “Copy Button” on page 17

• “Paste Button” on page 17

• “Delete Button” on page 17

• “Print Button” on page 17

• “Workspace Window Button” on page 17

• “Output Window Button” on page 17
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

17
Figure 14. File Toolbar

New Button
The New button creates a new file.

Open Button
The Open button allows you to open an existing file.

Save Button
The Save button saves the active file.

Save All Button
The Save All button saves all open files and the currently loaded project.

Cut Button
The Cut button deletes selected text from the active file and puts it on the Windows clip-
board.

Copy Button
The Copy button copies selected text from the active file and puts it on the Windows clip-
board.

Paste Button
The Paste button pastes the current contents of the clipboard into the active file at the cur-
rent cursor position.

Delete Button
The Delete button deletes selected text from the active file.

Print Button
The Print button prints the active file.

Workspace Window Button
The Workspace Window button shows or hides the Project Workspace window.

Output Window Button
The Output Window button shows or hides the Output window.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

18
Build Toolbar
The Build toolbar allows you to build your project, set breakpoints, and select a project
configuration with the following controls and buttons:

• “Select Build Configuration List Box” on page 18

• “Compile/Assemble File Button” on page 18

• “Build Button” on page 18

• “Rebuild All Button” on page 18

• “Stop Build Button” on page 18

• “Connect to Target Button” on page 19

• “Download Code Button” on page 19

• “Reset Button” on page 20

• “Go Button” on page 20

• “Insert/Remove Breakpoint Button” on page 21

• “Enable/Disable Breakpoint Button” on page 21

• “Remove All Breakpoints Button” on page 21

Figure 15. Build Toolbar

Select Build Configuration List Box
The Select Build Configuration drop-down list box lets you activate the build configura-
tion for your project. See “Set Active Configuration” on page 108 for more information.

Compile/Assemble File Button
The Compile/Assemble File button compiles or assembles the active source file.

Build Button
The Build button builds your project by compiling and/or assembling any files that have
changed since the last build and then links the project.

Rebuild All Button
The Rebuild All button rebuilds all files and links the project.

Stop Build Button
The Stop Build button stops a build in progress.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

19
Connect to Target Button
The Connect to Target button starts a debug session using the following process:

1. Initializes the communication to the target hardware.

2. Resets the device.

3. Configures the device using the settings in the Configure Target dialog box.

4. Configures and executes the debugger options selected in the Debugger tab of the
Options dialog box. The following options are ignored if selected:
– Reset to Symbol 'main' (Where Applicable) check box
– Verify File Downloads—Read After Write check box
– Verify File Downloads—Upon Completion check box

This button does not download the software. Use this button to access target registers,
memory, and so on without loading new code or to avoid overwriting the target’s code
with the same code. This button is not enabled when the target is the simulator. This button
is available only when not in Debug mode.

For the Serial Smart Cable, ZDS II performs an external target reset and reconfigures PC
and SPL as specified in the Configure Target dialog box.

Download Code Button
The Download Code button downloads the executable file for the currently open project to
the target for debugging. The button also initializes the communication to the target hard-
ware if it has not been done yet. Starting in version 4.10.0, the Download Code button can
also program Flash memory. A page erase is done instead of a mass erase for both internal
and external Flash memory. Use this button anytime during a debug session. This button is
not enabled when the target is the simulator.

NOTE: The current code on the target is overwritten.

If ZDS II is not in Debug mode when the Download Code button is clicked, the following
process is executed:

1. Initializes the communication to the target hardware.

2. Resets the device with a hardware reset by driving ZDI pin #2 low.

3. Configures the device using the settings in the Configure Target dialog box.

4. Downloads the program.

5. Issues a software reset through the ZDI serial interface.

6. Configures and executes the debugger options selected in the Debugger tab of the
Options dialog box. If it is a C project, ZDS II resets to the main function if it is found.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

20
If ZDS II is already in Debug mode when the Download Code button is clicked, the fol-
lowing process is executed:

1. Resets the device using a software reset.

2. Downloads the program.

You might need to reset the device before execution because the program counter might
have been changed after the download.

Reset Button
Click the Reset button in the Build or Debug toolbar to reset the program counter to the
beginning of the program.

If ZDS II is not in Debug mode, the Reset button starts a debug session using the follow-
ing process:

1. Initializes the communication to the target hardware.

2. Resets the device.

3. Configures the device using the settings in the Configure Target dialog box.

4. Downloads the program.

5. Configures and executes the debugger options selected in the Debugger tab of the
Options dialog box. If it is a C project, ZDS II resets to the main function if it is found.

If ZDS II is already in Debug mode, the Reset button uses the following process:

1. ZDS II performs a soft reset in which just PC and SPL are reconfigured as specified in
the Configure Target dialog box.

2. Configures the device using the settings in the Configure Target dialog box.

3. If files have been modified, ZDS II asks, “Would you like to rebuild the project?”
before downloading the modified program. If there has been no file modification, the
code is not reloaded.

The Serial Smart Cable performs an external target reset.

Go Button
Click the Go button to execute project code from the current program counter.

If not in Debug mode when the Go button is clicked, the following process is executed:

1. Initializes the communication to the target hardware.

2. Resets the device.

3. Configures the device using the settings in the Configure Target dialog box.

4. Downloads the program.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

21
5. Configures and executes the debugger options selected in the Debugger tab of the
Options dialog box. If it is a C project, ZDS II resets to the main function if it is found.

6. Executes the program from the reset location.

Insert/Remove Breakpoint Button
The Insert/Remove Breakpoint button sets a new breakpoint or removes an existing break-
point at the line containing the cursor in the active file or the Disassembly window. A
breakpoint must be placed on a valid code line (a C source line with a blue dot displayed
in the gutter or any instruction line in the Disassembly window). For more information on
breakpoints, see “Using Breakpoints” on page 306.

Enable/Disable Breakpoint Button
The Enable/Disable Breakpoint button activates or deactivates the existing breakpoint at
the line containing the cursor in the active file or the Disassembly window. A red octagon
indicates an enabled breakpoint; a white octagon indicates a disabled breakpoint. For more
information on breakpoints, see “Using Breakpoints” on page 306.

Remove All Breakpoints Button
The Remove All Breakpoints button deletes all breakpoints in the currently loaded project.
To deactivate breakpoints in your program, use the Disable All Breakpoints button.

Find Toolbar
The Find toolbar provides access to text search functions with the following controls:

• “Find in Files Button” on page 21

• “Find Field” on page 21

Figure 16. Find Toolbar

Find in Files Button
This button opens the Find in Files dialog box, allowing you to search for text in multiple
files.

Find Field
To locate text in the active file, type the text in the Find field and press the Enter key. The
search term is highlighted in the file. To search again, press the Enter key again.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

22
Command Processor Toolbar
The Command Processor toolbar allows you to execute IDE and debugger commands with
the following controls:

• “Run Command Button” on page 22

• “Stop Command Button” on page 22

• “Command Field” on page 22

Figure 17. Command Processor Toolbar

See “Supported Script File Commands” on page 392 for a list of supported commands.

Run Command Button
The Run Command button executes the command in the Command field. Output from the
execution of the command is displayed in the Command tab of the Output window.

Stop Command Button
The Stop Command button stops any currently running commands.

Command Field
The Command field allows you to enter a new command. Click the Run Command button
or press the Enter key to execute the command. Output from the execution of the com-
mand is displayed in the Command tab of the Output window.

To modify the width of the Command field, do the following:

1. Select Customize from the Tools menu.

2. Click in the Command field.

A hatched rectangle highlights the Command field.

3. Use your mouse to select and drag the side of the hatched rectangle.

The new size of the Command field is saved with the project settings.

Bookmarks Toolbar
The Bookmarks toolbar allows you to to set, remove, and find bookmarks with the follow-
ing buttons:

• “Set Bookmark Button” on page 23

• “Next Bookmark Button” on page 23
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

23
• “Previous Bookmark Button” on page 23

• “Delete Bookmarks Button” on page 23

Figure 18. Bookmarks Toolbar

NOTE: This toolbar is not displayed in the default IDE window.

Set Bookmark Button
Click the Set Bookmark button to insert a bookmark in the active file for the line where
your cursor is located.

Next Bookmark Button
Click the Next Bookmark button to position the cursor at the line where the next book-
mark in the active file is located.

Previous Bookmark Button
Click the Previous Bookmark button to position the cursor at the line where the next book-
mark in the active file is located.

Delete Bookmarks Button
Click the Delete Bookmarks button to remove all of the bookmarks in the currently loaded
project.

Debug Toolbar
The Debug toolbar allows you to perform debugger functions with the following buttons:

• “Download Code Button” on page 24

• “Verify Download Button” on page 25

• “Reset Button” on page 25

• “Stop Debugging Button” on page 25

• “Go Button” on page 25

• “Run to Cursor Button” on page 26

• “Break Button” on page 26

• “Step Into Button” on page 26

• “Step Over Button” on page 26
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

24
• “Step Out Button” on page 26

• “Set Next Instruction” on page 114

• “Insert/Remove Breakpoint Button” on page 26

• “Enable/Disable Breakpoint Button” on page 27

• “Disable All Breakpoints Button” on page 27

• “Remove All Breakpoints Button” on page 27

Figure 19. Debug Toolbar

Download Code Button
The Download Code button downloads the executable file for the currently open project to
the target for debugging. The button also initializes the communication to the target hard-
ware if it has not been done yet. Starting in version 4.10.0, the Download Code button can
also program Flash memory. A page erase is done instead of a mass erase for both internal
and external Flash memory. Use this button anytime during a debug session. This button is
not enabled when the target is the simulator.

NOTE: The current code on the target is overwritten.

If ZDS II is not in Debug mode when the Download Code button is clicked, the following
process is executed:

1. Initializes the communication to the target hardware.

2. Resets the device with a hardware reset by driving ZDI pin #2 low.

3. Configures the device using the settings in the Configure Target dialog box.

4. Downloads the program.

5. Issues a software reset through the ZDI serial interface.

6. Configures and executes the debugger options selected in the Debugger tab of the
Options dialog box. If it is a C project, ZDS II resets to the main function if it is found.

If ZDS II is already in Debug mode when the Download Code button is clicked, the fol-
lowing process is executed:

1. Resets the device using a software reset.

2. Downloads the program.

You might need to reset the device before execution because the program counter might
have been changed after the download.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

25
Verify Download Button
The Verify Download button determines download correctness by comparing the execut-
able file contents to target memory.

Reset Button
Click the Reset button to reset the program counter to the beginning of the program.

If ZDS II is not in Debug mode, the Reset button starts a debug session using the follow-
ing process:

1. Initializes the communication to the target hardware.

2. Resets the device.

3. Configures the device using the settings in the Configure Target dialog box.

4. Downloads the program.

5. Configures and executes the debugger options selected in the Debugger tab of the
Options dialog box. If it is a C project, ZDS II resets to the main function if it is found.

If ZDS II is already in Debug mode, the Reset button uses the following process:

1. ZDS II performs a soft reset in which just PC and SPL are reconfigured as specified in
the Configure Target dialog box.

2. Configures the device using the settings in the Configure Target dialog box.

3. If files have been modified, ZDS II asks, “Would you like to rebuild the project?”
before downloading the modified program. If there has been no file modification, the
code is not reloaded.

The Serial Smart Cable performs an external target reset.

Stop Debugging Button
The Stop Debugging button ends the current debug session.

To stop program execution, click the Break button.

Go Button
Click the Go button to execute project code from the current program counter.

If not in Debug mode when the Go button is clicked, the following process is executed:

1. Initializes the communication to the target hardware.

2. Resets the device.

3. Configures the device using the settings in the Configure Target dialog box.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

26
4. Downloads the program.

5. Configures and executes the debugger options selected in the Debugger tab of the
Options dialog box. If it is a C project, ZDS II resets to the main function if it is found.

6. Executes the program from the reset location.

Run to Cursor Button
The Run to Cursor button executes the program code from the current program counter to
the line containing the cursor in the active file or the Disassembly window. The cursor
must be placed on a valid code line (a C source line with a blue dot displayed in the gutter
or any instruction line in the Disassembly window).

Break Button
The Break button stops program execution at the current program counter.

Step Into Button
The Step Into button executes one statement or instruction from the current program
counter, following the execution into function calls. When complete, the program counter
resides at the next program statement or instruction unless a function was entered, in
which case the program counter resides at the first statement or instruction in the function.

Step Over Button
The Step Over button executes one statement or instruction from the current program
counter without following the execution into function calls. When complete, the program
counter resides at the next program statement or instruction.

Step Out Button
The Step Out button executes the remaining statements or instructions in the current func-
tion and returns to the statement or instruction following the call to the current function.

Set Next Instruction Button
The Set Next Instruction button sets the program counter to the line containing the cursor
in the active file or the Disassembly window.

Insert/Remove Breakpoint Button
The Insert/Remove Breakpoint button sets a new breakpoint or removes an existing break-
point at the line containing the cursor in the active file or the Disassembly window. A
breakpoint must be placed on a valid code line (a C source line with a blue dot displayed
in the gutter or any instruction line in the Disassembly window). For more information on
breakpoints, see “Using Breakpoints” on page 306.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

27
Enable/Disable Breakpoint Button
The Enable/Disable Breakpoint button activates or deactivates the existing breakpoint at
the line containing the cursor in the active file or the Disassembly window. A red octagon
indicates an enabled breakpoint; a white octagon indicates a disabled breakpoint. For more
information on breakpoints, see “Using Breakpoints” on page 306.

Disable All Breakpoints Button
The Disable All Breakpoints button deactivates all breakpoints in the currently loaded
project. To delete breakpoints from your program, use the Remove All Breakpoints button.

Remove All Breakpoints Button
The Remove All Breakpoints button deletes all breakpoints in the currently loaded project.
To deactivate breakpoints in your program, use the Disable All Breakpoints button.

Debug Windows Toolbar
The Debug Windows toolbar allows you to display the Debug windows with the following
buttons:

• “Registers Window Button” on page 27

• “Special Function Registers Window Button” on page 28

• “Clock Window Button” on page 28

• “Memory Window Button” on page 28

• “Watch Window Button” on page 28

• “Locals Window Button” on page 28

• “Call Stack Window Button” on page 28

• “Symbols Window Button” on page 28

• “Disassembly Window Button” on page 28

• “Simulated UART Output Window Button” on page 28

Figure 20. Debug Windows Toolbar

Registers Window Button
The Registers Window button displays or hides the Registers window. This window is
described in “Registers Window” on page 292.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

28
Special Function Registers Window Button
The Special Function Registers Window button opens one of ten Special Function Regis-
ters windows. This window is described in “Special Function Registers Window” on
page 293.

Clock Window Button
The Clock Window button displays or hides the Clock window. This window is described
in “Clock Window” on page 294.

Memory Window Button
The Memory Window button opens one of ten Memory windows. This window is
described in “Memory Window” on page 295.

Watch Window Button
The Watch Window button displays or hides the Watch window. This window is described
in “Watch Window” on page 300.

Locals Window Button
The Locals Window button displays or hides the Locals window. This window is
described in “Locals Window” on page 302.

Call Stack Window Button
The Call Stack Window button displays or hides the Call Stack window. This window is
described in “Call Stack Window” on page 303.

Symbols Window Button
The Symbols Window button displays or hides the Symbols window. This window is
described in “Symbols Window” on page 304.

Disassembly Window Button
The Disassembly Window button displays or hides the Disassembly window. This win-
dow is described in “Disassembly Window” on page 305.

Simulated UART Output Window Button
The Simulated UART Output Window button displays or hides the Simulated UART Out-
put window. This window is described in “Simulated UART Output Window” on
page 306.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

29
WINDOWS
The following ZDS II windows allow you to see various aspects of the tools while work-
ing with your project:

• “Project Workspace Window” on page 29

• “Edit Window” on page 30

• “Output Windows” on page 34

• “Debug Windows” on page 292

Project Workspace Window
The Project Workspace window on the left side of the developer’s environment allows you
to view your project files.

Figure 21. Project Workspace Window for Standard Projects
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

30
Figure 22. Project Workspace Window for Assembly Only Projects

The Project Workspace window provides access to related functions using context menus.
To access context menus, right-click a file or folder in the window. Depending on which
file or folder is highlighted, the context menu provides some or all of the following func-
tions:

• Dock the Project Workspace window

• Hide the Project Workspace window

• Add files to the project

• Remove the highlighted file from the project

• Build project files or external dependencies

• Build or compile the highlighted file

• Undock the Project Workspace window, allowing it to float in the Edit window

Edit Window
The Edit window on the right side of the developer’s environment allows you to edit the
files in your project.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

31
Figure 23. Edit Window

The Edit window supports the following shortcuts:

This section covers the following topics:

• “Using the Context Menus” on page 31

• “Using Bookmarks” on page 32

Using the Context Menus
There are two context menus in the Edit window, depending on where you click.

Function Shortcuts

Undo Ctrl + Z
Redo Ctrl + Y
Cut Ctrl + X
Copy Ctrl + C
Paste Ctrl + V
Find Ctrl + F
Repeat the previous search F3
Go to Ctrl + G
Go to matching { or }.
Place your cursor at the right or left of an opening or closing brace and press
Ctrl + E or Ctrl +] to move the cursor to the matching opening or closing brace.

Ctrl + E
Ctrl +]
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

32
When you right-click in a file, the context menu allows you to do the following (depend-
ing on whether any text is selected or you are running in Debug mode):

• Cut, copy, and paste text

• Go to the Disassembly window

• Show the program counter

• Insert, edit, enable, disable, or remove breakpoints

• Reset the debugger

• Stop debugging

• Start or continue running the program (Go)

• Run to the cursor

• Pause the debugging (Break)

• Step into, over, or out of program instructions

• Set the next instruction at the current line

• Insert or remove bookmarks (see “Using Bookmarks” on page 32)

When you right-click outside of all files, the context menu allows you to do the following:

• Show or hide the Output windows, Project Workspace window, status bar, File
toolbar, Build toolbar, Find toolbar, Command Processor toolbar, Debug toolbar, and
Debug Windows toolbar

• Toggle Workbook Mode

When in Workbook Mode, each open file has an associated tab along the bottom of the
Edit windows area.

• Customize the buttons and toolbars

Using Bookmarks
A bookmark is a marker that identifies a position within a file. Bookmarks appear as cyan
boxes in the gutter portion (left) of the file window. The cursor can be quickly positioned
on a line containing bookmarks.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

33
Figure 24. Bookmark Example

To insert a bookmark, position the cursor on the desired line of the active file and perform
one of the following actions:

• Right-click in the Edit window and select Insert Bookmark from the resulting
context menu.

• Select Toggle Bookmark from the Edit menu.

• Type Ctrl+M.

Figure 25. Inserting a Bookmark
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

34
To remove a bookmark, position the cursor on the line of the active file containing the
bookmark to be removed and perform one of the following actions:

• Right-click in the Edit window and select Remove Bookmark from the resulting
context menu.

• Select Toggle Bookmark from the Edit menu.

• Type Ctrl+M.

To remove all bookmarks in the active file, right-click in the Edit window and select
Remove Bookmarks from the resulting context menu.

To remove all bookmarks in the current project, select Remove All Bookmarks from the
Edit menu.

To position the cursor at the next bookmark in the active file, perform one of the following
actions:

• Right-click in the Edit window and select Next Bookmark from the resulting context
menu.

• Select Next Bookmark from the Edit menu.

• Press the F2 key.

The cursor moves forward through the file, starting at its current position and
beginning again when the end of file is reached, until a bookmark is encountered. If no
bookmarks are set in the active file, this function has no effect.

To position the cursor at the previous bookmark in the active file, perform one of the fol-
lowing actions:

• Right-click in the Edit window and select Previous Bookmark from the resulting
context menu.

• Select Previous Bookmark from the Edit menu.

• Type Shift+F2.

The cursor moves backwards through the file, starting at its current position and
starting again at the end of the file when the file beginning is reached, until a
bookmark is encountered. If no bookmarks are set in the active file, this function has
no effect.

Output Windows
The Output windows display output, errors, and other feedback from various components
of the Integrated Development Environment.

Select one of the tabs at the bottom of the Output window to select one of the Output win-
dows:

• “Build Output Window” on page 35
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

35
• “Debug Output Window” on page 35

• “Find in Files Output Windows” on page 35

• “Messages Output Window” on page 36

• “Command Output Window” on page 36

To dock the Output window with another window, click and hold the window's grip bar
and then move the window.

Double-click on the window's grip bar to cause it to become a floating window.

Double-click on the floating window’s title bar to change it to a dockable window.

Use the context menu to copy text from or to delete all text in the Output window.

Build Output Window
The Build Output window holds all text messages generated by the compiler, assembler,
librarian, and linker, including error and warning messages.

Figure 26. Build Output Window

Debug Output Window
The Debug Output window holds all text messages generated by the debugger while you
are in Debug mode.

Figure 27. Debug Output Window

Find in Files Output Windows
The two Find in Files Output windows display the results of the Find in Files command
(available from the Edit menu and the Edit toolbar). The File in Files 2 window is used
when the Output to Pane 2 check box is selected in the Find in File dialog box (see “Find
in Files” on page 49).
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

36
Figure 28. Find in Files Output Window

Figure 29. Find in Files 2 Output Window

Messages Output Window
The Messages Output window holds informational messages intended for the user. The
Message Output window is activated (given focus) when error messages are added to the
window’s display. Warning and informational messages do not automatically activate the
Message Output window. The Messages Output window also displays the chip revision
identifier and the Smart Cable firmware version.

Figure 30. Messages Output Window

Command Output Window
The Command Output window holds output from the execution of commands.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

37
Figure 31. Command Output Window

MENU BAR
The menu bar lists menu items used in the eZ80Acclaim! developer’s environment. Each
menu bar item displays a list of selection items. If an option on a menu item ends with an
ellipsis (...), selecting the option displays a dialog box. The following items are available
from the menu bar:

• “File Menu” on page 37

• “Edit Menu” on page 47

• “View Menu” on page 53

• “Project Menu” on page 54

• “Build Menu” on page 107

• “Debug Menu” on page 111

• “Tools Menu” on page 114

• “Window Menu” on page 129

• “Help Menu” on page 130

File Menu
The File menu enables you to perform basic commands in the developer’s environment:

• “New File” on page 38

• “Open File” on page 38

• “Close File” on page 38

• “New Project” on page 39

• “Open Project” on page 43

• “Save Project” on page 44

• “Close Project” on page 45

• “Save” on page 45
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

38
• “Save As” on page 45

• “Save All” on page 45

• “Print” on page 45

• “Print Preview” on page 46

• “Print Setup” on page 47

• “Recent Files” on page 47

• “Recent Projects” on page 47

• “Exit” on page 47

New File
Select New File from the File menu to create a new file in the Edit window.

Open File
Select Open File from the File menu to display the Open dialog box, which allows you to
open the files for your project.

Figure 32. Open Dialog Box

NOTE: To delete a file from your project, use the Open Project dialog box. Highlight the file and
press the Delete key. Answer the prompt accordingly.

Close File
Select Close File from the File menu to close the selected file.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

39
New Project
To create a new project, do the following:

1. Select New Project from the File menu.

The New Project dialog box is displayed.

Figure 33. New Project Dialog Box

2. From the New Project dialog box, click on the Browse button () to navigate to the
directory where you want to save your project.

The Select Project Name dialog box is displayed.

Figure 34. Select Project Name Dialog Box

3. Use the Look In drop-down list box to navigate to the directory where you want to
save your project.

4. In the File Name field, type the name of your project.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

40
You do not have to type the extension .zdsproj. The extension is added
automatically.

NOTE: The following characters cannot be used in a project name: () $, . - + [] ' &

5. Click Select to return to the New Project dialog box.

6. In the Project Type field, select Standard for a project that will include C language
source code. Select Assembly Only for a project that will include only assembly
source code.

7. In the CPU Family drop-down list box, select eZ80 or eZ80Acclaim!.

8. In the CPU drop-down list box, select a CPU.

9. In the Build Type drop-down list box, select Executable to build an application or
select Static Library to build a static library.

The default is Executable, which creates IEEE 695 (.lod) and Intel Hex32 (.hex)
executables. For more information, see “Project Settings—Output Page” on page 92.

10. Click Continue to change the default project settings using the New Project Wizard.

To accept all default settings, click Finish.

NOTE: For static libraries, click Finish.

For a Standard project, the New Project Wizard dialog box is displayed. For
Assembly-Only executable projects, continue to Step 12.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

41
Figure 35. New Project Wizard Dialog Box—Build Options Step

11. For standard projects only, select whether your project is linked with any or all of the
following: standard C startup module, C run-time library, and floating-point library;
then click Next.

For executable projects, the Target and Debug Tool Selection step of the New Project
Wizard dialog box is displayed.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

42
Figure 36. New Project Wizard Dialog Box—Target and Debug Tool Selection Step

12. Select the Use Page Erase Before Flashing check box to configure the internal Flash
memory of the target hardware to be page-erased. If this check box is not selected, the
internal Flash is configured to be mass-erased.

13. Select the appropriate target from the Target list box.

14. Click Setup in the Target area.

Refer to “Setup” on page 96 for details on configuring a target.

NOTE: Click Add to create a new target (see “Add” on page 100) or click Copy to copy an
existing target (see “Copy” on page 101).

15. Select the appropriate debug tool and (if you have not selected the Simulator) click
Setup in the Debug Tool area.

Refer to “Debug Tool” on page 102 for details about the available debug tools and
how to configure them.

16. Click Next.

The Target Memory Configuration step of the New Project Wizard dialog box is
displayed.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

43
Figure 37. New Project Wizard Dialog Box—Target Memory Configuration Step

17. Enter the memory ranges appropriate for the target CPU and select the link
configuration from the Link Configurations drop-down list box.

18. Select the configuration that best fits your target. The project settings are modified
accordingly. ZDS II automatically generates a linker command file using the project
settings. Refer to “Link Configuration” on page 77 for details about available link
configurations.

19. Click Finish.

Open Project
To open an existing project, use the following procedure:

1. Select Open Project from the File menu.

The Open Project dialog box is displayed.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

44
Figure 38. Open Project Dialog Box

2. Use the Look In drop-down list box to navigate to the appropriate directory where
your project is located.

3. Select the project to be opened.

4. Click Open to open to open your project.

NOTE: To quickly open a project you were working in recently, see “Recent Projects” on
page 47.

To delete a project file, use the Open Project dialog box. Highlight the file and
press the Delete key. Answer the prompt accordingly.

Save Project
Select Save Project from the File menu to save the currently active project. By default,
project files and configuration information are saved in a file named <project
name>.zdsproj. An alternate file extension is used if provided when the project is cre-
ated.

NOTE: The <project name>.zdsproj.file contains all project data. If deleted, the project is no
longer available.

If the Save/Restore Project Workspace check box is selected (see “Options—General Tab”
on page 123), a file named <project name>.wsp is also created or updated with work-
space information such as window locations and bookmark details. The .wsp file supple-
ments the project information. If it is deleted, the last known workspace data is lost, but
this does not affect or harm the project.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

45
Close Project
Select Close Project from the File menu to close the currently active project.

Save
Select Save from the File menu to save the active file.

Save As
To save the active file with a new name, perform the following steps:

1. Select Save As from the File menu.

The Save As dialog box is displayed.

Figure 39. Save As Dialog Box

2. Use the Save In drop-down list box to navigate to the appropriate directory.

3. Enter the new file name in the File Name field.

4. Use the Save as Type drop-down list box to select the file type.

5. Click Save.

A copy of the file is saved with the name you entered.

Save All
Select Save All from the File menu to save all open files and the currently loaded project.

Print
Select Print from the File menu to print the active file.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

46
Print Preview
Select Print Preview from the File menu to display the file you want to print in Preview
mode in a new window.

1. In the Edit window, highlight the file you want to show a Print Preview.

2. From the File menu, select Print Preview.

The file is shown in Print Preview in a new window. As shown in the following figure,
main.c is in Print Preview mode.

Figure 40. Print Preview Window

3. To print the file, click Print.

To cancel the print preview, click Close. The file returns to its edit mode in the Edit
window.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

47
Print Setup
Select Print Setup from the File menu to display the Print Setup dialog box, which allows
you to determine the printer’s setup before you print the file.

Recent Files
Select Recent Files from the File menu and then select a file from the resulting submenu
to open a recently opened file.

Recent Projects
Select Recent Projects from the File menu and then select a project file from the resulting
submenu to quickly open a recently opened project.

Exit
Select Exit from the File menu to exit the application.

Edit Menu
The Edit menu provides access to basic editing, text search, and breakpoint and bookmark
manipulation features. The following options are available:

• “Undo” on page 48

• “Redo” on page 48

• “Cut” on page 48

• “Copy” on page 48

• “Paste” on page 48

• “Delete” on page 48

• “Select All” on page 48

• “Show Whitespaces” on page 48

• “Find” on page 48

• “Find Again” on page 49

• “Find in Files” on page 49

• “Replace” on page 50

• “Go to Line” on page 51

• “Manage Breakpoints” on page 52

• “Toggle Bookmark” on page 53

• “Next Bookmark” on page 53
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

48
• “Previous Bookmark” on page 53

• “Remove All Bookmarks” on page 53

Undo
Select Undo from the Edit menu to undo the last edit made to the active file.

Redo
Select Redo from the Edit menu to redo the last edit made to the active file.

Cut
Select Cut from the Edit menu to delete selected text from the active file and put it on the
Windows clipboard.

Copy
Select Copy from the Edit menu to copy selected text from the active file and put it on the
Windows clipboard.

Paste
Select Paste from the Edit menu to paste the current contents of the clipboard into the
active file at the current cursor position.

Delete
Select Delete from the Edit menu to delete selected text from the active file.

Select All
Select Select All from the Edit menu to highlight all text in the active file.

Show Whitespaces
Select Show Whitespaces from the Edit menu to display all whitespace characters like
spaces and tabs in the active file.

Find
To find text in the active file, use the following procedure:

1. Select Find from the Edit menu.

The Find dialog box is displayed.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

49
Figure 41. Find Dialog Box

2. Enter the text to search for in the Find What field or select a recent entry from the Find
What drop-down list box. (By default, the currently selected text in a source file or the
text where your cursor is located in a source file is displayed in the Find What field.)

3. Select the Match Whole Word Only check box if you want to ignore the search text
when it occurs as part of longer words.

4. Select the Match Case check box if you want the search to be case sensitive.

5. Select the Regular Expression check box if you want to use regular expressions.

6. Select the direction of the search with the Up or Down button.

7. Click Find Next to jump to the next occurrence of the search text or click Mark All to
insert a bookmark on each line containing the search text.

NOTE: After clicking Find Next, the dialog box closes. You can press the F3 key or use
the Find Again command to find the next occurrence of the search term without
displaying the Find dialog box again.

Find Again
Select Find Again from the Edit menu to continue searching in the active file for text pre-
viously entered in the Find dialog box.

Find in Files
NOTE: This function searches the contents of the files on disk; therefore, unsaved data in

open files are not searched.

To find text in multiple files, use the following procedure:

1. Select Find in Files from the Edit menu.

The Find in Files dialog box is displayed.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

50
Figure 42. Find in Files Dialog Box

2. Enter the text to search for in the Find field or select a recent entry from the Find drop-
down list box. (If you select text in a source file before displaying the Find dialog box,
the text is displayed in the Find field.)

3. Select or enter the file type(s) to search for in the In File Types drop-down list box.
Separate multiple file types with semicolons.

4. Use the Browse button () or the In Folder drop-down list box to select where the
files are located that you want to search.

5. Select the Match Whole Word Only check box if you want to ignore the search text
when it occurs as part of longer words.

6. Select the Match Case check box if you want the search to be case sensitive.

7. Select the Look in Subfolders check box if you want to search within subfolders.

8. Select the Output to Pane 2 check box if you want the search results displayed in the
Find in Files 2 Output window. If this button is not selected, the search results are
displayed in the Find in Files Output window.

9. Click Find to perform the search.

Replace
To find and replace text in the active file, use the following procedure:

1. Select Replace from the Edit menu.

The Replace dialog box is displayed.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

51
Figure 43. Replace Dialog Box

2. Enter the text to search for in the Find What field or select a recent entry from the Find
What drop-down list box. (By default, the currently selected text in a source file or the
text where your cursor is located in a source file is displayed in the Find What field.)

3. Enter the replacement text in the Replace With field or select a recent entry from the
Replace With drop-down list box.

4. Select the Match Whole Word Only check box if you want to ignore the search text
when it occurs as part of longer words.

5. Select the Match Case check box if you want the search to be case sensitive.

6. Select the Regular Expression check box if you want to use regular expressions.

7. Select whether you want the text to be replaced in text currently selected or in the
whole file.

8. Click Find Next to jump to the next occurrence of the search text and then click
Replace to replace the highlighted text or click Replace All to automatically replace
all instances of the search text.

Go to Line
To position the cursor at a specific line in the active file, select Go to Line from the Edit
menu to display the Go to Line Number dialog box.

Figure 44. Go to Line Number Dialog Box

Enter the desired line number in the edit field and click Go To.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

52
Manage Breakpoints
To view, go to, or remove breakpoints, select Manage Breakpoints from the Edit menu.
You can access the dialog box during Debug mode and Edit mode.

Figure 45. Breakpoints Dialog Box

The Breakpoints dialog box lists all existing breakpoints for the currently loaded project.
A check mark in the box to the left of the breakpoint description indicates that the break-
point is enabled.

Go to Code

To move the cursor to a particular breakpoint you have set in a file, highlight the break-
point in the Breakpoints dialog box and click Go to Code.

Enable All

To make all listed breakpoints active, click Enable All. Individual breakpoints can be
enabled by clicking in the box to the left of the breakpoint description. Enabled break-
points are indicated by a check mark in the box to the left of the breakpoint description.

Disable All

To make all listed breakpoints inactive, click Disable All. Individual breakpoints can be
disabled by clicking in the box to the left of the breakpoint description. Disabled break-
points are indicated by an empty box to the left of the breakpoint description.

Remove

To delete a particular breakpoint, highlight the breakpoint in the Breakpoints dialog box
and click Remove.

Remove All

To delete all of the listed breakpoints, click Remove All.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

53
NOTE: For more information on breakpoints, see “Using Breakpoints” on page 306.

Toggle Bookmark
Select Toggle Bookmark from the Edit menu to insert a bookmark in the active file for
the line where your cursor is located or to remove the bookmark for the line where your
cursor is located.

Next Bookmark
Select Next Bookmark from the Edit menu to position the cursor at the line where the
next bookmark in the active file is located.

NOTE: The search for the next bookmark does not stop at the end of the file; the next
bookmark might be the first bookmark in the file.

Previous Bookmark
Select Previous Bookmark from the Edit menu to position the cursor at the line where the
previous bookmark in the active file is located.

NOTE: The search for the previous bookmark does not stop at the beginning of the file; the
previous bookmark might be the last bookmark in the file.

Remove All Bookmarks
Select Remove All Bookmarks from the Edit menu to delete all of the bookmarks in the
currently loaded project.

View Menu
The View menu allows you to select the windows to display on the eZ80Acclaim! devel-
oper’s environment.

The View menu contains these options:

• “Debug Windows” on page 53

• “Workspace” on page 54

• “Output” on page 54

• “Status Bar” on page 54

Debug Windows
When you are in Debug mode (running the debugger), you can select any of the Debug
windows. From the View menu, select Debug Windows and then the appropriate Debug
window.

For more information on the Debug windows, see “Debug Windows” on page 292.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

54
The Debug Windows submenu contains the following:

• “Registers Window” on page 292

• “Special Function Registers Window” on page 293

• “Clock Window” on page 294

• “Memory Window” on page 295

• “Watch Window” on page 300

• “Locals Window” on page 302

• “Call Stack Window” on page 303

• “Symbols Window” on page 304

• “Disassembly Window” on page 305

• “Simulated UART Output Window” on page 306

Workspace
Select Workspace from the View menu to display or hide the Project Workspace window.

Output
Select Output from the View menu to display or hide the Output windows.

Status Bar
Select Status Bar from the View menu to display or hide the status bar, which resides
beneath the Output windows.

Project Menu
The Project menu allows you to add files to your project, set configurations for your
project, and export a make file.

The Project menu contains the following options:

• “Add Files” on page 54

• “Remove Selected File(s)” on page 55

• “Settings” on page 55

• “Export Makefile” on page 106

Add Files
To add files to your project, use the following procedure:

1. From the Project menu, select Add Files.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

55
The Add Files to Project dialog box is displayed.

Figure 46. Add Files to Project Dialog Box

2. Use the Look In drop-down list box to navigate to the appropriate directory where the
files you want to add are saved.

3. Click on the file you want to add or highlight multiple files by clicking on each file
while holding down the Shift key.

If you select files with .htm, .html, .class, .jar, .jpg, .jpeg, .wav, or .gif extensions, the
files are converted to C files and saved in the Web Files folder in the Project
Workspace window. These files are automatically converted to C source files during
the build process.

4. Click Add to add these files to your project.

Remove Selected File(s)
Select Remove Selected File(s) from the Project menu to delete highlighted files in the
Project Workspace window.

Settings
Select Settings from the Project menu to display the Project Settings dialog box, which
allows you to change your active configuration as well as set up your project.

Select the active configuration for the project in the Configuration drop-down list box in
the upper left corner of the Project Settings dialog box. For your convenience, the Debug
and Release configurations are predefined. For more information on project configura-
tions such as adding your own configuration, see “Set Active Configuration” on page 108.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

56
The Project Settings dialog box has different pages you must use to set up the project:

• “Project Settings—General Page” on page 57

• “Project Settings—Assembler Page” on page 59

• “Project Settings—Code Generation Page” on page 61 (not available for Assembly
Only projects)

• “Project Settings—Listing Files Page” on page 63 (not available for Assembly Only
projects)

• “Project Settings—Preprocessor Page” on page 65 (not available for Assembly Only
projects)

• “Project Settings—Advanced Page” on page 66 (not available for Assembly Only
projects)

• “Project Settings—Deprecated Page” on page 69 (not available for Assembly Only
projects)

• “Project Settings—Librarian Page” on page 74 (available for Static Library projects
only)

• “Project Settings—ZSL Page” on page 75

• “Project Settings—Commands Page” on page 77 (available for Executable projects
only)

• “Project Settings—Objects and Libraries Page” on page 84 (available for Executable
projects only)

• “Project Settings—Address Spaces Page” on page 89 (available for Executable
projects only)

• “Project Settings—Warnings Page” on page 90 (available for Executable projects
only)

• “Project Settings—Output Page” on page 92 (available for Executable projects only)

• “Project Settings—Debugger Page” on page 95 (available for Executable projects
only)

The Project Settings dialog box provides various project configuration pages that can be
accessed by selecting the page name in the pane on the left side of the dialog box. There
are several pages grouped together for the C (Compiler) and Linker that allow you to set
up subsettings for that tool. The pages for the C (Compiler) are Code Generation, Listing
Files, Preprocessor, Advanced, and Deprecated. The pages for the Linker are Commands,
Objects and Libraries, Address Spaces, Warnings, and Output.

NOTE: If you change project settings that affect the build, the following message is displayed
when you click OK to exit the Project Settings dialog box: “The project settings
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

57
have changed since the last build. Would you like to rebuild the
affected files?” Click Yes to save and then rebuild the project.

Project Settings—General Page
From the Project Settings dialog box, select the General page. The options on the General
page are described in this section.

Figure 47. General Page of the Project Settings Dialog Box

CPU Family

The CPU Family drop-down list box allows you to select the eZ80® or eZ80Acclaim!
family.

CPU

The CPU drop-down list box defines which CPU you want to define for the target.

To change the CPU for your project, select the appropriate CPU in the CPU drop-down list
box.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

58
NOTE: Selecting a CPU does not automatically select include files for your C or assembly source
code. Include files must be manually included in your code. Selecting a new CPU
automatically updates the compiler preprocessor defines, assembler defines, and, where
necessary, the linker address space ranges and selected debugger target based on the
selected CPU.

Show Warnings

The Show Warnings check box controls the display of warning messages during all phases
of the build. If the check box is enabled, warning messages from the assembler, compiler,
librarian, and linker are displayed during the build. If the check box is disabled, all these
warnings are suppressed.

Generate Debug Information

The Generate Debug Information check box makes the build generate debug information
that can be used by the debugger to allow symbolic debugging. Enable this option if you
are planning to debug your code using the debugger. The check box enables debug infor-
mation in the assembler, compiler, and linker.

Enabling this option usually increases your overall code size by a moderate amount for
two reasons. First, if your code makes any calls to the C run-time libraries, the library ver-
sion used is the one that was built using the Limit Optimizations for Easier Debugging set-
ting (see the “Limit Optimizations for Easier Debugging” on page 62). Second, the
generated code sets up the stack frame for every function in your own program. Many
functions (those whose parameters and local variables are not too numerous and do not
have their addresses taken in your code) would not otherwise require a stack frame in the
eZ80Acclaim! architecture, so the code for these functions is slightly smaller if this check
box is disabled.

NOTE: This check box interacts with the Limit Optimizations for Easier Debugging check
box on the Code Generation page (see “Limit Optimizations for Easier
Debugging” on page 62). When the Limit Optimizations for Easier Debugging
check box is selected, debug information is always generated so that debugging
can be performed. The Generate Debug Information check box is grayed out
(disabled) when the Limit Optimizations for Easier Debugging check box is
selected. If the Limit Optimizations for Easier Debugging check box is later
deselected (even in a later ZDS II session), the Generate Debug Information check
box returns to the setting it had before the Limit Optimizations for Easier
Debugging check box was selected.

Ignore Case of Symbols

When the Ignore Case of Symbols check box is enabled, the assembler and linker ignore
the case of symbols when generating and linking code. This check box is occasionally
needed when a project contains source files with case-insensitive labels. This check box is
only available for Assembly Only projects with no C code.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

59
Intermediate Files Directory

This directory specifies the location where all intermediate files produced during the build
will be located. These files include make files, object files, and generated assembly source
files and listings that are generated from C source code. This field is provided primarily
for the convenience of users who might want to delete these files after building a project,
while retaining the built executable and other, more permanent files. Those files are placed
into a separate directory specified in the Output page (see “Project Settings—Output
Page” on page 92).

Project Settings—Assembler Page
In the Project Settings dialog box, select the Assembler page. The assembler uses the con-
tents of the Assembler page to determine which options are to be applied to the files
assembled.

The options on the Assembler page are described in this section.

Figure 48. Assembler Page of the Project Settings Dialog Box
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

60
Includes

The Includes field allows you to specify the series of paths for the assembler to use when
searching for include files. The assembler first checks the current directory, then the paths
in the Includes field, and finally on the default ZDS II include directories.

The ZDS II default include directories is
<ZDS Installation Directory>\include\std

where <ZDS Installation Directory> is the directory in which ZiLOG Developer Studio
was installed. By default, this would be C:\Program
Files\ZiLOG\ZDSII_eZ80Acclaim!_<version>, where <version> might be
4.11.0 or 5.0.0.

Defines

The Defines field is equivalent to placing <symbol> EQU <value> in your assembly
source code. It is useful for conditionally built code. Each defined symbol must have a
corresponding value (<name>=<value>). Multiple symbols can be defined and must be
separated by commas.

Generate Assembly Listing Files (.lst)

When selected, the Generate Assembly Listing Files (.lst) check box tells the assembler to
create an assembly listing file for each assembly source code module. This file displays
the assembly code and directives, as well as the hexadecimal addresses and op codes of
the generated machine code. The assembly listing files are saved in the directory specified
by the Intermediate Files Directory field in the General page (see “Intermediate Files
Directory” on page 59). By default, this check box is selected.

Expand Macros

When selected, the Expand Macros check box tells the assembler to expand macros in the
assembly listing file.

Page Length

When the assembler generates the listing file, the Page Length field sets the maximum
number of lines between page breaks. The default is 56.

Page Width

When the assembler generates the listing file, the Page Width field sets the maximum
number of characters on a line. The default is 80; the maximum width is 132.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

61
Jump Optimization

When selected, the Jump Optimization check box allows the assembler to replace relative
jump instructions (JR and DJNZ) with absolute jump instructions when the target label is
either

• outside of the +127 to –128 range

For example, when the target is out of range, the assembler changes
DJNZ r0, lab

to
DJNZ r0, lab1
JR lab2
lab1:JP lab
lab2:

• external to the assembly file

When the target label is external to the assembly file, the assembler always assumes
that the target address is out of range.

It is usually preferable to allow the assembler to make these replacements because if the
target of the jump is out of range, the assembler would otherwise not be able to generate
correct code for the jump. However, if you are very concerned about monitoring the code
size of your assembled application, you can deselect the Jump Optimization check box.
You will then get an error message (from the assembler if the target label is in the same
assembly file or from the linker if it is not) every time the assembler is unable to reach the
target label with a relative jump. This might give you an opportunity to try to tune your
code for greater efficiency.

The default is checked.

Project Settings—Code Generation Page
NOTE: For Assembly Only projects, the Code Generation page is not available.

The following figure shows the Code Generation page.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

62
Figure 49. Code Generation Page of the Project Settings Dialog Box

Optimize For

Most code optimizations that can be applied by the compiler generate code that is both
more compact and faster after the optimization. However, in a small percentage of cases,
there is a trade-off between optimizing for these two goals. When you select Size in this
drop-down list box, the compiler makes smaller code size its preferred criterion in such
cases. Conversely, when you select Speed, the compiler values faster execution speed
above size when a trade-off must be made. The differences in size and speed for your
overall application between these two settings is real but, usually, fairly small due to the
relative rarity of code that presents a size-speed optimization trade-off.

Limit Optimizations for Easier Debugging

Selecting this check box causes the compiler to generate code in which certain optimiza-
tions are turned off. These optimizations can cause confusion when debugging. For exam-
ple, they might rearrange the order of instructions so that they are no longer exactly
correlated with the order of source code statements or remove code or variables that are
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

63
not used. You can still use the debugger to debug your code without selecting this check
box, but it might difficult because of the changes that these optimizations make in the
assembly code generated by the compiler.

Selecting this check box makes it more straightforward to debug your code and interpret
what you see in the various Debug windows. However, selecting this check box also
causes a moderate increase in code size. Many users select this check box until they are
ready to go to production code and then deselect it.

You can debug your application when this check box is deselected. The debugger contin-
ues to function normally, but debugging might be more confusing due to the factors
described earlier.

NOTE: This check box interacts with the Generate Debug Information check box (see
“Generate Debug Information” on page 58).

Project Settings—Listing Files Page
NOTE: For Assembly Only projects, the Listing Files page is not available.

The following figure shows the Listing Files page.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

64
Figure 50. Listing Files Page of the Project Settings Dialog Box

Generate C Listing Files (.lis)

When selected, the Generate C Listing Files (.lis) check box tells the compiler to create a
listing file for each C source code file in your project. All source lines are duplicated in
this file, as are any errors encountered by the compiler.

With Include Files

When this check box is selected, the compiler duplicates the contents of all files included
using the #include preprocessor directive in the compiler listing file. This can be helpful
if there are errors in included files.

Generate Assembly Source Code

When this check box is selected, the compiler generates, for each C source code file, a cor-
responding file of assembler source code. In this file (which is a legal assembly file that
the assembler will accept), the C source code (commented out) is interleaved with the gen-
erated assembly code and the compiler-generated assembly directives. This file is placed
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

65
in the directory specified by the Intermediate Files Directory check box in the General
page. See “Intermediate Files Directory” on page 59.

Generate Assembly Listing Files (.lst)

When this check box is selected, the compiler generates, for each C source code file, a cor-
responding assembly listing file. In this file, the C source code is displayed, interleaved
with the generated assembly code and the compiler-generated assembly directives. This
file also displays the hexadecimal addresses and op codes of the generated machine code.
This file is placed in the directory specified by the Intermediate Files Directory field in the
General page. See “Intermediate Files Directory” on page 59.

Project Settings—Preprocessor Page
NOTE: For Assembly Only projects, the Preprocessor page is not available.

The following figure shows the Preprocessor page.

Figure 51. Preprocessor Page of the Project Settings Dialog Box
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

66
Preprocessor Definitions

The Preprocessor Definitions field is equivalent to placing #define preprocessor direc-
tives before any lines of code in your program. It is useful for conditionally compiling
code. Do not put a space between the symbol/name and equal sign; however, multiple
symbols can be defined and must be separated by commas.

Standard Include Path

The Standard Include Path field allows you to specify the series of paths for the compiler
to use when searching for standard include files. Standard include files are those included
with the #include <file.h> preprocessor directive. If more than one path is used, the
paths are separated by semicolons (;). The compiler first checks the current directory, then
the paths in the Standard Include Path field. The default standard includes are located in
the following directories:

<ZDS Installation Directory>\include\std
<ZDS Installation Directory>\include\zilog

where <ZDS Installation Directory> is the directory in which ZiLOG Developer Studio
was installed. By default, this would be C:\Program
Files\ZiLOG\ZDSII_eZ80Acclaim!_<version>, where <version> might be
4.11.0 or 5.0.0.

User Include Path

The User Include Path field allows you to specify the series of paths for the compiler to
use when searching for user include files. User include files are those included with the
#include "file.h" in the compiler. If more than one path is used, the paths are sepa-
rated by semicolons (;). The compiler first checks the current directory, then the paths in
the User Include Path field.

Project Settings—Advanced Page
NOTE: For Assembly Only projects, the Advanced page is not available.

The following figure shows the Advanced page. This page is used for options that most
users will rarely need to change from their default settings.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

67
Figure 52. Advanced Page of the Project Settings Dialog Box

Generate Printfs Inline

Normally, a call to printf() or sprintf() parses the format string at run time to gener-
ate the required output. When the Generate Printfs Inline check box is selected, the format
string is parsed at compile time, and direct inline calls to the lower level helper functions
are generated. This results in significantly smaller overall code size because the top-level
routines to parse a format string are not linked into the project, and only those lower level
routines that are actually used are linked in, rather than every routine that could be used by
a call to printf. The code size of each routine that calls printf() or sprintf() is
slightly larger than if the Generate Printfs inline check box is deselected, but this is more
than offset by the significant reduction in the size of library functions that are linked to
your application.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

68
To reduce overall code size by selecting this check box, the following conditions are nec-
essary:

• All calls to printf() and sprintf() must use string literals, rather than char*
variables, as parameters. For example, the following code allows the compiler to
reduce the code size:

printf ("Timer will be reset in %d seconds", reset_time);

But code like the following results in larger code:
char * timerWarningMessage;
...
sprintf (timerWarningMessage, reset_time);

• The functions vprintf() and vsprintf() cannot be used, even if the format string
is a string literal.

If the Generate Printfs Inline check box is selected and these conditions are not met, the
compiler warns you that the code size cannot be reduced. In this case, the compiler gener-
ates correct code, and the execution is significantly faster than with normal printf calls.
However, there is a net increase in code size because the generated inline calls to lower
level functions require more space with no compensating savings from removing the top-
level functions.

In addition, an application that makes over 100 separate calls of printf or sprintf
might result in larger code size with the Generate Printfs Inline check box selected
because of the cumulative effect of all the inline calls. The compiler cannot warn about
this situation. If in doubt, simply compile the application both ways and compare the
resulting code sizes.

The Generate Printfs Inline check box is selected by default.

Distinct Code Segment for Each Module

For most applications, the code segment for each module compiled by the eZ80Acclaim!
compiler is named CODE. Later, in the linker step of the build process, the linker gathers
all these small CODE segments into a single large CODE segment and then places that
segment in the appropriate address space, thus ensuring that all the executable code is kept
in a single contiguous block within a single address space. However, some users might
need a more complex configuration in which particular code modules are put in different
address spaces.

Such users can select the Distinct Code Segment for Each Module check box to accom-
plish this purpose. When this check box is selected, the code segment for every module
receives a distinct name; for example, the code segment generated for the myModule.c
module is given the name myModule_TEXT. You can then add linker directives to the
linker command file to place selected modules in the appropriate address spaces. This
check box is deselected by default. Because you only need to select this check box if your
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

69
project has an unusually complex link structure, this control has been placed on the
Advanced page.

An example of the use of this feature would be to place most of the application’s code in
the ROM address space (see “Project Settings—Address Spaces Page” on page 89 for a
discussion of the eZ80Acclaim! address spaces) except for a particular module that is to be
run from the RAM space.

An important restriction on the use of this option for the eZ80Acclaim! is that it generally
should not be used (check box deselected) when using the Copy to RAM link configura-
tion (see “Copy to RAM” on page 80). Selecting the option prevents the linker from being
able to bundle up the code segments from different modules into a single contiguous block
to be copied to RAM.

NOTE: It is the user’s responsibility to configure the linker command file properly when
the Distinct Code Segment for Each Module check box is selected.

Project Settings—Deprecated Page
NOTE: For Assembly Only projects, the Deprecated page is not available.

The following figure shows the Deprecated page. This page contains options from older
releases of ZDS II that, because of issues found in extended experience with those particu-
lar options across many applications, are no longer recommended for use. ZiLOG strongly
recommends that you not use these features in new projects. If you have older projects that
use these options, they will continue to be supported as in previous applications. However,
ZiLOG recommends removing them from your projects over time to avoid the issues that
have caused these features to be deprecated.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

70
Figure 53. Deprecated Page of the Project Settings Dialog Box

Disable ANSI Promotions

The option of enabling or disabling ANSI promotions refers to promoting char and short
values to ints when doing computations, as described in more detail in this section. Dis-
abling the promotions was made a user option in earlier releases of ZDS II with the goal of
reducing code size because the promotions called for by the ANSI C standard are often
unnecessary and can lead to considerable code bloat. However, over time, several prob-
lems were found in the compiler’s ability to apply this option consistently and correctly in
all cases. Therefore, ZiLOG no longer recommends the use of this feature and, to address
the original code size issue, has expended more effort to reduce code size and remove truly
unnecessary promotions while observing the ANSI standard. For this reason, the Disable
ANSI Promotions check box is now available only as a deprecated feature. It remains
available because some users have carefully created working code that might depend on
the old behavior and might have to expend additional effort now to keep their code work-
ing without the deprecated feature.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

71
When the Disable ANSI Promotions check box is deselected, the compiler performs inte-
ger type promotions when necessary so that the program’s observed behavior is as defined
by the ANSI C Standard. Integer type promotions are conversions that occur automatically
when a smaller (for example, 8 bits) variable is used in an expression involving larger (for
example, 24 bits) variables. For example, when mixing chars and ints in an expression, the
compiler casts the chars into ints. Conversions of this kind are always done, regardless of
the setting of the Disable ANSI Promotions check box.

The ANSI Standard has special rules for the handling of chars (and shorts), and it is the
application of these special rules that is disabled when the check box is selected. The spe-
cial rules dictate that chars (both signed and unsigned) must always be promoted to ints
before being used in arithmetic or relational (such as < and ==) operations. By selecting
the ANSI Promotions check box, these rules are disregarded, and the compiler can operate
on char entities without promoting them. This can make for smaller code because the com-
piler does not have to create extra code to do the promotions and then to operate on larger
values. In making this a deprecated feature, ZiLOG has worked to make the compiler
more efficient at avoiding truly needless promotions so that the code size penalty for
observing the standard is negligible.

Disabling the promotions can often be a safe optimization to invoke, but this is subject to
several exceptions. One exception is when an arithmetic overflow of the smaller variable
is possible. (For example, the result of adding (char)10 to (char) 126 does not fit
within an 8-bit char variable, so the result is (char) -120.) In such cases, you get dif-
ferent results depending on whether ANSI promotions are enabled or disabled. If you
write

char a = 126;
char b = 10;
int i = a + b:

then with ANSI promotions enabled, you get the right answer: 136. With ANSI promo-
tions disabled, you get the wrong answer: -120. The reason for the different result is that
while in both cases there is a conversion from char to int, the conversion is applied ear-
lier or later depending on this setting. With ANSI promotions enabled, the conversion is
done as soon as possible, so it occurs before the addition, and the result is correct even
though it is too large to fit into a char. With ANSI promotions disabled, the conversion is
not done until a larger type is explicitly called for in the code. Therefore, the addition is
done with chars, the overflow occurs, and only after that is the result converted to int.

By the ANSI Standard, these special promotions are only applied to chars and shorts. If
you have the analogous code with the sum of two ints being assigned into a long, the
compiler does not automatically promote the ints to longs before adding them, and if the
sum overflows the int size, then the result is always wrong whether ANSI promotions are
in effect or not. In this sense, the ANSI promotions make the handling of char types incon-
sistent compared to the treatment of other integer types.

It is better coding practice to show such promotions explicitly, as in the following:
int i = (int) a + (int) b;
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

72
Then, you get the same answer whether promotions are enabled or disabled. If instead,
you write:

char c = a + b;

then even with ANSI promotions enabled, you do not get the right answer. You did not
anticipate that the arithmetic operation can overflow an 8-bit value. With ANSI promo-
tions disabled, the value of the expression (136) is truncated to fit into the 8-bit result,
again yielding the value (char) -120. With ANSI promotions enabled, the expression eval-
uates directly to (char) -120. In this case, disabling ANSI promotions gives you the same
wrong answer more efficiently!

There are two more types of code constructs that behave differently from the ANSI Stan-
dard when the ANSI promotions are disabled. These occur when an expression involving
unsigned chars is then assigned to a signed int result and when relational operators are
used to compare an unsigned char to a signed char. Both of these are generally poor pro-
gramming practice due to the likelihood of operand signs not being handled consistently.

The following code illustrates the cases where the code behaves differently depending on
the setting of the Disable ANSI Promotions check box. When ANSI promotions are on,
the code prints the following:

START
EQUAL
EQUAL
EQUAL
SIGNED
DONE

When ANSI promotions are off, the code prints the following:
START
NOT EQUAL
NOT EQUAL
NOT EQUAL
UNSIGNED
DONE

In every case, the difference occurs because when promotions are on, the unsigned chars
are first promoted to signed ints, and then the operation occurs; with promotions off, the
operations occur first, and then the promotion happens afterward. In every case except the
second test, the code with promotions off has to invoke the ANSI Standard’s rules for how
to convert a negative result into an unsigned type—another indication that it is generally
poorly written code for which this setting makes a difference in program behavior.

#include <stdio.h>

unsigned char uch1 = 1;
unsigned char uch2 = 2;
unsigned char uch3 = 128;
int int1;
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

73
int int2;
char ch1 = -2;

char *neq_str = "NOT EQUAL";
char *eq_str = "EQUAL";

int main(void)
{
 puts("START");

 int1 = uch1 - uch2;
 if (int1 != -1)
 puts(neq_str); //nopromote:00FFh != FFFFh
 else
 puts(eq_str); //promote: FFFFh == FFFFh

 int2 = ~uch3;
 if (int2 != ~128)
 puts(neq_str); //nopromote:007Fh != FF7Fh
 else
 puts(eq_str); //promote: FF7Fh == FF7Fh

 int2 = -uch3;
 if (int2 != -128)
 puts(neq_str); //nopromote:0080h != FF80h
 else
 puts(eq_str); //promote: FF80h == FF80h

 if (uch3 < ch1)
 puts("UNSIGNED"); //nopromote:(uchar)80h < (uchar)FEh
 else
 puts("SIGNED"); //promote: (int) 128 > (int) -2

 puts("DONE.");
}

The following recommended programming practices are good practice in any case for pro-
ducing code that is both correct and efficient. These practices are especially important to
avoid trouble if you are using the deprecated Disable ANSI Promotions option:

• Use variables of type char or unsigned char wherever the expected range of values for
the variable is [-128..127] or [0..255], respectively.

• Use explicit casts (to int, unsigned int, long or unsigned long) where the result of an
expression is expected to overflow the larger of the two operand types. (Even with
ANSI promotions disabled, the compiler automatically promotes a smaller operand so
that the types of the operands match.)
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

74
• It is good programming practice to use explicit casts, even where automatic
promotions are expected.

• Explicitly cast constant expressions that you want to be evaluated as char (for
example, (char)0xFF).

As a final note, due to the eZ80® processor architecture, it is important to deselect the Dis-
able ANSI Promotions check box when you need a local stack frame that is longer than
127 bytes.

Project Settings—Librarian Page
NOTE: This page is available for Static Library projects only.

To configure the librarian, use the following procedure:

1. Select Settings from the Project menu.

The Project Settings dialog box is displayed.

2. Click the Librarian page.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

75
Figure 54. Librarian Page of the Project Settings Dialog Box

3. Use the Output File Name field to specify where your static library file is saved.

Project Settings—ZSL Page
In the Project Settings dialog box, select the ZSL page. The ZSL page allows you to use
the ZiLOG Standard Library (ZSL) in addition to the run-time library (described in the
“Using the ANSI C-Compiler” chapter). The ZSL contains functions for controlling the
UART device driver and GPIO ports. These functions are described in detail in the ZiLOG
Standard Library API Reference Manual (RM0037).

The options on the ZSL page are described in this section.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

76
Figure 55. ZSL Page of the Project Settings Dialog Box

Include ZiLOG Standard Library (Peripheral Support)

Select the Include ZiLOG Standard Library (Peripheral Support) check box to use the
functions contained in the ZiLOG Standard Library. Some of the functions in the C Stan-
dard Library, especially I/O functions like printf(), rely on lower-level functions that
they call to eventually interact with hardware devices such as UARTs. The ZiLOG Stan-
dard Library provides these lower-level support functions, specialized to the eZ80® as
described in the ZiLOG Standard Library API Reference Manual (RM0037). Therefore, if
you choose to deselect this check box and avoid using the functions of the ZSL, you must
provide your own replacements for them or else rewrite the calling functions in the C run-
time library so that the ZSL functions are not called.

Ports

In the Ports area, select the check boxes for the ports that you are going to use.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

77
Uarts

In the Uarts area, select the check boxes for the UARTS that you are going to use.

Project Settings—Commands Page
The following figure shows the Commands page.

Figure 56. Commands Page of the Project Settings Dialog Box

Link Configuration

Use the Link Configuration drop-down list box to select the configuration that best fits
your target. The project settings are modified accordingly. ZDS II automatically generates
a linker command file using the project settings. You can choose to include your own
linker command file.

NOTE: ZDS II—eZ80Acclaim! allows you a great deal of flexibility over where physical
blocks of RAM and ROM (both internal and external) are located in the system.
However, any blocks of Flash memory that use different programming algorithms
must be separated by at least 0x40 bytes. If this is not done, you cannot flash the
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

78
project on the target. As an example, the internal and external Flash memory on the
eZ80F91 development kit use different Flash algorithms so the Target memory
range must contain at least a 0x40 byte gap between these two Flash regions.

• All RAM

This configuration produces a single memory image that resides in, and executes
from, RAM. This configuration is most useful when emulating code from RAM on the
eZ80L92 and eZ80190 evaluation boards. Using the ZDS II standard startup module
with this configuration is recommended as the surest and easiest way to produce an
effective run-time environment.

In this configuration, the linker maps all segments associated with the logical ROM
address space to physical RAM. ZDS II therefore automatically generates two linker
commands:
GROUP MEMORY=ROM,RAM

This command defines a new address space (MEMORY) that contains the existing
logical address spaces RAM and ROM.
RANGE MEMORY $0 : $FFFF

This command defines the physical address range for the combined spaces.

ZDS II creates the RANGE command starting with the lowest address specified in the
Address Spaces page and ending with the highest address. The lowest address is
min(min(ROM), min(RAM)) and the highest address is
max(max(ROM),max(RAM)). These two ZDS II-generated commands are critical for
building an All RAM configuration.

Both the GROUP MEMORY and RANGE MEMORY commands are required for the All
RAM configuration. If the RANGE MEMORY command is omitted, the result can be
wasted space. To illustrate the effects of such an error, suppose the Address Spaces
page has the following values for a 64K memory machine:
ROM 0-7FFF

RAM 8000-FFFF

If the All RAM configuration is not used to create the linker command file, ZDS II
converts the values in the Address Spaces page to the following linker commands:
RANGE ROM $0 : $7FFF

RANGE RAM $8000 : $FFFF

which, if followed by
GROUP MEMORY=ROM,RAM

would result in ROM segments starting at address 0h and RAM segments starting at
8000h, potentially wasting space if the ROM segments do not fully occupy the range
from 0h - 7FFFh. The RANGE MEMORY 0h : FFFFh command overrides the
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

79
RANGE commands for the component address spaces and binds the RAM segments
immediately after the ROM segments.

NOTE: The names following the = in the GROUP command define an ordering for the new
GROUP. In the preceding example, all of the ROM segments are allocated memory
at lower addresses than the RAM segments.

• Standard

This configuration produces the most common embedded environment. Code resides
in Flash/ROM, and data is placed in RAM. Using the ZDS II standard startup module
with this configuration is recommended as the surest and easiest way to produce an
effective run-time environment.

In the Standard configuration, the hardware has both physical RAM and physical
ROM. The Linker commands generated by ZDS II map logical RAM segments to
physical RAM and logical ROM segments to physical ROM. Suppose the Address
Spaces page contained the following values:
ROM 0-7FFF

RAM A000-FFFF

ZDS II generates the following code for the linker command file:
RANGE ROM $0 : $7FFF

RANGE RAM $A000 : $FFFF

The linker uses the COPY command on segments to better support standalone C
programs. When running a C program under an operating system such as Windows or
UNIX, all initialized variables are set to their starting values upon the start of program
execution. In a standalone C implementation, however, there is no operating system to
reload variables with their initial values. With no operating system, if an embedded
application runs for a while and is then restarted at main(), the values of initialized
variables will not be restored to their original value. The linker’s COPY command,
together with the startup module, provides a means to reinitialize variables.

The linker normally loads the DATA segment (initialized data) into RAM. Once the
initialized data has been loaded into RAM and modified by program execution, in the
absence of the COPY mechanism the only way to reload the initial DATA segment
would be to download the code to the target board again. This approach is not
practical for most embedded systems. (The embedded application would have to save
all the initialized data and reload the initial values upon RESET, for example.)

The COPY command (for example, COPY DATA ROM) causes the linker to put a copy
of the DATA segment in the ROM space at load time. The standard startup module
will always copy the DATA segment to RAM before calling main(). The COPY
command copies segments into spaces only. Any other copy combination generates an
error. The startup module requires additional linker commands to perform the copy.
“Linker Commands” on page 247 describes these commands.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

80
The ORDER command allows the user to define the sequence of segments within a
memory space. In the Standard configuration, ZDS II generates the following
command to put the initialized data segment at a lower address than the uninitialized
data segment:
ORDER DATA,BSS

• Copy to RAM

This configuration produces a memory image that resides in Flash/ROM and is copied
to RAM for execution. This configuration is typically used to take advantage of
RAM’s faster operation. Using the ZDS II standard startup module with this
configuration is recommended as the surest and easiest way to produce an effective
run-time environment.

This configuration provides support for copying code as well as data segments from
physical ROM to physical RAM. The idea is to compensate for the performance
penalty often associated with running code from ROM. A ROM instruction fetch, for
example, might require more wait states than a RAM instruction fetch. It is therefore
more efficient to run code from RAM than to run it from ROM, provided the target
system has enough RAM for the program code and data. As in the other
configurations, ZDS II automatically generates linker commands in the linker
command file to support this operating mode, when the Copy to RAM link
configuration is selected.

To run code from the RAM space, the Linker must do two things:
– Reassign all of the CODE segment addresses to RAM instead of ROM.
– Place a copy of the CODE segment in ROM for an application restart (the startup

module re-copies it from ROM to RAM upon restart).

The linker CHANGE command allows you either to rename a segment or reassign a
segment to another space. For example
CHANGE TEXT is DATA

CHANGE CODE is RAM

CHANGE STRSECT is CODE

causes the linker to

1. Combine the TEXT segment into the DATA segment.

2. Reassign the CODE segment to the RAM space.

3. Combine the STRSECT segment into the CODE segment.

These three CHANGE commands reassign all addresses in the CODE, TEXT, and
STRSECT segments into RAM, for the fastest possible execution.

The final step requires the RAM space to be copied in ROM space, so that it can be
reloaded from ROM when the application starts. Adding the following code
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

81
COPY DATA ROM

COPY CODE ROM

causes both the CODE and DATA segments to be copied to ROM. These segments are
then copied by the startup code to the appropriate RAM addresses, completing the
actions associated with the Copy to RAM configuration.

NOTE: To use the Copy to RAM configuration (unless you have your own complex and
carefully designed allocation of code segments into particular modules), the
Distinct Code Segment for Each Module check box in the Advanced page (see
“Distinct Code Segment for Each Module” on page 68) must be deselected.
Selecting that check box prevents the linker from being able to group the CODE
segments from all your code modules into a single contiguous block that can be
copied to RAM automatically by the linker commands that are used in this
configuration.

• Custom

Choose this option if the other three options do not provide the right configuration. As
a result, you are required to define all of the segment-to-space mappings, depending
on the hardware configuration of the application board. You also need to include your
own startup module for this selection.

• Deprecated CUSTOM Configuration

This configuration was provided in earlier releases of ZDS II for eZ80Acclaim! before
the 4.10.0 release. It is supported for backward compatibility. In those earlier releases,
this configuration was called “Custom,” but, in fact, it was nearly identical to the
Standard configuration. The only difference was that the ordering of segments was left
to the user and that the STRSECT segment was left in RAM instead of ROM. That
segment contains string literals and should always be placed in ROM for production
code but can be kept in RAM at times for debugging.

In the 4.10.0 and subsequent releases of ZDS II, the Custom link configuration is used
to support truly customized link command files. ZiLOG recommends that if you have
an older project that used the Deprecated Custom configuration, you convert it either
to the Standard configuration (by changing to that setting and verifying that the minor
changes in link commands cause you no problems) or to the Custom configuration (by
saving your existing link command file and selecting the Use Existing button (see
“Use Existing” on page 83). At some future time, the Deprecated Custom
configuration might no longer be supported in ZDS II.

Always Generate from Settings

When this button is selected, the linker command file is generated afresh each time you
build your project; the linker command file uses the project settings that are in effect at the
time. This button is selected by default, which is the preferred setting for most users.
Selecting this button means that all changes you make in your project, such as adding
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

82
more files to the project or changing project settings, are automatically reflected in the
linker command file that controls the final linking stage of the build. If you do not want
the linker command file generated each time your project builds, select the Use Existing
button (see “Use Existing” on page 83).

NOTE: Even though selecting Always Generate from Settings causes a new linker
command file to be generated when you build your project, any directives that you
have specified in the Additional Linker Directives dialog box are not erased or
overridden.

Additional Directives

To specify additional linker directives that are to be added to those that the linker gener-
ates from your settings when the Always Generate from Settings button is selected, do the
following:

1. Select the Additional Directives check box.

2. Click Edit.

The Additional Linker Directives dialog box is displayed.

Figure 57. Additional Linker Directives Dialog Box

3. Add new directives or edit existing directives.

4. Click OK.

You can use the Additional Directives check box if you need to make some modifications
or additions to the settings that are automatically generated from your project settings, but
you still want all your project settings and newly added project files to take effect automat-
ically on each new build.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

83
You can add or edit your additional directives in the Additional Linker Directives dialog
box. The manually inserted directives are always placed in the same place in your linker
command file: after most of the automatically generated directives and just before the final
directive that gives the name of the executable to be built and the modules to be included
in the build. This position makes your manually inserted directives override any conflict-
ing directives that occur earlier in the file, so it allows you to override particular directives
that are autogenerated from the project settings. (The RANGE and ORDER linker direc-
tives are exceptions to this rule; they do not override earlier RANGE and ORDER direc-
tives but combine with them.) Use caution with this override capability because some of
the autogenerated directives might interact with other directives and because there is no
visual indication to remind you that some of your project settings might not be fully taking
effect on later builds. If you need to create a complex linker command file, contact ZiLOG
Technical Support for assistance. See “ZiLOG Technical Support” on page xviii.

If you have selected the Additional Directives check box, your manually inserted direc-
tives are not erased when you build your project. They are retained and re-inserted into the
same location in each newly created linker command file every time you build your
project.

NOTE: In earlier releases of ZDS II, it was necessary to manually insert a number of
directives if you had a C project and did not select the Standard C Startup Module.
This is no longer necessary. The directives needed to support a C startup module
are now always added to the linker command file. The only time these directives
are not added is if the project is an Assembly Only project or if a custom linker
command file is in use.

Use Existing

Use the following procedure if you do not want a new linker command file to be generated
when you build your project:

1. Select the Use Existing button.

2. Click on the Browse button ().

The Select Linker Command File dialog box is displayed.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

84
Figure 58. Select Linker Command File Dialog Box

3. Use the Look In drop-down list box to navigate to the linker command file that you
want to use.

4. Click Select.

The Use Existing button is the alternative to the Always Generate from Settings button
(see “Always Generate from Settings” on page 81). When this button is selected, a new
linker command file is not generated when you build your project. Instead, the linker com-
mand file that you specify in this field is applied every time.

When the Use Existing button is selected, many project settings are grayed out, including
all the settings on the Objects and Libraries page, Warnings page, and Output page. These
settings are disabled because when you have specified that an existing linker command
file is to be used, those settings have no effect.

NOTE: When the Use Existing button is selected, some other changes that you make in
your project such as adding new files to the project also do not automatically take
effect. To add new files to the project, you must not only add them to the Project
Workspace window (see “Project Workspace Window” on page 29), but you must
also edit your linker command file to add the corresponding object modules to the
list of linked modules at the end of the linker command file.

Project Settings—Objects and Libraries Page
The following figure shows the Objects and Libraries page.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

85
Figure 59. Objects and Libraries Page of the Project Settings Dialog Box

Additional Object/Library Modules

Use the Additional Object/Library Modules field to list additional object files and modules
that you want linked with your application. You do not need to list modules that are other-
wise specified in your project, such as the object modules of your source code files that
appear in the Project Workspace window, the C startup module, and the ZiLOG default
libraries listed in the Objects and Libraries page. Separate multiple module names with
commas.

NOTE: Modules listed in this field are linked before the ZiLOG default libraries.
Therefore, if there is a name conflict between symbols in one of these user-
specified additional modules and in a ZiLOG default library, the user-specified
module takes precedence and its version of the symbol is the one used in linking.
You can take advantage of this to provide your own replacement for one or more
functions (for example, C run-time library functions) by compiling the function
and then including the object module name in this field. This is an alternative to
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

86
including the source code for the revised function explicitly in your project, which
would also override the function in the default run-time library.

C Startup Module

The buttons and check box in this area (which are not available for Assembly Only
projects) control which startup module is linked to your application. All C programs
require some initialization before the main function is called, which is typically done in a
startup module.

Standard

If the Standard button is selected, the precompiled startup module shipped with ZDS II is
used. This standard startup module performs a minimum amount of initialization to pre-
pare the run-time environment as required by the ANSI C Standard and also does some
eZ80Acclaim!-specific configuration such as setting up the external memory interface (if
selected) and interrupt vector table initialization. See “ANSI Standard Compliance” on
page 164 for full details of the operations performed in the standard startup module.

Some of these steps carried out in the standard startup module might not be required for
every application, so if code space is extremely tight, you might want to make some judi-
cious modifications to the startup code. The source code for the startup module is located
in several files in the following directories:

<ZDS Installation Directory>\src\boot\common

and

<ZDS Installation Directory>\src\boot\<processor family>

Here, <ZDS Installation Directory> is the directory in which ZiLOG Developer Studio
was installed. By default, this is C:\Program
Files\ZiLOG\ZDSII_eZ80Acclaim!_<version>, where <version> might be
4.11.0 or 5.0.0. Similarly, <processor family> is, for example, eZ80F91 or eZ80F92.

The common directory contains code to initialize the C run-time environment and inter-
rupt vectors, while the processor-specific directories have the code necessary for setting
up the memory device arrangement. The basic startup source code in the common direc-
tory is the cstartup.asm file; the startup.asm file in the same directory contains
older, now outdated initialization code, which is retained for backward compatibility.
Refer to the FAQ.html file for your release of ZDS II for more details.

Included in Project

If the Included in Project button is selected, then the standard startup module is not linked
to your application. In this case, you are responsible for including suitable startup code,
either by including the source code in the Project Workspace window or by including a
precompiled object module in the Additional Object/Library Modules field. If you modify
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

87
the standard startup module to tailor it to your project, you need to select the Included in
Project button for your changes to take effect.

Use Standard Startup Linker Commands

If you select this check box, the same linker commands that support the standard startup
module are inserted into your linker command file, even though you have chosen to
include your own, nonstandard startup module in the project. This option is usually helpful
in getting your project properly configured and initialized because all C startup modules
have to do most of the same tasks. Formerly, these linker commands had to be inserted
manually when you were not using the standard startup.

The standard startup commands define a number of linker symbols that are used in the
standard startup module for initializing the C run-time environment. You do not have to
refer to those symbols in your own startup module, but many users will find it useful to do
so, especially since user-customized startup modules are often derived from modifying the
standard startup module. There are also a few linker commands (such as CHANGE, COPY,
ORDER, and GROUP) that are used to implement your link configuration. See “Linker Com-
mands” on page 247 for a description of the commands, and “Linker Configurations” on
page 240 for an explanation of the link configurations.

If you are using the Standard, Copy to RAM, or All RAM link configuration, you must
make sure that your startup module defines the .RESET, .IVECTS, and .STARTUP
segments if you want to apply the Use Standard Startup Linker Commands option. These
segments are referred to by the startup linker commands for those link configurations.
The standard definitions of these segments can be found in the cstartup.asm (for
.STARTUP) and vectors24.asm or vectors16.asm (for .RESET and .IVECTS) files.
All of these files can be found in the following directory:

<ZDS Installation Directory>\src\boot\common

where <ZDS Installation Directory> is the directory in which ZiLOG Developer Studio
was installed. By default, this is C:\Program
Files\ZiLOG\ZDSII_eZ80Acclaim!_<version>, where <version> might be 4.10.0
or 5.0.0.

This option is only available when the Included in Project button has been selected. The
default for newly created projects is that this check box, if available, is selected.

Use Default Libraries

These controls determine whether the available default libraries that are shipped with
ZiLOG Developer Studio II are to be linked with your application. For eZ80Acclaim!,
there are two available libraries, the C run-time library and the ZiLOG Standard Library
(ZSL). The subset of the run-time library dedicated to floating-point operations also has a
separate control to allow for special handling, as explained in “Floating Point Library” on
page 88.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

88
NOTE: None of the libraries mentioned here are available for Assembly Only projects.

Use C Runtime Library

The C run-time library included with ZDS II provides selected functions and macros from
the Standard C Library. ZiLOG’s version of the C run-time library supports a subset of the
Standard Library adapted for embedded applications, as described more fully in “Using
the ANSI C-Compiler” on page 134. If your project makes any calls to standard library
functions, you need to select the Use C Runtime Library check box unless you prefer to
provide your own code for all library functions that you call. As noted in “Additional
Object/Library Modules” on page 85, you can also set up your application to call a mix-
ture of ZiLOG-provided functions and your own customized library functions. To do so,
select the Use C Runtime Library check box. Calls to standard library functions will then
call the functions in the ZiLOG default library except when your own customized versions
exist.

ZiLOG’s version of the C run-time library is organized with a separate module for each
function or, in a few cases, for a few closely related functions. Therefore, the linker links
only those functions that you actually call in your code. This means that there is no unnec-
essary code size penalty when you select the Use C Runtime Library check box; only
functions you call in your application are linked into your application.

Floating Point Library

The Floating Point Library drop-down list box allows you to choose which version of the
subset of the C run-time library that deals with the floating-point operations will be linked
to your application:

• Real

If you select Real, the true floating-point functions are linked in, and you can perform
any floating-point operations you want in your code.

• Dummy

If you select Dummy, your application is linked with alternate versions that are
stubbed out and do not actually carry out any floating-point operations. This dummy
floating-point library has been developed to reduce code bloat caused by including
calls to printf() and related functions such as sprintf(). Those functions in turn
make calls to floating-point functions for help with formatting floating-point
expressions, but those calls are unnecessary unless you actually need to format
floating-point values. For most users, this problem has now been resolved by the
Generate Printfs Inline check box (see “Generate Printfs Inline” on page 67 for a full
discussion). You only need to select the dummy floating-point library if you have to
disable the Generate Printfs Inline check box and your application uses no floating-
point operations. In that case, selecting Dummy keeps your code size from bloating
unnecessarily.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

89
• None

If you select None, no floating-point functions are linked to your application at all.
This can be a way of ensuring that your code does not inadvertently make any
floating-point calls, because, if it does and this option is selected, you receive a
warning message about an undefined symbol.

NOTE: None of the libraries mentioned here are available for Assembly Only projects.

ZiLOG Standard Library (Peripheral Support

Select this check box to use the ZiLOG Standard Library (ZSL) in addition to the run-time
library (described in the “Using the ANSI C-Compiler” chapter). The ZSL contains func-
tions for controlling the UART device driver and GPIO ports. These functions are
described in detail in the ZiLOG Standard Library API Reference Manual (RM0037).

Project Settings—Address Spaces Page
The following figure shows the Address Spaces page.

Figure 60. Address Spaces Page of the Project Settings Dialog Box
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

90
Memory ranges are used to determine the amount of memory available on your target sys-
tem. Using this information, eZ80Acclaim! developer’s environment lets you know when
your code or data has grown beyond your system’s capability. The system also uses mem-
ory ranges to automatically locate your code or data.

The Address Spaces fields define the memory layout of your target system. The Address
Spaces page allows you to configure the ranges of memory available on your target
eZ80Acclaim! processor. These ranges vary from processor to processor, as well as from
target system to target system.

Depending on your CPU selection, the Address Spaces page can contain the following
fields:

• ROM

• RAM

• ExtIO

• IntIO

• FlashInfo

Address ranges are set in the Address Spaces fields. The following is the syntax of a mem-
ory range:

<low address> – <high address> [,<low address> – <high address>] ...

where <low address> is the hexadecimal lower boundary of a range and <high address> is
the hexadecimal higher boundary of the range. The following are legal memory ranges:

00-df

0000-ffff

0000-1fff,4000-5fff

Holes in your memory can be defined for the linker using this mechanism. The linker does
not place any code or data outside of the ranges specified here. If your code or data cannot
be placed within the ranges, a range error is generated.

NOTE: ZDS II—eZ80Acclaim! allows you a great deal of flexibility over where physical blocks of
RAM and ROM (both internal and external) are located in the system. However, any
blocks of Flash memory that use different programming algorithms must be separated by at
least 0x40 bytes. If this is not done, you cannot flash the project on the target. As an
example, the internal and external Flash memory on the eZ80F91 development kit use
different Flash algorithms so the target memory range must contain at least a 0x40 byte gap
between these two Flash regions.

Project Settings—Warnings Page
The following figure shows the Warnings page.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

91
Figure 61. Warnings Page of the Project Settings Dialog Box

Treat All Warnings as Fatal

When selected, this check box causes the linker to treat all warning messages as fatal
errors. When the check box is selected, the linker does not generate output file(s) if there
are any warnings while linking. By default, this check box is deselected, and the linker
proceeds with generating output files even if there are warnings.

NOTE: Selecting this check box displays any warning (as errors), regardless of the state of the
Show Warnings check box in the General page (see “Show Warnings” on page 58).

Treat Undefined Symbols as Fatal

When selected, this check box causes the linker to treat “undefined external symbol”
warnings as fatal errors. If this check box is selected, the linker quits generating output
files and terminates with an error message immediately if the linker cannot resolve any
undefined symbol. By default, this check box is selected because a completely valid exe-
cutable cannot be built when the program contains references to undefined external sym-
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

92
bols. If this check box is deselected, the linker proceeds with generating output files even
if there are undefined symbols.

NOTE: Selecting this check box displays any “undefined external symbol” warning as an
error, regardless of the state of the Show Warnings check box in the General page
(see “Show Warnings” on page 58).

Warn on Segment Overlap

This check box enables or disables warnings when overlap occurs while binding seg-
ments. By default, the check box is selected, which is the recommended setting for
eZ80Acclaim!. For some ZiLOG processors, benign segment overlaps can occur, but, for
the eZ80Acclaim!, an overlap condition usually indicates an error in project configuration
that must be corrected. These errors in eZ80Acclaim! can be caused either by user assem-
bly code that erroneously assigns two or more segments to overlapping address ranges or
by user code defining the same interrupt vector segment in two or more places.

Project Settings—Output Page
The following figure shows the Output page.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

93
Figure 62. Output Page of the Project Settings Dialog Box

Output File Name

You can change the name of your executable (including the full path name) in the Output
File Name field. After your program is linked, the appropriate extension is added.

Generate Map File

This check box determines whether the linker generates a link map file each time it is run.
The link map file is named with your project’s name with the .map extension and is
placed in the same directory as the executable output file. See “MAP” on page 253 and
“How much memory is my program using?” on page 286. Inside the map file, symbols are
listed in the order specified by the Sort Symbols By area (see “Sort Symbols By” on
page 94).

NOTE: The link map is an important place to look for memory restriction or layout
problems.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

94
Sort Symbols By

You can choose whether to have symbols in the link map file sorted by name or address.

Show Absolute Addresses in Assembly Listings

When this check box is selected, all assembly listing files that are generated in your build
are adjusted to show the absolute addresses of the assembly code statements. If this check
box is deselected, assembly listing files use relative addresses beginning at zero.

For this option to be applied to listing files generated from assembly source files, the Gen-
erate Assembly Listing Files (.lst) check box in the Assembler page of the Project Settings
dialog box must be selected.

For this option to be applied to listing files generated from C source files, both the Gener-
ate Assembly Source Code and Generate Assembly Listing Files (.lst) check boxes in the
Listing Files page of the Project Settings dialog box must be selected.

Executable Formats

These check boxes determine which object format is used when the linker generates an
executable file. The linker supports the following formats: IEEE 695 (.lod) and Intel
Hex32 (.hex), which is a backward-compatible superset of the Intel Hex16 format. IEEE
695 is the default format for debugging in ZDS II, and the Intel hex format is useful for
compatibility with some third-party tools. You can also select both check boxes, which
produces executable files in both formats.

Fill Unused Hex File Bytes with 0xFF

This check box is available only when the Intel Hex32 Records executable format is
selected. When the Fill Unused Hex File Bytes with 0xFF check box is selected, all
unused bytes of the hex file are filled with the value 0xFF. This option is sometimes
required for compatibility with other tools that set otherwise uninitialized bytes to 0xFF so
that the hex file checksum calculated in ZDS II matches the checksum calculated in the
other tools.

NOTE: Use caution when selecting this option. The resulting hex file begins at the first hex
address (0x0000) and ends at the last page address that the program requires. This
significantly increases the programming time when using the resulting output hex
file. The hex file might try to fill nonexistent external memory locations with
0xFF.

Maximum Bytes per Hex File Line

This drop-down list box sets the maximum length of a hex file record. This option is pro-
vided for compatibility with third-party or other tools that might have restrictions on the
length of hex file records. This option is available only when the Intel Hex32 Records exe-
cutable format is selected.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

95
Project Settings—Debugger Page
In the Project Settings dialog box, select the Debugger page.

Figure 63. Debugger Page of the Project Settings Dialog Box

The source-level debugger is a program that allows you to find problems in your code at
the C or assembly level. The Windows interface is quick and easy to use. You can also
write batch files to automate debugger tasks.

Your understanding of the debugger design can improve your productivity because it
affects your view of how things work. The debugger requires target and debug tool set-
tings that correspond to the physical hardware being used during the debug session. A tar-
get is a logical representation of a target board. A debug tool represents debug
communication hardware such as the USB Smart Cable or an emulator. A simulator is a
software debug tool that does not require the existence of physical hardware. Currently,
the debugger supports debug tools for the eZ80Acclaim! simulator, the USB Smart Cable,
the serial Smart Cable, the Ethernet Smart Cable, and ZPAK II.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

96
Use Page Erase Before Flashing

Select the Use Page Erase Before Flashing check box to configure the internal Flash mem-
ory of the target hardware to be page-erased. If this check box is not selected, the internal
Flash is configured to be mass-erased.

Target

Select the appropriate target from the Target list box.

Setup

Click Setup in the Target area to display the Configure Target dialog box.

Figure 64. Configure Target Dialog Box

NOTE: The options displayed in the Configure Target dialog box depend on the CPU you selected
in the New Project dialog box (see “New Project” on page 39) or the General page of the
Project Settings dialog box (see “Project Settings—General Page” on page 57). Chip select
and external bus interface settings are only available for CPUs that support an external bus.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

97
1. Type the address of the first line of code to be executed in the Program Counter (hex)
field.

2. Type the upper address of RAM (24-bit address boundary) in the SPL Stack Pointer
(hex) field. This option is used while in ADL mode.

3. Type the upper address of RAM (16-bit address boundary) in the SPS Stack Pointer
(hex) field. This option is used while in non-ADL mode.

4. For each chip select register (CS0–CS3), do the following:
– Choose a chip select register from the Chip Select Registers drop-down list box.

The chip select registers control the type of access, address bounds, and wait state
assertion.

– Enter the lower bound for the chip select register in the Lower Bound (hex) field.
– Enter the upper bound for the chip select register in the Upper Bound (hex) field.
– Enter the control register in the Control Register (hex) field.
– Enter the bus mode in the Bus Mode (hex) field.

5. Select the Start in ADL Mode check box for 24-bit linear addressing. Deselect the
check box for 16-bit addressing.

NOTE: This information is used only by the Debugger and does not affect your code
initialization. The actual mode needs to be in your source files.

6. Enter the upper and lower addresses for the External RAM Range (hex) fields.

The external RAM range specifies a range of RAM available to use as “scratch-pad”
memory by ZDS for internal Flash memory page erase. The contents of the external
RAM range are saved and then restored after a Flash erase operation.

NOTE: If external RAM is not available, the external RAM range must be set to the
internal RAM address range.

The eZ80F9x and eZ80L92 require the external RAM range to be in external RAM to
support the page erase function.

If external RAM is not available, the Do Not Erase Info Page check box in the Flash
Loader Processor dialog box must be deselected so that ZDS can use mass erase rather
than page erase.

For the eZ80F91 only, you can program an internal-memory-only project if the range
in the External RAM Range (hex) fields matches the range in the RAM field in the
Address Spaces page (see “Project Settings—Address Spaces Page” on page 89).

7. Select the Enable Data RAM check box to enable the general-purpose internal RAM
block. Enter the address in the Address Upper Byte (hex) field.

8. Select the Enable EMAC RAM check box to enable the Ethernet Media Access
Controller’s internal RAM. Enter the address in the Address Upper Byte (hex) field.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

98
9. Select the Enable Flash check box if you want to use internal Flash. Enter the address
in the Address Upper Byte (hex) field. This shifts Flash and affects the pages
displayed in the Flash Loader Processor dialog box. Select the number of wait states
from the Wait States drop-down list box. The wait states value is based on the value of
the system clock frequency according to the following table:

You can select any wait states value; however, 5, 6, and 7 are not recommended for
performance reasons. Based on the currently configured system clock frequency, ZDS
II suggests the appropriate wait states value by appending an asterisk to it in the Wait
States drop-down list box. The asterisk moves to different values when the system
clock frequency is changed in the same dialog box. When the target clock frequency is
changed, you must update the wait states value if needed.

10. To use the oscillator, select the Oscillator button and enter the frequency in the System
Clock Frequency (Hz) field.

11. To use the phase-locked loop, select the Phase-Locked Loop button, enter the clock
frequency in the System Clock Frequency (Hz) field, enter the oscillator frequency in
the Oscillator Frequency (Hz) field, select a charge pump current, and select a lock
criteria.

The eZ80F91 device contains a Phase-Locked Loop (PLL) module, the output of
which can be used as the system clock. This allows the application to run at 50 MHz
with an oscillator frequency between 1 and 10 MHz. Since the system defaults to
using the oscillator upon power-on or hardware reset, the application program must
enable and select the PLL as the source of the system clock. This also requires the ZDI
clock frequency to change if a debug session is started so that a reliable connection
can be maintained. ZDS automatically changes the rate after the first Reset or Go
command is invoked and the Change ZDI Clock Upon Reset check box has been
selected.

Wait States System Clock (MHz)
0 <12
1 12–23.9
2 24–35.9
3 36–47.9
4 48–59.9
5 60–71.9
6 72–84
7 >84
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

99
ZDS assumes that the system clock change occurs somewhere after reset and before
the main() routine. For information about how to set up the charge pump current and
lock criteria, see the “Phase Locked Loop” chapter of the eZ80F91 MCU Product
Specification (PS0192).

NOTE: The clock frequency value is used even when the Simulator is selected as the
debug tool. The frequency is used when converting clock cycles to elapsed times in
seconds, which can be viewed in the Clock window when running the simulator.
See “Clock Window” on page 294.

12. Click Configure Flash.

The Target Flash Settings dialog box is displayed.

Figure 65. Target Flash Settings Dialog Box

– Select the Internal Flash check box if you want to use internal Flash.
The internal Flash memory configuration is defined in the
CpuFlashDevice.xml file. The device is the currently selected microcontroller
or microprocessor.

– If you want to use external Flash, select the Automatically Detect Device check
box or select which Flash devices you want to program.
The Flash devices are defined in the FlashDevice.xml file.
The device is the current external Flash device’s memory arrangement. The
external Flash device options are predefined Flash memory arrangements for
specific Flash devices such as the Micron MT28F008B3. The Flash Loader uses
the external Flash device option arrangements as a guide for erasing and loading
data to the appropriate blocks of Flash memory.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

100
If you select the Automatically Detect Device check box, ZDS II attempts to
determine the external Flash device manufacturer and type when Flash is used
when downloading code for a debug session. If this attempt is successful, the
device type found is used for external Flash operations. If the attempt fails, the
external Flash operations default to the manufacturer and device selected for the
target. If these values are not supplied and automatic detection fails or is
deselected, external Flash operations do not work.

– In the External Flash Base field, type where you want the external Flash to start.
– In the Units drop-down list box, select the number of Flash devices present.

For example, if you have two devices stacked on top of each other, select 2 in the
Units list box.

– Click OK to return to the Configure Target dialog box.

13. Click OK.

Add

Click Add to display the Create New Target Wizard dialog box.

Figure 66. Create New Target Wizard Dialog Box

Type a unique target name in the field, select the Place Target File in Project Directory
check box if you want your new target file to be saved in the same directory as the cur-
rently active project, and click Finish.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

101
Copy

Figure 67. Target Copy or Move Dialog Box

1. Select a target in the Target area of the Debugger page.

2. Click Copy.

3. Select the Use Selected Target button if you want to use the target listed to the right of

this button description or select the Target File button to use the Browse button ()
to navigate to an existing target file.

If you select the Use Selected Target button, enter the name for the name for the new
target in the Name for New Target field.

4. Select the Delete Source Target After Copy check box if you do not want to keep the
original target.

5. In the Place Target File In area, select the location where you want the new target file
saved: in the project directory, ZDS default directory, or another location.

6. Click OK.

Delete

Click Delete to remove the currently highlighted target

The following message is displayed: “Delete target_name Target?”. Click Yes to
delete the target or No to cancel the command.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

102
Debug Tool

Select the appropriate debug tool from the Current drop-down list box.

• If you select EthernetSmartCable and click Setup in the Debug Tool area, the Setup
Ethernet Smart Cable Communication dialog box is displayed.

NOTE: If a Windows Security Alert is displayed with the following message: “Do you
want to keep blocking this program?”, click Unblock.

Figure 68. Setup Ethernet Smart Cable Communication Dialog Box

– Click Refresh to search the network and update the list of available Ethernet
Smart Cables. The number in the Broadcast Address field is the destination
address to which ZDS sends the scan message to determine which Ethernet Smart
Cables are accessible. The default value of 255.255.255.255 can be used if the
Ethernet Smart Cable is connected to your local network. Other values such as
192.168.1.255 or 192.168.1.50 can be used to direct or focus the search.
ZDS uses the default broadcast address if the Broadcast Address field is empty.

– Select an Ethernet Smart Cable from the list of available Ethernet Smart Cables by
checking the box next to the Smart Cable you want to use. Alternately, select the
Ethernet Smart Cable by entering a known Ethernet Smart Cable IP address in the
IP Address field.

– Type the port number in the TCP Port field.
– Select the Use Alternate ZDI Clock Frequency check box if you want to override

the default ZDI clock frequency. The alternate ZDI clock frequency should only
be used if a reliable connection cannot be established with the default ZDI clock
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

103
frequency. The default ZDI clock frequency will be used if an alternate ZDI clock
frequency is not available for the given system clock frequency.

– Click OK.

• If you select SerialSmartCable and click Setup in the Debug Tool area, the Setup
Serial Communication dialog box is displayed.

Figure 69. Setup Serial Communication Dialog Box

– Use the Baud Rate drop-down list box to select the appropriate baud rate: 19200,
38400, 57600, or 115200. The default is 57600.

– Select the host COM port connected to your target.
ZDS II sets the COM port settings for data, parity, stop, and flow control. You do
not need to set these.

– Select the Use Alternate ZDI Clock Frequency check box if you want to use the
alternate ZDI clock frequency.
In previous versions of the ZDS II, you were required to choose the appropriate
ZDI clock frequency. In releases after 4.7.2, that option has been replaced with the
system clock and oscillator frequency so that ZDS can choose the appropriate ZDI
communication rate(s).
ZDS uses the information in the following table to make the ZDI clock frequency
selection:

System Clock
Frequency (MHz)

Default ZDI Clock
Frequency (MHz)

Alternate ZDI Clock
Frequency (MHz)

2–3.9 1 1
4–6.9 2 1
7–7.9 2 2

8–12.9 4 2
13–15.9 4 4
16–24.9 8 4
25–50 8 8
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

104
The minimum that the system clock frequency can reliably support is 5 MHz.
Running the system clock at a lower frequency might result in unreliable
operation.
If a reliable connection cannot be established and the system clock frequency is
within an overlapping area, you can override the default choice by selecting the
Use Alternate ZDI Clock Frequency check box. Selecting the alternate system
clock table changes the ZDI clock frequency used by ZDS. For instance, if the
system clock is 20 MHz, the 4-MHz ZDI clock rate might prove to be more
reliable then the 8-MHz rate.
ZDS assumes that the system clock change occurs somewhere after reset and
before the main() routine.

– Click OK.

• If you select USBSmartCable and click Setup in the Debug Tool area, the Setup USB
Communication dialog box is displayed.

Figure 70. Setup USB Communication Dialog Box

– Use the Serial Number drop-down list box to select the appropriate serial number.
– Select the Use Alternate ZDI Clock Frequency check box if you want to override

the default ZDI clock frequency. The alternate ZDI clock frequency should only
be used if a reliable connection cannot be established with the default ZDI clock
frequency. The default ZDI clock frequency will be used if an alternate ZDI clock
frequency is not available for the given system clock frequency.

– Click OK.

• If you select ZPAKII and click Setup in the Debug Tool area, the Setup TCP/IP
Communication dialog box is displayed.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

105
Figure 71. Setup TCP/IP Communication Dialog Box

– Type the IP address in the IP Address field.
– Type the port number in the TCP Port field.
– Select the Use Alternate ZDI Clock Frequency check box if you want to use the

alternate ZDI clock frequency.
In previous versions of the ZDS II, you were required to choose the appropriate
ZDI clock frequency. In releases after 4.7.2, that option has been replaced with the
system clock and oscillator frequency so that ZDS can choose the appropriate ZDI
communication rate(s).
ZDS uses the information in the following table to make the ZDI clock frequency
selection:

NOTE: The minimum that the system clock frequency can reliably support is 5 MHz.
Running the system clock at a lower frequency might result in unreliable
operation.

If a reliable connection cannot be established and the system clock frequency is
within an overlapping area, you can override the default choice by selecting the
Use Alternate ZDI Clock Frequency check box. Selecting the alternate system
clock table changes the ZDI clock frequency used by ZDS. For instance, if the

System Clock
Frequency (MHz)

Default ZDI Clock
Frequency (MHz)

Alternate ZDI Clock
Frequency (MHz)

2–3.9 1 1
4–6.9 2 1
7–7.9 2 2

8–12.9 4 2
13–15.9 4 4
16–24.9 8 4
25–50 8 8
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

106
system clock is 20 MHz, the 4-MHz ZDI clock rate might prove to be more
reliable then the 8-MHz rate.
ZDS assumes that the system clock change occurs somewhere after reset and
before the main() routine.

– Click OK.

Export Makefile
The Export Makefile command exports a buildable project in external make file format.
To do this, complete the following procedure:

1. From the Project menu, select Export Makefile.

The Save As dialog box is displayed.

Figure 72. Save As Dialog Box

2. Use the Save In drop-down list box to navigate to the directory where you want to
save your project.

The default location is in your project directory.

3. Type the make file name in the File Name field.

You do not have to type the extension .mak. The extension is added automatically.

4. Click Save

The project is now available as an external make file.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

107
Build Menu
With the Build menu, you can build individual files as well as your project. You can also
use this menu to select or add configurations for your project.

The Build menu contains the following commands:

• “Compile” on page 107

• “Build” on page 107

• “Rebuild All” on page 107

• “Stop Build” on page 107

• “Clean” on page 107

• “Update All Dependencies” on page 107

• “Set Active Configuration” on page 108

• “Manage Configurations” on page 109

Compile
Select Compile from the Build menu to compile or assemble the active file in the Edit
window.

Build
Select Build from the Build menu to build your project. The build compiles and/or assem-
bles any files that have changed since the last build and then links the project.

Rebuild All
Select Rebuild All from the Build menu to rebuild all the files in your project. This option
also links the project.

Stop Build
Select Stop Build from the Build menu to stop a build in progress.

Clean
Select Clean from the Build menu to remove intermediate build files.

Update All Dependencies
Select Update All Dependencies from the Build menu to update your source file depen-
dencies.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

108
Set Active Configuration
You can use the Select Configurations dialog box to select the active build configuration
you want.

1. From the Build menu, select Set Active Configuration to display the Select
Configuration dialog box.

Figure 73. Select Configuration Dialog Box

2. Highlight the configuration that you want to use and click OK.

There are two standard configuration settings:

• Debug

This configuration contains all the project settings for running the project in Debug
mode.

• Release

This configuration contains all the project settings for creating a Release version of
the project.

For each project, you can modify the settings, or you can create your own configurations.
These configurations allow you to easily switch between project setting types without hav-
ing to remember all the setting changes that need to be made for each type of build that
might be necessary during the creation of a project. All changes to project settings are
stored in the current configuration setting.

NOTE: To add your own configuration(s), see “Manage Configurations” on page 109.

Use one of the following methods to activate a build configuration:

• Use the Select Configuration dialog box.

See “Set Active Configuration” on page 108

• Use the Build toolbar.

See “Select Build Configuration List Box” on page 18.

Use the Project Settings dialog box to modify build configuration settings. See “Settings”
on page 55.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

109
Manage Configurations
For your specific needs, you can add or copy different configurations for your projects. To
add a customized configuration, do the following:

1. From the Build menu, select Manage Configurations.

The Manage Configurations dialog box is displayed.

Figure 74. Manage Configurations Dialog Box

2. From the Manage Configurations dialog box, click Add.

The Add Project Configuration dialog box is displayed.

Figure 75. Add Project Configuration Dialog Box

3. Type the name of the new configuration in the Configuration Name field.

4. Select a similar configuration from the Copy Settings From drop-down list box.

5. Click OK.

Your new configuration is displayed in the configurations list in the Manage
Configurations dialog box.

6. Click Close.

The new configuration is the current configuration as shown in the Select Build
Configuration drop-down list box on the Build toolbar.

Now that you have created a blank template, you are ready to select the settings for
this new configuration.

7. From the Project menu, select Settings.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

110
The Project Settings dialog box is displayed.

8. Select the settings for the new configuration and click OK.

9. From the File menu, select Save All.

To copy the settings from an existing configuration to an existing configuration, do the
following:

1. From the Build menu, select Manage Configurations.

The Manage Configurations dialog box is displayed.

Figure 76. Manage Configurations Dialog Box

2. From the Manage Configurations dialog box, click Copy.

The Copy Configuration Settings dialog box is displayed.

Figure 77. Copy Configuration Settings Dialog Box

3. Select the configuration with the desired settings from the Copy Settings From drop-
down list box.

4. Highlight the configuration(s) in the Copy Settings To field that you want to change.

5. Click Copy.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

111
Debug Menu
From the Debug menu, you can access the following functions for the debugger:

• “Connect to Target” on page 111

• “Download Code” on page 112

• “Verify Download” on page 112

• “Stop Debugging” on page 112

• “Reset” on page 112

• “Go” on page 113

• “Run to Cursor” on page 113

• “Break” on page 114

• “Step Into” on page 114

• “Step Over” on page 114

• “Step Out” on page 114

• “Set Next Instruction” on page 114

NOTE: For more information on the debugger, see “Using the Debugger” on page 290.

Connect to Target
The Connect to Target command starts a debug session using the following process:

1. Initializes the communication to the target hardware.

2. Resets the device.

3. Configures the device using the settings in the Configure Target dialog box.

4. Configures and executes the debugger options selected in the Debugger tab of the
Options dialog box. The following options are ignored if selected:
– Reset to Symbol 'main' (Where Applicable) check box
– Verify File Downloads—Read After Write check box
– Verify File Downloads—Upon Completion check box

This command does not download the software. Use this command to access target regis-
ters, memory, and so on without loading new code or to avoid overwriting the target’s
code with the same code. This command is not enabled when the target is the simulator.
This command is available only when not in Debug mode.

For the Serial Smart Cable, ZDS II performs an external target reset and reconfigures PC
and SPL as specified in the Configure Target dialog box.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

112
Download Code
The Download Code command downloads the executable file for the currently open
project to the target for debugging. The command also initializes the communication to the
target hardware if it has not been done yet. Starting in version 4.10.0, the Download Code
command can also program Flash memory. A page erase is done instead of a mass erase
for both internal and external Flash memory. Use this command anytime during a debug
session. This command is not enabled when the debug tool is the simulator.

NOTE: The current code on the target is overwritten.

If ZDS II is not in Debug mode when the Download Code command is selected, the fol-
lowing process is executed:

1. Initializes the communication to the target hardware.

2. Resets the device with a hardware reset by driving ZDI pin #2 low.

3. Configures the device using the settings in the Configure Target dialog box.

4. Downloads the program.

5. Issues a software reset through the ZDI serial interface.

6. Configures and executes the debugger options selected in the Debugger tab of the
Options dialog box. If it is a C project, ZDS II resets to the main function if it is found.

If ZDS II is already in Debug mode when the Download Code command is selected, the
following process is executed:

1. Resets the device using a software reset.

2. Downloads the program.

You might need to reset the device before execution because the program counter might
have been changed after the download.

Verify Download
Select Verify Download from the Debug menu to determine download correctness by
comparing the executable file contents to target memory.

Stop Debugging
Select Stop Debugging from the Debug menu to end the current debug session.

To stop program execution, select the Break command.

Reset
Select Reset from the Debug menu to reset the program counter to the beginning of the
program.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

113
If ZDS II is not in Debug mode, the Reset command starts a debug session using the fol-
lowing process:

1. Initializes the communication to the target hardware.

2. Resets the device.

3. Configures the device using the settings in the Configure Target dialog box.

4. Downloads the program.

5. Configures and executes the debugger options selected in the Debugger tab of the
Options dialog box. If it is a C project, ZDS II resets to the main function if it is found.

If ZDS II is already in Debug mode, the Reset command uses the following process:

1. ZDS II performs a soft reset in which just PC and SPL are reconfigured as specified in
the Configure Target dialog box.

2. Configures the device using the settings in the Configure Target dialog box.

3. If files have been modified, ZDS II asks, “Would you like to rebuild the project?”
before downloading the modified program. If there has been no file modification, the
code is not reloaded.

The Serial Smart Cable performs an external target reset.

Go
Select Go from the Debug menu to execute project code from the current program counter.

If not in Debug mode when the Go command is selected, the following process is exe-
cuted:

1. Initializes the communication to the target hardware.

2. Resets the device.

3. Configures the device using the settings in the Configure Target dialog box.

4. Downloads the program.

5. Configures and executes the debugger options selected in the Debugger tab of the
Options dialog box. If it is a C project, ZDS II resets to the main function if it is found.

6. Executes the program from the reset location.

Run to Cursor
Select Run to Cursor from the Debug menu to execute the program code from the current
program counter to the line containing the cursor in the active file or the Disassembly win-
dow. The cursor must be placed on a valid code line (a C source line with a blue dot dis-
played in the gutter or any instruction line in the Disassembly window).
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

114
Break
Select Break from the Debug menu to stop program execution at the current program
counter.

Step Into
Select Step Into from the Debug menu to execute one statement or instruction from the
current program counter, following execution into function calls. When complete, the pro-
gram counter resides at the next program statement or instruction unless a function was
entered, in which case the program counter resides at the first statement or instruction in
the function.

Step Over
Select Step Over from the Debug menu to execute one statement or instruction from the
current program counter without following execution into function calls. When complete,
the program counter resides at the next program statement or instruction.

Step Out
Select Step Out from the Debug menu to execute the remaining statements or instructions
in the current function and returns to the statement or instruction following the call to the
current function.

Set Next Instruction
Select Set Next Instruction from the Debug menu to set the program counter to the line
containing the cursor in the active file or the Disassembly window.

Tools Menu
The Tools menu lets you set up the Flash Loader, calculate a file checksum, update the
firmware, and customize the appearance of the eZ80Acclaim! developer’s environment.

The Tools menu has the following options:

• “Flash Loader” on page 115

• “Calculate File Checksum” on page 120

• “Firmware Upgrade” on page 120

• “Customize” on page 121

• “Options” on page 122
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

115
Flash Loader
Use the following procedure to program internal and external Flash for the eZ80® and
eZ80Acclaim!:

1. Ensure that the target board is powered up and the emulator is connected and
operating properly.

2. In the Configure Target dialog box (see “Setup” on page 96), do the following:
– Ensure that the ROM/RAM Chip Select Registers fields define the target RAM

properly.
– Make certain the Enable Flash check box is selected. Enter the address in the

Address Upper Byte (hex) field. This shifts Flash and affects the pages displayed
in the Flash Loader Processor dialog box. Select the number of wait states from
the Wait States drop-down list box. The wait states value is based on the value of
the system clock frequency according to the following table:

You can select any wait states value; however, 5, 6, and 7 are not recommended
for performance reasons. Based on the currently configured system clock
frequency, ZDS II suggests the appropriate wait states value by appending an
asterisk to it in the Wait States drop-down list box. The asterisk moves to different
values when the system clock frequency is changed in the same dialog box. When
the target clock frequency is changed, you must update the wait states value if
needed.

3. Select Flash Loader from the Tools menu.

Wait States System Clock (MHz)
0 <12
1 12–23.9
2 24–35.9
3 36–47.9
4 48–59.9
5 60–71.9
6 72–84
7 >84

The Flash Loader downloads a selected hex file to target Flash. The Flash
Loader uses internal RAM if it is available, and the ROM/RAM Chip Select
Registers fields in the Configure Target dialog box define where RAM is for a
CPU that does not have internal RAM (such as the eZ80L92). The defined
RAM addresses must not overlap the defined Flash addresses.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

116
The Flash Loader connects to the target and sets up communication. The Flash Loader
Processor dialog box is displayed with the appropriate Flash target options for the
selected CPU.

Figure 78. Flash Loader Processor Dialog Box

4. Click on the Browse button () to navigate to the hex file to be flashed.

5. Select the Flash targets in the Flash Options area.

NOTE: The Flash Options displayed in the Flash Loader Processor dialog box depend on the CPU
you selected in the New Project dialog box (see “New Project” on page 39) or the General
page of the Project Settings dialog box (see “Project Settings—General Page” on page 57).

You must select at least one of the following check boxes in the Flash Options area
before erasing or flashing a target:
– Internal Flash

The internal Flash memory configuration is defined in the
CpuFlashDevice.xml file. The device is the currently selected microcontroller
or microprocessor. When the internal Flash is selected, the address range is
displayed in the Flash Configuration area with an INT extension.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

117
– External Flash
If you want to use external Flash, select the Automatically Detect Device check
box or select which Flash devices you want to program. The Flash devices are
defined in the FlashDevice.xml file.
The device is the current external Flash device’s memory arrangement. When an
external Flash device is selected, the Flash Loader uses the address specified in
the Flash Base field to begin searching for the selected Flash device. The Flash
Loader reads each page of memory from the FlashDevice.xml file, checking if
the page is enabled by the chip select register settings. It then queries the actual
address to verify that the correct Flash device is found. If the correct Flash device
is found, the page’s range with an EXT extension and chip select register is
displayed in the Flash Configuration area.
The external Flash device options are predefined Flash memory arrangements for
specific Flash devices such as the Micron MT28F008B3. The Flash Loader uses
the external Flash device option arrangements as a guide for erasing and loading
the Intel hexadecimal file in the appropriate blocks of memory.
If you select the Automatically Detect Device check box, the Flash Loader queries
the target to attempt to determine the external Flash manufacturer and device on
the hardware. If the detection succeeds, the tree selection for the manufacturer and
device is changed to match the hardware values. If the attempt fails, the external
Flash operations default to the manufacturer and device selected for the target. If
these values are not supplied and automatic detection fails or is deselected,
external Flash operations do not work. While this check box is selected, any
attempt to change the manufacturer and device selections results in an attempt to
determine which external Flash device is in use and (upon success) an update to
the tree selections.

NOTE: The Flash Loader is unable to identify, erase, or write to a page of Flash that is
protected through hardware. For example, a target might have a write enable
jumper to protect the boot block. In this case, the write enable jumper must be set
before flashing the area of Flash. The Flash Loader displays this page as disabled.

6. In the Flash Base field, type where you want the Flash programming to start.

The Flash base defines the start of external Flash.

7. In the Units drop-down list box, select the number of Flash devices to program.

For example, if you have two devices stacked on top of each other, select 2 in the
Units list box.

8. Select the pages to erase before flashing in the Flash Configuration area.

Pages that are grayed out are not available.

To select all the pages, use the right-click menu or delete the file name in the File
field.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

118
9. In the File Offset field, type the appropriate offset values to offset the base address of
the hex file.

NOTE: The hex file address is shifted by the offset defined in the Start Address area. You need to
allow for the shift in any defined jump table index. This offset value also shifts the erase
range for the Flash.

10. Select the Erase Before Flashing check box to erase all Flash memory before writing
the hex file to Flash memory.

11. Select the Use Page Erase check box if you want the internal Flash to be page-erased.
Deselect this check box if you want the internal Flash to be mass-erased.

12. Select the Do Not Erase Info Page check box to keep the data in the Info page.

13. Select the Close Dialog When Complete check box to close the dialog box after
writing the hex file to Flash memory.

14. If you want to use the serialization feature or want to check a serial number that has
already been programmed at an address, see “Serialization” on page 119.

15. Program the Flash memory by clicking one of the following buttons:
– Click Program to write the hex file to Flash memory and perform no checking

while writing.
– Click Program and Verify to write the hex file to Flash memory by writing a

segment of data and then reading back the segment and verifying that it has been
written correctly.

16. Verify the Flash memory by clicking Verify.

When you click Verify, the Flash Loader reads and compares the hex file contents
with the current contents of Flash memory. This function does not change target Flash
memory.

NOTE: ZiLOG also provides a target-based external Flash Loader utility for reprogramming Flash
memory. It is designed primarily for field upgrades to stand-alone systems. For more
information about this external Flash Loader utility, refer to the External Flash Loader
Product User Guides (PUG0016 and PUG0018).

You can also delete the Flash memory by clicking ERASE. Clicking ERASE
deletes only the pages that are selected.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

119
Serialization

The general procedure to write a serial number to a Flash device involves the following
steps:

1. Choose a location for the serial number inside or outside of the address range defined
in the hex file.

NOTE: The serial number must be written to a location that is not being written to by the
hex file.

2. Erase the Flash device.

3. Write the hex file to the Flash device and then write the serial number

or

write the serial number to the Flash device and then write the hex file.

Use the following procedure if you want to use the serialization feature:

1. Select the Include Serial in Programming check box.

This option programs the serial number after the selected hex file has been written to
Flash.

2. Select the Enable check box.

3. Type the start value for the serial number in the Serial Value field and select the Dec
button for a decimal serial number or the Hex button for a hexadecimal serial number.

4. Type the location you want the serial number located in the Address Hex field.

5. Select the number of bytes that you want the serial number to occupy in the # Bytes
drop-down list box.

6. Type the decimal interval that you want the serial number incremented by in the
Increment Dec (+/-) field. If you want the serial number to be decremented, type in a
negative number. After the current serial number is programmed, the serial number is
then incremented or decremented by the amount in the Increment Dec (+/-) field.

7. Select the Erase Before Flashing check box.

This option erases the Flash before writing the serial number.

8. Click Burn Serial to write the serial number to the current device or click Program
or Program and Verify to program the Flash memory with the specified hex file and
then write the serial number.

If you want to check a serial number that has already been programmed at an address, do
the following:

1. Select the Enable check box.

2. Type the address that you want to read in the Address Hex field.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

120
3. Select the number of bytes to read from # Bytes drop-down list box.

4. Click Read Serial to check the serial number for the current device.

Calculate File Checksum
Use the following procedure to calculate the file checksum:

1. Select Calculate File Checksum from the Tools menu.

The Calculate Checksum dialog box is displayed.

Figure 79. Calculate Checksum Dialog Box

2. Click on the Browse button () to select the .hex file for which you want to
calculate the checksum.

The IDE adds the bytes in the files and displays the result in the checksum field.

Figure 80. Calculate Checksum Dialog Box

3. Click Close.

Firmware Upgrade
NOTE: This command is available only when a supporting debug tool is selected (“Debug

Tool” on page 102).

• USB Smart Cable

<ZDS Installation Directory>\bin\firmware\USBSmartCable\
USBSmartCable upgrade information.txt

• Serial Smart Cable

<ZDS Installation Directory>\bin\firmware\SerialSmartCable\
upgrade information.txt

• Ethernet Smart Cable
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

121
<ZDS Installation Directory>\bin\firmware\EthernetSmartCable\
EthernetSmartCable upgrade information.txt

• ZPAK II

<ZDS Installation Directory>\bin\firmware\ZPAKII\
upgrade information.txt

Customize
The Customize dialog box lets you modify the following items:

• “File Toolbar” on page 16

• “Find Toolbar” on page 21

• “Build Toolbar” on page 18

• “Debug Toolbar” on page 23

• “Debug Windows Toolbar” on page 27

• “Bookmarks Toolbar” on page 22

• “Command Processor Toolbar” on page 22

To see a description of each button on the toolbars, highlight the icon as shown in the fol-
lowing figure.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

122
Figure 81. Customize Dialog Bo

To customize a toolbar, use the following procedure:

1. Select Customize from the Tools menu.

The Customize dialog box is displayed.

2. Select a toolbar in the Categories area.

3. Drag buttons from the Buttons area to any toolbar.

To see a description of each toolbar button, highlight the icon.

4. Click OK to apply your changes or Cancel to close the dialog box without making
any changes.

NOTE: You cannot change the buttons on the default toolbars.

Options
The Options dialog box contains the following tabs:

• “Options—General Tab” on page 123

• “Options—Editor Tab” on page 124

• “Options—Debugger Tab” on page 127
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

123
• “Options—File Types Tab” on page 128

Options—General Tab
The General tab contains the following check boxes:

• Select the Save Files Before Build check box to save files before you build. This
option is selected by default.

• Select the Always Rebuild After Configuration Activated check box to ensure that the
first build after a project configuration (such as Debug or Release) is activated results
in the reprocessing of all of the active project’s source files. A project configuration is
activated by being selected (using the Select Configuration dialog box or the Select
Build Configuration drop-down list box) or created (using the Manage Configurations
dialog box). This option is not selected by default.

• Select the Automatically Reload Externally Modified Files check box to automatically
reload externally modified files. This option is not selected by default.

• Select the Load Last Project on Startup check box to load the most recently active
project when you start ZDS II. This option is not selected by default.

• Select the Show the Full Path in the Document Window’s Title Bar check box to add
the complete path to the name of each file open in the Edit window.

• Select the Save/Restore Project Workspace check box to save the project workspace
settings each time you exit from ZDS II. This option is selected by default.

Select a number of commands to save in the Commands to Keep field or click Clear to
delete the saved commands.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

124
Figure 82. Options Dialog Box—General Tab

Options—Editor Tab
Use the Editor tab to change the default settings of the editor for your assembly, C, and
default files:

1. From the Tools menu, select Options.

The Options dialog box is displayed.

2. Click on the Editor tab.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

125
Figure 83. Options Dialog Box—Editor Tab

3. Select a file type from the File Type drop-down list box.

You can select C files, assembly files, or other files and windows.

4. In the Tabs area, do the following:
– Use the Tab Size field to change the number of spaces that a tab indents code.
– Select the Insert Spaces button or the Keep Tabs button to indicate how to format

indented lines.
– Select the Auto Indent check box if you want the IDE to automatically add

indentation to your files.

5. If you want to change the color for any of the items in the Color list box, click the
item, make sure the Use Default check boxes are not selected, and then click on the
color in the Foreground or Background field to display the Color dialog box (see the
following figure). If you want to use the default foreground or background color for
the selected item, enable the Use Default check box next to the Foreground or
Background check box (see the preceding figure).
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

126
Figure 84. Color Dialog Box

6. Click OK to close the Color dialog box.

7. To change the default font and font size, click Select Font.

The Font dialog box is displayed.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

127
Figure 85. Font Dialog Box

You can change the font, font style, font size, and script style.

8. Click OK to close the Font dialog box.

9. Click OK to close the Options dialog box.

Options—Debugger Tab
The Debugger tab contains the following check boxes:

• Select the Save Project Before Start of Debug Session check box to save the current
project before entering the Debug mode. This option is selected by default.

• Select the Reset to Symbol 'main' (Where Applicable) check box to skip the startup
(boot) code and start debugging at the main function for a project that includes a C
language main function. When this check box is selected, a user reset (clicking the
Reset button on the Build and Debug toolbars, selecting Reset from the Debug
submenu, or using the reset script command) results in the program counter (PC)
pointing to the beginning of the main function. When this check box is not selected, a
user reset results in the PC pointing to the first line of the program (the first line of the
startup code).

• When the Show DataTips Pop-Up Information check box is selected, you can hold the
mouse cursor over a variable in a C file in the Edit window in Debug mode, and the
value is displayed.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

128
• Select the Hexadecimal Display check box to change the values in the Watch and
Locals windows to hexadecimal format. Deselect the check box to change the values
in the Watch and Locals windows to decimal format.

• Select the Verify File Downloads—Read After Write check box to perform a read
after write verify of the Code Download function. Selecting this check box increases
the time taken for the code download to complete.

• Select the Verify File Downloads—Upon Completion check box to verify the code
that you downloaded after it has downloaded.

• Select the Load Debug Information (Current Project) check box to load the debug
information for the currently open project when the Connect to Target command is
executed (from the Debug submenu or from the Connect to Target button). This option
is selected by default.

• Select the Activate Breakpoints check box for the breakpoints in the current project to
be active when the Connect to Target command is executed (from the Debug submenu
or from the Connect to Target button). This option is selected by default.

Figure 86. Options Dialog Box—Debugger Tab

Options—File Types Tab
Use the File Types tab to add a new directory for specified file types in the Project Work-
space window.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

129
Figure 87. Options Dialog Box—File Types Tab

1. Click Add.

The Add File Group dialog box is displayed.

2. In the Group Name field, type the name of the new directory.

3. Click OK.

The new file group appears in the File Groups field.

4. Select the new file group name.

5. In the Associated File Types field, type the file extensions to store in the new
directory.

Use a comma to separate the file types.

6. Click OK.

Window Menu
The Window menu allows you to select the ways you want to arrange your files in the Edit
window and allows you to activate the Project Workspace window or the Output window.

The Window menu contains the following options:

• “New Window” on page 130

• “Close” on page 130
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

130
• “Close All” on page 130

• “Cascade” on page 130

• “Tile” on page 130

• “Arrange Icons” on page 130

New Window
Select New Window to create a copy of the file you have active in the Edit window.

Close
Select Close to close the active file in the Edit window.

Close All
Select Close All to close all the files in the Edit window.

Cascade
Select Cascade to cascade the files in the Edit window. Use this option to display all open
windows whenever you cannot locate a window.

Tile
Select Tile to tile the files in the Edit window so that you can see all of them at once.

Arrange Icons
Select Arrange Icons to arrange the files alphabetically in the Edit window.

Help Menu
The Help menu contains the following options:

• “Help Topics” on page 130

• “Technical Support” on page 130

• “About” on page 130

Help Topics
Select Help Topics to display the ZDS II online help.

Technical Support
Select Technical Support to access ZiLOG’s Technical Support web site.

About
Select About to display installed product and component version information.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

131
SHORTCUT KEYS
The following sections list the shortcut keys for the ZiLOG Developer Studio II:

• “File Menu Shortcuts” on page 131

• “Edit Menu Shortcuts” on page 131

• “Project Menu Shortcuts” on page 132

• “Build Menu Shortcuts” on page 132

• “Debug Menu Shortcuts” on page 132

File Menu Shortcuts
These are the shortcuts for the options on the File menu.

Edit Menu Shortcuts
These are the shortcuts for the options on the Edit menu.

Option Shortcut Description
New File Ctrl+N To create a new file in the Edit window.
Open File Ctrl+O To display the Open dialog box for you to find the appropriate file.
Save Ctrl+S To save the file.
Save All Ctrl+Alt+L To save all files in the project.
Print Ctrl+P To print a file.

Option Shortcut Description
Undo Ctrl+Z To undo the last command or action you performed.
Redo Ctrl+Y To redo the last command or action you performed.
Cut Ctrl+X To delete selected text from a file and put it on the clipboard.
Copy Ctrl+C To copy selected text from a file and put it on the clipboard.
Paste Ctrl+V To paste the current contents of the clipboard into a file.
Delete Ctrl+D To remove a file from the current project.
Select All Ctrl+A To highlight all text in the active file.
Show
Whitespaces

Ctrl+Shift+8 To display all whitespace characters like spaces and tabs.

Find Ctrl+F To find a specific value in the designated file.
Find Again F3 To repeat the previous search.
Replace Ctrl+H To replace a specific value to the designated file.
Go to Line Ctrl+G To jump to a specified line in the current file.
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

132
Project Menu Shortcuts
There is one shortcut for the options on the Project menu.

Build Menu Shortcuts
These are the shortcuts for the options on the Build menu.

Debug Menu Shortcuts
These are the shortcuts for the options on the Debug menu.

Toggle
Bookmark

Ctrl+F2 To insert a bookmark in the active file for the line where your
cursor is located or to remove the bookmark for the line where
your cursor is located.

Next Bookmark F2 To position the cursor at the line where the next bookmark in the
active file is located. The search for the next bookmark does not
stop at the end of the file; the next bookmark might be the first
bookmark in the file.

Previous
Bookmark

Shift+F2 To position the cursor at the line where the previous bookmark in
the active file is located. The search for the previous bookmark
does not stop at the beginning of the file; the previous bookmark
might be the last bookmark in the file.

Remove All
Bookmarks

Ctrl+Shift+F2 To delete all of the bookmarks in the currently loaded project.

Option Shortcut Description
Settings Alt+F7 To display the Project Settings dialog box.

Option Shortcut Description
Build F7 To build your file and/or project.
Stop Build Ctrl+Break To stop the build of your file and/or project.

Option Shortcut Description

Stop Debugging Shift+F5 To stop debugging of your program.

Reset Ctrl+Shift+F5 To reset the debugger.

Go F5 To invoke the debugger (go into Debug mode).

Run to Cursor Ctrl+F10 To make the debugger run to the line containing the cursor.

Option Shortcut Description
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

133
Break Ctrl+F5 To break the program execution.

Step Into F11 To execute the code one statement at a time.

Step Over F10 To step to the next statement regardless of whether the
current statement is a call to another function.

Step Out Shift+F11 To execute the remaining lines in the current function and
return to execute the next statement in the caller function.

Set Next Instruction Shift+F10 To set the next instruction at the current line.

Option Shortcut Description
UM014423-0607 Using the Integrated Development Environment

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

134
Using the ANSI C-Compiler
The eZ80Acclaim! C-Compiler is a conforming freestanding 1989 ANSI C implementa-
tion with some exceptions. These exceptions are described in “ANSI Standard Compli-
ance” on page 164. In accordance with the definition of a freestanding implementation,
the compiler accepts programs that confine the use of the features of the ANSI standard
library to the contents of the standard headers <float.h>, <limits.h>, <stdarg.h>
and <stddef.h>. The eZ80Acclaim! compiler release supports more of the standard
library than is required of a freestanding implementation, as listed in “Run-Time Library”
on page 154.

The eZ80Acclaim! C-Compiler supports language extensions for the easy programming of
the eZ80Acclaim! processor architecture. The language extensions are described in “Lan-
guage Extensions” on page 135.

The following sections describe the various features of the eZ80Acclaim! C-Compiler:

• “Language Extensions” on page 135

• “Type Sizes” on page 147

• “Predefined Macros” on page 148

• “Calling Conventions” on page 149

• “Calling Assembly Functions from C” on page 152

• “Calling C Functions from Assembly” on page 153

• “Command Line Options” on page 154

• “Run-Time Library” on page 154

• “Pseudoinstruction Macros Generated by the C-Compiler” on page 156

• “Startup Files” on page 157

• “Segment Naming” on page 158

• “Linker Command Files for C Programs” on page 158

• “ANSI Standard Compliance” on page 164

• “Locating Variables at Specific Addresses: Older Method” on page 167

• “Warning and Error Messages” on page 168

The eZ80Acclaim! C-Compiler is optimized for embedded applications in which execu-
tion speed and code size are crucial.
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

135
LANGUAGE EXTENSIONS
To provide additional support for some frequently used features of embedded applications,
the eZ80Acclaim! C-Compiler implements the following extensions to the ANSI C stan-
dard:

• “Interrupt Support” on page 135

The eZ80Acclaim! CPU supports various interrupts. The C-Compiler provides
language extensions to designate a function as an interrupt service routine and
provides features to set each interrupt vector.

• “Inline Assembly” on page 143

The C-Compiler provides directives for embedding assembly instructions and
directives into the C program.

• “Placement Directives” on page 142

The placement directives allow users to place objects at specific hardware addresses
and align objects at a given alignment.

• “fract Keyword” on page 144

The C-Compiler supports numerical types of several sizes that are used for fractional
fixed-point representations of values in the range –1 to 1.

• “Char and Short Enumerations” on page 146

The enumeration data type is defined as int as per ANSI C. The C-Compiler provides
language extensions to specify the enumeration data type to be other than int.

• “Supported New Features from the 1999 Standard” on page 147

The eZ80Acclaim! C-Compiler is based on the 1989 ANSI C standard. Some new
features from the 1999 standard are supported in this compiler for ease of use.

Interrupt Support
To support interrupts, the eZ80Acclaim! C-Compiler provides two features. These are
described in the following sections along with some practical information on how to use
interrupts in your C application for the eZ80Acclaim!:

• “interrupt Keyword” on page 135

• “Interrupt Vector Setup” on page 136

• “Using Interrupts in Your Application” on page 138

interrupt Keyword
Functions that are preceded by either of the #pragmas interrupt or
nested_interrupt and functions that are associated with the interrupt storage class are
designated as interrupt handlers. These functions should neither take parameters nor return
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

136
a value. Because an interrupt handler is not called from another function but vectored to
by the hardware, you cannot pass parameters to it. Interrupt routines can, however, access
global variables or static variables. The compiler issues a warning if it detects an interrupt
routine with arguments.

The compiler stores the machine state at the beginning of these functions and restores the
machine state at the end of these functions. The interrupt and nested_interrupt
pragmas are handled differently in the compiler. You should use #pragma interrupt
for all interrupt handlers if your application does not make use of nested interrupts; other-
wise, use #pragma nested_interrupt for all interrupt handlers. It is important to use
either interrupt or nested_interrupt consistently throughout your application.

Specifically, the (non-nested) interrupt function executes an EXX instruction that pre-
serves all the current registers upon entry to the function and an EXX instruction to restore
the registers at the function exit. On the other hand, nested_interrupt does not use the
alternate registers and instead pushes registers on the stack based on their use in the func-
tion. In either case, the compiler uses the reti instruction to return from these functions.
For example:

void interrupt isr_timer0(void) /* For non-nested interrupt use model */
{}

or
void nested_interrupt isr_timer0(void) /* For nested interrupt use model */
{}

or
#pragma interrupt /* For non-nested interrupt use model */
void isr_timer0(void)
{}

or
#pragma nested_interrupt /* For nested interrupt use model */
void isr_timer0(void)
{}

If you want the compiler to use the retn instruction to return from the interrupt, use
#pragma nmi_interrupt. For example:
#pragma nmi_interrupt /* ISR for non maskable interrupt */
void isr_nmi(void)
{}

Interrupt Vector Setup
The compiler provides the _set_vector function for interrupt vector setup. This func-
tion can be used to specify the address of an interrupt handler for an interrupt vector. The
_set_vector function works by dynamically reading the base of the vector table and
placing the address of the interrupt handler in it.
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

137
The following is the effective _set_vector function prototype. The first argument here
is an integer defining the interrupt, and the second argument is the name of the associated
interrupt handler. The function returns the previous handler that was present in the vector
location before writing the new vector. The prototype of the function is included in a CPU-
specific header file (such as eZ80F91.h) and has the following form:
void* _set_vector(int vectnum,void (*hndlr)(void));

An example of the use of _set_vector is as follows:
extern void* interrupt isr_timer0(void);
void main(void)
{
 _set_vector(TIMER0_IVECT, isr_timer0);
}

The following values for vectnum are supported:

NOTE: The CPU-specific header files, such as <eZ80F91.h>, are located in the following
directory:

<ZDS Installation Directory>\include\zilog

where <ZDS Installation Directory> is the directory in which ZiLOG Developer Studio
was installed. By default, this would be C:\Program
Files\ZiLOG\ZDSII_eZ80Acclaim!_<version>, where <version> might be 4.11.0
or 5.0.0.

EMACRX_IVECT
EMACTX_IVECT
EMACSYS_IVECT
MACC_IVECT
DMA0_IVECT
DMA1_IVECT
PLL_IVECT
FLASH_IVECT
PRT0_IVECT
PRT1_IVECT
PRT2_IVECT
PRT3_IVECT
PRT4_IVECT
PRT5_IVECT
TIMER0_IVECT
TIMER1_IVECT
TIMER2_IVECT
TIMER3_IVECT
UZI0_IVECT

UZI1_IVECT
RTC_IVECT
UART0_IVECT
UART1_IVECT
I2C_IVECT
SPI_IVECT
PORTA0_IVECT
PORTA1_IVECT
PORTA2_IVECT
PORTA3_IVECT
PORTA4_IVECT
PORTA5_IVECT
PORTA6_IVECT
PORTA7_IVECT
PORTB0_IVECT
PORTB1_IVECT
PORTB2_IVECT
PORTB3_IVECT
PORTB4_IVECT

PORTB5_IVECT
PORTB6_IVECT
PORTB7_IVECT
PORTC0_IVECT
PORTC1_IVECT
PORTC2_IVECT
PORTC3_IVECT
PORTC4_IVECT
PORTC5_IVECT
PORTC6_IVECT
PORTC7_IVECT
PORTD0_IVECT
PORTD1_IVECT
PORTD2_IVECT
PORTD3_IVECT
PORTD4_IVECT
PORTD5_IVECT
PORTD6_IVECT
PORTD7_IVECT
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

138
For clarity, it is recommended to place all the _set_vector calls in main. For example:
extern void my_zero_timer(); /* declared as interrupt */
extern void my_one_timer(); /* declared as interrupt */
int main() {
_di(); /* disable interrupts */
_set_vector(TMR0, my_zero_timer);
_set_vector(TMR1, my_one_timer);
_ei(); /* enable interrupts */

/* Body of application */
}

If you are in the early stages of developing your application, you might need to capture all
of the interrupt vectors so that any unexpected interrupts are vectored to a known section
of code. The _init_default_vectors function can be used for this purpose. It takes
no arguments and should be called at the beginning of main. This function sets up all of
the entries in the vector table to point to a single interrupt handler. Interrupts must be dis-
abled at the point where this function is called.

Using Interrupts in Your Application
The eZ80Acclaim! family has a number of options for handling interrupts.

If you are using the default boot module, use the following procedure to enable the first
interrupt:

1. Call init_default_vectors() once

2. Call set_vector() with the appropriate parameters.

3. Configure and enable the peripherals interrupt.

For each additional interrupt, use steps 2 and 3 only.

The eZ80F92 and eZ80F93 operate like the eZ80190 in terms of having on-chip SRAM
available. If, however, you are only targeting to have your code run within the on-chip
Flash memory, you might want to just keep your ISR routines within the first 64 Kbytes
and point the default vector addresses right to the ISR routines.

The eZ80Acclaim! eZ80F91 devices, however, have a new feature that has been added to
the interrupt controller to help out with interrupts. The default interrupt vectors have been
changed from two byte addresses to four bytes. This allows you to point the default ISR
vector right to your ISR routine. The following is some simple ISR setup code for the
eZ80F91 device:

;**********************************
; Program entry point
;**********************************

.org %00
di
jp.lil_c_int0 ; Jump around the ISR vectors.
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

139
;---
; ISR Vectors
;

Note the ‘DL’ define - This gives us two words or 4 bytes.
 The upper byte is loaded with 00
 We only need 24 bits.

.org %40
dl %000000 ;
dl %000000 ;
dl %000000 ;
dl %000000 ;
dl %000000 ;
dl _isr_timer0 ;PRT0_ISR
dl _isr_timer1 ;PRT1_ISR
dl %000000 ;
dl %000000 ;
dl %000000 ;
dl %000000 ;
dl %000000 ;

 dl _isr_uart0 ;UART0_ISR
dl _isr_uart1 ;UART1_ISR
dl %000000 ;

** add all interrupt vectors that you are going to use.

;---
; Initialize Stack pointer

extern TOSPS
extern TOSPL

_c_int0:
ld.sis sp,TOSPS ; Setup SPS
ld.lil sp,TOSPL ; Setup SPL

;***

ld a, 00h ; Disable on-chip SRAM
out (RAM_CTL0), a; ; depends on what you want to do with the

; on-chip SRAM.

**** do other chip init here.
**** final jump to main

call _main ; main()

void main(void)
{
init_com1(); // Init com port - enable com1 ISR
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

140
init_timer1(); // Init 100ms Timer - enable timer 1 ISR

_ei(); // Turn on the master interrupt system.

do
{

Your code goes here....
}while(1);

/**
 * This will initialize timer1 to interrupt every 10 ms
 *
 * 16 bit time constant is not big enough for 100 ms interrupts,
 * so we will use additional intermediate counter to count
 * every 10 ticks.
 */

void init_timer1(void)
{

ticks1 = 0x00;
intermediate_ticks1 = 0x00;

TMR_CTL1 = 0x00;
TMR_RRL1 = 0xFF; //setup timer to interrupt every 10ms
TMR_RRH1 = 0x1F;
TMR_CTL1 = 0x0e; //timer0 = multipass, /16, interrupt enable
TMR_CTL1 |= 0x01; //enable timer
TMR_IER1 = 0x01; // Enables timer 1 interrupt

}

void init_com1(void)
{

PC_ALT1 &= 0xf0; //PD0 = uart0_tx, PD1 = uart0_rx
PC_ALT2 |= 0x0F;

UART_LCTL1=0x80; //select dlab to access baud rate generators
BRG_DLRL1=0x45; // 9600
BRG_DLRH1=0x01;
UART_LCTL1=0x00; //disable dlab

UART_FCTL1=0xc7; //clear tx fifo, clear rx fifo, fifo enable
UART_LCTL1=0x1B; //8-N-1
UART_MCTL1=0x20; //disable modem flow control
UART_IER1=0x05; //rx int enable, master int enable was 1

}

#pragma interrupt
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

141
void isr_timer1(void)
{

unsigned char temp;
unsigned int delay;
temp = TMR_CTL1;//read to clear pending int
temp = TMR_IIR1;

intermediate_ticks1++;
if(intermediate_ticks1 >= 10)
{

intermediate_ticks1 = 0;
ticks1++;

}
}

/**
 * All this ISR should do is put the data into our internal fifos
 *
 */

#pragma interrupt
void isr_uart1(void)
{
 short temp;

 temp = UART_LSR1;

 if (temp & 0x04)
{

 mdb_buff[byte_pos] = UART_RBR1;
 byte_pos++;
 done = 1;

}

if (temp & 0x01)

{
 mdb_buff[byte_pos] = UART_RBR1;

byte_pos++;
}

while(UART_LSR1 & 0x20) {//THRE int

if(! fifo_empty(uart1tx->fifo)) {// and we still have
stuff to send ...

UART_THR1=fifo_get(uart1tx->fifo);// send it.
} else { // otherwise ...

UART_IER1&=0xfd;// disable tx interrupts
break;
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

142
}
}

}
}

In summary, setting up interrupts is somewhat complex on the eZ80® family as there are a
number of things to configure, such as the I register, the long and short jump tables, and so
on. Because the eZ80F92 and eZ80F93 only have two byte addresses for the default inter-
rupt vectors, you need to set up other jump tables to bridge the gap into the 24-bit world
when using those CPUs. The other thing to keep in mind is that the I register controls the
upper 8 bits of this default interrupt vector, allowing you to move the overall interrupt
jump table anywhere in the 64K range.

Placement Directives
The eZ80 Acclaim! C-Compiler provides language extensions to declare a variable at an
address and to align a variable at a specified alignment. The following sections describe
placement directives:

• “Placement of a Variable” on page 142

• “Placement of Consecutive Variables” on page 143

• “Alignment of a Variable” on page 143

Placement of a Variable
The following syntax can be used to declare a global or static variable at an address:

char placed_char _At 0xB7E100; // placed_char is assigned an address 0xB7E100

struct {
char ch;
int ii;

} ss _At 0xB7E110; // ss is assigned an address 0xB7E110

const char init_char _At 0x1000 = 33;
// init_char is in rom at 0x1000 and initialized to 33

NOTE: Only placed variables with the const qualifier can be initialized. Non-const
placed variables are not re-initialized correctly upon program reset.The
uninitialized placed variables are not initialized to zero by the compiler startup
routine.
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

143
Placement of Consecutive Variables
The compiler also provides syntax to place several variables at consecutive addresses. For
example:
char ch1 _At 0xB7E000;
char ch2 _At ...;
char ch3 _At ...;

This places ch1 at address 0xB7E000, ch2 at the next address (0xB7E001) after ch1, and
ch3 at the next address (0xB7E002) after ch2. The _At ... directive can only be used
after a previous _At or _Align directive.

Alignment of a Variable
The following syntax can be used to declare a global or static variable aligned at a speci-
fied alignment:
char ch2 _Align 2; // ch2 is aligned at even boundary
char ch4 _Align 4; // ch4 is aligned at a four byte boundary

NOTE: Only aligned variables with the const qualifier can be initialized. Non-const
aligned variables would not be re-initialized correctly upon program reset. The
uninitialized aligned variables are not initialized to zero by the compiler startup
routine.

Inline Assembly
There are two methods of inserting assembly language within C code:

• “Inline Assembly Using the Pragma Directive” on page 143

• “Inline Assembly Using the asm Statement” on page 143

Inline Assembly Using the Pragma Directive
The first method uses the #pragma feature of ANSI C with the following syntax:

#pragma asm "<assembly line>"

#pragma can be inserted anywhere within the C source file. The contents of
<assembly line> must be legal assembly language syntax. The usual C escape sequences
(such as \n, \t, and \r) are properly translated. Currently, the compiler does not process
the <assembly line>. Except for escape sequences, it is passed through the compiler to the
assembler verbatim.

Inline Assembly Using the asm Statement
The second method of inserting assembly language uses the asm statement:
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

144
asm("<assembly line>");

The asm statement cannot be within an expression and can be used only within the body of
a function.

The <assembly line> can be any string.The compiler does not check the legality of the
string.

As with the #pragma asm form, the compiler does not process the <assembly line>
except for translating the standard C escape sequences.

The compiler prefixes the name of every global variable and function name with “_”. Glo-
bal variables and functions can therefore be accessed in inline assembly by prefixing their
name with “_”. The local variables and parameters cannot be accessed in inline assembly.

fract Keyword
The compiler extends the ANSI C language to include support for a new base type called
fract that supports fixed-point fractional numbers. Declaring a fract variable is very
similar to declaring an integer variable, although the values to be associated with the vari-
able are not integers. Both signed and unsigned fracts are supported. The following
are examples of legal fractional variable declarations:
int fract sif; /* signed integer fract */
unsigned short fract usf; /* unsigned short fract */
char fract ascf[10]; /* array of signed char fracts */

The char, short, and int base types determine the size of the object based upon the
default base type sizes for the target processor. For eZ80Acclaim!, they are 8, 16, and 24
bits wide, respectively. The long fract type is not supported.

Fractional Fixed-Point Representations
The compiler uses fractional fixed-point arithmetic for improved efficiency over floating-
point representations. Both signed and unsigned fractional numbers are supported. A
signed fractional variable n is always within the following range: -1 <= n < 1

When representing a signed fractional number, the most significant bit represents the sign,
and the remaining bits represent the two’s complement of the fraction. The binary point is
immediately after the sign bit.

An unsigned fractional variable n is always within the range: 0 <= n < 1. The binary point
is just before the most significant bit.

When determining the value of a fractional number, look at each bit of the fraction as a
negative power of two. For example, consider the following signed short fract:

2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11 2-12 2-13 2-14 2-15

s .b b b B b b b b b b b b b b b
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

145
If the sign bit is negative (in the case of a signed type), take the two’s complement of the
value before decoding the fractional number. For example, to decode the value 0xb000
into a real number representation, first negate the value to obtain 0x5000. Then, sum the
powers of two for each bit set as follows:

Therefore, signed 0xb000 represents –(2-1 + 2-3) = –0.625.

The minimum resolution of the fract value varies, depending on the size and signedness
of the data type, as follows:

char fract : 1/27 = 0.0078125

unsigned char fract : 1/28 = 0.0039063

short fract : 1/215 = 0.000030518

unsigned short fract : 1/216 = 0.000015259

int fract : 1/223 = 0.00000011921

unsigned int fract : 1/224 = 0.000000059605

Assigning Values to fract Variables
When assigning values of fract variables, floating-point constant syntax can be used.
For example:
short fract f = -0.5;
f= -5/0.9;

Assignments between fracts of different sizes only move the least significant bytes, and
hence the resulting value is distorted. Assignments between signed and unsigned ver-
sions of a fract do not preserve the signedness of the value, and hence the resulting value
is distorted. Assignment between fract and float (and vice versa) is allowed—only the
fractional part is transacted between the objects, and the integral part (if any) is ignored.

Fractional Expressions
In the fractional fixed-point system, fractional values are considered a higher order type
than floating-point values. If floats or doubles are in an expression containing fracts,
the floats and doubles are converted to fracts as necessary, even though a loss of
accuracy might occur. The fractional fixed-point model assumes that the operation’s effi-
ciency is more important than its accuracy.

s 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11 2-12 2-13 2-14 2-15

0 .1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

146
Basic Fractional Arithmetic
The compiler supports signed/unsigned fractional arithmetic for the +, -, and * operators.
The binary operators +, -, and * on the fract data type give correct results only if both
the operands are of same size and of same sign-type. Otherwise, the values are distorted
for the reasons cited in “Assigning Values to fract Variables” on page 145.

All other arithmetic operators on fract treat the data as if they were of integral types
(ignoring the fract keyword), and hence the resulting value might not make sense within
the context of fract.

Bitwise Logical and Shift Operators
The compiler supports all bitwise logical operators, including &, |, ^, <<, and >> for frac-
tional types, although ANSI does not allow these operations for floating-point types. You
can use these operators to vary the position of the binary point in a fractional number. This
feature can be very useful when the result of a fractional expression is not within the range
of –1 to +1 or 0 to +1 but a wider range such as –3 to +3.

Scaled Fractional Arithmetic
You can alter the range of a fractional fixed-point value by modifying where its implied
binary point resides. You can perform this operation using the shift operators as follows:
unsigned short fract f1,f2;
int int_part;
unsigned short fract fract_part;
f2 = .55;
f2 >>= 3; /* move the binary point to right */
f1 = f2 + f2; /* .55 + .55 = 1.1 */
int_part = (f1 & 0xe000) >> 13; /* 1 */
fract_part = f1 << 3; /* 0.1 */

Although fract arithmetic assumes that the binary point is just after the most significant
bit (or after the sign bit in the case of a signed type), you can perform the same operations
on fracts that have been shifted to move the binary point.

NOTE: However, be careful when dealing with negative signed fracts and make sure that all
values involved in an operation have their binary points aligned.

Char and Short Enumerations
The enumeration data type is defined as int as per ANSI C. The C-Compiler provides
language extensions to specify the enumeration data type to be other than int to save
space. The following syntax is provided by the C-Compiler to declare them as char or
short:
enum
{
 RED = 0,
 YELLOW,
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

147
 BLUE,
 INVALID
} char color;

enum
{
 NEW= 0,
 OPEN,
 FIXED,
 VERIFIED,
 CLOSED
} short status;

void main(void)
{
 if (color == RED)
 status = FIXED;
 else
 status = OPEN;
}

Supported New Features from the 1999 Standard
The eZ80Acclaim! compiler implements the following new features introduced in the
ANSI 1999 standard, also known as ISO/IEC 9899:1999:

• C++ Style Comments

Comments preceded by // and terminated by the end of a line, as in C++, are
supported.

• Long Long Int Type

The long long int type is allowed. (In the eZ80Acclaim! C-Compiler, this type is
treated as the same as long, which is allowed by the standard.)

TYPE SIZES
The type sizes for basic data types on the eZ80Acclaim! C-Compiler are as follows:

int 24 bits
short int 16 bits
char 8 bits
long 32 bits
float 32 bits
double 32 bits
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

148
PREDEFINED MACROS
The eZ80Acclaim! C-Compiler comes with the following standard predefined macro
names:

None of these macro names can be the subject of a #define or a #undef preprocessing
directive. The values of these predefined macros (except for __LINE__ and __FILE__)
remain constant throughout the translation unit.

The following additional macros are predefined by the eZ80Acclaim! C-Compiler:

All predefined macro names begin with two underscores and end with two underscores.

Examples
The following program illustrates the use of some of these predefined macros:
#include <stdio.h>
void main()

__DATE__ This macro expands to the current date in the format “Mmm dd yyyy” (a
character string literal), where the names of the months are the same as those
generated by the asctime function and the first character of dd is a space
character if the value is less than 10.

__FILE__ This macro expands to the current source file name (a string literal).

__LINE__ This macro expands to the current line number (a decimal constant).

__STDC__ This macro is defined as the decimal constant 1 and indicates conformance
with ANSI C.

__TIME__ This macro expands to the compilation time in the format “hh:mm:ss” (a string
literal).

__ACCLAIM__ This macro is defined and set to 1 for the eZ80Acclaim! compiler and
is otherwise undefined.

__EZ80__ This macro is defined and set to 1 for the eZ80Acclaim! compiler and
is otherwise undefined.

__FPLIB__ This macro is defined on all ZiLOG compilers and indicates whether
the floating-point library is available.

__ZDATE__ This macro expands to the build date of the compiler in the format
YYYYMMDD. For example, if the compiler were built on May 31,
2006, then __ZDATE__ expands to 20060531. This macro gives a
means to test for a particular ZiLOG release or to test that the
compiler is released after a new feature has been added.

__ZILOG__ This macro is defined and set to 1 on all ZiLOG compilers to indicate
that the compiler is provided by ZiLOG rather than some other
vendor.
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

149
{
#ifdef __ZILOG__
 printf("ZiLOG Compiler ");
#endif
#ifdef __EZ80__
 printf("For eZ80 ");
#endif
#ifdef __ZDATE__
 printf("Built on %d.\n", __ZDATE__);
#endif
}

CALLING CONVENTIONS
The C-Compiler imposes a strict set of rules on function calls. Except for special run-time
support functions, any function that calls or is called by a C function must follow these
rules. Failure to adhere to these rules can disrupt the C environment and cause a C pro-
gram to fail.

The following sections describe the calling conventions:

• “Function Call Mechanism” on page 149

• “Special Cases” on page 151

Function Call Mechanism
A function (caller function) performs the following tasks when it calls another function
(called function):

1. Save all registers (other than the return value register, to be defined below) that might
be needed in the caller function after the return from the call, that is, a “caller save”
mechanism is used. The registers are saved by pushing them on the stack before the
call.

2. Push all function parameters on the stack in reverse order (the rightmost declared
argument is pushed first, and the leftmost is pushed last). This places the leftmost
argument on top of the stack when the function is called. For a varargs function, all
parameters are pushed on the stack in reverse order.

3. Then call the function. The call instruction pushes the return address on the top of the
stack.

4. On return from the called function, caller pops the arguments off the stack or
increments the stack pointer.

5. The caller then restores the saved registers by popping them from the stack.

The following example illustrates what must be done in an assembly procedure that calls a
C function, including “caller save” of the BC register:
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

150
LD BC,123456h ; BC is used across function call
PUSH BC; Must be pushed before arguments are pushed
PUSH HL; Push argument
CALL _foo; Might modify BC
POP BC; Remove argument
POP BC; Must be popped after arguments are deallocated
ADD HL,BC; Wrong value of BC could be used if BC not

; saved by caller

In the eZ80®, a multiple of 3 bytes is always used when pushing arguments on the stack.
The following table shows how arguments of different types are passed.

The called function performs the following tasks:

1. Push the frame pointer (that is, the IX register) onto the stack and allocate the local
frame:
– Set the frame pointer to the current value of the stack pointer.
– Decrement the stack pointer by the size of locals and temporaries, if required.

2. Execute the code for the function.

3. If the function returns a scalar value, place it in the appropriate register as defined in
the following table. For functions returning an aggregate, see “Special Cases” on
page 151.

4. Deallocate the local frame (set the stack pointer to the current value of frame pointer)
and restore the frame pointer register (IX) from stack.

5. Return.

The following table specifies how scalar values (those other than structs or unions) are
returned.

Table 1. Passing Arguments

Type Size Memory (Low to High)

char 3 bytes xx ?? ??

short 3 bytes xx xx ??

int 3 bytes xx xx xx

long 6 bytes xx xx xx xx ?? ??

float 6 bytes xx xx xx xx ?? ??

double 6 bytes xx xx xx xx ?? ??

pointer 3 bytes xx xx xx
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

151
The function call mechanism described in this section is a dynamic call mechanism. In a
dynamic call mechanism, each function allocates memory on stack for its locals and tem-
poraries during the run time of the program. When the function has returned, the memory
that it was using is freed from the stack. The following figure shows a diagram of the
eZ80Acclaim! C-Compiler dynamic call frame layout.

Figure 88. Call Frame Layout

Special Cases
Some function calls do not follow the mechanism described in “Function Call Mecha-
nism” on page 149:

Table 2. Returning Values

Type Register Register Contents: Most to Least Significant

char A xx

short HL ?? xx xx

int HL xx xx xx

long E:HL xx: xx xx xx

float E:HL xx: xx xx xx

double E:HL xx: xx xx xx

pointer HL xx xx xx

 Temporaries

Locals

Callers Frame Pointer 23:0

Return Address 23:0

Parameter 0

Parameter 1

…

Parameter N

IX

SP

Run Time Stack

High Address

Low Address
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

152
• Returning structure

If the function returns a structure, the caller allocates the space for the structure and
then passes the address of the return space to the called function as an additional and
first argument. To return a structure, the called function then copies the structure to the
memory block pointed to by this argument.

• Not allocating a local frame
The compiler does not allocate a local stack frame for a function in the following case:
– The function does not have any local stack variables, stack arguments, or

compiler-generated temporaries on the stack.
and
– The function does not return a structure.
and
– The function is compiled without the debug option.

CALLING ASSEMBLY FUNCTIONS FROM C
The eZ80Acclaim! C-Compiler allows mixed C and assembly programming. A function
written in assembly can be called from C if the assembly function follows the C calling
conventions as described in “Calling Conventions” on page 149.

The following sections describe how to call assembly functions from C:

• “Function Naming Convention” on page 152

• “Variable Naming Convention” on page 152

• “Argument Locations” on page 153

• “Return Values” on page 153

• “Preserving Registers” on page 153

Function Naming Convention
Assembly function names must be preceded with an _ (underscore) in order to be callable
from C. The compiler prefixes C function names with an underscore in the generated
assembly. For example, a call to myfunc() in C is translated to a call to _myfunc in gen-
erated assembly by the compiler.

Variable Naming Convention
When the compiler generates an assembly file from C code, all names of global variables
are prefixed with an underscore.

Names of local static variables are prefixed with an underscore followed by a function
number to avoid assembly errors when the same local static variable occurs more than
once in the same file.
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

153
Argument Locations
The assembly function assigns the location of the arguments following the C calling con-
ventions as described in “Calling Conventions” on page 149.

For example, if you are using the following C prototype:
void myfunc(short arga, long argb, short *argc, char argd, int arge)

The arguments are placed on the stack, and their offsets from Stack Pointer (SP) at the
entry point of an assembly function are as follows:

arga: –3(SP)

argb: –6(SP)

argc: –12(SP)

argd: –15(SP)

arge: –18(SP)

Return Values
The assembly function returns the value in the location as specified by the C calling con-
vention as described in “Calling Conventions” on page 149.

For example, if you are using the following C prototype:
long myfunc(short arga, long argb, short *argc)

The assembly function returns the long value in registers E:HL.

Preserving Registers
The eZ80Acclaim! C-Compiler implements a caller save scheme. The assembly function
is not expected to save and restore the registers it uses (unless it makes calls to C func-
tions; in that case, it must save the registers it is using by pushing them on the stack before
the call).

CALLING C FUNCTIONS FROM ASSEMBLY
The C functions that are provided with the compiler library can also be used to add func-
tionality to an assembly program. You can also create your own C function and call them
from an assembly program.

NOTE: The C-Compiler precedes the function names with an underscore in the generated
assembly. See “Function Naming Convention” on page 152.

The following example shows an assembly source file referencing the sin function:

• “Assembly File” on page 154

• “Referenced C Function Prototype” on page 154
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

154
The sin function is defined in the C math library.

Assembly File
XREF _sin

segment DATA
_angle:

df 0.523599 ; angle in radians
_res: ; result

ds 4

segment CODE
_myfunc:

...
push DE ; save the live data, if any
ld BC,(_angle)
push BC ; push the argument
ld A,(_angle+3)
ld C,A
push BC
call _sin ; call the C function
pop BC ; restore the stack by popping out the arguments
pop BC
ld (_res),HL ; result is in E:HL registers
ld A,E
ld (_res+3),A
pop DE ; restore the live data
...

Referenced C Function Prototype
double sin (double x);

NOTE: As mentioned in “Double Treated as Float” on page 166, the eZ80 Acclaim!
C-Compiler treats doubles as if they were floats.

COMMAND LINE OPTIONS
The compiler, like the other tools in ZDS II, can be run from the command line for pro-
cessing inside a script, and so on. Please see “Compiler Command Line Options” on
page 383 for the list of compiler commands that are available from the command line.

RUN-TIME LIBRARY
The C-Compiler provides a collection of run-time libraries. The largest section of these
libraries consists of an implementation of much of the C Standard Library. A smaller
library of functions specific to ZiLOG or to the eZ80Acclaim! is also provided.
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

155
As mentioned at the beginning of this chapter, the eZ80Acclaim! C-Compiler is a con-
forming freestanding 1989 ANSI C implementation with some exceptions. In accordance
with the definition of a freestanding implementation, the compiler supports the required
standard header files <float.h>, <limits.h>, <stdarg.h>, and <stddef.h>. It also
supports additional standard header files and ZiLOG-specific nonstandard header files.

The standard header files and functions are, with minor exceptions, fully compliant with
the ANSI C Standard. They are described in detail in “C Standard Library” on page 318.
The deviations from the ANSI Standard in these files are summarized in “Library Files
Not Required for Freestanding Implementation” on page 166.

In ZDS II for the eZ80Acclaim!, the nonstandard library of ZiLOG-specific header files
and functions has been structured into ZSL (the ZiLOG Standard Library). Detailed infor-
mation about the contents of that library can be found in the ZSL API Manual. Addition-
ally, most C projects for the eZ80Acclaim! will find it useful to include the nonstandard
header file <eZ80.h>. This header in turn includes a processor-specific header file (such
as eZ80F91.h) using the CPU that has been selected in your project. That file provides
preprocessor definitions for the many special-function registers (SFRs) and memory-
mapped I/O registers of your selected eZ80Acclaim! CPU so that they can be referred to
symbolically in your program.

NOTE: The ZiLOG-specific header file <eZ80.h> as well as the CPU-specific files such
as <eZ80F91.h> are located in the following directory:

<ZDS Installation Directory>\include\zilog

where <ZDS Installation Directory> is the directory in which ZiLOG Developer Studio
was installed. By default, this would be C:\Program
Files\ZiLOG\ZDSII_eZ80Acclaim!_<version>, where <version> might be
4.11.0 or 5.0.0.

There is an important interrelationship between the C Standard Library (described in “C
Standard Library” on page 318) and the ZSL. Some functions of the C Standard Library
make calls into ZSL functions at the point where access to actual eZ80® peripheral hard-
ware is needed. The most common example of this is that the standard function
putchar() makes a call to the ZSL function putch() in order to write a character to the
eZ80’s UART device. Therefore, if you make calls to certain standard functions, you will
find it necessary either to link the ZSL to your project as well or to provide some other
means of getting hardware-related calls resolved. You can do that either by writing your
own versions of putch() and other ZSL functions that are called from the C Standard
Library or by rewriting the C Standard Library functions to call some other function you
have provided. For more information about linking in the C Standard Library and/or ZSL
to your project, see “Use Default Libraries” on page 87.

NOTE: There is no unnecessary code size penalty associated with linking in the C
Standard Library or ZSL. Only those functions that are called in your code are
linked to your application.
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

156
PSEUDOINSTRUCTION MACROS GENERATED BY THE C-COMPILER
A small number of pseudoinstruction macros are implemented in the C-Compiler so that
the compiler can more easily generate efficient assembly code. A pseudoinstruction has
the syntax of a single processor instruction, but it is actually a combination of two or more
processor instructions that work together. These macros are not primarily intended for use
by assembly coders; they are generated by the compiler and so sometimes can be seen in
compiler-generated assembly code. These descriptions are provided so that users can
understand the translation from these macros to actual assembly instructions. The follow-
ing pseudoinstruction macros are implemented in the eZ80® C-Compiler:

• “UEXT HL (Unsigned Extension)” on page 156

• “SEXT HL (Signed Extension)” on page 156

• “LD BC,DE” on page 156

UEXT HL (Unsigned Extension)
This macro clears register HL so that later an 8-bit value can be moved to L, resulting in a
24-bit unsigned extension (into HL) of the 8-bit value. Register A is always used as the
source. The assembler translates this pseudoinstruction into the following sequence of
instructions:
OR A,A
SBC HL,HL

SEXT HL (Signed Extension)
This macro fills register HL with all 0’s or all 1’s depending on the sign bit (that is, bit 7)
of register A. This is done so that later moving the original value of register A into register
L will result in a 24-bit sign extension (into HL) of the 8-bit value in register A. The
assembler translates this pseudoinstruction into the following sequence of instructions:
RLA
SBC HL,HL

LD BC,DE
There is no actual eZ80® instruction to move data between 24-bit general-purpose regis-
ters. The assembler implements these pseudoinstructions with a sequence of push and
pop instructions:
PUSH DE
POP BC
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

157
STARTUP FILES
The startup or C run-time initialization module is an assembly program that performs
required startup functions and then calls main, which is the C entry point. The startup pro-
gram performs the following initializations of the C run-time environment:

• Configure the external and internal memory interfaces.

• Initialize the stack pointer.

• Clear the uninitialized variables to zero.

• Set the initialized variables to their initial value from ROM.

• Copy code from ROM to RAM if specified in the linker command file.

• Allocate space for the errno variable used by the C run-time libraries.

• Allocate space for interrupt vectors and set initial default values for interrupt handlers.

• Initialize peripheral devices used by ZSL if included in the project.

The following table lists the startup files provided with the eZ80Acclaim! C-Compiler. In
this table, <CPU> stands for any of the strings F91, F92, F93, L92, or 190 as appropriate
for the CPU you are using in your project.

Table 3. eZ80Acclaim! Startup Files

Name Description

lib\zilog\cstartup.obj C startup object file for common code

src\boot\common\cstartup.asm C startup source file for common code

lib\zilog\vectors24.obj Object file for 24-bit interrupt vectors

src\boot\common\vectors24.asm Source file for 24-bit interrupt vectors

lib\zilog\vectors16.obj Object file for 16-bit interrupt vectors

src\boot\common\vectors16.asm Source file for 16-bit interrupt vectors

lib\zilog\init_params_<CPU>.obj C startup object file for CPU-specific initializations

src\boot\eZ80<CPU>\init_params_<CPU>.asm C startup source file for CPU-specific initializations

lib\zilog\zsldevinitdummy.obj Object file to provide dummy peripheral initialization
for use with ZSL

src\boot\common\zsldevinitdummy.asm Source code to provide dummy peripheral
initialization for use with ZSL

src\boot\common\zsldevinit.asm Source code to provide peripheral initialization for use
with ZSL

lib\zilog\startup.obj Obsolete C startup object file, provided for backward
compatibility
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

158
NOTE: Some users might want to modify the startup modules provided in the ZDS II
distribution. Incorporating modified startup modules into your project is discussed
in “C Startup Module” on page 86. Linker directive issues related to modifying the
startup module are discussed in “Using Modified ZDS II Startup Modules” on
page 264.

SEGMENT NAMING
The compiler places code and data into separate segments in the object file. The different
segments used by the compiler are listed in the following table.

LINKER COMMAND FILES FOR C PROGRAMS
The following sections describe how the eZ80Acclaim! linker is used to link a C program:

• “Linker Referenced Files” on page 159

• “Linker Symbols” on page 160

• “Sample Linker Command File” on page 161

lib\zilog\startup190.obj Obsolete C startup object file for eZ80190, provided
for backward compatibility

src\boot\common\startup.asm Obsolete C startup source file, provided for backward
compatibility

Table 4. Segments

Segment Description

DATA Initialized global and static data

BSS Un-initialized global and static data

TEXT Constant data

CODE Executable code

STRSECT String literals

.RESET Reset handler code

.IVECTS Interrupt vectors

.STARTUP C run-time initialization

Table 3. eZ80Acclaim! Startup Files

Name Description
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

159
For more detailed description of the linker and the various commands it supports, see
“Using the Linker/Locator” on page 235. A C program consists of compiled and assem-
bled object module files, compiler libraries, user-created libraries, and special object mod-
ule files used for C run-time initializations. These files are linked based on the commands
given in the linker command file.

The default linker command file is automatically generated by the ZDS II IDE whenever a
build command is issued. It has information about the ranges of various address spaces
for the selected device, the assignment of segments to spaces, order of linking, and so on.
The default linker command file can be overridden by the user.

The linker processes the object modules (in the order in which they are specified in the
linker command file), resolves the external references between the modules, and then
locates the segments into the appropriate address spaces as per the linker command file.

Linker Referenced Files
The default linker command file generated by the ZDS II IDE references system object
files and libraries based on the project options selected by the user. A list of the system
object files and libraries is given in the following table. The linker command file automat-
ically selects and links to the appropriate version of the C run-time and (if necessary)
floating-point libraries from the list shown in the following table, based on your project
settings. In this table, <CPU> stands for any of the strings F91, F92, F93, L92, or 190, as
appropriate for the CPU you are using in your project.

Table 5. Linker Referenced Files

File Description

cstartup.obj C startup module object file, common code

init_params_<CPU>.obj Object file for CPU-specific initialization

vectors24.obj 24-bit interrupt vectors object file

vectors16.obj 16-bit interrupt vectors object file

zsldevinitdummy.obj Object file for dummy initialization of peripherals

gpio.lib Library for GPIO devices, no debug information; part of ZSL

gpioD.lib Library for GPIO devices, with debug information; part of ZSL

uart<CPU>.lib CPU-specific library for UART devices, no debug information;
part of ZSL

uart<CPU>D.lib CPU-specific library for UART devices, with debug
information; part of ZSL

uart<CPU>sim.lib CPU-specific library for UART devices to be run on the
simulator, no debug information; part of ZSL
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

160
Linker Symbols
The default linker command file defines some system symbols, which are used by the C
startup file to initialize the stack pointer, clear the uninitialized variables to zero, set the
initialized variables to their initial value, set the heap base, and so on. The following table
shows the list of symbols that might be defined in the linker command file, depending on
the compilation memory model selected by the user. In this table, <CSx> denotes a partic-
ular chip select and can be any of the strings CS1, CS2, CS3, or CS4.

uart<CPU>simD.lib CPU-specific library for UART devices to be run on the
simulator, with debug information; part of ZSL

crt.lib C run-time library, no debug information

crtd.lib C run-time library, with debug information

chelp.lib Library of C-Compiler helper functions, no debug information

chelpD.lib Library of C-Compiler helper functions, with debug information

fplib.lib Real floating-point library, no debug information

fplibd.lib Real floating-point library, with debug information

fpdumy.lib Floating-point do-nothing stubs

crt190.lib C run-time library specialized to eZ80190, no debug
information

crt190d.lib C run-time library specialized to eZ80190, with debug
information

Table 6. Linker Symbols

Symbol Description

__low_data Base of DATA segment after linking

__len_data Length of DATA segment after linking

__low_romdata Base of the ROM copy of DATA segment after linking

__low_bss Base of BSS segment after linking

__len_bss Length of BSS segment after linking

__low_code Base of CODE segment after linking

__len_code Length of CODE segment after linking

__low_romcode Base address of the ROM copy of CODE segment

Table 5. Linker Referenced Files (Continued)

File Description
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

161
Sample Linker Command File
The sample default linker command file for the standard link configuration is discussed
here as a good example of the contents of a linker command file in practice and how the
linker commands it contains work to configure your load file. The default linker command
file is automatically generated by the ZDS II IDE. If the project name is test.zdspro
and your configuration is simply named debug, for example, the default linker command
file name is test_debug.linkcmd. You can add additional directives to the linking pro-
cess by specifying them in the Additional Linker Directives dialog box (see “Additional
Linker Directives Dialog Box” on page 82). Alternatively, you can define your own linker
command file by selecting the Use Existing button (see “Use Existing” on page 83).

__copy_code_to_ram Flag indicating whether code is to be copied to RAM before executing

__stack Top of stack is set as high address of available RAM

__heapbot Base of heap for is set as low address of available RAM

__heaptop Top of heap is set as high address of available RAM

__crtl Flag indicating whether ZiLOG-supplied RTL is used

_<CSx>_LBR_INIT_PARAM Chip select address lower bound initializer

_<CSx>_UBR_INIT_PARAM Chip select address upper bound initializer

_<CSx>_CTL_INIT_PARAM Chip select control initializer

_<CSx>_BMC_INIT_PARAM Chip select bus mode initializer

__RAM_CTL_INIT_PARAM On-chip RAM control initializer

__RAM_ADDR_U_INIT_PARAM On-chip RAM address upper byte initializer

__FLASH_CTL_INIT_PARAM On-chip Flash control initializer

__FLASH_ADDR_U_INIT_PARAM On-chip Flash address upper byte initializer

_SYS_CLK_FREQ System clock frequency as selected in the Configure Target dialog box

_SYS_CLK_SRC System clock source as selected in the Configure Target dialog box

_OSC_FREQ Oscillator clock frequency (system clock)

_OSC_FREQ_MULT On-chip phase-locked loop divider initializer

__PLL_CTL0_INIT_PARAM On-chip phase-locked loop control register 0 initializer

_zsl_g_clock_xdefine System clock frequency (this symbol used by ZSL)

Table 6. Linker Symbols (Continued)

Symbol Description
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

162
The most important of the linker commands and options in the default linker command file
are now discussed individually, in the order in which they are typically found in the linker
command file:
-FORMAT=OMF695, INTEL32
-map -maxhexlen=64 -quiet -warnoverlap -NOxref -unresolved=fatal
-sort NAME=ascending -warn –debug -NOigcase

In this command, the linker output file format is selected to be OMF695, which is based
on the IEEE 695 object file format, and INTEL32, which is the Intel Hex 32 format. This
setting is generated from options selected in Output page (see “Project Settings—Output
Page” on page 92). The –quiet, -debug, and –noigcase options are generated from the
settings on the General page (see “Project Settings—General Page” on page 57). The other
options shown here are all generated from the settings selected in the Warnings and Output
pages (see “Project Settings—Warnings Page” on page 90 and “Project Settings—Output
Page” on page 92).
RANGE ROM $000000 : $03FFFF
RANGE RAM $B80000 : $BFFFFF
RANGE EXTIO $0 : $FFFF
RANGE INTIO $0 : $FF

The ranges for the four address spaces are defined here. These ranges are taken from the
settings in Address Spaces page (see “Project Settings—Address Spaces Page” on
page 89).
CHANGE STRSECT is ROM

The STRSECT segment is moved into the ROM space by the preceding command. Because
the contents of STRSECT are constant strings, this segment should always be placed in
ROM in a production build, though for debugging purposes STRSECT might sometimes be
left in RAM.
ORDER .RESET,.IVECTS,.STARTUP,CODE,DATA

This ORDER command specifies the temporal link order of these segments. The .RESET
segment is placed at lower addresses with the .IVECTS segment immediately following it
and so on.
COPY DATA ROM

This COPY command is a linker directive to make the linker place a copy of the initialized
data segment DATA into the ROM address space. At run time, the C startup module then
copies the initialized data back from the ROM address space to the RAM address spaces.
This is the standard method to ensure that variables get their required initialization from a
nonvolatile stored copy in a typical embedded application where there is no offline mem-
ory such as disk storage from which initialized variables can be loaded.
DEFINE __low_romdata = copy base of DATA
DEFINE __low_data = base of DATA
DEFINE __len_data = length of DATA
DEFINE __low_bss = base of BSS
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

163
DEFINE __len_bss = length of BSS
DEFINE __stack = highaddr of RAM + 1
DEFINE __heaptop = highaddr of RAM
DEFINE __heapbot = top of RAM + 1
DEFINE __low_romcode = copy base of CODE
DEFINE __low_code = base of CODE
DEFINE __len_code = length of CODE
DEFINE __copy_code_to_ram = 0

DEFINE __crtl = 1
DEFINE __CS0_LBR_INIT_PARAM = $00
DEFINE __CS0_UBR_INIT_PARAM = $00
DEFINE __CS0_CTL_INIT_PARAM = $00
DEFINE __CS0_BMC_INIT_PARAM = $02
DEFINE __CS1_LBR_INIT_PARAM = $00
DEFINE __CS1_UBR_INIT_PARAM = $07
DEFINE __CS1_CTL_INIT_PARAM = $28
DEFINE __CS1_BMC_INIT_PARAM = $02
DEFINE __CS2_LBR_INIT_PARAM = $00
DEFINE __CS2_UBR_INIT_PARAM = $00
DEFINE __CS2_CTL_INIT_PARAM = $00
DEFINE __CS2_BMC_INIT_PARAM = $02
DEFINE __CS3_LBR_INIT_PARAM = $00
DEFINE __CS3_UBR_INIT_PARAM = $00
DEFINE __CS3_CTL_INIT_PARAM = $00
DEFINE __CS3_BMC_INIT_PARAM = $02
DEFINE __RAM_CTL_INIT_PARAM = $00
DEFINE __RAM_ADDR_U_INIT_PARAM = $00
DEFINE __FLASH_CTL_INIT_PARAM = $80
DEFINE __FLASH_ADDR_U_INIT_PARAM = $00

define _SYS_CLK_FREQ = 20000000
define _OSC_FREQ = 20000000
define _SYS_CLK_SRC = 0
define _OSC_FREQ_MULT = 1
define __PLL_CTL0_INIT_PARAM = $00
define _zsl_g_clock_xdefine = 50000000

These are the linker symbol definitions described in Table 6. They allow the compiler to
know the bounds of the different memory areas that must be initialized in different ways
by the C startup module and to configure the chip selects and other implementation details
of your project.
"C:\PROGRA~1\ZiLOG\ZDSII_~1.1\samples\EZ80F9~1\src\ledDemo"= \
 C:\PROGRA~1\ZiLOG\ZDSII_~1.1\lib\zilog\vectors24.obj, \
 C:\PROGRA~1\ZiLOG\ZDSII_~1.1\lib\zilog\init_params_f91.obj, \
 C:\PROGRA~1\ZiLOG\ZDSII_~1.1\lib\zilog\cstartup.obj, \
 .\Buttons.obj, \
 .\LedMatrix.obj, \
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

164
 .\LedTimer.obj, \
 .\main.obj, \
 .\zsldevinit.obj, \
 C:\PROGRA~1\ZiLOG\ZDSII_~1.1\lib\std\chelpD.lib, \
 C:\PROGRA~1\ZiLOG\ZDSII_~1.1\lib\std\crtD.lib, \
 C:\PROGRA~1\ZiLOG\ZDSII_~1.1\lib\std\fplibD.obj, \
 C:\PROGRA~1\ZiLOG\ZDSII_~1.1\lib\zilog\gpioD.lib, \
 C:\PROGRA~1\ZiLOG\ZDSII_~1.1\lib\zilog\uartF91simD.lib

This final command shows that, in this example, the linker output file is named
ledDemo.lod. The source object files (Buttons.obj, LedMatrix.obj,
LedTimer.obj, and main.obj) are to be linked with the other modules that are required
to make a complete executable load file. In this case, those other modules are the C startup
module and related initialization modules (cstartup.obj, vectors24.obj,
init_params_f91.obj, and zsldevinit.obj), the C helper library with debug
(chelpld.lib), the C run-time library with debug (crtD.lib), the floating-point
library with debug (fplibD.lib), and the relevant ZSL libraries (gpioD.lib and
uartF91simD.lib).

An important point to understand in using the linker is that if you use the ZiLOG default
version of the C run-time library, the linker will link in only those functions that are actu-
ally called in your program. This is because the ZiLOG default library is organized with
only one function (or in a few cases, a few closely related functions) in each module.
Although the C run-time library contains a very large number of functions from the C
standard library, if your application only calls two of those functions, then only those two
are linked into your application (plus any functions that are called by those two functions
in turn). This means it is safe for you to simply link in a large library, like chelpLD.lib,
crtLD.lib, and fpLD.lib in this example. You do not have to worry about any unnec-
essary code being linked in and do not have to do the extra work of painstakingly finding
the unresolved symbols for yourself and linking only to those specific functions. See the
discussion of “Use Default Libraries” on page 87 for a further discussion of this area.

ANSI STANDARD COMPLIANCE
The ZiLOG eZ80Acclaim! C-Compiler is a freestanding ANSI C compiler complying
with the 1989 ISO standard, which is also known as ANSI Standard X3.159-1989, with
some deviations that are described in “Deviations from ANSI C” on page 165.

Freestanding Implementation
A “freestanding” implementation of the C language is a concept defined in the ANSI stan-
dard itself, to accommodate the needs of embedded applications that cannot be expected to
provide all the services of the typical desktop execution environment (which is called a
hosted environment in the terms of the standard). In particular, it is presumed that there are
no file system and no operating system. The use of the standard term “freestanding imple-
mentation” means that the compiler must contain, at least, a specific subset of the full
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

165
ANSI C features. This subset consists of those basic language features appropriate to
embedded applications. Specifically the list of required header files and associated library
functions is minimal, namely <float.h>, <limits.h>, <stdarg.h>, and
<stddef.h>. A freestanding implementation is allowed to additionally support all or
parts of other standard header files but is not required to. The eZ80Acclaim! C-Compiler,
for example, supports a number of additional headers from the standard library, as speci-
fied in “Library Files Not Required for Freestanding Implementation” on page 166.

A “conforming implementation” (that is, compiler) is allowed to provide extensions, as
long as they do not alter the behavior of any program that uses only the standard features
of the language. The ZiLOG eZ80Acclaim! C-Compiler uses this concept to provide lan-
guage extensions that are useful for developing embedded applications and for making
efficient use of the resources of the eZ80Acclaim! CPU. These extensions are described in
“Language Extensions” on page 135.

Deviations from ANSI C
The differences between the ZiLOG eZ80Acclaim! C-Compiler and the freestanding
implementation of ANSI C Standard consist of both extensions to the ANSI standard and
deviations from the behavior described by the standard. The extensions to the ANSI stan-
dard are explained in “Language Extensions” on page 135.

There are a small number of areas in which the eZ80Acclaim! C-Compiler does not
behave as specified by the Standard. These areas are described in the following sections:

• “Prototype of Main” on page 165

• “Double Treated as Float” on page 166

• “Library Files Not Required for Freestanding Implementation” on page 166

Prototype of Main
As per ANSI C, in a freestanding environment, the name and type of the function called at
program startup are implementation defined. Also, the effect of program termination is
implementation defined.

For compatibility with hosted applications, the eZ80Acclaim! C-Compiler uses main()
as the function called at program startup. Because the eZ80Acclaim! compiler provides a
freestanding execution environment, there are a few differences in the syntax for main().
The most important of these is that, in a typical small embedded application, main()
never executes a return as there is no operating system for a value to be returned to and is
also not intended to terminate. If main() does terminate, and the standard ZiLOG
eZ80Acclaim! C startup module is in use, control simply goes to the following statement:
jmp $

which is equivalent to
label1:

goto label1;
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

166
For this reason, in the eZ80Acclaim! C-Compiler, main() needs to be of type void; any
returned value is ignored. Also, main() is not passed any arguments. In short, the follow-
ing is the prototype for main():
void main (void);

Unlike the hosted environment in which the closest allowed form for main is as follows:
int main (void);

Double Treated as Float
The eZ80Acclaim! C-Compiler does not support a double-precision floating-point type.
The type double is accepted, but is treated as if it were float.

Library Files Not Required for Freestanding Implementation
As noted in “Freestanding Implementation” on page 164, only four of the standard library
header files are required by the standard to be supported in a freestanding compiler such as
the eZ80Acclaim! C-Compiler. However, the compiler does support many of the other
standard library headers as well. The supported headers are listed here. The support
offered in the ZiLOG libraries is fully compliant with the Standard except as noted here:

• <assert.h>

• <ctype.h>

• <errno.h>

• <math.h>

The ZiLOG implementation of this library is not fully ANSI compliant in the general
limitations of the handling of floating-point numbers: namely, ZiLOG does not fully
support floating-point NANs, INFINITYs, and related special values. These special
values are part of the full ANSI/IEEE 754-1985 floating-point standard that is
referenced in the ANSI C Standard.

• <stddef.h>

• <stdio.h>

ZiLOG supports only the portions of stdio.h that make sense in the embedded
environment. Specifically, ZiLOG defines the ANSI required functions that do not
depend on a file system. For example, printf and sprintf are supplied but not fprintf.

• <stdlib.h>

This header is ANSI compliant in the ZiLOG library except that the following
functions of limited or no use in an embedded environment are not supplied:
strtoul()

_Exit()

atexit()
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

167
LOCATING VARIABLES AT SPECIFIC ADDRESSES: OLDER METHOD
Beginning with release 4.11.0 of ZDS II, the eZ80 Acclaim! C-Compiler now provides an
easy and natural extension to the C language for placing variables at specific locations, as
described in “Placement Directives” on page 142. This is the recommended way to per-
form this task in newly written code. However, for compatibility with code developed
using older versions of the eZ80 Acclaim! C-Compiler, this section describes a technique
that can be used in those versions to accomplish the same thing more laboriously. This
technique uses the macro-processing capabilities of ANSI C to control variable placement.

To access a specific location in memory using this older technique, you can declare a
macro that expands into a pointer reference to the appropriate memory locations as shown
in the following example:
#define b_x *((char *)0x20)
#define b_y *((int *)0x120)
#define b_array ((unsigned char *)0x30)
char c;
int i;
void main(void)
{

b_x = 10;
c = b_x;

b_y = 0x1234;
i = b_y;
c = b_array[c];
}

The various Special Function Registers can be defined and accessed in a similar manner,
although this can now be done more easily using the placement directives described in
“Placement Directives” on page 142.

NOTE: When using this method, check the address ranges on the Project Settings dialog
box (“Project Settings—Address Spaces Page” on page 89) so that your program
does not inadvertently access data in areas already allocated.

Another method of allocating and accessing variables at a specified location requires a lit-
tle assembly programming. The idea is to allocate segments in an assembly module that is
located using the ORG directive. Labels are placed at the appropriate location and are
made public using the XDEF directive. When this module is linked with the rest of your
program, the variable is located at the proper position in memory.

Assembly File
xdef _my_data
define_my_seg,space=ram,org=80h
segment my_seg

_my_data:
ds 20; 20 bytes at 80h
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

168
end

C File
extern unsigned char my_data[20];
void foo(void)
{

unsigned char i;
for (i=0;i<sizeof(my_data);++i)

my_data[i] = 0xff;
}

NOTE: The C file refers to the variable as my_data while the assembly uses _my_data.
These names are different because the compiler prefixes all global variable names
with an underscore (_). Failing to perform these modifications results in undefined
symbol errors from the linker.

WARNING AND ERROR MESSAGES
NOTE: If you see an internal error message, please report it to Technical Support at

http://support.zilog.com. ZiLOG staff will use the information to diagnose
or log the problem.

This section covers the following:

• “Preprocessor Warning and Error Messages” on page 168;

• “Front-End Warning and Error Messages” on page 171

• “Optimizer Warning and Error Messages” on page 179

• “Code Generator Warning and Error Messages” on page 181

Preprocessor Warning and Error Messages
000 Illegal constant expression in directive.

A constant expression made up of constants and macros that evaluate to constants can
be the only operands of an expression used in a preprocessor directive.

001 Concatenation at end-of-file. Ignored.

An attempt was made to concatenate lines with a backslash when the line is the last
line of the file.

002 Illegal token.

An unrecognizable token or non-ASCII character was encountered.
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

169
003 Illegal redefinition of macro <name>.

An attempt was made to redefine a macro, and the tokens in the macro definition do
not match those of the previous definition.

004 Incorrect number of arguments for macro <name>.

An attempt was made to call a macro, but too few or too many arguments were given.

005 Unbalanced parentheses in macro call.

An attempt was made to call a macro with a parenthesis embedded in the argument list
that did not match up.

006 Cannot redefine <name> keyword.

An attempt was made to redefine a keyword as a macro.

007 Illegal directive.

The syntax of a preprocessor directive is incorrect.

008 Illegal "#if" directive syntax.

The syntax of a #if preprocessor directive is incorrect.

009 Bad preprocessor file. Aborted.

An unrecognizable source file was given to the compiler.

010 Illegal macro call syntax.

An attempt was made to call a macro that does not conform to the syntax rules of the
language.

011 Integer constant too large.

An integer constant that has a binary value too large to be stored in 32 bits was
encountered.

012 Identifier <name> is undefined

The syntax of the identifier is incorrect.

013 Illegal #include argument.

The argument to a #include directive must be of the form "pathname" or <filename>.

014 Macro "<name>" requires arguments.

An attempt was made to call a macro defined to have arguments and was given none.

015 Illegal "#define" directive syntax.

The syntax of the #define directive is incorrect.

016 Unterminated comment in preprocessor directive.

Within a comment, an end of line was encountered.
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

170
017 Unterminated quoted string.

Within a quoted string, an end of line was encountered.

018 Escape sequence ASCII code too large to fit in char.

The binary value of an escape sequence requires more than 8 bits of storage.

019 Character not within radix.

An integer constant was encountered with a character greater than the radix of the
constant.

020 More than four characters in string constant.

A string constant was encountered having more than four ASCII characters.

021 End of file encountered before end of macro call.

The end of file is reached before right parenthesis of macro call.

022 Macro expansion caused line to be too long.

The line needs to be shortened.

023 "##" cannot be first or last token in replacement string.

The macro definition cannot have “##” operator in the beginning or end.

024 "#" must be followed by an argument name.

In a macro definition, “#” operator must be followed by an argument.

025 Illegal "#line" directive syntax.

In #line <linenum> directive, <linenum> must be an integer after macro expansion.

026 Cannot undefine macro "name".

The syntax of the macro is incorrect.

027 End-of-file found before "#endif" directive.

#if directive was not terminated with a corresponding #endif directive.

028 "#else" not within #if and #endif directives.

#else directive was encountered before a corresponding #if directive.

029 Illegal constant expression.

The constant expression in preprocessing directive has invalid type or syntax.

030 Illegal macro name <name>.

The macro name does not have a valid identifier syntax.

031 Extra "#endif" found.

#endif directive without a corresponding #if directive was found.
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

171
032 Division by zero encountered.

Divide by zero in constant expression found.

033 Floating point constant over/underflow.

In the process of evaluating a floating-point expression, the value became too large to
be stored.

034 Concatenated string too long.

Shorten the concatenated string.

035 Identifier longer than 32 characters.

Identifiers must be 32 characters or shorter.

036 Unsupported CPU "name" in pragma.

An unknown CPU encountered.

037 Unsupported or poorly formed pragma.

An unknown #pragma directive encountered.

038 (User-supplied text)

A user-created #error directive has been encountered. The user-supplied text from
the directive is printed with the error message.

Front-End Warning and Error Messages
100 Syntax error.

A syntactically incorrect statement, declaration, or expression was encountered.

101 Function "<name>" already declared.

An attempt was made to define two functions with the same name.

102 Constant integer expression expected.

A non-integral expression was encountered where only an integral expression can be.

103 Constant expression overflow.

In the process of evaluating a constant expression, value became too large to be stored
in 32 bits.

104 Function return type mismatch for "<name>".

A function prototype or function declaration was encountered that has a different
result from a previous declaration.
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

172
105 Argument type mismatch for argument <name>.

The type of an actual parameter does not match the type of the formal parameter of the
function called.

106 Cannot take address of un-subscripted array.

An attempt was made to take the address of an array with no index. The address of the
array is already implicitly calculated.

107 Function call argument cannot be void type.

An attempt was made to pass an argument to a function that has type void.

108 Identifier "<name>" is not a variable or enumeration constant name.

In a declaration, a reference to an identifier was made that was not a variable name or
an enumeration constant name.

109 Cannot return a value from a function returning "void".

An attempt was made to use a function defined as returning void in an expression.

110 Expression must be arithmetic, structure, union or pointer type.

The type of an operand to a conditional expression was not arithmetic, structure, union
or pointer type.

111 Integer constant too large

Reduce the size of the integer constant.

112 Expression not compatible with function return type.

An attempt was made to return a value from function that cannot be promoted to the
type defined by the function declaration.

113 Function cannot return value of type array or function.

An attempt was made to return a value of type array or function.

114 Structure or union member may not be of function type.

An attempt was made to define a member of structure or union that has type function.

115 Cannot declare a typedef within a structure or union.

An attempt was made to declare a typedef within a structure or union.

116 Illegal bit field declaration.

An attempt was made to declare a structure or union member that is a bit field and is
syntactically incorrect.

117 Unterminated quoted string

Within a quoted string, an end of line was encountered.
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

173
118 Escape sequence ASCII code too large to fit in char

The binary value of an escape sequence requires more than 8 bits of storage.

119 Character not within radix

An integer constant was encountered with a character greater than the radix of the
constant.

120 More than one character in string constant

A string constant was encountered having more than one ASCII character.

121 Illegal declaration specifier.

An attempt was made to declare an object with an illegal declaration specifier.

122 Only type qualifiers may be specified with a struct, union, enum, or typedef.

An attempt was made to declare a struct, union, enum, or typedef with a declaration
specifier other than const and volatile.

123 Cannot specify both long and short in declaration specifier.

An attempt was made to specify both long and short in the declaration of an object.

124 Only "const" and "volatile" may be specified within pointer declarations.

An attempt was made to declare a pointer with a declaration specifier other than const
and volatile.

125 Identifier "<name>" already declared within current scope.

An attempt was made to declare two objects of the same name in the same scope.

126 Identifier "<name>" not in function argument list, ignored.

An attempt was made to declare an argument that is not in the list of arguments when
using the old style argument declaration syntax.

127 Name of formal parameter not given.

The type of a formal parameter was given in the new style of argument declarations
without giving an identifier name.

128 Identifier "<name>" not defined within current scope.

An identifier was encountered that is not defined within the current scope.

129 Cannot have more than one default per switch statement.

More than one default statements were found in a single switch statement.

130 Label "<name>" is already declared.

An attempt was made to define two labels of the same name in the same scope.
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

174
131 Label "<name> not declared.

A goto statement was encountered with an undefined label.

132 "continue" statement not within loop body.

A continue statement was found outside a body of any loop.

133 "break" statement not within switch body or loop body.

A break statement was found outside the body of any loop.

134 "case" statement must be within switch body.

A case statement was found outside the body of any switch statement.

135 "default" statement must be within switch body.

A default statement was found outside the body of any switch statement.

136 Case value <name> already declared.

An attempt was made to declare two cases with the same value.

137 Expression is not a pointer.

An attempt was made to dereference value of an expression whose type is not a
pointer.

138 Expression is not a function locator.

An attempt was made to use an expression as the address of a function call that does
not have a type pointer to function.

139 Expression to left of "." or "->" is not a structure or union.

An attempt was made to use an expression as a structure or union, or a pointer to a
structure or union, whose type was neither a structure or union, or a pointer to a
structure or union.

140 Identifier "<name>" is not a member of <name> structure.

An attempt was made to reference a member of a structure that does not belong to the
structure.

141 Object cannot be subscripted.

An attempt was made to use an expression as the address of an array or a pointer that
was not an array or pointer.

142 Array subscript must be of integral type.

An attempt was made to subscript an array with a non integral expression.

143 Cannot dereference a pointer to "void".

An attempt was made to dereference a pointer to void.
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

175
144 Cannot compare a pointer to a non-pointer.

An attempt was made to compare a pointer to a non-pointer.

145 Pointers to different types may not be compared.

An attempt was made to compare pointers to different types.

146 Pointers may not be added.

It is not legal to add two pointers.

147 A pointer and a non-integral may not be subtracted.

It is not legal to subtract a non-integral expression from a pointer.

148 Pointers to different types may not be subtracted.

It is not legal to subtract two pointers of different types.

149 Unexpected end of file encountered.

In the process of parsing the input file, end of file was reached during the evaluation of
an expression, statement, or declaration.

150 Unrecoverable parse error detected.

The compiler became confused beyond the point of recovery.

151 Operand must be a modifiable lvalue.

An attempt was made to assign a value to an expression that was not modifiable.

152 Operands are not assignment compatible.

An attempt was made to assign a value whose type cannot be promoted to the type of
the destination.

153 "<name>" must be arithmetic type.

An expression was encountered whose type was not arithmetic where only arithmetic
types are allowed.

154 "<name>" must be integral type.

An expression was encountered whose type was not integral where only integral types
are allowed.

155 "<name>" must be arithmetic or pointer type.

An expression was encountered whose type was not pointer or arithmetic where only
pointer and arithmetic types are allowed.

156 Expression must be an lvalue.

An expression was encountered that is not an lvalue where only an lvalue is allowed.
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

176
157 Cannot assign to an object of constant type.

An attempt was made to assign a value to an object defined as having constant type.

158 Cannot subtract a pointer from an arithmetic expression.

An attempt was made to subtract a pointer from an arithmetic expression.

159 An array is not a legal lvalue.

Cannot assign an array to an array.

160 Cannot take address of a bit field.

An attempt was made to take the address of a bit field.

161 Cannot take address of variable with "register" class.

An attempt was made to take the address of a variable with "register" class.

162 Conditional expression operands are not compatible.

One operand of a conditional expression cannot be promoted to the type of the other
operand.

163 Casting a non-pointer to a pointer.

An attempt was made to promote a non-pointer to a pointer.

164 Type name of cast must be scalar type.

An attempt was made to cast an expression to a non-scalar type.

165 Operand to cast must be scalar type.

An attempt was made to cast an expression whose type was not scalar.

166 Expression is not a structure or union.

An expression was encountered whose type was not structure or union where only a
structure or union is allowed.

167 Expression is not a pointer to a structure or union.

An attempt was made to dereference a pointer with the arrow operator, and the
expression’s type was not pointer to a structure or union.

168 Cannot take size of void, function, or bit field types.

An attempt was made to take the size of an expression whose type is void, function, or
bit field.

169 Actual parameter has no corresponding formal parameter.

An attempt was made to call a function whose formal parameter list has fewer
elements than the number of arguments in the call.
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

177
170 Formal parameter has no corresponding actual parameter.

An attempt was made to call a function whose formal parameter list has more
elements than the number of arguments in the call.

171 Argument type is not compatible with formal parameter.

An attempt was made to call a function with an argument whose type is not
compatible with the type of the corresponding formal parameter.

172 Identifier "<name>" is not a structure or union tag.

An attempt was made to use the dot operator on an expression whose type was not
structure or union.

173 Identifier "<name>" is not a structure tag.

The tag of a declaration of a structure object does not have type structure.

174 Identifier "<name>" is not a union tag.

The tag of a declaration of a union object does not have type union.

175 Structure or union tag "<name>" is not defined.

The tag of a declaration of a structure or union object is not defined.

176 Only one storage class may be given in a declaration.

An attempt was made to give more than one storage class in a declaration.

177 Type specifier cannot have both "unsigned" and "signed".

An attempt was made to give both unsigned and signed type specifiers in a
declaration.

178 "unsigned" and "signed" may be used in conjunction only with "int", "long" or "char".

An attempt was made to use signed or unsigned in conjunction with a type specifier
other than int, long, or char.

179 "long" may be used in conjunction only with "int" or "double".

An attempt was made to use long in conjunction with a type specifier other than int or
double.

180 Illegal bit field length.

The length of a bit field was outside of the range 0-32.

181 Too many initializers for object.

An attempt was made to initialize an object with more elements than the object
contains.
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

178
182 Static objects can be initialized with constant expressions only.

An attempt was made to initialize a static object with a non-constant expression.

183 Array "<name>" has too many initializers.

An attempt was made to initialize an array with more elements than the array contains.

184 Structure "<name>" has too many initializers.

An attempt was made to initialize a structure with more elements than the structure
has members.

185 Dimension size may not be omitted.

An attempt was made to omit the dimension of an array which is not the rightmost
dimension.

186 First dimension of "<name>" may not be omitted.

An attempt was made to omit the first dimension of an array which is not external and
is not initialized.

187 Dimension size must be greater than zero.

An attempt was made to declare an array with a dimension size of zero.

188 Only "register" storage class is allowed for formal parameter.

An attempt was made to declare a formal parameter with storage class other than
register.

189 Cannot take size of array with missing dimension size.

An attempt was made to take the size of an array with an omitted dimension.

190 Identifier "<name>" already declared with different type or linkage.

An attempt was made to declare a tentative declaration with a different type than a
declaration of the same name; or, an attempt was made to declare an object with a
different type from a previous tentative declaration.

191 Cannot perform pointer arithmetic on pointer to void.

An attempt was made to perform pointer arithmetic on pointer to void.

192 Cannot initialize object with "extern" storage class.

An attempt was made to initialize variable with extern storage class.

193 Missing "<name>" detected.

An attempt was made to use a variable without any previous definition or declaration.

194 Recursive structure declaration.

A structure member can not be of same type as the structure itself.
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

179
195 Initializer is not assignment compatible.

The initializer type does not match with the variable being initialized.

196 Empty parameter list is an obsolescent feature.

Empty parameter lists are not allowed.

197 No function prototype "<name>" in scope.

The function <name> is called without any previous definition or declaration.

198 "old style" formal parameter declarations are obsolescent.

Change the parameter declarations.

199 Data objects cannot have "io" storage class.

Change the storage class.

202 Unrecognized/invalid type specifier

A type specifier was expected, and something different (like a label or symbol) was
read. Or, a valid type specifier was read but cannot be used in this context.

205 Ignoring const or volatile qualifier

An attempt was made to assign a pointer to a type with const qualifier to a pointer to a
type with no const qualifier.

or

An attempt was made to assign a pointer to a type with volatile qualifier to a pointer to
a type with no volatile qualifier.

206 Cannot initialize typedef

An attempt was made to initialize a typedef.

207 Aggregate or union objects may be initialized with constant expressions only

An attempt was made to initialize an array or struct with nonconstant expression.

Optimizer Warning and Error Messages
250 Missing format parameter to (s)printf

This message is generated when a call to printf or sprintf is missing the format
parameter and the inline generation of printf calls is requested. For example, a call
of the form
printf();
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

180
251 Can't preprocess format to (s)printf

This message is generated when the format parameter to printf or sprintf is not a
string literal and the inline generation of printf calls is requested. For example, the
following code causes this warning:
static char msg1 = "x = %4d";
char buff[sizeof(msg1)+4];
sprintf(buff,msg1,x); // WARNING HERE

This warning is generated because the line of code is processed by the real printf or
sprintf function, so that the primary goal of the inline processing, reducing the code
size by removing these functions, is not met.

When this message is displayed, you have three options:
– Deselect the Generate Printfs Inline check box (see “Project Settings—Code

Generation Page” on page 61) so that all calls to printf and sprintf are
handled by the real printf or sprintf functions.

– Recode to pass a string literal. For example, the code in the example can be
revised as follows:
define MSG1 "x = %4d"

char buff[sizeof(MSG1)+4];

sprintf(buff,MSG1,x); // OK

– Keep the Generate Printfs Inline check box selected and ignore the warning. This
loses the primary goal of the option but results in the faster execution of the calls
to printf or sprintf that can be processed at compile time, a secondary goal of
the option.

252 Bad format string passed to (s)printf

This warning occurs when the compiler is unable to parse the string literal format and
the inline generation of printf calls is requested. A normal call to printf or
sprintf is generated (which might also be unable to parse the format).

253 Too few parameters for (s)printf format

This error is generated when there are fewer parameters to a call to printf or
sprintf than the format string calls for and the inline generation of printf calls is
requested. For example:
printf("x = %4d\n");

254 Too many parameters for (s)printf format

This warning is generated when there are more parameters to a call to printf or
sprintf than the format string calls for and the inline generation of printf calls is
requested. For example:
printf("x = %4d\n", x, y);

The format string is parsed, and the extra arguments are ignored.
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

181
 255 Missing declaration of (s)printf helper function, variable, or field

This warning is generated when the compiler has not seen the prototypes for the
printf or sprintf helper functions it generates calls to. This occurs if the standard
include file stdio.h has not been included or if stdio.h from a different release of
ZDS II has been included.

256 Can't preprocess calls to vprintf or vsprintf

This message is generated when the code contains calls to vprintf or vsprintf and
the inline generation of printf calls is requested. The reason for this warning and the
solutions are similar to the ones for message 201: Can’t preprocess format to (s)printf.

Code Generator Warning and Error Messages
303 Case value <number> already defined.

If a case value consists of an expression containing a sizeof, its value is not known
until code generation time. Thus, it is possible to have two cases with the same value
not caught by the front end. Review the switch statement closely.

308 Excessive Registers required at line <num> of function <func>.

Excessive Page 0 registers are required at line number <num>. The compiler does not
perform register page spilling, so complex expressions that generate this error must be
factored into two or more expressions.

309 Interrupt function <name> cannot have arguments.

A function declared as an interrupt function cannot have function arguments.

313 Bitfield Length exceeds <num> bits.

The compiler only accepts bit-field lengths of 8 bits or less for char bit-fields, 16 bits
or less for short bit-fields, and 32 bits or less for int and long bit-fields.
UM014423-0607 Using the ANSI C-Compiler

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

182
Using the Macro Assembler
You use the Macro Assembler to translate eZ80Acclaim! assembly language files with the
.asm extension into relocatable object modules with the .obj extension. After your relo-
catable object modules are complete, you convert them into an executable program using
the linker/locator. The Macro Assembler can be configured using the Assembler page of
the Project Settings dialog box (see “Project Settings—Assembler Page” on page 59).

NOTE: The Command Processor allows you to use commands or script files to automate
the execution of a significant portion of the IDE’s functionality. For more
information about using the Command Processor, see “Using the Command
Processor” on page 387.

The following topics are covered in this chapter:

• “Address Spaces and Segments” on page 182

• “Output Files” on page 186

• “Source Language Structure” on page 187

• “Expressions” on page 192

• “Directives” on page 196

• “Conditional Assembly” on page 216

• “Macros” on page 219

• “Labels” on page 222

• “Addressing Modes” on page 224

• “Source Language Syntax” on page 225

• “Compatibility Issues” on page 229

• “Troubleshooting the Assembler” on page 229

• “Warning and Error Messages” on page 230

NOTE: For more information about eZ80Acclaim! CPU instructions, see the “CPU
Instruction Set” section in the eZ80® CPU User Manual (UM0077).

ADDRESS SPACES AND SEGMENTS
The eZ80® architecture divides the entire memory space into various memory regions.
These memory regions are called address spaces in the assembler. Each address space can
have various segments associated with it. A segment is a contiguous set of memory loca-
tions within an address space. The segments can be predefined by the assembler or user
defined.
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

183
Address spaces and segments are described in the following sections:

• “Allocating Processor Memory” on page 183

• “Address Spaces” on page 183

• “Segments” on page 184

• “Assigning Memory at Link Time” on page 186

Allocating Processor Memory
All memory locations, whether data or code, must be defined within a segment. There are
two types of segments:

• Absolute segments

An absolute segment is any segment with a fixed origin. The origin of a segment is
defined with the ORG directive. All data and code in an absolute segment are located
at the specified physical memory address.

• Relocatable segments

A relocatable segment is a segment without a specified origin. At link time, linker
commands are used to specify where relocatable segments are to be located within
their space. Relocatable segments can be assigned to different physical memory
locations without re-assembling.

Address Spaces
The memory regions for the eZ80Acclaim! microprocessor are represented by the address
spaces listed in the following table.

Table 7. eZ80Acclaim! Address Spaces

Space ID
Display
Prefix Description

Lowest and
Highest
Addresses Size

Maximum That
Can Be Retrieved
at One Time

ROM C Standard memory address space.
The ROM memory address space
can contain both program code
and data. If no address space is
associated with a segment, this is
the default space.

00000000-
00FFFFFF

16 MB 3 bytes
(24 bits)

RAM D Random access memory address
space. The RAM memory address
space can contain variable data
and stack.

00000000-
00FFFFFF

16 MB 3 bytes
(24 bits)
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

184
NOTE: The lowest and highest addresses are the lowest and highest possible addresses; the
C-Compiler uses the values in the preceding table as a default. However, the
hardware might not physically have all of the possible addresses, so you can use
ZDS II to set a different range.

Code and data are allocated to these spaces by using segments attached to the space.

Segments
Segments are used to represent regions of memory. Only one segment is considered active
at any time during the assembly process. A segment must be defined before setting it as
the currently active segment. Every segment is associated with one and only one address
space.

Segments are described in the following sections:

• “Predefined Segments” on page 184

• “User-Defined Segments” on page 185

Predefined Segments
For convenience, the segments listed in the following table are predefined by the assem-
bler. Each segment gets assigned to one of the address spaces in Table 7. If no address
space is associated with a segment, ROM is the default space. All of the predefined seg-
ments listed here can be aligned on any byte boundary.

INTIO I On-chip I/O address space. 00000000–
000000FF

256 bytes 1 byte
(8 bits)

EXTIO E External I/O address space. 00000000–
0000FFFF

64 KB 2 bytes
(16 bits)

Table 8. Predefined Segments

Segment Name Address Space Contents

__VECTORS ROM Constant data

STRSECT RAM Initialized strings

TEXT ROM Constant data

Table 7. eZ80Acclaim! Address Spaces (Continued)

Space ID
Display
Prefix Description

Lowest and
Highest
Addresses Size

Maximum That
Can Be Retrieved
at One Time
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

185
User-Defined Segments
You can define a new segment using the following directives:
DEFINE MYSEG,SPACE=ROM
SEGMENT MYSEG

MYSEG becomes the current segment when the assembler processes the SEGMENT direc-
tive, and MYSEG remains the current segment until a new SEGMENT directive appears.
MYSEG can be used as a segment name in the linker command file.

You can define a new segment in RAM using the following directives:
DEFINE MYDATA,SPACE=RAM
SEGMENT MYDATA

The DEFINE directive creates a new segment and attaches it to a space. For more informa-
tion about using the DEFINE directive, see “DEFINE” on page 203. The SEGMENT direc-
tive attaches code and data to a segment. The SEGMENT directive makes the segment
named in the directive the currently active segment. Any code or data following the SEG-
MENT directive resides in the segment until another SEGMENT directive is encountered. For
more information about the SEGMENT directive, see “SEGMENT” on page 208.

A segment can also be defined with a boundary alignment and/or origin:

• Alignment

Aligning a segment tells the linker to place all instances of the segment in your
program on the specified boundary.

NOTE: Although a module can enter and leave a particular segment many times, the
module still has only one instance of that segment.

• Origin

When a segment is defined with an origin, the segment becomes an absolute segment,
and the linker places it at the specified physical address in memory.

BSS RAM Uninitialized data

DATA RAM Initialized data

CODE ROM Code

Table 8. Predefined Segments (Continued)

Segment Name Address Space Contents
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

186
Assigning Memory at Link Time
At link time, the linker groups those segments of code and data that have the same name
and places the resulting segment in the address space to which it is attached. However, the
linker handles relocatable segments and absolute segments differently:

• Relocatable segments

If a segment is relocatable, the linker decides where in the address space to place the
segment.

• Absolute segments

If a segment is absolute, the linker places the segment at the absolute address specified
as its origin.

NOTE: At link time, you can redefine segments with the appropriate linker commands. For
more information about link commands, see “Linker Commands” on page 247.

OUTPUT FILES
The assembler creates the following files and names them the name of the source file but
with a different extension:

• <source>.lst contains a readable version of the source and object code generated by
the assembler (see “Source Listing (.lst) Format” on page 186). The assembler creates
<source>.lst unless you deselect the Generate Listing File (.lst) check box in the
Assembler page of the Project Settings dialog box (see “Generate Assembly Listing
Files (.lst)” on page 60).

• <source>.obj is an object file in relocatable OMF695 format. The assembler creates
<source>.obj. See “Object Code (.obj) File” on page 187.

Source Listing (.lst) Format
The listing file name is the same as the source file name with a .lst file extension.
Assembly directives allow you to tailor the content and amount of output from the assem-
bler.

Each page of the listing file (.lst) contains the following:

• Heading with the assembler version number

• Source input file name

Do not use source input files with .lst or .obj extensions.
The assembler does not assemble files with these extensions,
and therefore the data contained in the files is lost.
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

187
• Date and time of assembly

Source lines in the listing file are preceded by the following:

• Include level

• Plus sign (+) if the source line contains a macro

• Line number

• Location of the object code created

• Object code

The include level starts at level A and works its way down the alphabet to indicate nested
includes. The format and content of the listing file can be controlled with directives
included in the source file:

• NEWPAGE

• TITLE

• NOLIST

• LIST

• MACLIST ON/OFF

• CONDLIST ON/OFF

NOTE: Error and warning messages follow the source line containing the error(s). A count
of the errors and warnings detected is included at the end of the listing output file.

The addresses in the assembly listing are relative. To convert the relative addresses into
absolute addresses, select the Show Absolute Addresses in Assembly Listings check box
on the Output page (see “Show Absolute Addresses in Assembly Listings” on page 94).
This option uses the information in the .src file (generated by the compiler when the
-keepasm option is used or when the Generate Assembly Source check box is selected
[see “Generate Assembly Source Code” on page 64]) and the .map file to change all of the
relative addresses in the assembly listing into absolute addresses.

Object Code (.obj) File
The object code output file name is the same as the source file name with an .obj exten-
sion. This file contains the relocatable object code in OMF695 format and is ready to be
processed by the linker and librarian.

SOURCE LANGUAGE STRUCTURE
The following sections describe the form of an assembly source file:

• “General Structure” on page 188
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

188
• “Assembler Rules” on page 189

General Structure
Every nonblank line in an assembly source file is either a source line or a comment line.
The assembler ignores blank lines. Each line of input consists of ASCII characters termi-
nated by a carriage return. An input line cannot exceed 512 characters.

A backslash (\) at the end of a line is a line continuation. The following line is concate-
nated onto the end of the line with the backslash, as exemplified in the C programming
language. If you place a space or any other character after the backslash, the following line
is not treated as a continuation.

The following sections describe the general structure:

• “Source Line” on page 188

• “Comment Line” on page 188

• “Label Field” on page 188

• “Instruction” on page 189

• “Directive” on page 189

• “Case Sensitivity” on page 189

Source Line
A source line is composed of an optional label followed by an instruction or a directive. It
is possible for a source line to contain only a label field.

Comment Line
A semicolon (;) terminates the scanning action of the assembler. Any text following the
semicolon is treated as a comment. A semicolon that appears as the first character causes
the entire line to be treated as comment.

Label Field
A label must meet at least one of the following conditions:

• It must be followed by a colon.

• It must start at the beginning of the line with no preceding white space (start in column
1).

NOTE:

• Any instruction mnemonic (with no following operands) followed by a colon is
treated as a label.
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

189
• Any instruction mnemonic not followed by a colon is treated as an instruction, even if
it starts in the first column.

The first character of a label can be a letter, an underscore _ , a dollar sign ($), a question
mark (?), a period (.), or pound sign (#). Following characters can include letters, digits,
underscores, dollar signs ($), question marks (?), periods (.), or pound signs (#). The label
can be followed by a colon (:) that completes the label definition. A label can only be
defined once. The maximum label length is 129 characters.

Labels that can be interpreted as hexadecimal numbers are not allowed. For example,
ADH:
ABEFH:

cannot be used as labels.

See “Labels” on page 222 and “Hexadecimal Numbers” on page 194 for more informa-
tion.

Instruction
An instruction contains one valid assembler instruction that consists of a mnemonic and its
arguments. When an instruction is in the first column, it is treated as an instruction and not
a label. Use commas to separate the operands. Use a semicolon or carriage return to termi-
nate the instruction. For more information about eZ80® CPU instructions, see the “CPU
Instruction Set” section in the eZ80 CPU User Manual (UM0077).

Directive
A directive tells the assembler to perform a specified task. Use a semicolon or carriage
return to terminate the directive. Use spaces or tabs to separate the directive from its oper-
ands. See “Directives” on page 196 for more information.

Case Sensitivity
In the default mode, the assembler treats all symbols as case sensitive. Select the Ignore
Case of Symbols check box on the General page in the Project Settings dialog box to have
the assembler ignore the case of user-defined identifiers (see “Ignore Case of Symbols” on
page 58. Assembler reserved words are not case sensitive.

Assembler Rules
The following sections describe assembler rules:

• “Reserved Words” on page 190

• “Assembler Numeric Representation” on page 191

• “Character Strings” on page 192
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

190
Reserved Words
The following list contains reserved words the assembler uses. You cannot use these
words as symbol names or variable names. Also, reserved words are not case sensitive.

.align .ascii .asciz .ASECT .ASG

.assume .bes .block .bss .byte

.copy .data .def .ELIF .ELSE

.ELSEIF .emsg .ENDIF .ENDM .ENDMAC

.ENDMACRO .ENDSTRUCT .EQU .ER .even

.extern .FCALL .file .FRAME .global

.IF .include .int .LIST .long

.MACEND .MACRO .MLIST .mmsg .MNOLIST

.NEWBLOCK .ORG .PAGE .public .R

.ref .RR .SBLOCK .sect .SET

.space .STRING .STRUCT .TAG .text

.USECT .VAR .wmsg .word .WRG

_ER _R _RR _WRG ADC

ALIGN ASCII ASCIZ ASECT ASSUME

BES BFRACT BLKB BLKL BLKP

BLKW BSS byte C C0

C1 C2 C3 CHIP COMMENT

CONDLIST COPY CPU DATA DB

DBYTE DD DEFB DEFINE DF

DL DMA DOT_IDENT DPTR DS

DW DW24 ELSEIF END ENDC

ENDM ENDMACRO ENDMODULE ENDS ENDSTRUCT

EQ ERROR ESECT EXIT F

FCALL FCB FILE FLAGS FRACT

FRAME GE GLOBAL GLOBALS GREGISTER

GT HIGH I2C IFDIFF IFE

IFFALSE IFNDEF IFNDIFF IFNMA IFNSAME

IFNTRUE IFZ IGNORE INCLUDE LE

LEADZERO LFRACT LIST long LONGREG

LOW LT MACCNTR MACDELIM MACEND

MACEXIT MACFIRST MACLIST MACNOTE MESSAGE

MI MLIST MNOLIST MODULE NC
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

191
NOTE: Additionally, do not use the instruction mnemonics or assembler directives as
symbol or variable names.

Assembler Numeric Representation
Numbers are represented internally as signed 32-bit integers. Floating-point numbers are
32-bit IEEE standard single-precision values. The assembler detects an expression oper-
and that is out of range for the intended field and generates appropriate error messages.

NE NEWBLOCK NEWPAGE NOCONDLIST NOLIST

NOMACLIST NOSPAN NOV NZ OFF

ON ORG ORIGIN OV PAGELENGTH

PAGEWIDTH PL POPSEG PP_ASG PP_CONCAT

PP_DEF PP_ELIF PP_ELSE PP_ENDIF PP_ENDMAC

PP_EQU PP_EVAL PP_EXPRESSION PP_GREG PP_IF

PP_IFDEF PP_IFMA PP_IFNDEF PP_IFNMA PP_LOCAL

PP_MACEXIT PP_MACRO PP_NOSAME PP_NIF PP_SAME

PP_SBLOCK PP_VAR PRINT PT PUSHSEG

PW r0 r10 r11 r12

r13 r14 r15 r2 r3

r4 r5 r6 r7 r8

r9 RESET RP rr0 rr10

rr12 rr14 rr2 rr4 rr6

rr8 SCOPE SEGMENT SET SHORTREG

SPH SPI STRING STRUCT SUBTITLE

T TAG TEXT TIMER0 TIMER1

TIMER2 TIMER3 TITLE TRAP UART0_RX

UART0_TX UART1_RX UART1_TX UBFRACT UFRACT

UGE UGT ULE ULFRACT ULT

UN_IF UNSUPPORTED USER_ERROR USER_EXIT USER_WARNING

VAR VECTOR WARNING WDT word

XDEF XREF Z ZBREAK ZCONTINUE

ZELSE ZELSEIF ZENDIF ZIF ZIGNORE

ZREPEAT ZSECT ZUSECT ZWEND ZWHILE

ZUNTIL
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

192
Character Strings
Character strings consist of printable ASCII characters enclosed by double (") or single
(') quotes. A double quote used within a string delimited by double quotes and a single
quote used within a string delimited by single quotes must be preceded by a back slash (\).
A single quoted string consisting of a single character is treated as a character constant.
The assembler does not insert null character (0's) at the end of a text string automatically
unless a 0 is inserted, and a character string cannot be used as an operand. For example:
DB "STRING" ; a string
DB 'STRING',0 ; C printable string
DB "STRING\"S" ; embedded quote
DB 'a','b','c' ; character constants

EXPRESSIONS
In most cases, where a single integer or float value can be used as an operand, an expres-
sion can also be used. The assembler evaluates expressions in 32-bit signed arithmetic or
64-bit floating-point arithmetic. Logical expressions are bitwise operators.

The assembler detects overflow and division by zero errors in constant expressions. The
following sections describe the syntax of writing an expression:

• “Arithmetic Operators” on page 192

• “Relational Operators” on page 193

• “Boolean Operators” on page 193

• “HIGH and LOW Operators” on page 193

• “HIGH16 and LOW16 Operators” on page 194

• “Decimal Numbers” on page 194

• “Hexadecimal Numbers” on page 194

• “Binary Numbers” on page 195

• “Octal Numbers” on page 195

• “Character Constants” on page 195

• “Operator Precedence” on page 195

Arithmetic Operators

<< Left Shift
>> Arithmetic Right Shift
** Exponentiation
* Multiplication
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

193
NOTE: You must put spaces before and after the modulus operator to separate it from the
rest of the expression.

Relational Operators
For use only in conditional assembly expressions.

Boolean Operators

HIGH and LOW Operators
The HIGH and LOW operators can be used to extract specific bytes from an integer
expression. The LOW operator extracts the byte starting at bit 0 of the expression, while
the HIGH operator extracts the byte starting at bit 8 of the expression.

HIGH and LOW can also be used to extract portions of a floating-point value.

For example:
LOW (X) ; 8 least significant bits of X
HIGH (X) ; 8 most significant bits of X

/ Division
% Modulus
+ Addition
- Subtraction

== Equal Synonyms: .eq., .EQ.
!= Not Equal Synonyms: .ne., .NE.
> Greater Than Synonyms: .gt., .GT.
< Less Than Synonyms: .lt., .LT.
>= Greater Than or Equal Synonyms: .ge., .GE.
<= Less Than or Equal Synonyms: .le., .LE.

& Bitwise AND Synonyms: .and., .AND.
| Bitwise inclusive OR Synonyms: .or., .OR.
^ Bitwise exclusive XOR Synonyms: .xor., .XOR.
~ Complement
! Boolean NOT Synonyms: .not., .NOT.
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

194
HIGH16 and LOW16 Operators
The HIGH16 and LOW16 operators can be used to extract specific 16-bit words from an
integer expression. The LOW16 operator extracts the word starting at bit 0 of the expres-
sion; the HIGH16 operator extracts the word starting at bit 16 of the expression.

HIGH16 and LOW16 can also be used to extract portions of a floating-point value.

For example:
LOW16 (X) ; 16 least significant bits of X
HIGH16 (X) ; 16 most significant bits of X

NOTE: A combination of the HIGH16 and LOW operators can be used to extract the most
significant byte of a 24-byte integer in the eZ80 Acclaim! For example:

TT equ %123456
segment code
LD A,HIGH(TT) ; This loads 34 into A
LD A,LOW(TT) ; This loads 56 into A
LD A,LOW(HIGH16(TT)) ; This loads 12 into A

Decimal Numbers
Decimal numbers are signed 32-bit integers consisting of the characters 0–9 inclusive
between -2147483648 and 2147483647. Positive numbers are indicated by the absence
of a sign. Negative numbers are indicated by a minus sign (-) preceding the number.
Underscores (_) can be inserted between digits to improve readability. For example:
1234 ; decimal
-123_456 ; negative decimal
1_000_000; decimal number with underscores
123; NOT an integer but a name. Underscore can be neither first

nor last character.
12E-45 ; decimal float
-123.456 ; decimal float
123.45E6 ; decimal float

Hexadecimal Numbers
Hexadecimal numbers are signed 32-bit integers ending with the h or H suffix (or starting
with the % prefix) and consisting of the characters 0–9 and A–F. A hexadecimal number
can have 1 to 8 characters. Positive numbers are indicated by the absence of a sign. Nega-
tive numbers are indicated by a minus sign (-) preceding the number. Underscores (_) can
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

195
be inserted between hexadecimal digits to improve readability, but only when the % prefix
is used instead of the H suffix. For example:
ABCDEFFFH ; hexadecimal
%ABCDEFFF ; hexadecimal
-0FFFFh ; negative hexadecimal
%ABCD_EFFF; hexadecimal number with underscore
ADC0D_H; NOT a hexadecimal number but a name; hexadecimal numbers

cannot contain both underscore and H suffix

Binary Numbers
Binary numbers are signed 32-bit integers ending with the character b or B and consisting
of the characters 0 and 1. A binary number can have 32 characters. Positive numbers are
indicated by the absence of a sign. Negative numbers are indicated by a minus sign (-)
preceding the number. Underscores (_) can be inserted between binary digits to improve
readability. For example:
-0101b ; negative binary number
0010_1100_1010_1111B; binary number with underscores

Octal Numbers
Octal numbers are signed 32-bit integers ending with the character o or O, and consisting
of the characters 0–7. An octal number can have 1 to 11 characters. Positive numbers are
indicated by the absence of a sign. Negative numbers are indicated by a minus sign (-)
preceding the number. Underscores (_) can be inserted between octal digits to improve
readability. For example:
1234o ; octal number
-1234o ; negative octal number
1_234o; octal number with underscore

Character Constants
A single printable ASCII character enclosed by single quotes (') can be used to represent
an ASCII value. This value can be used as an operand value. For example:
'A' ; ASCII code for "A"
'3' ; ASCII code for "3"

Operator Precedence
The following table shows the operator precedence in descending order, with operators of
equal precedence on the same line. Operators of equal precedence are evaluated left to
right. Parentheses can be used to alter the order of evaluation.
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

196
NOTE: Shift Left (<<) and OR (|) have the same operator precedence and are evaluated
from left to right. If you need to alter the order of evaluation, add parentheses to
ensure the desired operator precedence. For example:

ld a, 1<<2 | 1<<2 | 1<<1

The constant expression in the preceding instruction evaluates to 2A H.

If you want to perform the Shift Left operations before the OR operation, use parentheses
as follows:
ld a, #(1<<2)|(1<<2)|(1<<1)

The modified constant expression evaluates to 6 H.

DIRECTIVES
Directives control the assembly process by providing the assembler with commands and
information. These directives are instructions to the assembler itself and are not part of the
microprocessor instruction set. The following sections provide details for each of the sup-
ported assembler directives:

• “ALIGN” on page 197

• “.COMMENT” on page 197

• “CPU” on page 198

• “Data Directives” on page 199

• “DEFINE” on page 203

• “DS” on page 205

• “END” on page 205

• “EQU” on page 205

• “INCLUDE” on page 206

Table 9. Operator Precedence

Level 1 ()

Level 2 ~ unary- ! high low

Level 3 ** * / %

Level 4 + - & | ^ >> <<

Level 5 < > <= >= == !=
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

197
• “LIST” on page 207

• “NEWPAGE” on page 207

• “NOLIST” on page 207

• “ORG” on page 208

• “SEGMENT” on page 208

• “TITLE” on page 209

• “VAR” on page 209

• “XDEF” on page 210

• “XREF” on page 210

• “Structures and Unions in Assembly Code” on page 210

ALIGN
Forces the object following to be aligned on a byte boundary that is a multiple of <value>.

Synonym

.align

Syntax

<align_directive> = > ALIGN <value>

Example

ALIGN 2
DW EVEN_LABEL

.COMMENT
The .COMMENT assembler directive classifies a stream of characters as a comment.

The .COMMENT assembler directive causes the assembler to treat an arbitrary stream of
characters as a comment. The delimiter can be any printable ASCII character. The assem-
bler treats as comments all text between the initial and final delimiter, as well as all text on
the same line as the final delimiter.

You must not use a label on this directive.

Synonym

COMMENT

Syntax

.COMMENT delimiter [text] delimiter
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

198
Example

.COMMENT $ An insightful comment

of great meaning $

This text is a comment, delimited by a dollar sign, and spanning multiple source lines. The
dollar sign ($) is a deliminator that marks the line as the end of the comment block.

CPU
Defines to the assembler which member of the eZ80Acclaim! family is targeted. From this
directive, the assembler can determine which instructions are legal as well as the locations
of the interrupt vectors within the CODE space.

The CPU directive can use the following predefined symbols:
• EZ80F93

• EZ80F92

• EZ80F91

• EZ80L92

• EZ80190

When eZ80F91, for example, is selected, the following preprocessor symbols are automat-
ically defined (note the leading underscore):
_EZ80F91=1
_EZ80F92=0
_EZ80F93=0
_EZ80L92=0
_EZ80190=0

The symbols are defined in a similar fashion when any other CPU is selected.

These preprocessor symbols can be used for conditional assembly. For example:
.if _EZ80F91
...
.endif

Using the predefined symbols with the IFDEF conditional assembly directive in your code
does not produce useful results, precisely because the symbols are already defined as
either 0 or 1. For example, the following always evaluates to true:
IFDEF _EZ80190

Instead, use a preprocessor symbol that is not predefined, as in the following code:
EZ80190 EQU 1
IFDEF EZ80190

NOTE: The CPU directive is used to determine the physical location of the interrupt
vectors.
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

199
Syntax

<cpu_definition> = > CPU = <cpu_name>

Example

CPU = EZ80L92

Data Directives
The following data directives allow you to reserve space for specified types of data:

• “BFRACT and UBFRACT Declaration Types” on page 200

• “FRACT and UFRACT Declaration Types” on page 200

• “BLKB Declaration Type” on page 201

• “BLKL Declaration Type” on page 201

• “BLKP Declaration Type” on page 201

• “BLKW Declaration Type” on page 201

• “DB Declaration Type” on page 201

• “DD Declaration Type” on page 202

• “DF Declaration Type” on page 202

• “DL Declaration Type” on page 202

• “DW Declaration Type” on page 203

• “DW24 Declaration Type” on page 203

Syntax

<data directive> = > <type> <value>
<type> => BFRACT
 => BLKB
 => BLKL
 => BLKP
 => BLKW
 => DB
 => DD
 => DF
 => DL
 => DW
 => DW24
 => FRACT
 => UBFRACT
 => UFRACT
<value_list> => <value>
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

200
 => <value_list>,<value>
<value> => <expression>|<string_const>

The BLKB, BLKL, BLKP, and BLKW directives can be used to allocate a block of byte, long,
pointer, or word data, respectively.

BFRACT and UBFRACT Declaration Types
Syntax

BFRACT signed fractional (8 bits)

UBFRACT unsigned fractional (8 bits)

Examples

BFRACT [3]0.1, [2]0.2 ; Reserve space for five 8 bit
 ; signed fractional numbers.
 ; Initialize first 3 with 0.1,
 ; last 2 with a 0.2.
UBFRACT [50]0.1,[50]0.2 ; Reserve space for 100 8 bit
 ; unsigned fractional numbers.
 ; Initialize first 50 with a
 ; 0.1, second 50 with a 0.2
BFRACT 0.5 ; Reserve space for one 8-bit signed, fractional number
 ; and initialize it to 0.5.

FRACT and UFRACT Declaration Types
Syntax

FRACT signed fractional (8 bits)

UFRACT unsigned fractional (8 bits)

Examples

FRACT [3]0.1, [2]0.2 ; Reserve space for five 16 bit
 ; signed fractional numbers.
 ; Initialize first 3 with 0.1,
 ; last 2 with a 0.2.

UFRACT [50]0.1,[50]0.2 ; Reserve space for 100 16 bit
 ; unsigned fractional numbers.
 ; Initialize first 50 with a
 ; 0.1, second 50 with a 0.2

FRACT 0.5 ; Reserve space for one 16-bit signed, fractional number
 ; and initialize it to 0.5.
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

201
BLKB Declaration Type
Syntax

BLKB number of bytes (8 bits each) [, <init_value>]

Example

BLKB 16 ; Allocate 16 uninitialized bytes.
BLKB 16, -1 ; Allocate 16 bytes and initialize them to -1.

BLKL Declaration Type
Syntax

BLKL number of longs (32 bits each) [, <init_value>]

Example

BLKL 16 ; Allocate 16 uninitialized longs.
BLKL 16, -1 ; Allocate 16 longs and initialize them to -1.

BLKP Declaration Type
Syntax

BLKP number of pointers (24 bits each) [, <init_value>]

Example

BLKP 16 ; Allocate 16 uninitialized pointers.
BLKP 16, 0 ; Allocate 16 pointers and initialize them to 0.

BLKW Declaration Type
Syntax

BLKW number of words (16 bits each) [, <init_value>]

Example

BLKW 16 ; Allocate 16 uninitialized words.
BLKW 16, -1 ; Allocate 16 words and initialize them to -1.

DB Declaration Type
Synonyms

.byte, .ascii, DEFB, FCB, STRING, .STRING, byte

Syntax

DB byte data (8 bits)
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

202
Example

DB "Hello World" ; Reserve and initialize 11 bytes.
DB 1,2 ; Reserve 2 bytes. Initialize the
 ; first word with a 1 and the second with a 2.
DB %12 ; Reserve 1 byte. Initialize it with ; %12.

NOTE: There is no trailing null for the DB declaration type.

DD Declaration Type
Synonym

.double

Syntax

DD double signed fractional (32 bits)

Examples

DD 0.1,0.2 ; Reserve space for 2 double word signed fractional
 ; numbers. Initialize the first with a 0.1 and
 ; the last with a 0.2.
DD 0.5 ; Reserve space for 1 double word signed fractional
 ; number and initialize it to 0.5.

DF Declaration Type
Synonym

.float

Syntax

DF word signed floating-point constant (32 bits)

Examples

DF 0.1,0.2 ; Reserve space for 2 word signed
 ; floating-point numbers. Initialize
 ; first with a 0.1 and last with a 0.2.
DF .5 ; Reserve space for 1 word signed
 ; floating-point number and initialize it to 0.5.

DL Declaration Type
Synonyms

.long, long

Syntax

DL long (32 bits)
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

203
Example

DL 1,2 ; Reserve 2 long words. Initialize the
 ; first with a 1 and last with a 2.
DL %12345678 ; Reserve space for 1 long word and
 ; initialize it to %12345678.

DW Declaration Type
Synonyms

.word, word, .int

Syntax

DW word data (16 bits)

Example

DW "Hello World" ; Reserve and initialize 11 words.
DW "Hello" ; Reserve 12 words, initialize 6.
DW 1,2 ; Reserve 2 words. Initialize the
 ; first word with a 1 and the second with a 2.
DW %1234 ; Reserve 1 word and initialize it with %1234.

NOTE: There is no trailing null for the DW declaration type. Each letter gets 16 bits with
the upper 8 bits zero.

DW24 Declaration Type
Synonyms

.word24, .trio, .DW24

Syntax

DW24 word data (24 bits)

Examples

dw24 %123456 ; Reserve one 24-bit entity and initialize it with %123456
.trio %789abc ; Reserve one 24-bit entity and initialize it with %798abc

DEFINE
Defines a segment with its associated address space, alignment, and origin, which are
called “clauses” of the DEFINE directive. You must define a segment before you can use it,
unless it is a predefined segment. If a clause is not given, the default for that clause is used
in the definition. Clauses are described in the following sections:

• “ALIGN Clause” on page 204

• “ORG Clause” on page 204

• “SPACE Clause” on page 205
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

204
For more information on the SEGMENT directive, see “Segments” on page 184.

Synonym

.define

Syntax

<segment_definition> =>
DEFINE<ident>[<space_clause>][align_clause>][<org_clause>]

Example

DEFINE near_code ; Uses the defaults of the current
 ; space, byte alignment and relocatable.
DEFINE irq_table,ORG=%FFF8 ; Uses current space byte alignment and
 ; absolute starting address at

 ; memory location %FFF8.

ALIGN Clause
Allows you to select the alignment boundary for a segment. The linker places modules in
this segment on the defined boundary. The boundary, expressed in bytes, must be a power
of two (1, 2, 4, 8, and so on).

Syntax

<align_clause> => ,ALIGN = <int_const>

ORG Clause
Allows you to specify where the segment is to be located, making the segment an absolute
segment. The linker places the segment at the memory location specified by the ORG
clause.The default is no ORG, and thus the segment is relocatable.

Syntax

<org_clause> => ,ORG = <int_const>

Examples

DEFINE near_data
; Uses the defaults of ROM, byte alignment and relocatable.

DEFINE far_data,SPACE = RAM,ALIGN = 2

; Aligns on a 2-byte boundary, uses RAM space, relocatable.

DEFINE near_code,ORG = %FFF8
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

205
; Uses ROM, byte alignment, and absolute starting
; address at memory location %FFF8.

SPACE Clause
A SPACE clause defines the address space in which the segment resides. The linker groups
together segments with the same space identification. See Table 7, “eZ80Acclaim!
Address Spaces,” on page 183 for available spaces.

Syntax

<space_clause> => ,SPACE = <indent>

DS
Defines storage locations that do not need to be initialized.

Synonym

.block

Syntax

<define_storage> => DS <value>

Example

NAME DS 10 ; Reserve 10 bytes of storage.

END
Informs the assembler of the end of the source input file. If the operand field is present, it
defines the start address of the program. During the linking process, only one module can
define the start address; otherwise, an error results. The END directive is optional for
those modules that do not define the start address.

NOTE: Any text found after an END directive is ignored.

Synonym

.end

Syntax

<end_directive> => END[<expression>]

Example

END start ; Use the value of start as the program start address.

EQU
Assigns symbolic names to numeric or string values. Any name used to define an equate
must not have been previously defined. Other equates and label symbols are allowed in the
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

206
expression, provided they are previously defined. Labels are not allowed in the expres-
sion.

Synonyms

.equ, .EQU, EQUAL

Syntax

 <label> EQU <expression>

Example

length EQU 6 ; first dimension of rectangle
width EQU 11; second dimension of rectangle
area EQU length * width; area of the rectangle
myreg EQU HL ; symbolic name of a register

INCLUDE
Allows the insertion of source code from another file into the current source file during
assembly. The included file is assembled into the current source file immediately after the
directive. When the EOF (End of File) of the included file is reached, the assembly
resumes on the line after the INCLUDE directive.

The file to include is named in the string constant after the INCLUDE directive. The file
name can contain a path. If the file does not exist, an error results, and the assembly is
aborted. A recursive INCLUDE also results in an error.

INCLUDE files are contained in the listing (.lst) file unless a NOLIST directive is active.

Synonyms

.include, .copy

Syntax

<include_directive> => INCLUDE[<string_const>]

Example

INCLUDE "calc.inc" ; include calc header file
INCLUDE "\test\calc.inc" ; contains a path name
INCLUDE calc.inc ; ERROR, use string constant

You cannot export EQU using the XDEF directive or import using
the XREF directive.
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

207
LIST
Instructs the assembler to send output to the listing file. This mode stays in effect until a
NOLIST directive is encountered. No operand field is allowed. This mode is the default
mode.

Synonyms

.list, .LIST

Syntax

<list_directive> => LIST

Example

LIST
NOLIST

NEWPAGE
Causes the assembler to start a new page in the output listing. This directive has no effect
if NOLIST is active. No operand is allowed.

Synonyms

.page, PAGE

Syntax

<newpage_directive> => NEWPAGE

Example

NEWPAGE

NOLIST
Turns off the generation of the listing file. This mode remains in effect until a LIST direc-
tive is encountered. No operand is allowed.

Synonym

.NOLIST

Syntax

<nolist_directive> => NOLIST

Example

LIST
NOLIST
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

208
ORG
The ORG assembler directive sets the assembler location counter to a specified value in the
address space of the current segment.

The ORG directive must be followed by an integer constant, which is the value of the new
origin.

Synonyms

ORIGIN, .ORG

Syntax

<org_directive> => ORG <int_const>

Examples
ORG %1000 ; Sets the location counter at %1000 in the address space of current segment
ORG LOOP ; ERROR, use an absolute constant

On encountering the ORG assembler directive, the assembler creates a new absolute seg-
ment with a name starting with $$$org. This new segment is placed in the address space
of the current segment, with the origin at the specified value and alignment as 1.

NOTE: ZiLOG recommends that segments requiring the use of ORG be declared as
absolute segments from the outset by including an ORG clause in the DEFINE
directive for the segment.

SEGMENT
Specifies entry into a previously defined segment.

The SEGMENT directive must be followed by the segment identifier. The default segment is
used until the assembler encounters a SEGMENT directive. The internal assembler program
counter is reset to the previous program counter of the segment when a SEGMENT directive
is encountered. See Table 8, “Predefined Segments,” on page 184 for the names of pre-
defined segments.

Synonyms

.section, SECTION

Syntax

<segment_directive> => SEGMENT <ident>

Example

SEGMENT code ; predefined segment
DEFINE data ; user-defined
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

209
TITLE
Causes a user-defined TITLE to be displayed in the listing file. The new title remains in
effect until the next TITLE directive. The operand must be a string constant.

Synonym

.title

Syntax

<title_directive> => TITLE <string_const>

Example

TITLE "My Title"

VAR
The VAR directive works just like an EQU directive except you are allowed to change the
value of the label. In the example, STRVAR is assigned three different values. This would
cause an error if EQU was used instead of VAR.

Synonym

.VAR, SET, .SET

Syntax

 <label> VAR <expression>

Example

 A 6 SEGMENT NEAR_DATA
 A 7 ALIGN 2
 000000FF A 8 STRVAR VAR FFH
000000 FF A 9 DB STRVAR
 A 10 SEGMENT TEXT
000000 A 11 L__0:
000000 4641494C 4544 A 12 DB "FAILED"
000006 00 A 13 DB 0
 A 14 SEGMENT NEAR_DATA
 A 15 ALIGN 2
 00000000 A 16 STRVAR VAR L__0
 A 17
000002 A 18 _fail_str:
000002 00 A 19 DB STRVAR
 A 20 SEGMENT TEXT
000007 A 21 L__1:
000007 50415353 4544 A 22 DB "PASSED"
00000D 00 A 23 DB 0
 00000007 A 24 STRVAR VAR L__1
 A 25 SEGMENT NEAR_DATA
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

210
 A 26 ALIGN 2
000004 A 27 _pass_str:
000004 07 A 28 DB STRVAR

XDEF
Defines a label or list of labels in the current module as external symbols that are to be
made publicly visible to other modules at link time. The operands must be labels that are
defined somewhere in the assembly file.

Synonyms

.global, GLOBAL, .GLOBAL, .public, .def, public

Syntax

<xdef_directive> => XDEF <ident list>

Example

XDEF label
XDEF label1,label2,label3

XREF
Specifies that a label or list of labels in the operand field are defined in another module.
The reference is resolved by the linker. The labels must not be defined in the current mod-
ule. This directive optionally specifies the address space in which the label resides.

Synonyms

.extern, EXTERN, EXTERNAL, .ref

Syntax

<xref_directive> => XREF <ident list>

Example

XREF label
XREF label1,label2,label3
XREF label:ROM

Structures and Unions in Assembly Code
The assembler provides a set of directives to group data elements together, similar to high-
level programming language constructs like a C structure or a Pascal record. These direc-
tives allow you to declare a structure or union type consisting of various elements, assign
labels to be of previously declared structure or union type, and provide multiple ways to
access elements at an offset from such labels.
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

211
The assembler directives associated with structure and union support are listed in the fol-
lowing table:

These directives are described in the following sections:

• “.STRUCT and .ENDSTRUCT Directives” on page 211

• “.TAG Directive” on page 213

• “.UNION Directive” on page 214

• “.WITH and .ENDWITH Directives” on page 215

.STRUCT and .ENDSTRUCT Directives
A structure is a collection of various elements grouped together under a single name for
convenient handling. The .STRUCT and .ENDSTRUCT directives can be used to define the
layout for a structure in assembly by identifying the various elements and their sizes. The
.STRUCT directive assigns symbolic offsets to the elements of a structure. It does not allo-
cate memory. It merely creates a symbolic template that can be used repeatedly.

The .STRUCT and .ENDSTRUCT directives have the following form:

[stag] .STRUCT [offset | : parent]

[name_1] DS count1

[name_2] DS count2

[tname] .TAG stagx [count]

...

[name_n] DS count3

[ssize] .ENDSTRUCT [stag]

The label stag defines a symbol to use to reference the structure; the expression offset, if
used, indicates a starting offset value to use for the first element encountered; otherwise,
the starting offset defaults to zero.

Assembler Directive Description
.STRUCT Group data elements in a structure type
.ENDSTRUCT Denotes end of structure or union type
.UNION Group data elements in a union type
.TAG Associate label with a structure or union type
.WITH A section in which the specified label or structure tag is implicit
.ENDWITH Denotes end of with section
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

212
If parent is specified rather than offset, the parent must be the name of a previously
defined structure, and the offset is the size of the parent structure. In addition, each name
in the parent structure is inserted in the new structure.

Each element can have an optional label, such as name_1, which is assigned the value of
the element’s offset into the structure and which can be used as the symbolic offset. If stag
is missing, these element names become global symbols; otherwise, they are referenced
using the syntax stag.name. The directives following the optional label can be any space
reserving directive such as DS, or the .TAG directive (defined below), and the structure
offset is adjusted accordingly.

The label ssize, if provided, is a label in the global name space and is assigned the size of
the structure.

If a label stag is specified with the .ENDSTRUCT directive, it must match the label that is
used for the .STRUCT directive. The intent is to allow for code readability with some
checking by the assembler.

An example structure definition is as follows:

DATE .STRUCT

MONTH DS 1

DAY DS 1

YEAR DS 2

DSIZE .ENDSTRUCT DATE

NOTE: Directives allowed between .STRUCT and .ENDSTRUCT are directives that specify
size, principally DS, ALIGN, ORG, and .TAG and their aliases. Also, BLKB, BLKW,
and BLKL directives with one parameter are allowed because they indicate only
size.

The following directives are not allowed within .STRUCT and .ENDSTRUCT:

• Initialization directives (DB, DW, DL, DF, and DD) and their aliases

• BLKB, BLKW, and BLKL with two parameters because they perform initialization

• Equates (EQU and SET)

• Macro definitions (MACRO)

• Segment directives (SEGMENT and FRAME)

• Nested .STRUCT and .UNION directives

• CPU instructions (for example, LD and NOP)
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

213
.TAG Directive
The .TAG assembler declares or assigns a label to have a structure type. This directive can
also be used to define a structure/union element within a structure. The .TAG directive
does not allocate memory.

The .TAG directive to define a structure/union element has the following form:

[stag] .STRUCT [offset | : parent]

[name_1] DS count1

[name_2] DS count2

...

 [tname] .TAG stagx [count]

...

[ssize] .ENDSTRUCT [stag]

The .TAG directive to assign a label to have a structure type has the following form:

[tname] .TAG stag ; Apply stag to tname

[tname] DS ssize ; Allocate space for tname

Once applied to label tname, the individual structure elements are applied to tname to pro-
duce the desired offsets using tname as the structure base. For example, the label
tname.name_2 is created and assigned the value tname + stag.name_2. If there are
any alignment requirements with the structure, the .TAG directive attaches the required
alignment to the label. The optional count on the .TAG directive is meaningful only inside
a structure definition and implies an array of the .TAG structure.

NOTE: Keeping the space allocation separate allows you to place the .TAG declarations
that assign structure to a label in the header file in a similar fashion to the .STRUCT
and XREF directives. You can then include the header file in multiple source files
wherever the label is used. Make sure to perform the space allocation for the label
in only one source file.

Examples of the .TAG directive are as follows:
DATE .STRUCT

MONTH DS 1

DAYDS 1

YEAR DS 2

DSIZE .ENDSTRUCT DATE

NAMELEN EQU 30
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

214
EMPLOYEE .STRUCT

NAME DS NAMELEN

SOCIAL DS 10

START .TAG DATE

SALARY DS 1

ESIZE .ENDSTRUCT EMPLOYEE

NEWYEARS .TAG DATE

NEWYEARS DS DSIZE

The .TAG directive in the last example above creates the symbols NEWYEARS.MONTH,
NEWYEARS.DAY, and NEWYEARS.YEAR. The space for NEWYEARS is allocated by the DS
directive.

.UNION Directive
The .UNION directive is similar to the .STRUCT directive, except that the offset is reset to
zero on each label. A .UNION directive cannot have an offset or parent union. The key-
word to terminate a .UNION definition is .ENDSTRUCT.

The .UNION directive has the following form:

[stag] .UNION

[name_1] DS count1

[name_2] DS count2

[tname] .TAG stagx [count]

...

[name_n] DS count3

[ssize] .ENDSTRUCT [stag]

An example of the .UNION directive usage is as follows:
BYTES .STRUCT

B0 DS 1

B1 DS 1

B2 DS 1

B3 DS 1

BSIZE .ENDSTRUCT BYTES
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

215
LONGBYTES .UNION

LDATA BLKL 1

BDATA .TAG BYTES

LSIZE .ENDSTRUCT LONGBYTES

.WITH and .ENDWITH Directives
Using the fully qualified names for fields within a structure can result in very long names.
The .WITH directive allows the initial part of the name to be dropped.

The .WITH and .ENDWITH directives have the following form:

 .WITH name

; directives

 .ENDWITH [name]

The identifier name may be the name of a previously defined .STRUCT or .UNION, or an
ordinary label to which a structure has been attached using a .TAG directive. It can also be
the name of an equate or label with no structure attached. Within the .WITH section, the
assembler attempts to prepend “name.” to each identifier encountered, and selects the
modified name if the result matches a name created by the .STRUCT, .UNION, or .TAG
directives.

The .WITH directives can be nested, in which case the search is from the deepest level of
nesting outward. In the event that multiple names are found, a warning is generated and
the first such name is used.

If name is specified with the .ENDWITH directive, the name must match that used for the
.WITH directive. The intent is to allow for code readability with some checking by the
assembler.

For example, the COMPUTE_PAY routine below:
COMPUTE_PAY:

; Enter with pointer to an EMPLOYEE in R2, days in R1

; Return with pay in R0,R1

 LD R0,EMPLOYEE.SALARY(R2)

 MULT RR0

 RET

could be written using the .WITH directive as follows:
COMPUTE_PAY:

; Enter with pointer to an EMPLOYEE in R2, days in R1

; Return with pay in R0,R1
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

216
 .WITH EMPLOYEE

 LD R0, SALARY(R2)

 MULT RR0

 RET

 .ENDWITH EMPLOYEE

CONDITIONAL ASSEMBLY
Conditional assembly is used to control the assembly of blocks of code. Entire blocks of
code can be enabled or disabled using conditional assembly directives.

The following conditional assembly directives are allowed:

• “IF” on page 216

• “IFDEF” on page 217

• “IFSAME” on page 218

• “IFMA” on page 218

Any symbol used in a conditional directive must be previously defined by an EQU or VAR
directive. Relational operators can be used in the expression. Relational expressions eval-
uate to 1 if true and evaluate to 0 if false.

If a condition is true, the code body is processed. Otherwise, the code body after an ELSE
is processed, if included.

The ELIF directive allows a case-like structure to be implemented.

NOTE: Conditional assembly can be nested.

IF
Evaluates a Boolean expression. If the expression evaluates to 0, the result is false; other-
wise, the result is true.

Synonyms

.if, .IF, IFN, IFNZ, COND, IFTRUE, IFNFALSE, .$IF, .$if, .IFTRUE

Syntax

IF [<cond_expression> <code_body>]

[ELIF <cond_expression> <code_body>]

[ELSE <code_body>]

ENDIF
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

217
Example

IF XYZ ; process code body 0 if XYZ is not 0
 .
 .
 .
<Code Body 0>
 .
 .
ENDIF
IF XYZ !=3 ; process code body 1 if XYZ is not 3
 .
 .
 .
<Code Body 1>
 .
 .
 .
ELIF ABC ; process code body 2 if XYZ=3 and ABC is not 0
 .
 .
 .
<Code Body 2>
 .
 .
 .
ELSE ; otherwise process code body 3
 .
 .
 .
<Code Body 3>
 .
 .
 .
ENDIF

IFDEF
Checks for label definition. Only a single label can be used with this conditional. If the
label is defined, the result is true; otherwise, the result if false.

Syntax

IFDEF <label>

 <code_body>

[ELSE

 <code_body>]
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

218
ENDIF

Example

IFDEF XYZ ; process code body if XYZ is defined
 .
 .
 .
<Code Body>
 .
 .
 .
ENDIF

IFSAME
Checks to see if two string constants are the same. If the strings are the same, the result is
true; otherwise, the result is false. If the strings are not enclosed by quotes, the comma is
used as the separator.

Syntax

IFSAME <string_const> , <string_const>

 <code_body>

[ELSE

 <code_body>]

ENDIF

IFMA
Used only within a macro, this directive checks to determine if a macro argument has been
defined. If the argument is defined, the result is true. Otherwise, the result is false. If
<arg_number> is 0, the result is TRUE if no arguments were provided; otherwise, the
result is FALSE.

Syntax

IFMA <arg_number>

 <code_body>

[ELSE

 <code_body>]

ENDIF
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

219
MACROS
Macros allow a sequence of assembly source lines to be represented by a single assembler
symbol. In addition, arguments can be supplied to the macro in order to specify or alter the
assembler source lines generated once the macro is expanded. The following sections
describe how to define and invoke macros:

• “MACRO Definition” on page 219

• “Concatenation” on page 219

• “Macro Invocation” on page 220

• “Local Macro Labels” on page 220

• “Optional Macro Arguments” on page 221

• “Exiting a Macro” on page 221

• “Delimiting Macro Arguments” on page 222

MACRO Definition
A macro definition must precede the use of the macro. The macro name must be the same
for both the definition and the ENDMACRO line. The argument list contains the formal argu-
ments that are substituted with actual arguments when the macro is expanded. The argu-
ments can be optionally prefixed with the substitution character (\) in the macro body.

During the invocation of the macro, a token substitution is performed, replacing the formal
arguments (including the substitution character, if present) with the actual arguments.

Syntax

<macroname>[:]MACRO[<arg>(,<arg>)...]

 <macro_body>

ENDMAC[RO]<macroname>

Example

add3: MACRO reg1,reg2,reg3
LD reg1,reg2
ADD reg1,reg3
ENDMAC add3

Concatenation
To facilitate unambiguous symbol substitution during macro expansion, the concatenation
character (&) can be suffixed to symbol names. The concatenation character is a syntactic
device for delimiting symbol names that are points of substitution and is devoid of seman-
tic content. The concatenation character, therefore, is discarded by the assembler, when
the character has delimited a symbol name. For example:
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

220
val_part1 equ 55h

val_part2 equ 33h

The assembly is:
value macro par1, par2

DB par1&_&par2

macend

value val,part1

value val,part2

The generated listing file is:
 A 9 value val,part1

000000 55 A+ 9 DB val_part1

 A+ 9 macend

 A 10 value val,part2

000001 33 A+ 10 DB val_part2

 A+ 10 macend

Macro Invocation
A macro is invoked by specifying the macro name, and following the name with the
desired arguments. Use commas to separate the arguments.

Syntax

<macroname>[<arg>[(,<arg>)]...]

Example

add3 A,B,C

This macro invocation causes registers B and C to be added, and the result stored in regis-
ter A.

Local Macro Labels
Local macro labels allow labels to be used within multiple macro expansions without
duplication. When used within the body of a macro, symbols preceded by two dollar signs
($$) are considered local to the scope of the macro and therefore are guaranteed to be
unique. The two dollars signs are replaced by an underscore followed by a macro invoca-
tion number.

Syntax

$$ <label>
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

221
Example

LJMP: MACRO cc,label

 JR cc,$$lab
 JP label
$$lab: ENDMAC

Optional Macro Arguments
A macro can be defined to handle omitted arguments using the IFMA (if macro argument)
conditional directive within the macro. The conditional directive can be used to detect if
an argument was supplied with the invocation.

Example

MISSING_ARG: MACRO ARG1,ARG2,ARG3
IFMA 2
LD ARG1,ARG2
ELSE
LD ARG1,ARG3
ENDIF
ENDMACRO MISSING_ARG

Invocation

MISSING_ARG A, ,(HL) ; second argument is not defined

Result

LD A,(HL)

Exiting a Macro
The MACEXIT directive is used to immediately exit a macro. No further processing is per-
formed. However, the assembler checks for proper if-then conditional directives. A
MACEXIT directive is normally used to terminate a recursive macro.

The following example is a recursive macro that demonstrates using MAXEXIT to termi-
nate the macro.

Example

RECURS_MAC: MACRO ARG1,ARG2

 IFMA 0

 MACEXIT

 ELSE

 RECURS_MAC ARG2

 DB ARG1

 ENDIF
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

222
 ENDMACRO RECURS_MAC

Delimiting Macro Arguments
Macro arguments can be delimited by using the current macro delimiter characters defined
using the MACDELIM directive. The delimiters can be used to include commas and spaces
that are not normally allowed as part of an argument. The default delimiters are brackets
{ }, but braces [] and parentheses () are also allowed.

Example

BRA: MACRO ARG1

 JP ARG1

 ENDMAC LJMP

Invocation

BRA {dummy,X}

Result

JP dummy,X

LABELS
Labels are considered symbolic representations of memory locations and can be used to
reference that memory location within an expression. See “Label Field” on page 188 for
the form of a legal label.

The following sections describe labels:

• “Anonymous Labels” on page 222

• “Local Labels” on page 223

• “Importing and Exporting Labels” on page 223

• “Label Spaces” on page 223

Anonymous Labels
The ZDS II assembler supports anonymous labels. The following table lists the reserved
symbols provided for this purpose.

Table 10. Anonymous Labels

Symbol Description

$$ Anonymous label. This symbol can be used as a label an arbitrary number of times.
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

223
Local Labels
Any label beginning with a dollar sign ($) or ending with a question mark (?) is consid-
ered to be a local label. The scope of a local label ends when a SCOPE directive is encoun-
tered, thus allowing the label name to be reused. A local label cannot be imported or
exported.

Example

$LOOP: JP $LOOP ; Infinite branch to $LOOP

LAB?: JP LAB? ; Infinite branch to LAB?

SCOPE ; New local label scope

$LOOP: JP $LOOP ; Reuse $LOOP

LAB?: JP LAB? ; Reuse LAB?

Importing and Exporting Labels
Labels can be imported from other modules using the EXTERN or XREF directive. A space
can be provided in the directive to indicate the label’s location. Otherwise, the space of the
current segment is used as the location of the label.

Labels can be exported to other modules by use of the PUBLIC or XDEF directive.

Label Spaces
The assembler makes use of a label’s space when checking the validity of instruction oper-
ands. Certain instruction operands require that a label be located in a specific space
because that instruction can only operate on data located in that space. A label is assigned
to a space by one of the following methods:

• The space of the segment in which the label is defined.

• The space provided in the EXTERN or XREF directive.

• If no space is provided with the EXTERN or XREF directive, the space of the segment
where the EXTERN directive was encountered is used as the location of the label.

$B Anonymous label backward reference. This symbol references the most recent anonymous label
defined before the reference.

$F Anonymous label forward reference. This symbol references the most recent anonymous label
defined after the reference.

Table 10. Anonymous Labels (Continued)

Symbol Description
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

224
ADDRESSING MODES
This section discusses the addressing modes supported by the eZ80Acclaim! Macro
Assembler.

Table 11. eZ80Acclaim! Addressing Modes

Addressing Modes Symbolic Name Notes

8-Bit Register Mode A

B

C

D

E

H

L

16/24-Bit Register Mode BC

DE

HL

IX

IY

Indirect Register Mode (BC)

(DE)

(HL)

(IX)

(IY)

Indirect Register Mode Plus Offset (IX+dd) dd must be in the range of –128<dd<127.

(IY+dd) dd must be in the range of –128<dd<127.

16/24-Bit Direct Addressing Mode xxxxH or xxxxxxH For 24-bit values, ADL must equal 1.

PC Relative Addressing Mode PC

Single-Bit Flags ADL Not directly accessible but can be changed by suffixed
JP and CALL instructions.

IEF1

IEF2

MADL
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

225
Representing Immediate Value
The following are examples of instructions of the ld r, n type:
1. ld a, 1*2

2. ld a, #1*2

3. ld a, #(1*2)

The eZ80Acclaim! assembler accepts an optional prefix character # for the immediate
addressing mode as given in (1) and (2).

For the third case, the prefix character # is mandatory because it conflicts with the indirect
addressing mode. For example:

ld a, (1*2) ;3A0200 Assembled as ld a, (Mmn)

ld a, #(1*2) ;3E02 Assembled as ld a, n

SOURCE LANGUAGE SYNTAX
The syntax description that follows is given to outline the general assembler syntax. It
does not define assembly language instructions.

F Only used as part of the AF or AF’ register pair. The F
register contains the six status bits used by the
eZ80Acclaim!.

Register Pair Addressing Mode AF Only used with PUSH and POP instructions

AF’ Only used in EX AF,AF’ instruction

8-Bit Control Registers I

IXH

IXL

IYH

IYL

MBASE Only used in LD A,MB instruction where MB stands for
MBASE

R

SP The ADL mode indicates whether SPS or SPL is
actually used.

<source_line> => <if_statement>

Table 11. eZ80Acclaim! Addressing Modes (Continued)

Addressing Modes Symbolic Name Notes
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

226
=> [<Label_field>]<instruction_field><EOL>
=> [<Label_field>]<directive_field><EOL>
=> <Label_field><EOL>
=> <EOL>

<if_statement> => <if_section>
=> [<else_statement>]
=> ENDIF

<if_section> => <if_conditional>
<code-body>

<if_conditional> => IF<cond_expression>|
IFDEF<ident>|
IFSAME<string_const>,<string_const>|
IFMA<int_const>

<else_statement> => ELSE <code_body>|
ELIF<cond_expression>
<code_body>
[<else_statement>]

<cond_expression> => <expression>|<expression><relop><expression>
<relop> => == | < | > | <= | => | !=
<code_body> => <source_line>@
<label_field> => <ident>:
<instruction_field> => <mnemonic>[<operand>]@
<directive_field> => <directive>
<mnemonic> => valid instruction mnemonic
<operand> => <addressing_mode>

=> <expression>
<addressing_mode> => valid instruction addressing mode
<directive> => ALIGN<int_const>

=> <array_definition>
=> CONDLIST(ON|OFF)
=> END[<expression>]
=> <ident>EQU<expression>
=> ERROR<string_const>
=> EXIT<string_const>
=> .FCALL<ident>
=> FILE<string_const>
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

227
=> .FRAME<ident>,<ident>,<space>
=> GLOBALS (ON|OFF)
=> INCLUDE<string_const>
=> LIST (ON|OFF)
=> <macro_def>
=> <macro_invoc>
=> MACDELIM<char_const>
=> MACLIST (ON|OFF)
=> NEWPAGE

=> NOLIST

=> ORG<int_const>
=> <public_definition>
=> <scalar_definition>
=> SCOPE

=> <segment_definition>
=> SEGMENT<ident>
=> SUBTITLE<string_const>
=> SYNTAX=<target_microprocessor>
=> TITLE<string_const>
=> <ident>VAR<expression>
=> WARNING<string_const>

<array_definition> => <type>'['<elements>']'
=> [<initvalue>(,<initvalue>)@]

<type> => BFRACT
=> BLKB
=> BLKL
=> BLKP
=> BLKW
=> DB
=> DD
=> DF
=> DL
=> DW
=> DW24
=> FRACT
=> UBFRACT
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

228
=> UFRACT
<elements> => [<int_const>]
<initvalue> => ['['<instances>']']<value>
<instances> => <int_const>
<value> => <expression>|<string_const>
<expression> => '('<expression>')'

=> <expression><binary_op><expression>
=> <unary_op><expression>
=> <int_const>
=> <float_const>
=> <label>
=> HIGH<expression>
=> LOW<expression>
=> OFFSET<expression>

<binary_op> => +

=> -

=> *

=> /

=> >>

=> <<

=> &

=> |

=> ^

<i> => -

=> ~

=> !

<int_const> => digit(digit|'_')@
=> hexdigit(hexdigit|'_')@H
=> bindigit(bindigit|'_')@B
=> <char_const>

<char_const> => 'any'
<float_const> => <decfloat>
<decfloat> => <float_frac>|<float_power>
<float_frac> => <float_const>[<exp_part>]
<frac_const> => digit|'_') . (digit|'_')@
<exp_part> => E['+'|-]digit+
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

229
COMPATIBILITY ISSUES
Compatibility between eZ80Acclaim! assembler directives and those of other assemblers
supported by the eZ80Acclaim! assembler are listed in “Asssembler Compatibility Issues”
on page 416. If you are developing new code for the eZ80Acclaim!, it is recommended
that you use the eZ80Acclaim! directives described previously in this chapter because the
behavior of these directives is thoroughly validated with each release of the eZ80Acclaim!
assembler.

TROUBLESHOOTING THE ASSEMBLER
There are several instructions that you must be careful about when you use them. For
example, you can run into problems with instructions that have implicit registers (such as
DJNZ, LDI, LDIR, LDD, LDDR, and CPI CPIR).

Arithmetic instructions on register pairs (like DEC BC) do not set the condition codes;
however, single-register instructions (like DEC B or DEC C) do set the condition codes.

Be careful with handling register pairs in ADL mode because the highest-order byte is not
directly accessible.

<float_power> => digit(digit|'_')@<exp_part>
<label> => <ident>
<string_const> => "('\"'|any)@"
<ident> => (letter|'_')(letter|'_'|digit|'.')@
<ident_list> => <ident>(,<ident>)@
<macro_def> => <ident>MACRO[<arg>(<arg>)]

<code_body>
ENDMAC[RO]<macname>

<macro_invoc> => <macname>[<arg>](,<arg>)]
<arg> => macro argument
<public_definition> => PUBLIC<ident list>

EXTERN<ident list>
<scalar_definition> => <type>[<value>]
<segment_definition> = DEFINE<ident>[<space_clause>][<align_clause>]

[<org_clause>]
<space_clause> => ,SPACE=<space>
<align_clause> => ,ALIGN=<int_const>
<org_clause> => ,ORG=<int_const>
<space> => (RDATA|XDATA|ROM)
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

230
WARNING AND ERROR MESSAGES
This section covers warning and error messages for the assembler.

400 Symbol already defined.

The symbol has been previously defined.

401 Syntax error.

General-purpose error when the assembler recognizes only part of a source line. The
assembler might generate multiple syntax errors per source line.

402 Symbol XREF'd and XDEF'd.

Label previously marked as externally defined or referenced. This error occurs when
an attempt is made to both XREF and XDEF a label.

403 Symbol not a segment.

The segment has not been previously defined or is defined as some other symbol type.

404 Illegal EQU.

The name used to define an equate has been previously defined or equates and label
symbols in an equate expression have not been previously defined.

405 Label not defined.

The label has not been defined, either by an XREF or a label definition.

406 Illegal use of XREF's symbol.

XDEF defines a list of labels in the current module as an external symbol that are to be
made publicly visible to other modules at link time; XREF specifies that a list of
labels in the operand field are defined in another module.

407 Illegal constant expression.

The constant expression is not valid in this particular context. This error normally
occurs when an expression requires a constant value that does not contain labels.

408 Memory allocation error.

Not enough memory is available in the specified memory range.

409 Illegal .elif directive.

There is no matching .if for the .elif directive.

410 Illegal .else directive.

There is no matching .if for the .else directive.

411 Illegal .endif directive.

There is no matching .if for the .endif directive.
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

231
412 EOF encountered within an .if

End-of-file encountered within a conditional directive.

413 Illegal floating point expression.

An illegal value was found in a floating-point expression. This error is normally
caused by the use of labels in the expression.

414 Illegal floating point initializer in scalar directive.

You cannot use floating-point values in scalar storage directives.

415 Illegal relocatable initialization in float directive.

You cannot use relocatable labels in a float storage directive.

416 Unsupported/illegal directives.

General-purpose error when the assembler recognizes only part of a source line. The
assembler might generate multiple errors for the directive.

417 Unterminated quoted string.

You must terminate a string with a double quote.

418 Illegal symbol name.

There are illegal characters in a symbol name.

419 Unrecognized token.

The assembler has encountered illegal/unknown character(s).

420 Constant expression overflow.

A constant expression exceeded the range of –2147483648 to 2147483648.

421 Division by zero.

The divisor equals zero in an expression.

422 Address space not defined.

The address space is not one of the defined spaces.

423 File not found.

The file cannot be found in the specified path, or, if no path is specified, the file cannot
be located in the current directory.

424 XREF or XDEF label in const exp.

You cannot use an XREF or XDEF label in an EQU directive.

425 EOF found in macro definition

End of file encountered before ENDMAC(RO) reached.
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

232
426 MACRO/ENDMACRO name mismatch.

The declared MACRO name does not match the ENDMAC(RO) name.

427 Invalid MACRO arguments.

The argument is not valid in this particular instance.

428 Nesting same segment.

You cannot nest a segment within a segment of the same name.

429 Macro call depth too deep.

You cannot exceed a macro call depth of 25.

430 Illegal ENDMACRO found.

No macro definition for the ENDMAC(RO) encountered.

431 Recursive macro call.

Macro calls cannot be recursive.

432 Recursive include file.

Include directives cannot be recursive.

433 ORG to bad address.

The ORG clause specifies an invalid address for the segment.

434 Symbol name too long.

The maximum symbol length (33 characters) has been exceeded.

435 Operand out-of-range error.

The assembler detects an expression operand that is out of range for the intended field
and generates appropriate error messages.

436 Relative branch to XREF label.

Do not use the JP instruction with XREF.

437 Invalid array index.

A negative number or zero has been used for an array instance index. You must use
positive numbers.

438 Label in improper space.

Instruction requires label argument to be located in certain address space. The most
common error is to have a code label when a data label is needed or vice versa.

439 Vector not recognized.

The vector name must be IRQ0, IRQ1, IRQ2, IRQ3, IRQ4, IRQ5, or RESET
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

233
442 Missing delay slot instruction.

Add a delay slot instruction such as BRANCH or LD.

444 Too many initializers.

Initializers for array data allocation exceeds array element size.

445 Missing .$endif at EOF.

There is no matching .$endif for the .$if directive.

446 Missing .$wend at EOF.

There is no .$wend directive.

447 Missing .$repeat at EOF.

There is no matching .$repeat for the .$while directive.

448 Segment stack overflow.

Do not allocate returned structures on the stack.

450 Floating point precision error.

The floating-point value cannot be represented to the precision given. The value is
rounded to fit within the allowed precision.

451 Floating point over/under flow.

The floating-point value cannot be represented.

452 General floating point error.

The assembler detects an expression operand that is out of range for the intended field
and generates appropriate error messages.

453 Fractional number too big/small.

The fractional number cannot be represented.

461 Unexpected end-of-file in comment.

End-of-file encountered in a multi-line comment

462 Macro redefinition.

The macro has been redefined.

464 Obsolete feature encountered.

An obsolete feature was encountered.

470 Missing token error.

A token needs to be added.
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

234
475 User error.

General-purpose error.

476 User warning.

General-purpose warning.

480 Relist map file error.

A map file will not be generated.

481 Relist file not found error.

The map file cannot be found in the specified path, or, if no path is specified, the map
file cannot be located in the current directory.

482 Relist symbol not found.

Any symbol used in a conditional directive must be previously defined by an EQU or
VAR directive.

483 Relist aborted.

A map file will not be generated.

490 Stall or hazard conflict found.

A stall or hazard conflict was encountered.

499 General purpose switch error.

There was an illegal or improperly formed command line option.
UM014423-0607

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

235
Using the Linker/Locator
The eZ80Acclaim! developer’s environment linker/locator creates a single executable file
from a set of object modules and object libraries. It acts as a linker by linking together
object modules and resolving external references to public symbols. It also acts as a loca-
tor because it allows you to specify where code and data are stored in the target processor
at run time. The executable file generated by the linker can be loaded onto the target sys-
tem and debugged using ZiLOG Developer Studio II.

The following sections describe the linker/locator:

• “Linker Interactions with the Compiler and Assembler” on page 236

• “Linker Configurations” on page 240

• “Invoking the Linker” on page 246

• “Linker Commands” on page 247

• “Linker Expressions” on page 258

• “Using Modified ZDS II Startup Modules” on page 264

• “Sample Linker Map File” on page 267

• “Troubleshooting the Linker” on page 283

• “Warning and Error Messages” on page 286

NOTE: The Command Processor allows you to use commands or script files to automate the
execution of a significant portion of the IDE’s functionality. For more information about
using the Command Processor, see “Using the Command Processor” on page 387.

The following six major types of objects are manipulated during the linking process:

• Modules

Modules are created by assembling a file with the assembler or compiling a file with
the compiler.

• Libraries

Object libraries are collections of object modules created by the Librarian.

• Segments

A segment is a named logical partition of data or code that forms a continuous block
of memory. Segments with the same name residing in different modules are
concatenated together at link time. Segments are assigned to an address space and can
be relocatable or absolute. Relocatable segments can be randomly allocated by the
linker; absolute segments are assigned a physical address within its address space. See
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

236
“Segments” on page 184 for more information about using predefined segments,
defining new segments, and attaching code and data to segments.

The memory range for the default segments depend on the particular eZ80Acclaim!
family member. The memory available to your application is given by the linker
address spaces, which are described next and whose configuration through the IDE is
covered in “Project Settings—Address Spaces Page” on page 89.

• Address spaces

An address space, as this term is used in the linker, corresponds to a logical block of
memory on the target processor that is used for a broad functional purpose. These
“logical” address spaces are often correlated with the physical types of memory
available to the processor. However, the address space names used by the linker really
refer just to the way the memory is intended to be used in your application and do not
necessarily reside in the physical memory type that are expected from their names. As
an example, in the eZ80Acclaim!’s All RAM Link Configuration, both the RAM
address space (used for data storage) and the ROM address space (used for code
storage) are physically mapped to RAM memory. In this case, the address spaces
partition that physical memory into two logical address spaces. For more information
about address spaces, see “Address Spaces” on page 183.

• Groups

Groups are collections of logical address spaces. They are typically used to
conveniently handle a set of address spaces. For example, in some project
configurations, the ROM and RAM address spaces are grouped together to form the
MEMORY group.

• Copy segments

Copy segments are segments of initialized data that are re-assigned to another address
space (the copy segment) by the linker. A startup routine typically moves data from
the copy segment into the original address space to initialize data before invoking a
program.

NOTE: By default, allocation for a given memory group, address space, or segment starts at the
lowest defined address for that memory group, address space, or segment. If you explicitly
define an assignment within that memory space, allocation for that space begins at that
defined point and then occupies subsequent memory locations. For more information, see
“BASE OF Versus LOWADDR OF” on page 260.

LINKER INTERACTIONS WITH THE COMPILER AND ASSEMBLER
The ZiLOG linker enables developers to control how source code is loaded into a target
processor. This section provides an overview of what the linker does and how it interacts
with the ZDS II compiler and assembler and with target hardware. For details of linker
command syntax, see “Linker Commands” on page 247.
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

237
The ZDS II compiler and assembler use a hierarchical processor model containing spaces
and segments. Each space has a range associated with it that identifies valid addresses for
that space. For example, Space A might be associated with the addresses from 100h to
7FFFh.

Each object file, called a module, contains several segments. See the following two fig-
ures. The linker performs the following functions:

• It resolves all external references in each module.

• It assigns (or locates) physical hardware memory addresses into which each segment will
be loaded.

Figure 89. Linker Segments

Figure 90. Modules and Segments

Because the linker both links names and locates modules, it is referred to as a linker/loca-
tor. The locator part of the linker assigns segments to spaces. In Figure 90, three modules
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

238
are shown (one.obj, two.obj, and three.obj), each module containing a combination
of U, V, W, X, Y, and Z segments.

The linker has no information about the source of the object (*.obj) modules but pro-
cesses a sequence of modules (in alphabetical order, by default), resolving references
between the modules and then loading the segments into the appropriate address spaces.
The resolution and loading occurs after the linker has read in the linker command file.
This file, containing commands that control linker actions such as the assignment of seg-
ments to spaces, is automatically generated by ZDS II when a project is built for the first
time. You can then edit the linker command file to change linker behavior if needed. The
linker command file gives a description of how to link the modules, providing a non-pro-
cedural description of the linking process. The elements of a typical linker command file
for a C project are discussed in “Linker Command Files for C Programs” on page 158.

eZ80Acclaim! Address Spaces
Every byte generated by the compiler or assembler eventually gets assigned to an address
space by the linker. Address spaces represent physical or logical architecture divisions.
Each space has physical or logical attributes that characterize it. A space might, for exam-
ple, use special addressing modes or have alignment restrictions.

Spaces can also indicate separate physical memories. Within each space, segments can be
defined that can affect instruction speed or availability.

The ZDS II compiler and assembler for eZ80Acclaim! predefine four address spaces:

• ROM (read-only space)

• RAM (random-access/writable space)

• EXTIO (16-bit addressable space for I/O)

• INTIO (8-bit addressable space for I/O)

These spaces contain the logical components of an application. The linker command file
specifies how these logical spaces are mapped to the physical addresses on the target
board. For more information about address spaces, see “Address Spaces” on page 183.

Segments
The ZDS II compiler and assembler define the following segments:

• .IVECTS (segment type for interrupt vectors; address space is ROM)

• .RESET (segment type for reset handler code; address space is ROM)

• CODE (segment type for CODE; address space is ROM)

This is the default segment for assembler code.

• BSS (segment type for uninitialized data; address space is RAM)
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

239
• DATA (segment type for initialized data; address space is RAM)

• STRSECT (segment type for string constants; address space is RAM by default)

• TEXT (segment type for constant data; address space is RAM by default)

The default relationships of these segments to the four address spaces are shown in the fol-
lowing figure.

Figure 91. Segment and Space Relationships

The address spaces listed in “eZ80Acclaim! Address Spaces” on page 238 are those used
for the run-time addresses of the segments. Some segments can be copied from one space
to another, depending on the memory configuration (described in “Linker Configurations”
on page 240). For example, in a typical configuration, the DATA segment is placed in
ROM at load time and then copied to RAM on application reset; it is the copy in RAM that
is actually used when the program runs, but the ROM version is necessary so that the pro-
gram can be re-initialized at reset.

The address spaces listed in “eZ80Acclaim! Address Spaces” on page 238 define the logi-
cal spaces to which the segments are assigned. The relationship between the logical RAM/
ROM spaces and physical RAM or ROM memory depends on your system configuration
and might be more complicated. For more information, see “Link Configuration” on
page 77.

You have complete control over the order in which these segments are loaded into the
RAM address space.

You can define additional CODE segments in C by marking the One Code Segment Per
Module check box on the Advanced page of the Project Settings dialog box (see “Project
Settings—Advanced Page” on page 66). For the myfile.c module, the code segment is
given the name myfile_TEXT (“text” refers to code, unlike the TEXT segment that con-
tains constant data). All of the procedures in the myfile_TEXT module are assigned to
that same segment, and the segment is assigned to ROM space. All of the uninitialized
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

240
data, initialized data, and string initialization remain assigned to BSS, DATA, and STR-
SECT, respectively.

In addition to these segments, the linker must also determine the location of the following
components:

• the C stack

• the C heap for malloc/free

• the code that sets up the run-time environment

• the vector table

“Components Used in All Linker Configurations” on page 245 describes how to set these
locations.

LINKER CONFIGURATIONS
The Link Configuration drop-down list box (see “Link Configuration” on page 77) allows
you to set up linker parameters related to the memory map. You can also select the linker
configuration when you create a new project. The following linker configurations are
available:

• “Standard Configuration” on page 241

• “All RAM Configuration” on page 242

• “Copy to RAM Configuration” on page 244

• “Custom Configuration” on page 244

• “Deprecated Custom Configuration” on page 245

You can select one of these configurations using the Link Configuration drop-down list
box. The diagrams in the following figure schematically represent the most common phys-
ical memory configurations. For example, some boards only have physical RAM on them
(All RAM), while some have both ROM and RAM (Standard). (The EXTIO and INTIO
spaces are not shown in these diagrams. Those spaces are logically distinct from the ROM
and RAM spaces and are accessed only by special instructions used for that purpose.)
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

241
Figure 92. Linker Configurations

The preceding figure does not show the addresses for the beginning and end of physical
ROM and RAM. You can enter the address information on the Address Spaces page (see
“Project Settings—Address Spaces Page” on page 89). The linker configuration and
Address Spaces page information represent the hardware memory map.

As an example of what the linker command file does to support the linker configurations,
suppose your hardware only has RAM (the All RAM configuration). The linker therefore
must map logical ROM space to some part of physical RAM. In a 64K RAM configura-
tion, you might specify a RAM space of 0000h–FFFFh. The linker command file contains
commands generated by ZDS II that group the ROM and RAM spaces together.

In most embedded applications, the logical ROM space resides in physical (hardware)
ROM, and the logical RAM space resides in physical RAM. For this (Standard) configura-
tion, the ROM and RAM memory spaces map directly to the corresponding ROM and
RAM hardware addresses. For example, in an architecture with a 24-bit addressing range,
you might have RAM at C00000h–FFFFFFh and ROM at 0h–00FFFFh.

In the Copy to RAM configuration, the hardware has both ROM and RAM. However, per-
formance or operational considerations require that the code and data in physical ROM be
copied to a physical RAM address upon startup (to accommodate, for example, initialized
data that needs to be re-initialized when the board is reset). The Copy to RAM configura-
tion causes the startup code to copy some part of the ROM to a location in RAM.

Standard Configuration
In the Standard configuration, the hardware has both physical RAM and physical ROM.
The linker commands generated by ZDS II map logical RAM segments to physical RAM
and logical ROM segments to physical ROM. If the memory fields in the New Project
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

242
Wizard dialog box or the Address Spaces page of the Project Settings dialog box con-
tained the following values:

ROM: 0-7FFF

RAM: A000-FFFF

ZDS II then generates the following code for the linker command file:
RANGE ROM $0 : $7FFF
RANGE RAM $A000 : $FFFF

The linker uses the COPY command on segments to better support standalone C pro-
grams. When running a C program under an operating system such as Windows or UNIX,
all initialized variables are set to their starting values upon the start of program execution.
In a standalone C implementation, however, there is no operating system to reload vari-
ables with their initial values. With no operating system, if an embedded application runs
for a while and is then restarted at main(), the values of initialized variables are not
restored to their original value. The linker’s COPY command, together with the startup
module, provides a means to reinitialize variables.

The linker normally loads the DATA segment (initialized data) into RAM. When the ini-
tialized data has been loaded into RAM and modified by program execution, in the
absence of the COPY mechanism, the only way to reload the initial DATA segment is to
download the code to the target board again. This approach is not practical for most
embedded systems. (The embedded application would have to save all the initialized data
and reload the initial values upon RESET, for example.)

The COPY command (typically, COPY DATA ROM) causes the linker to put a copy of the
DATA segment in the ROM space at load time. The standard startup module always copies
the DATA segment to RAM before calling main(). The COPY command copies seg-
ments into spaces only. Any other copy combination generates an error.

The startup module requires additional linker commands to perform the copy. “Compo-
nents Used in All Linker Configurations” on page 245 describes these commands.

The ORDER command allows you to define the sequence of segments within a memory
space. In the Standard Configuration, ZDS II generates the following command to put the
initialized data segment at a lower address than the uninitialized data segment:
ORDER DATA,BSS

All RAM Configuration
In this configuration, the linker maps all segments associated with the logical ROM
address space to physical RAM. ZDS II therefore automatically generates two linker com-
mands. One command combines the spaces into one, and the other defines the physical
address range for the combined spaces. The two linker commands are:
• GROUP MEMORY=ROM,RAM
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

243
This command defines a new address space (MEMORY) that contains the existing
logical address spaces RAM and ROM.

• RANGE MEMORY $0 : $FFFF

This command defines the valid addresses for the new space.

ZDS II creates the RANGE command starting with the lowest address specified in the
New Project Wizard dialog box or the Address Spaces page of the Project Settings dialog
box and ending with the highest address. The lowest address is min (min(ROM),
min(RAM)) and the highest address is max (max(ROM),max(RAM)). These two ZDS II-
generated commands are critical for building an All RAM configuration.

Both the GROUP MEMORY and RANGE MEMORY commands are required for the All
RAM configuration. A common error made by users trying to set up this configuration
manually is to omit the RANGE MEMORY command. To illustrate the effects of such an
error, suppose the New Project Wizard dialog box or the Address Spaces page of the
Project Settings dialog box has the following values for a 64K memory machine:

ROM: 0-7FFF

RAM: 8000-FFFF

If the All RAM configuration is not used to create the linker command file, ZDS II con-
verts the values in the New Project Wizard dialog box or the Address Spaces page of the
Project Settings dialog box to the following linker commands:
RANGE ROM $0 : $7FFF
RANGE RAM $8000 : $FFFF

which, if followed by
GROUP MEMORY=ROM,RAM

results in ROM segments starting at address $0 and RAM segments starting at $8000,
potentially wasting space if the ROM segments do not fully occupy the range from $0 -
$7FFF. The following command
RANGE MEMORY $0 : $FFFF

overrides the RANGE commands for the component address spaces and binds the RAM
segments immediately after the ROM segments.

NOTE: The names following the = in the GROUP command define an ordering for the
new GROUP. In the preceding example, all of the ROM segments are allocated
memory at lower addresses than the RAM segments. However, the following
GROUP statement locates all of the RAM segments first:

GROUP MEMORY=RAM,ROM
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

244
Copy to RAM Configuration
This configuration provides support for copying code as well as data segments from phys-
ical ROM to physical RAM. The idea is to compensate for the performance penalty often
associated with running code from ROM. A ROM instruction fetch, for example, might
require more wait states than a RAM instruction fetch. It is therefore more efficient to run
code from RAM than to run it from ROM, provided the target system has enough RAM
for the program code and data. As in the other configurations, ZDS II automatically gener-
ates linker commands in the linker command file to support this operating mode when
Copy to RAM is selected.

To run code from the RAM space, the linker must do two things:

• Reassign all of the CODE segment addresses to RAM instead of ROM.

• Place a copy of the CODE segment in ROM for an application restart (the startup
module re-copies it from ROM to RAM upon restart).

The linker CHANGE command allows you either to rename a segment or reassign a seg-
ment to another space. For example,
CHANGE TEXT is DATA
CHANGE CODE is RAM
CHANGE STRSECT is CODE

causes the linker to do the following:

1. Combine the TEXT segment into the DATA segment.

2. Reassign the CODE segment to the RAM space.

3. Combine the STRSECT segment into the CODE segment.

These three CHANGE commands reassign all addresses in the CODE, TEXT, and
STRSECT segments into RAM for the fastest possible execution.

The final step requires the RAM space to be copied in ROM space so that it can be
reloaded from ROM when the application starts. Adding the following commands
COPY DATA ROM
COPY CODE ROM

causes both the CODE and DATA segments to be copied to ROM. These segments are
then copied by the startup code to the appropriate RAM addresses, completing the actions
associated with the COPY to RAM configuration.

Custom Configuration
In this configuration, you define all of the segment to space mappings, depending on the
hardware configuration of the application board.
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

245
Deprecated Custom Configuration
This configuration was provided in earlier releases of ZDS II for eZ80Acclaim! before the
4.10.0 release. It is supported for backward compatibility. In those earlier releases, this
configuration was called “Custom,” but, in fact, it was nearly identical to the Standard
configuration. The only difference was that the ordering of segments was left to the user
and that the STRSECT segment was left in RAM instead of ROM. That segment contains
string literals and should always be placed in ROM for production code but can be kept in
RAM at times for debugging.

In the 4.10.0 and subsequent releases of ZDS II, the Custom link configuration is used to
support truly customized link command files. ZiLOG recommends that if you have an
older project that used the Deprecated Custom configuration, you convert it either to the
Standard configuration (by changing to that setting and verifying that the minor changes in
link commands cause you no problems) or to the Custom configuration (by saving your
existing link command file and selecting the Use Existing button (see “Use Existing” on
page 83). At some future time, the Deprecated Custom configuration might no longer be
supported in ZDS II.

Components Used in All Linker Configurations
In a standalone application, components usually managed by an operating system must be
set up and managed as part of the C runtime. In particular, an embedded C application
might use the following components:

• Stack

• Heap

• Other segments

• Startup

The location of the stack and heap depend on the size of the application and the amount of
physical RAM available. Generally, the heap starts at the next address just beyond the last
allocated address in the RAM space and grows towards higher numbered addresses. The
stack generally starts at the highest possible address in physical RAM and grows towards
lower numbered addresses. The linker provides expressions that simplify placing the stack
and heap at appropriate addresses. For example, the linker TOP OF RAM expression repre-
sents the address of the last byte allocated in the RAM space. The following expression
can be used to set the lowest address of the heap:
define __heapbot = top of RAM + 1

Similarly, the linker HIGHADDR OF RAM command represents the highest numbered phys-
ical address in the RAM space. Setting the starting address for the stack can be done with
the following:
define __stack = HIGHADDR of RAM
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

246
Both of these linker commands define locations that are used by the startup module to ini-
tialize the C runtime for an application. In configurations where code or data is copied, the
linker commands for setting up the stack and heap can be more complicated. When a con-
figuration has been selected, ZDS II automatically generates the appropriate DEFINEs
and linker expressions. In addition to the stack and heap, the startup routines handle all of
the copying for special segments and setting up the initial vector table.

INVOKING THE LINKER
The linker is automatically invoked when your project is open and you click the Build but-
ton or Rebuild All button on the Build toolbar (see “Build Toolbar” on page 18). The
linker then links the corresponding object modules of the various source files in your
project and any additional object/library modules specified in the Objects and Libraries
page in the Project Settings dialog box (see “Project Settings—Objects and Libraries
Page” on page 84).The linker uses the linker command file to control how these object
modules and libraries are linked. The linker command file is automatically generated by
ZDS II if the Always Generate from Settings button is selected (see “Always Generate
from Settings” on page 81). You can add additional linker commands with the Additional
Linker Directives dialog box (page 82). If you want to override the automatically gener-
ated linker command file, select the Use Existing button (see “Use Existing” on page 83).

The linker can also be invoked from the DOS command line or through the ZDS II Com-
mand Processor. For more information on invoking the linker from the DOS command
line, see “Running ZDS II from the Command Line” on page 379. To invoke the linker
through the ZDS II Command Processor, see “Using the Command Processor” on
page 387.

1. Open your project.

2. From the Project menu, select Settings.

3. In the Objects and Libraries page, select the Standard button and click OK.

4. Click Yes to the warning message: "The project settings have changed
since the last build. Would you like to rebuild the affected
files?"

The linker command file is generated even if the build is not successful.

If you select the Included in Project button and use the startup source or object
provided with the tools (init_params_f91.asm, which includes
sysclk.asm or corresponding .obj files), building the project might result in
linker errors and warnings. If you experience this problem, follow these steps
to add the correct linker directives to initialize variables in your project:
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

247
5. Open the generated linker command file (project_name.linkcmd) and copy
everything from CHANGE STRSECT is CODE to the fifth blank line or before this
line:
"C:\Program
Files\ZiLOG\ZDSII_eZ80Acclaim!_x.x.x\samples\StarterProject\sta
rter"= \

6. Paste the directives into the Additional Linker Directives dialog box (“Additional
Directives” on page 82).

7. Click OK to return to the Project Settings dialog box.

8. Click OK to save your settings.

9. Click Yes to the warning message: "The project settings have changed
since the last build. Would you like to rebuild the affected
files?"

10. Reset your project settings and rebuild your project.

LINKER COMMANDS
The following sections describe the commands of a linker command file:

• “<outputfile>=<module list>” on page 248

• “CHANGE” on page 248

• “COPY” on page 249

• “DEBUG” on page 251

• “DEFINE” on page 251

• “FORMAT” on page 251

• “GROUP” on page 252

• “HEADING” on page 252

• “LOCATE” on page 252

• “MAP” on page 253

• “MAXHEXLEN” on page 253

• “MAXLENGTH” on page 253

• “NODEBUG” on page 254

• “NOMAP” on page 254

• “NOWARN” on page 254

• “ORDER” on page 254
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

248
• “RANGE” on page 255

• “SEARCHPATH” on page 255

• “SEQUENCE” on page 256

• “SORT” on page 256

• “SPLITTABLE” on page 256

• “UNRESOLVED IS FATAL” on page 257

• “WARN” on page 257

• “WARNING IS FATAL” on page 258

• “WARNOVERLAP” on page 258

NOTE: Only the <outputfile>=<module list> and the FORMAT commands are required. All
commands and operators are not case sensitive.

<outputfile>=<module list>
This command defines the executable file, object modules, and libraries involved in the
linking process. <module list> is a list of object module or library path names to be linked
together to create the output file. <output_file> is the base name of the output file gener-
ated. The extension of the output file name is determined by the FORMAT command.

Example

sample=c:\ZDSII_eZ80Acclaim!_4.10.0\lib\zilog\vectors24.obj, \
c:\ZDSII_eZ80Acclaim!_4.10.0\lib\zilog\init_params_f91.obj, \
c:\ZDSII_eZ80Acclaim!_4.10.0\lib\zilog\cstartup.obj, \
test.obj, \
c:\ZDSII_eZ80Acclaim!_4.10.0\lib\std\chelpD.lib, \
c:\ZDSII_eZ80Acclaim!_4.10.0\lib std\crtD.lib, \
c:\ZDSII_eZ80Acclaim!_4.10.0\lib\std\fpdumy.obj

This command links the five object modules and two library modules to generate the
linked output file, which will be called sample.lod if the IEEE 695 format has been
selected.

NOTE: In the preceding example, the \ (backslash) at the end of every line except the last line
allows the <module list> to extend over several lines. The backslash to continue the
<module list> over multiple lines is not supported when this command is entered on the
DOS command line.

CHANGE
The CHANGE command is used to rename a group, address space, or segment. The CHANGE
command can also be used to move an address space to another group or to move a seg-
ment to another address space.
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

249
Syntax

CHANGE <name> = <newname>

<name> can be a group, address space, or segment.

<newname> is the new name to be used in renaming a group, address space, or segment;
the name of the group where an address space is to be moved; or the name of the address
space where a segment is to be moved.

Examples

NOTE: See also the examples for the COPY command (“COPY” on page 249).

To change the name of a segment (for example, strseg) to another segment name (for
example, codeseg), use the following command:
CHANGE strseg=codeseg

To move a segment (for example, codeseg) to a different address space (for example,
RAM), use the following command:
CHANGE codeseg=RAM

To not allocate a segment (for example, dataseg), use the following command:
CHANGE dataseg=NULL

NOTE: The linker recognizes the special space NULL. NULL is not one of the spaces that an object
file or library contains in it. If a segment is copied to NULL as a command to the linker, the
segment is deleted from the linking process. This can be useful if you need to link only part
of an executable or not write out a particular part of the executable. The predefined space
NULL can also be used to prevent initialization of data while reserving the segment in the
original space.

COPY
The COPY command is used to make a copy of a segment into a specified address space.
This is most often used to make a copy of initialized RAM in ROM so that it can be initial-
ized at run time.

Syntax

COPY <segment> <name>[at<expression>]

<segment> can only be a segment.
<name> can only be an address space.
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

250
Examples

To make a copy of a code segment in ROM, use the following procedure:

1. In the assembly code, define a code segment (for example, codeseg) to be a segment
located in RAM. This is the run-time location of codeseg.

2. Use the following linker command:
COPY codeseg ROM

The linker places the actual contents associated with codeseg in ROM (the load time
location) and associates RAM (the run-time location) addresses with labels in
codeseg.

NOTE: You need to copy the codeseg contents from ROM to RAM at run time as part of the
startup routine. You can use the COPY BASE OF and COPY TOP OF linker expressions to
get the base address and top address of the contents in ROM. You can use the BASE OF
and TOP OF linker expressions to get the base address and top address of codeseg.

To copy multiple segments to RAM, use the following procedure:

1. In the assembly code, define the segments (for example, strseg, text, and
codeseg) to be segments located in RAM. This is the run-time location of the
segments.

2. Use the following linker commands:
CHANGE strseg=codeseg

CHANGE text=codeseg

COPY codeseg RAM

The linker renames strseg and text as codeseg and performs linking as described
in the previous example. You need to write only one loop to perform the copy from
ROM to RAM at run time, instead of three (one loop each for strseg, text, and
codeseg).

To allocate a string segment in ROM but not generate the initialization, use the following
procedure:

1. In the assembly code, define the string segment (for example, strsect) to be a
segment located in ROM.

2. Use the following linker command:
COPY strsect NULL

The linker associates all the labels in strsect with an address in ROM and does not
generate any loadable data for strsect. This is useful when ROM is already
programmed separately, and the address information is needed for linking and
debugging.
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

251
NOTE: The linker recognizes the special space NULL. NULL is not one of the spaces that an
object file or library contains in it. If a segment is copied to NULL as a command to
the linker, the segment is deleted from the linking process. This can be useful if
you need to link only part of an executable or not write out a particular part of the
executable. The predefined space NULL can also be used to prevent initialization of
data while reserving the segment in the original space.

Refer to “Linker Expressions” on page 258 for the format to write an expression.

DEBUG
The DEBUG command causes the linker to generate debug information for the debugger.
This option is applicable only if the executable file format is IEEE 695.

Syntax

-DEBUG

DEFINE
The DEFINE command creates a user-defined public symbol at link time. This command is
used to resolve external references (XREF) used at assembly time.

Syntax

DEFINE <symbol name> = <expression>

<symbol name> is the name assigned to the public symbol.

<expression> is the value assigned to the public symbol.

Example

DEFINE copy_size = copy top of data_seg - copy base of data_seg

NOTE: Refer to “Linker Expressions” on page 258 for the format to write an expression.

FORMAT
The FORMAT command sets the executable file of the linker according to the following
table.

The default setting is IEEE 695.

File Type Option File Extension
IEEE 695 format OMF695 .lod

Intel 32-bit Hex INTEL32 .hex
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

252
Syntax

[-]FORMAT=<type>

Example

FORMAT = INTEL32

GROUP
The GROUP command provides a method of collecting multiple address spaces into a sin-
gle manageable entity.

Syntax

GROUP <groupname> = <name>[,<name>]

<groupname> can only be a group.

<name> can only be an address space.

NOTE: The names given after the = sign will be grouped together in order, from lower to higher
numbered addresses.

HEADING
The HEADING command enables or disables the form feed (\f) characters in the map file
output.

Syntax

-[NO]heading

LOCATE
The LOCATE command specifies the address where a group, address space, or segment is
to be located. If multiple locates are specified for the same space, the last specification
takes precedence. A warning is flagged on a LOCATE of an absolute segment.

NOTE: The LOCATE of a segment overrides the LOCATE of an address space. A LOCATE does not
override an absolute segment.

Syntax

LOCATE <name> AT <expression>

<name> can be a group, address space, or segment.

<expression> is the address to begin loading.
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

253
Example

LOCATE ROM AT $10000

NOTE: Refer to “Linker Expressions” on page 258 for the format to write an expression.

MAP
The MAP command causes the linker to create a link map file. The link map file contains
the location of address spaces, segments, and symbols. The default is to create a link map
file. NOMAP suppresses the generation of a link map file.

In the link map file, the C prefix indicates Code, and the D prefix indicates Data.

Syntax

-MAP = [<mapfile>]

mapfile has the same name as the executable file with the .map extension unless an
optional <mapfile> is specified.

Example

MAP = myfile.map

Link Map File

A sample map file is shown in the “Sample Linker Map File” on page 267.

MAXHEXLEN
The MAXHEXLEN command causes the linker to fix the maximum data record size for the
Intel hex output. The default is 64 bytes.

Syntax

[-]MAXHEXLEN < IS | = > < 16 | 32 | 64 | 128 | 255 >

Examples

-maxhexlen=16

or
MAXHEXLEN IS 16

MAXLENGTH
The MAXLENGTH command causes a warning message to be issued if a group, address
space, or segment is longer than the specified size. The RANGE command sets address
boundaries. The MAXLENGTH command allows further control of these boundaries.
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

254
Syntax

MAXLENGTH <name> <expression>

<name> can be a group, address space, or segment.

<expression> is the maximum size.

Example

MAXLENGTH CODE $FF

NOTE: Refer to “Linker Expressions” on page 258 for the format to write an expression.

NODEBUG
The NODEBUG command suppresses the linker from generating debug information. This
option is applicable only if the executable file is IEEE 695.

Syntax

[-]NODEBUG

NOMAP
The NOMAP command suppresses generation of a link map file. The default is to generate a
link map file.

Syntax

[-]NOMAP

NOWARN
The NOWARN command suppresses warning messages. The default is to generate warning
messages.

Syntax

[-]NOWARN

ORDER
The ORDER command establishes a linking sequence and sets up a dynamic RANGE for
contiguously mapped address spaces. The base of the RANGE of each consecutive address
space is set to the top of its predecessor.

Syntax

ORDER <name>[,<name-list>]
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

255
<name> can be a group, address space, or segment. <name-list> is a comma-separated list
of other groups, address spaces, or segments. However, a RANGE is established only for an
address space.

Example

ORDER GDATA,GTEXT

where GDATA and GTEXT are groups.

In this example, all address spaces associated with GDATA are located before (that is, at
lower addresses than) address spaces associated with GTEXT.

RANGE
The RANGE command sets the lower and upper bounds of a group, address space, or seg-
ment. If an address falls outside of the specified RANGE, the system displays a message.

NOTE: You must use white space to separate the colon from the RANGE command operands.

Syntax

RANGE <name><expression> : <expression>[,<expression> : <expression>...]

<name> can be a group, address space, or segment. The first <expression> marks the
lower boundary for a specified address RANGE. The second <expression> marks the upper
boundary for a specified address RANGE.

Example

RANGE CODE $100 : $1FF,$300 : $3FF

If a RANGE is specified for a segment, this range must be within any RANGE specified by
that segment’s address space.

NOTE: Refer to “Linker Expressions” on page 258 for the format to write an expression.

SEARCHPATH
The SEARCHPATH command establishes an additional search path to be specified in locat-
ing files. The search order is as follows.

1. Current directory

2. Environment path

3. Search path

Syntax

SEARCHPATH ="<path>"
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

256
Example

SEARCHPATH="C:\ZDSII_eZ80Acclaim!_4.10.0\lib\std"

SEQUENCE
The SEQUENCE command forces the linker to allocate a group, address space, or segment
in the order specified.

Syntax

SEQUENCE <name>[,<name_list>]

<name> is either a group, address space, or segment.

<name_list> is a comma-separated list of group, address space, or segment names.

Example

SEQUENCE code,xdata

NOTE: If the sequenced segments do not all receive space allocation in the first pass through the
available address ranges, then the sequence of segments is not maintained.

SORT
The SORT command sorts the external symbol listing in the map file by name or address
order. The default is to sort in ascending order by name.

Syntax

[-]SORT <ADDRESS | NAME> [IS | =] <ASCENDING | UP | DESCENDING | DOWN>

NAME indicates sorting by symbol name.

ADDRESS indicates sorting by symbol address.

Examples

The following examples show how to sort the symbol listing by the address in ascending
order:
SORT ADDRESS ASCENDING

or
-SORT ADDRESS = UP

SPLITTABLE

The SPLITTABLE command allows (but does not force) the linker to split a segment into
noncontiguous pieces to fit into available memory slots. Splitting segments can be helpful
in reducing the overall memory requirements of the project. However, problems can arise
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

257
if a noncontiguous segment is copied from one space to another using the COPY command.
The linker issues a warning if it is asked to COPY any noncontiguous segment.

If SPLITTABLE is not specified for a given segment, the linker allocates the entire seg-
ment contiguously.

The SPLITTABLE command takes precedence over the ORDER and SEQUENCE com-
mands.

By default, ZDS II segments are nonsplittable. When multiple segments are made splitta-
ble, the linker might re-order segments regardless of what is specified in the ORDER (or
SEQUENCE) command. In this case, you need to take one of the following actions:

• modify the memory map of the system so there is only one discontinuity and only one
splittable segment in which case the ORDER command is followed

• modify the project so a specific ordering of segments is not needed in which case
multiple segments can be marked splittable

Syntax

SPLITTABLE segment_list

Example

SPLITTABLE DATA, TEXT

UNRESOLVED IS FATAL
The UNRESOLVED IS FATAL command causes the linker to treat “undefined external
symbol” warnings as fatal errors. The linker quits generating output files immediately if
the linker cannot resolve any undefined symbol. By default, the linker proceeds with gen-
erating output files if there are any undefined symbols.

Syntax

[-] < UNRESOLVED > < IS | = > <FATAL>

Examples

-unresolved=fatal

or
UNRESOLVED IS FATAL

WARN
The WARN command specifies that warning messages are to be generated. An optional
warning file can be specified to redirect messages. The default setting is to generate warn-
ing messages on the screen and in the map file.
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

258
Syntax

[-]WARN = [<warn filename>]

Example

-WARN=warnfile.txt

WARNING IS FATAL
The WARNING IS FATAL command causes the linker to treat all warning messages as
fatal errors. The linker does not generate output file(s) if there are any warnings while
linking. By default, the linker proceeds with generating output files even if there are warn-
ings.

Syntax

[-]< WARNING | WARN> < IS | = > <FATAL>

Examples

-warn=fatal

or
WARNING IS FATAL

WARNOVERLAP
The WARNOVERLAP command enables or disables the warnings when overlap occurs while
binding segments. The default is to display the warnings whenever a segment gets over-
lapped.

Syntax

-[NO]warnoverlap

LINKER EXPRESSIONS
The following sectiona describe the operators and operands that form legal linker expres-
sions:

• “+ (Add)” on page 259

• “& (And)” on page 260

• “BASE OF” on page 260

• “COPY BASE” on page 261

• “COPY TOP” on page 261

• “/ (Divide)” on page 261
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

259
• “FREEMEM” on page 261

• “HIGHADDR” on page 262

• “LENGTH” on page 262

• “LOWADDR” on page 262

• “* (Multiply)” on page 262

• “Decimal Numeric Values” on page 262

• “Hexadecimal Numeric Values” on page 263

• “| (Or)” on page 263

• “<< (Shift Left)” on page 263

• “>> (Shift Right)” on page 263

• “- (Subtract)” on page 263

• “TOP OF” on page 264

• “^ (Bitwise Exclusive Or)” on page 264

• “~ (Not)” on page 264

The following note applies to many of the <expression> commands discussed in this sec-
tion:

NOTE: To use BASE, TOP, COPY BASE, COPY TOP, LOWADDR, HIGHADDR, LENGTH, and
FREEMEM <expression> commands, you must have completed the calculations on the
expression. This is done using the SEQUENCE and ORDER commands. Do not use an
expression of the segment or space itself to locate the object in question.

Examples

/* Correct example using segments */
SEQUENCE seg2, seg1 /* Calculate seg2 before seg1 */
LOCATE seg1 AT TOP OF seg2 + 1

/* Do not do this: cannot use expression of seg1 to locate seg1 */
LOCATE seg1 AT (TOP OF seg2 - LENGTH OF seg1)

+ (Add)
The + (Add) operator is used to perform addition of two expressions.

Syntax

<expression> + <expression>
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

260
& (And)
The & (And) operator is used to perform a bitwise & of two expressions.

Syntax

<expression> & <expression>

BASE OF
The BASE OF operator provides the lowest used address of a group, address space, or seg-
ment, excluding any segment copies when <name> is a segment. The value of BASE OF
is treated as an expression value.

Syntax

BASE OF <name>

<name> can be a group, address space, or segment.

BASE OF Versus LOWADDR OF

By default, allocation for a given memory group, address space, or segment starts at the
lowest defined address for that memory group, address space, or segment. If you explicitly
define an assignment within that memory space, allocation for that space begins at that
defined point and then occupies subsequent memory locations; the explicit allocation
becomes the default BASE OF value. BASE OF <name> gives the lowest allocated
address in the space; LOWADDR OF <name> gives the lowest physical address in the
space.

For example:
RANGE EXTIO $0 : $FFFF
RANGE INTIO $0 : $FF
RANGE ROM $0 : $1FFFF
RANGE RAM $5000 : $1FFFF
RANGE s_checksum $0 : $FFFF
RANGE s_nvrblock $5000 : $1FFFF

/* RAM allocation */
LOCATE s_uninit_data at $5000
LOCATE BSS at (TOP OF s_uninit_data)+1
LOCATE s_nvrblock at $FE00
DEFINE __low_data = BASE OF s_uninit_data
DEFINE __copy_code_to_ram = 0

Using
LOCATE s_uninit_data at $5000

or
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

261
LOCATE s_uninit_data at LOWADDR OF RAM

gives the same address (the lowest possible address) when RANGE RAM $5000:$1FFFF.

If
LOCATE s_uninit_data at $5000

is changed to
LOCATE s_uninit_data at BASE OF RAM

the lowest used address is $FE00 (because LOCATE s_nvrblock at $FE00 and
s_nvrblock is in RAM).

COPY BASE
The COPY BASE operator provides the lowest used address of a copy segment, group, or
address space. The value of COPY BASE is treated as an expression value.

Syntax

COPY BASE OF <name>

<name> can be either a group, address space, or segment.

COPY TOP
The COPY TOP operator provides the highest used address of a copy segment, group, or
address space. The value of COPY TOP is treated as an expression value.

Syntax

COPY TOP OF <name>

<name> can be a group, address space, or segment.

/ (Divide)
The / (Divide) operator is used to perform division.

Syntax

<expression> / <expression>

FREEMEM
The FREEMEM operator provides the lowest address of unallocated memory of a group,
address space, or segment. The value of FREEMEM is treated as an expression value.

Syntax

FREEMEM OF <name>
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

262
<name> can be a group, address space, or segment.

HIGHADDR
The HIGHADDR operator provides the highest possible address of a group, address
space, or segment. The value of HIGHADDR is treated as an expression value.

Syntax

HIGHADDR OF <name>

<name> can be a group, address space, or segment.

LENGTH
The LENGTH operator provides the length of a group, address space, or segment. The
value of LENGTH is treated as an expression value.

Syntax

LENGTH OF <name>

<name> can be a group, address space, or segment.

LOWADDR
The LOWADDR operator provides the lowest possible address of a group, address space,
or segment. The value of LOWADDR is treated as an expression value.

Syntax

LOWADDR OF <name>

<name> can be a group, address space, or segment.

See “BASE OF Versus LOWADDR OF” on page 260 for an explanation of the difference
between these two operators.

* (Multiply)
The * (Multiply) operator is used to multiply two expressions.

Syntax

<expression> * <expression>

Decimal Numeric Values
Decimal numeric constant values can be used as an expression or part of an expression.
Digits are collections of numeric digits from 0 to 9.
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

263
Syntax

<digits>

Hexadecimal Numeric Values
Hexadecimal numeric constant values can be used as an expression or part of an expres-
sion. Hex digits are collections of numeric digits from 0 to 9 or A to F.

Syntax

$<hexdigits>

| (Or)
The | (Or) operator is used to perform a bitwise inclusive | (Or) of two expressions.

Syntax

<expression> | <expression>

<< (Shift Left)
The << (Shift Left) operator is used to perform a left shift. The first expression to the left
of << is the value to be shifted. The second expression is the number of bits to the left the
value is to be shifted.

Syntax

<expression> << <expression>

>> (Shift Right)
The >> (Shift Right) operator is used to perform a right shift. The first expression to the
left of >> is the value to be shifted. The second expression is the number of bits to the right
the value is to be shifted.

Syntax

<expression> >> <expression>

- (Subtract)
The - (Subtract) operator is used to subtract one expression from another.

Syntax

<expression> - <expression>
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

264
TOP OF
The TOP OF operator provides the highest allocated address of a group, address space, or
segment, excluding any segment copies when <name> is a segment. The value of TOP OF
is treated as an expression value.

Syntax

TOP OF <name>

<name> can be a group, address space, or segment.

If you declare a segment to begin at TOP OF another segment, the two segments share one
memory location. TOP OF give the address of the last used memory location in a segment,
not the address of the next available memory location. For example,
LOCATE segment2 at TOP OF segment1

starts segment2 at the address of the last used location of segment1. To avoid both seg-
ments sharing one memory location, use the following syntax:
LOCATE segment2 at (TOP OF segment1) + 1

^ (Bitwise Exclusive Or)
The ^ operator is used to perform a bitwise exclusive OR on two expressions.

Syntax

<expression> ^ <expression>

~ (Not)
The ~ (Not) operator is used to perform a one’s complement of an expression.

Syntax

~ <expression>

USING MODIFIED ZDS II STARTUP MODULES
This section explains what steps you need to take to use modified C startup modules in dif-
ferent eZ80Acclaim! linker configurations.

The following ZDS II startup modules are required as part of correctly initializing the C
run-time environment for the eZ80®, as discussed in “Startup Files” on page 157:

• src\boot\common\vectors16.asm for eZ80190, eZ80L92, eZ80F92, and
eZ80F93 devices

• src\boot\common\vectors24.asm for eZ80F91
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

265
• src\<device>\init_params_<device>.asm (for example,
init_params_f91.asm for eZ80F91)

• src\boot\common\cstartup.asm

The corresponding object files are included by ZDS II for the default boot module project
setup. Some users might find they need to customize the startup for their particular project.
Customizing these standard startup modules requires the following steps:

1. Copy the above files to the project directory.

2. Add those files to the project.

3. Select the Included in Project button in the Objects and Libraries page (see “C Startup
Module” on page 86).

4. Add linker directives as described in this section.

The linker directives in “Directives for All Configurations” on page 265 must be added to
comply with the ZDS II startup code and to avoid any linker warnings. The Additional
Linker Directives dialog box is the place where you need to add these directives (see
“Additional Directives” on page 82).

These directives can be classified into four categories:

• Renaming sections (CHANGE)

• Ordering sections (ORDER)

• Section copy (COPY)

• Link time variable definitions (DEFINE)

Directives for All Configurations
The following linker directives need to be included for all linker configurations. The addi-
tional directives for each configuration are given in the following sections:

• “Directives for the All RAM Configuration” on page 266

• “Directives for the Standard Configuration” on page 266

• “Directives for the Copy to RAM Configuration” on page 266

• “Directives for the Custom Configuration” on page 267

Those additional directives can be added at the end of these common directives:
/* Segment order */
ORDER .RESET,.IVECTS,.STARTUP,CODE,DATA

/* DATA segment initialization */
COPY DATA ROM /* DATA copy at ROM */
DEFINE __low_romdata = copy base of DATA
DEFINE __low_data = base of DATA
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

266
DEFINE __len_data = length of DATA

/* BSS segment initialization */
DEFINE __low_bss = base of BSS
DEFINE __len_bss = length of BSS

/* Copy code to RAM */
DEFINE __low_romcode = copy base of CODE
DEFINE __low_code = base of CODE
DEFINE __len_code = length of CODE

Directives for the All RAM Configuration
Apart from the common directives, the following needs to be added for this configuration:
/* Stack pointer initialization */
DEFINE __stack = highaddr of MEMORY + 1

/* Required for malloc() and free() */
DEFINE __heaptop = highaddr of MEMORY
DEFINE __heapbot = top of MEMORY + 1

/* This is set to 1 only for Copy To RAM configuration */
DEFINE __copy_code_to_ram = 0

Directives for the Standard Configuration
Apart from the common directives, the following needs to be added for this configuration:
/* Renaming STRSECT as ROM to place it in ROM – default is RAM */
CHANGE STRSECT is ROM

/* Stack pointer initialization */
DEFINE __stack = highaddr of RAM + 1

/* Required for malloc() and free() */
DEFINE __heaptop = highaddr of RAM
DEFINE __heapbot = top of RAM + 1

/* This is set to 1 only for Copy To RAM configuration */
DEFINE __copy_code_to_ram = 0

Directives for the Copy to RAM Configuration
Apart from the common directives, the following needs to be added for this configuration:
/* Binding CODE, STRSECT segments in RAM */
CHANGE CODE is RAM
CHANGE STRSECT is CODE

/* CODE copy at ROM */
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

267
COPY CODE ROM

/* Stack pointer initialization */
DEFINE __stack = highaddr of RAM + 1

/* Required for malloc() and free() */
DEFINE __heaptop = highaddr of RAM
DEFINE __heapbot = top of RAM + 1

/* Copy CODE to RAM */
DEFINE __copy_code_to_ram = 1

Directives for the Custom Configuration
Apart from the common directives, the following needs to be added for this configuration:
/* Stack pointer initialization */
DEFINE __stack = highaddr of RAM + 1

/* Required for malloc() and free() */
DEFINE __heaptop = highaddr of RAM
DEFINE __heapbot = top of RAM + 1

/* This is set to 1 only for Copy To RAM configuration */
DEFINE __copy_code_to_ram = 0

SAMPLE LINKER MAP FILE
IEEE 695 OMF Linker Version 6.20 (06030104)
Copyright (C) 1999-2004 ZiLOG, Inc. All Rights Reserved

LINK MAP:

DATE: Fri Mar 03 11:49:44 2006
PROCESSOR: assembler
FILES: C:\PROGRA~1\ZiLOG\UNDERD~1\ZDSII_~2.0\lib\zilog\vectors24.obj
 C:\PROGRA~1\ZiLOG\UNDERD~1\ZDSII_~2.0\lib\zilog\init_params_f91.obj
 C:\PROGRA~1\ZiLOG\UNDERD~1\ZDSII_~2.0\lib\zilog\cstartup.obj
 .\Buttons.obj .\LedMatrix.obj .\LedTimer.obj
 .\main.obj
 .\zsldevinit.obj
 C:\PROGRA~1\ZiLOG\UNDERD~1\ZDSII_~2.0\lib\std\chelpD.lib
 C:\PROGRA~1\ZiLOG\UNDERD~1\ZDSII_~2.0\lib\std\crtD.lib
 C:\PROGRA~1\ZiLOG\UNDERD~1\ZDSII_~2.0\lib\std\fpdumy.obj
 C:\PROGRA~1\ZiLOG\UNDERD~1\ZDSII_~2.0\lib\zilog\gpioD.lib
 C:\PROGRA~1\ZiLOG\UNDERD~1\ZDSII_~2.0\lib\zilog\uartF91simD.lib

UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

268
COMMAND LIST:
=============
/* Linker Command File - ledDemo Debug - RAM */

/* Generated by: */
/* ZDS II - eZ80Acclaim! 4.10.0 (Build 06030104) */
/* IDE component: b:4.10:06030104 */

/* compiler options */
/* -define:_EZ80F91 -define:_EZ80ACCLAIM! -define:ZSL_DEVINIT */
/* -define:ZSL_DEVICE_PORTB -define:_ZSL_PORT_USED */
/* -define:ZSL_DEVICE_PORTD -define:ZSL_DEVICE_UART0 */
/* -define:_ZSL_UART_USED -define:_SIMULATE -genprintf -NOkeepasm */
/* -NOkeeplst -NOlist -NOlistinc -NOmodsect -optsize -promote */
/* -reduceopt */
/* -stdinc:"D:;..\..\..\include\std;..\..\..\include\zilog" */
/* -usrinc:"..\include" -debug -cpu:eZ80F91 */
/* -asmsw:" -cpu:eZ80F91 -define:_EZ80ACCLAIM!=1 -define:ZSL_DEVINIT=1 -
define:ZSL_DEVICE_PORTB=1 -define:_ZSL_PORT_USED=1 -define:ZSL_DEVICE_PORTD=1
-define:ZSL_DEVICE_UART0=1 -define:_ZSL_UART_USED=1 -define:_SIMULATE=1 -
include:C:\PROGRA~1\ZiLOG\UNDERD~1\ZDSII_~2.0\include\std;C:\PROGRA~1\ZiLOG\UN
DERD~1\ZDSII_~2.0\include\zilog" */

/* assembler options */
/* -define:_EZ80ACCLAIM!=1 -define:ZSL_DEVINIT=1 */
/* -define:ZSL_DEVICE_PORTB=1 -define:_ZSL_PORT_USED=1 */
/* -define:ZSL_DEVICE_PORTD=1 -define:ZSL_DEVICE_UART0=1 */
/* -define:_ZSL_UART_USED=1 -define:_SIMULATE=1 */
/* -include:"..\..\..\include\std;..\..\..\include\zilog" -NOlist */
/* -NOlistmac -name -pagelen:56 -pagewidth:80 -quiet -sdiopt -warn */
/* -debug -NOigcase -cpu:eZ80F91 */

-FORMAT=OMF695,INTEL32
-map -maxhexlen=64 -NOquiet -NOwarnoverlap -NOxref -unresolved=fatal
-sort NAME=ascending -warn -debug -NOigcase

RANGE ROM $000000 : $03FFFF
RANGE RAM $B80000 : $BFFFFF
RANGE EXTIO $0 : $FFFF
RANGE INTIO $0 : $FF

CHANGE STRSECT is ROM

ORDER .RESET,.IVECTS,.STARTUP,CODE,DATA
COPY DATA ROM

DEFINE __low_romdata = copy base of DATA
DEFINE __low_data = base of DATA
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

269
DEFINE __len_data = length of DATA
DEFINE __low_bss = base of BSS
DEFINE __len_bss = length of BSS
DEFINE __stack = highaddr of RAM + 1
DEFINE __heaptop = highaddr of RAM
DEFINE __heapbot = top of RAM + 1
DEFINE __low_romcode = copy base of CODE
DEFINE __low_code = base of CODE
DEFINE __len_code = length of CODE
DEFINE __copy_code_to_ram = 0
DEFINE __crtl = 1
DEFINE __CS0_LBR_INIT_PARAM = $10
DEFINE __CS0_UBR_INIT_PARAM = $1f
DEFINE __CS0_CTL_INIT_PARAM = $a8
DEFINE __CS0_BMC_INIT_PARAM = $02
DEFINE __CS1_LBR_INIT_PARAM = $00
DEFINE __CS1_UBR_INIT_PARAM = $07
DEFINE __CS1_CTL_INIT_PARAM = $28
DEFINE __CS1_BMC_INIT_PARAM = $02
DEFINE __CS2_LBR_INIT_PARAM = $80
DEFINE __CS2_UBR_INIT_PARAM = $bf
DEFINE __CS2_CTL_INIT_PARAM = $28
DEFINE __CS2_BMC_INIT_PARAM = $02
DEFINE __CS3_LBR_INIT_PARAM = $00
DEFINE __CS3_UBR_INIT_PARAM = $00
DEFINE __CS3_CTL_INIT_PARAM = $00
DEFINE __CS3_BMC_INIT_PARAM = $02
DEFINE __RAM_CTL_INIT_PARAM = $C0
DEFINE __RAM_ADDR_U_INIT_PARAM = $B7
DEFINE __FLASH_CTL_INIT_PARAM = $60
DEFINE __FLASH_ADDR_U_INIT_PARAM = $00

define _SYS_CLK_FREQ = 20000000
define _OSC_FREQ = 20000000
define _SYS_CLK_SRC = 0
define _OSC_FREQ_MULT = 1
define __PLL_CTL0_INIT_PARAM = $00
define _zsl_g_clock_xdefine = 50000000

"C:\PROGRA~1\ZiLOG\UNDERD~1\ZDSII_~2.0\samples\EZ80F9~1\src\ledDemo"=
C:\PROGRA~1\ZiLOG\UNDERD~1\ZDSII_~2.0\lib\zilog\vectors24.obj,
C:\PROGRA~1\ZiLOG\UNDERD~1\ZDSII_~2.0\lib\zilog\init_params_f91.obj,
C:\PROGRA~1\ZiLOG\UNDERD~1\ZDSII_~2.0\lib\zilog\cstartup.obj, .\Buttons.obj,
.\LedMatrix.obj, .\LedTimer.obj, .\main.obj, .\zsldevinit.obj,
C:\PROGRA~1\ZiLOG\UNDERD~1\ZDSII_~2.0\lib\std\chelpD.lib,
C:\PROGRA~1\ZiLOG\UNDERD~1\ZDSII_~2.0\lib\std\crtD.lib,
C:\PROGRA~1\ZiLOG\UNDERD~1\ZDSII_~2.0\lib\std\fpdumy.obj,
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

270
C:\PROGRA~1\ZiLOG\UNDERD~1\ZDSII_~2.0\lib\zilog\gpioD.lib,
C:\PROGRA~1\ZiLOG\UNDERD~1\ZDSII_~2.0\lib\zilog\uartF91simD.lib

SPACE ALLOCATION:
=================

Space Base Top Size
------------------ ----------- ----------- ---------
RAM D:B80000 D:B801D9 1dah
ROM C:000000 C:001E79 1e7ah

SEGMENTS WITHIN SPACE:
======================

RAM Type Base Top Size
------------------ ------------------- ----------- ----------- ---------
.IVECTS normal data D:B80000 D:B800FF 100h
BSS normal data D:B80115 D:B801D9 c5h
DATA normal data D:B80100 D:B80114 15h

ROM Type Base Top Size
------------------ ------------------- ----------- ----------- ---------
.RESET normal data C:000000 C:00006A 6bh
.STARTUP normal data C:00006B C:00024F 1e5h
CODE normal data C:000250 C:001A5B 180ch
DATA * segment copy * C:001E65 C:001E79 15h
STRSECT normal data C:001DE0 C:001E64 85h
TEXT normal data C:001A5C C:001DDF 384h

SEGMENTS WITHIN MODULES:
========================

Module: ..\..\..\..\..\..\..\..\eZ8c:ABS.C (Library: crtD.lib) Version: 1:0
03/01/2006 16:41:11

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:00168D C:0016BE 32h

Module: ..\..\..\..\..\..\..\..\eZ8c:GETCHAR.C (Library: crtD.lib) Version:
1:0 03/01/2006 16:41:11
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

271
 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:0008C8 C:0008D9 12h

Module: ..\..\..\..\..\..\..\..\eZ8c:PRINT_GLOBALS.C (Library: crtD.lib)
Version: 1:0 03/01/2006 16:41:13

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: BSS D:B801A2 D:B801C5 24h
 Segment: DATA D:B8010E D:B80110 3h

Module: ..\..\..\..\..\..\..\..\eZ8c:PRINT_PUTCH.C (Library: crtD.lib)
Version: 1:0 03/01/2006 16:41:13

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:001953 C:001970 1eh

Module: ..\..\..\..\..\..\..\..\eZ8c:PRINT_PUTSTRING.C (Library: crtD.lib)
Version: 1:0 03/01/2006 16:41:13

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:000ED6 C:001091 1bch

Module: ..\..\..\..\..\..\..\..\eZ8c:PRINT_SPUTCH.C (Library: crtD.lib)
Version: 1:0 03/01/2006 16:41:13

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:000C0A C:000C30 27h

Module: ..\..\..\..\..\..\..\..\eZ8c:PRINT_UPUTCH.C (Library: crtD.lib)
Version: 1:0 03/01/2006 16:41:13

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:0009E9 C:000A05 1dh

Module: ..\..\..\..\..\..\..\eZ8c:CLOSEPORTB.C (Library: gpioD.lib) Version:
1:0 03/01/2006 16:42:19
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

272
 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:0009CE C:0009E8 1bh

Module: ..\..\..\..\..\..\..\eZ8c:CLOSEPORTD.C (Library: gpioD.lib) Version:
1:0 03/01/2006 16:42:19

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:000A51 C:000A6B 1bh

Module: ..\..\..\..\..\..\..\eZ8c:CLOSEUART0.C (Library: uartF91simD.lib)
Version: 1:0 03/01/2006 16:42:32

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:00087A C:0008B1 38h

Module: ..\..\..\..\..\..\..\eZ8c:CONTROLPORTB.C (Library: gpioD.lib) Version:
1:0 03/01/2006 16:42:19

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:000BCF C:000C09 3bh

Module: ..\..\..\..\..\..\..\eZ8c:CONTROLPORTD.C (Library: gpioD.lib) Version:
1:0 03/01/2006 16:42:20

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:000CA2 C:000CDC 3bh

Module: ..\..\..\..\..\..\..\eZ8c:CONTROLUART0.C (Library: uartF91simD.lib)
Version: 1:0 03/01/2006 16:42:32

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: BSS D:B801C6 D:B801D9 14h
 Segment: CODE C:00128B C:0015CA 340h
 Segment: DATA D:B80111 D:B80114 4h
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

273
Module: ..\..\..\..\..\..\..\eZ8c:FIFOADD.C (Library: uartF91simD.lib)
Version: 1:0 03/01/2006 16:42:33

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:000C31 C:000CA1 71h

Module: ..\..\..\..\..\..\..\eZ8c:FIFOEMPTY.C (Library: uartF91simD.lib)
Version: 1:0 03/01/2006 16:42:33

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:001773 C:00179A 28h

Module: ..\..\..\..\..\..\..\eZ8c:FIFOFULL.C (Library: uartF91simD.lib)
Version: 1:0 03/01/2006 16:42:33

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:00179B C:0017EB 51h

Module: ..\..\..\..\..\..\..\eZ8c:FIFOGET0.C (Library: uartF91simD.lib)
Version: 1:0 03/01/2006 16:42:33

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:00183E C:001913 d6h

Module: ..\..\..\..\..\..\..\eZ8c:FLUSHUART0.C (Library: uartF91simD.lib)
Version: 1:0 03/01/2006 16:42:34

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:001623 C:001686 64h

Module: ..\..\..\..\..\..\..\eZ8c:GETCH.C (Library: uartF91simD.lib) Version:
1:0 03/01/2006 16:42:34

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:001713 C:001772 60h
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

274
Module: ..\..\..\..\..\..\..\eZ8c:ISRUART0.C (Library: uartF91simD.lib)
Version: 1:0 03/01/2006 16:42:34

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: BSS D:B801A1 D:B801A1 1h
 Segment: CODE C:000A6C C:000BCE 163h

Module: ..\..\..\..\..\..\..\eZ8c:KBHIT.C (Library: uartF91simD.lib) Version:
1:0 03/01/2006 16:42:34

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:0015CB C:001622 58h

Module: ..\..\..\..\..\..\..\eZ8c:OPENPORTB.C (Library: gpioD.lib) Version:
1:0 03/01/2006 16:42:20

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:0007FC C:00083A 3fh

Module: ..\..\..\..\..\..\..\eZ8c:OPENPORTD.C (Library: gpioD.lib) Version:
1:0 03/01/2006 16:42:20

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:00083B C:000879 3fh

Module: ..\..\..\..\..\..\..\eZ8c:OPENUART0.C (Library: uartF91simD.lib)
Version: 1:0 03/01/2006 16:42:35

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:0007E6 C:0007FB 16h

Module: ..\..\..\..\..\..\..\eZ8c:PUTCH.C (Library: uartF91simD.lib) Version:
1:0 03/01/2006 16:42:35

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:0017EC C:00183D 52h
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

275
Module: ..\..\..\..\..\..\..\eZ8c:READUART0.C (Library: uartF91simD.lib)
Version: 1:0 03/01/2006 16:42:35

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:00197C C:001A5B e0h

Module: ..\..\..\..\..\..\..\eZ8c:SETMODEPORTB.C (Library: gpioD.lib) Version:
1:0 03/01/2006 16:42:21

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:000CDD C:000ED5 1f9h

Module: ..\..\..\..\..\..\..\eZ8c:SETMODEPORTD.C (Library: gpioD.lib) Version:
1:0 03/01/2006 16:42:21

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:001092 C:00128A 1f9h

Module: ..\..\..\..\..\..\..\eZ8c:WRITEUART0.C (Library: uartF91simD.lib)
Version: 1:0 03/01/2006 16:42:37

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:001914 C:001952 3fh

Module: ..\..\src\boot\common\cstartup.asm (File: cstartup.obj) Version: 1:0
03/01/2006 16:41:09

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: .STARTUP C:000202 C:00024F 4eh
 Segment: DATA D:B80100 D:B80102 3h

Module: ..\..\src\boot\common\vectors24.asm (File: vectors24.obj) Version: 1:0
03/01/2006 16:41:09

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: .IVECTS D:B80000 D:B800FF 100h
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

276
 Segment: .RESET C:000000 C:00006A 6bh
 Segment: .STARTUP C:00006B C:0000CD 63h

Module: ..\..\src\boot\eZ80F91\init_params_f91.asm (File: init_params_f91.obj)
Version: 1:0 03/01/2006 16:41:10

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: .STARTUP C:0000CE C:000201 134h

Module: ..\..\src\rtl\common\case.asm (Library: chelpD.lib) Version: 1:0 03/
01/2006 16:41:57

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:0016BF C:0016EA 2ch

Module: ..\..\src\rtl\common\fpdumy.asm (File: fpdumy.obj) Version: 1:0 03/01/
2006 16:41:10

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:0007DE C:0007DE 1h

Module: ..\..\src\rtl\common\iand.asm (Library: chelpD.lib) Version: 1:0 03/
01/2006 16:41:57

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:0016F8 C:001712 1bh

Module: ..\..\src\rtl\common\imulu.asm (Library: chelpD.lib) Version: 1:0 03/
01/2006 16:41:57

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:0008DA C:000915 3ch

Module: ..\..\src\rtl\common\indcall.asm (Library: chelpD.lib) Version: 1:0
03/01/2006 16:41:57

 Name Base Top Size
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

277
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:001971 C:001972 2h

Module: ..\..\src\rtl\common\ineg.asm (Library: chelpD.lib) Version: 1:0 03/
01/2006 16:41:58

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:001973 C:00197B 9h

Module: ..\..\src\rtl\common\ishrs.asm (Library: chelpD.lib) Version: 1:0 03/
01/2006 16:41:58

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:0009B1 C:0009CD 1dh

Module: ..\..\src\rtl\common\itol.asm (Library: chelpD.lib) Version: 1:0 03/
01/2006 16:41:58

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:0007DF C:0007E5 7h

Module: ..\..\src\rtl\common\lcmpu.asm (Library: chelpD.lib) Version: 1:0 03/
01/2006 16:41:58

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:0008B2 C:0008C7 16h

Module: ..\..\src\rtl\common\ldivs.asm (Library: chelpD.lib) Version: 1:0 03/
01/2006 16:41:58

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:000983 C:0009B0 2eh

Module: ..\..\src\rtl\common\ldivu.asm (Library: chelpD.lib) Version: 1:0 03/
01/2006 16:41:58

 Name Base Top Size
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

278
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:000A1B C:000A50 36h

Module: ..\..\src\rtl\common\lmulu.asm (Library: chelpD.lib) Version: 1:0 03/
01/2006 16:41:58

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:000916 C:000982 6dh

Module: ..\..\src\rtl\common\lneg.asm (Library: chelpD.lib) Version: 1:0 03/
01/2006 16:41:58

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:0016EB C:0016F7 dh

Module: ..\..\src\rtl\common\stoiu.asm (Library: chelpD.lib) Version: 1:0 03/
01/2006 16:41:59

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:001687 C:00168C 6h

Module: .\BUTTONS.C (File: Buttons.obj) Version: 1:0 03/03/2006 11:49:41

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:000250 C:000329 dah

Module: .\LEDMATRIX.C (File: LedMatrix.obj) Version: 1:0 03/03/2006 11:49:42

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: BSS D:B80115 D:B8011B 7h
 Segment: CODE C:00032A C:000586 25dh
 Segment: TEXT C:001A5C C:001DDB 380h

Module: .\LEDTIMER.C (File: LedTimer.obj) Version: 1:0 03/03/2006 11:49:43

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

279
 Segment: BSS D:B8011C D:B80120 5h
 Segment: CODE C:000587 C:0006C4 13eh

Module: .\MAIN.C (File: main.obj) Version: 1:0 03/03/2006 11:49:43

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:0006C5 C:00077E bah
 Segment: DATA D:B80103 D:B8010A 8h
 Segment: STRSECT C:001DE0 C:001E64 85h
 Segment: TEXT C:001DDC C:001DDF 4h

Module: .\strlen.asm (Library: crtD.lib) Version: 1:0 03/01/2006 16:41:19

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:000A06 C:000A1A 15h

Module:
C:\PROGRA~1\ZiLOG\UNDERD~1\ZDSII_~2.0\samples\EZ80F9~1\src\zsldevinit.asm
(File: zsldevinit.obj) Version: 1:0 03/03/2006 11:49:43

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: BSS D:B80121 D:B801A0 80h
 Segment: CODE C:00077F C:0007DD 5fh
 Segment: DATA D:B8010B D:B8010D 3h

EXTERNAL DEFINITIONS:
=====================

Symbol Address Module Segment
-------------------------------- ----------- --------------- -----------------

___print_buff D:B801A2 eZ8c:PRINT_GLOB BSS
___print_fmt D:B801AE eZ8c:PRINT_GLOB BSS
___print_leading_char D:B801C2 eZ8c:PRINT_GLOB BSS
___print_len D:B801C1 eZ8c:PRINT_GLOB BSS
___print_out D:B801C3 eZ8c:PRINT_GLOB BSS
___print_putch C:001953 eZ8c:PRINT_PUTC CODE
___print_sendstring C:000ED6 eZ8c:PRINT_PUTS CODE
___print_sputch C:000C0A eZ8c:PRINT_SPUT CODE
___print_uputch C:0009E9 eZ8c:PRINT_UPUT CODE
___print_xputch D:B8010E eZ8c:PRINT_GLOB DATA
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

280
__c_startup C:000202 cstartup .STARTUP
__case C:0016BF case CODE
__close_periphdevice C:0007D1 zsldevinit CODE
__copy_code_to_ram 00000000 (User Defined)
__crtl 00000001 (User Defined)
__CS0_BMC_INIT_PARAM 00000002 (User Defined)
__CS0_CTL_INIT_PARAM 000000A8 (User Defined)
__CS0_LBR_INIT_PARAM 00000010 (User Defined)
__CS0_UBR_INIT_PARAM 0000001F (User Defined)
__CS1_BMC_INIT_PARAM 00000002 (User Defined)
__CS1_CTL_INIT_PARAM 00000028 (User Defined)
__CS1_LBR_INIT_PARAM 00000000 (User Defined)
__CS1_UBR_INIT_PARAM 00000007 (User Defined)
__CS2_BMC_INIT_PARAM 00000002 (User Defined)
__CS2_CTL_INIT_PARAM 00000028 (User Defined)
__CS2_LBR_INIT_PARAM 00000080 (User Defined)
__CS2_UBR_INIT_PARAM 000000BF (User Defined)
__CS3_BMC_INIT_PARAM 00000002 (User Defined)
__CS3_CTL_INIT_PARAM 00000000 (User Defined)
__CS3_LBR_INIT_PARAM 00000000 (User Defined)
__CS3_UBR_INIT_PARAM 00000000 (User Defined)
__cstartup D:000001 cstartup DATA
__default_mi_handler C:00006F vectors24 .STARTUP
__default_nmi_handler C:00006D vectors24 .STARTUP
__exit C:0001B6 init_params_f91 .STARTUP
__fadd C:0007DE fpdumy CODE
__fcmp C:0007DE fpdumy CODE
__fdiv C:0007DE fpdumy CODE
__FLASH_ADDR_U_INIT_PARAM 00000000 (User Defined)
__FLASH_CTL_INIT_PARAM 00000060 (User Defined)
__fmul C:0007DE fpdumy CODE
__fneg C:0007DE fpdumy CODE
__fppack C:0007DE fpdumy CODE
__fsub C:0007DE fpdumy CODE
__ftol C:0007DE fpdumy CODE
__heapbot 00B801DA (User Defined)
__heaptop 00BFFFFF (User Defined)
__iand C:0016F8 iand CODE
__imuls C:0008DA imulu CODE
__imulu C:0008DA imulu CODE
__indcall C:001971 indcall CODE
__ineg C:001973 ineg CODE
__init C:0000CE init_params_f91 .STARTUP
__init_default_vectors C:000072 vectors24 .STARTUP
__ishrs C:0009B1 ishrs CODE
__itol C:0007DF itol CODE
__lcmps C:0008B2 lcmpu CODE
__lcmpu C:0008B2 lcmpu CODE
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

281
__ldivs C:000983 ldivs CODE
__ldivu C:000A1B ldivu CODE
__ldvrmu C:000A2D ldivu CODE
__len_bss 000000C5 (User Defined)
__len_code 0000180C (User Defined)
__len_data 00000015 (User Defined)
__lmuls C:000916 lmulu CODE
__lmulu C:000916 lmulu CODE
__lneg C:0016EB lneg CODE
__low_bss 00B80115 (User Defined)
__low_code 00000250 (User Defined)
__low_data 00B80100 (User Defined)
__low_romcode 00000000 (User Defined)
__low_romdata 00001E65 (User Defined)
__ltof C:0007DE fpdumy CODE
__nvectors C:00006B vectors24 .STARTUP
__open_periphdevice C:00077F zsldevinit CODE
__PLL_CTL0_INIT_PARAM 00000000 (User Defined)
__RAM_ADDR_U_INIT_PARAM 000000B7 (User Defined)
__RAM_CTL_INIT_PARAM 000000C0 (User Defined)
__set_vector C:0000A3 vectors24 .STARTUP
__sneg C:001973 ineg CODE
__stack 00C00000 (User Defined)
__stoiu C:001687 stoiu CODE
__u_dtoe C:0007DE fpdumy CODE
__u_dtof C:0007DE fpdumy CODE
__u_dtog C:0007DE fpdumy CODE
__u_flt_info C:0007DE fpdumy CODE
__u_flt_rnd C:0007DE fpdumy CODE
__ultof C:0007DE fpdumy CODE
__vector_table D:B80000 vectors24 .IVECTS
_abort C:0001B6 init_params_f91 .STARTUP
_abs C:00168D eZ8c:ABS CODE
_acos C:0007DE fpdumy CODE
_asin C:0007DE fpdumy CODE
_atan C:0007DE fpdumy CODE
_atan2 C:0007DE fpdumy CODE
_buttons_init C:0002D2 BUTTONS CODE
_ceil C:0007DE fpdumy CODE
_close_periphdevice C:0007D1 zsldevinit CODE
_close_PortB C:0009CE eZ8c:CLOSEPORTB CODE
_close_PortD C:000A51 eZ8c:CLOSEPORTD CODE
_close_UART0 C:00087A eZ8c:CLOSEUART0 CODE
_control_PortB C:000BCF eZ8c:CONTROLPOR CODE
_control_PortD C:000CA2 eZ8c:CONTROLPOR CODE
_control_UART0 C:00128B eZ8c:CONTROLUAR CODE
_cosh C:0007DE fpdumy CODE
_device_name D:B80103 MAIN DATA
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

282
_errno D:B80100 cstartup DATA
_exp C:0007DE fpdumy CODE
_fabs C:0007DE fpdumy CODE
_FifoAdd C:000C31 eZ8c:FIFOADD CODE
_FifoEmpty C:001773 eZ8c:FIFOEMPTY CODE
_FifoFull C:00179B eZ8c:FIFOFULL CODE
_FifoGet0 C:00183E eZ8c:FIFOGET0 CODE
_floor C:0007DE fpdumy CODE
_flush_UART0 C:001623 eZ8c:FLUSHUART0 CODE
_fmod C:0007DE fpdumy CODE
_g_clock0 D:B80111 eZ8c:CONTROLUAR DATA
_g_fifosize D:B8010B zsldevinit DATA
_g_HWflowctl_UART0 D:B801D8 eZ8c:CONTROLUAR BSS
_g_mode_UART0 D:B801D9 eZ8c:CONTROLUAR BSS
_g_recverr0 D:B801A1 eZ8c:ISRUART0 BSS
_g_RxBuffer_UART0 D:B80121 zsldevinit BSS
_g_RxFIFO_UART0 D:B801CF eZ8c:CONTROLUAR BSS
_g_TxBuffer_UART0 D:B80161 zsldevinit BSS
_g_TxFIFO_UART0 D:B801C6 eZ8c:CONTROLUAR BSS
_getch C:001713 eZ8c:GETCH CODE
_getchar C:0008C8 eZ8c:GETCHAR CODE
_init_default_vectors C:000072 vectors24 .STARTUP
_init_sys_clk_pll C:0001BC init_params_f91 .STARTUP
_InitSysClk C:0001EA init_params_f91 .STARTUP
_InitSysClkDone C:0001F6 init_params_f91 .STARTUP
_isr_uart0 C:000A6C eZ8c:ISRUART0 CODE
_kbhit C:001611 eZ8c:KBHIT CODE
_ldexp C:0007DE fpdumy CODE
_ledmatrix_clear C:00034A LEDMATRIX CODE
_ledmatrix_fill C:000361 LEDMATRIX CODE
_ledmatrix_flash C:0004E4 LEDMATRIX CODE
_ledmatrix_init C:00032A LEDMATRIX CODE
_ledmatrix_putc C:000378 LEDMATRIX CODE
_ledmatrix_puts C:0003EC LEDMATRIX CODE
_ledmatrix_spin C:00045B LEDMATRIX CODE
_ledmatrix_test C:000539 LEDMATRIX CODE
_ledtimer_init C:0005FB LEDTIMER CODE
_log C:0007DE fpdumy CODE
_log10 C:0007DE fpdumy CODE
_main C:0006C5 MAIN CODE
_matrix_char_map C:001A5C LEDMATRIX TEXT
_open_periphdevice C:00077F zsldevinit CODE
_open_PortB C:0007FC eZ8c:OPENPORTB CODE
_open_PortD C:00083B eZ8c:OPENPORTD CODE
_open_UART0 C:0007E6 eZ8c:OPENUART0 CODE
_OSC_FREQ 01312D00 (User Defined)
_OSC_FREQ_MULT 00000001 (User Defined)
_OscFreq C:0001F7 init_params_f91 .STARTUP
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

283
_p_user_input D:B80118 LEDMATRIX BSS
_pb0_isr C:000250 BUTTONS CODE
_pb1_isr C:00027A BUTTONS CODE
_pb2_isr C:0002A6 BUTTONS CODE
_pcolumn D:B80115 LEDMATRIX BSS
_pow C:0007DE fpdumy CODE
_putch C:0017EC eZ8c:PUTCH CODE
_read_UART0 C:00197C eZ8c:READUART0 CODE
_reset C:000000 vectors24 .RESET
_set_vector C:0000A3 vectors24 .STARTUP
_setmode_PortB C:000CDD eZ8c:SETMODEPOR CODE
_setmode_PortD C:001092 eZ8c:SETMODEPOR CODE
_sinh C:0007DE fpdumy CODE
_sqrt C:0007DE fpdumy CODE
_strlen C:000A06 strlen CODE
_SYS_CLK_FREQ 01312D00 (User Defined)
_SYS_CLK_SRC 00000000 (User Defined)
_SysClkFreq C:0001FD init_params_f91 .STARTUP
_SysClkSrc C:000201 init_params_f91 .STARTUP
_tan C:0007DE fpdumy CODE
_tanh C:0007DE fpdumy CODE
_timer D:B8011C LEDTIMER BSS
_tmr2_isr C:000587 LEDTIMER CODE
_user_input D:B8011B LEDMATRIX BSS
_version C:001DDC MAIN TEXT
_wait C:00066B LEDTIMER CODE
_write_UART0 C:001914 eZ8c:WRITEUART0 CODE
_zsl_g_clock_xdefine 02FAF080 (User Defined)

182 external symbol(s).

END OF LINK MAP:
================
0 Errors
0 Warnings

TROUBLESHOOTING THE LINKER
Review these questions to learn more about common situations you might encounter when
using the linker:

• “How do I speed up the linker?” on page 284

• “How do I generate debug information without generating code?” on page 284

• “How can I debug code already programmed in ROM?” on page 284

• “How much memory is my program using?” on page 286
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

284
• “How do I determine the size of my actual hex code?” on page 286

How do I speed up the linker?
Use the following tips to lower linker execution times:

• If you do not need a link map file, deselect the Generate Map File check box in the
Project Settings dialog box (Output page). See “Generate Map File” on page 93.

• Make sure that all DOS windows are minimized.

How do I generate debug information without generating code?
Use the COPY or CHANGE command in the linker to copy or change a segment to the
predefined NULL space. If you copy the segment to the NULL space, the region is still
allocated but no data is written for it. If you change the segment to the NULL space, the
region is not allocated at all.

The following examples are of commands in the linker command file:

COPY myseg NULL

CHANGE myseg = NULL

How can I debug code already programmed in ROM?
This solution has two parts:

• “Part 1: Create and Program the Hex File with Debug Information” on page 284.

• “Part 2: Create a Build Configuration that Mimics the Original for Debugging” on
page 285

Part 1 produces code that can be debugged and places it on the target, and Part 2 is neces-
sary to get the IDE in sync with the code on the target. Both parts are necessary to make
this solution work.

NOTE: Part 2 essentially produces a build configuration within the original project that allows the
IDE to connect to the target for debugging. The new build configuration contains virtually
the same project settings, except the executable format, as the project you used for creating
your hex file.

Part 1: Create and Program the Hex File with Debug Information
1. From the File menu, select Open Project to open the project that was used to create

the original hex file with ZDS II.

2. Select the build configuration used to create the original hex file from the Select Build
Configuration drop-down list box in the Build toolbar.

3. Select Settings from the Project menu.
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

285
The Project Settings dialog box is displayed.

4. Select the General page.

5. Select the Generate Debug Information check box.

6. Click OK to close the Project Settings dialog box.

7. From the Build menu, select Rebuild All to build the project.

8. Program the newly generated hex file in the target.

Part 2: Create a Build Configuration that Mimics the Original for Debugging
1. Select Manage Configurations from the Build menu.

The Manage Configurations dialog box is displayed.

2. Click Add.

The Add Project Configuration dialog box is displayed.

3. In the Configuration Name field, enter a new configuration name (for example, Debug
– Flash).

4. Verify that the target is eZ80Acclaim!.

5. In the Copy Settings From drop-down list box, select the build configuration used to
create the original hex file.

6. Click OK to close the Add Project Configuration dialog box.

7. Click Close to close the Manage Configurations dialog box.

8. Select the new build configuration (for example, Debug – Flash) from the Select Build
Configuration drop-down list box in the Build toolbar.

9. Select Settings from the Project menu.

The Project Settings dialog box is displayed.

10. In the General page, make sure that the Generate Debug Information check box is
selected.

11. In the Output page, select IEEE 695 in the Executable Formats area.

12. In the Debugger page, select the appropriate target in the Target area and click Setup.

The Configure Target dialog box is displayed.

13. Verify that the initialization parameters mimic the hardware parameters used by the
original project.

14. Enter 0 in the Program Counter (hex) field.

15. Click OK to close the Configure Target dialog box.

16. Click OK to close the Project Settings dialog box.
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

286
17. From the Build menu, select Rebuild All to build the project.

18. From the Debug menu, select Connect to Target to connect to the target.

19. Continue debugging as usual.

NOTE: For the solution given here, it is assumed that the source and project files are available to
recreate the hex image with ZDS II and that the target can be reprogrammed. If the source
and project files are not available to recreate the hex image with ZDS II or the target cannot
be reprogrammed, a new project can be created for debugging at the disassembly level. In
that case, create a new project for the target that contains a blank source file.

How much memory is my program using?
Unless the Generate Map File check box is deselected in the Project Settings dialog box
(Output page), the linker creates a link map file each time it is run. The link map file name
is the same as your executable file with the .map extension and resides in the same direc-
tory as your project file. The link map has a wealth of information about the memory
requirements of your program. Views of memory usage from the space, segment, and
module perspective are given as are the names and locations of all public symbols. See
“Generate Map File” on page 93 and “MAP” on page 253.

How do I determine the size of my actual hex code?
Refer to the map file. Unless the Generate Map File check box is deselected in the Project
Settings dialog box (“Generate Map File” on page 93), the linker creates a link map file
each time it is run. The link map file name is the same as your executable file with the
.map extension and resides in the same directory as your project file.

WARNING AND ERROR MESSAGES
NOTE: If you see an internal error message, please report it to Technical Support at

http://support.zilog.com. ZiLOG staff will use the information to diagnose
or log the problem.

This section covers warning and error messages for the linker/locator.

700 Absolute segment "<name>" is not on a MAU boundary.

The named segment is not aligned on a Minimum Addressable Unit boundary.
Padding or a correctly aligned absolute location must be supplied.

701 <address range error message>.

A group, section, or address space is larger than is specified maximum length.

Do not establish a target connection using the Reset or Go commands/buttons
and do not invoke the Download Code command/button. Doing so might
corrupt the ROM/Flash device. The Reset and Go commands/buttons can be
used in all other cases.
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

287
704 Locate of a type is invalid. Type "<typename>".

It is not permitted to specify an absolute location for a type.

708 "<name>" is not a valid group, space, or segment.

An invalid record type was encountered. Most likely, the object or library file is
corrupted.

710 Merging two located spaces "<space1> <space2>" is not allowed.

When merging two or more address spaces, at most one of them can be located
absolutely.

711 Merging two located groups "<group1> <group2>".

When merging two or more groups, at most one can be located absolutely.

712 Space "<space>" is not located on a segment base.

The address space is not aligned with a segment boundary.

713 Space "<space>" is not defined.

The named address space is not defined.

714 Multiple locates for "<name>" have been specified.

Multiple absolute locations have been specified for the named group, section, or
address space.

715 Module "<name>" contains errors or warnings.

Compilation of the named module produced a nonzero exit code.

717 Invalid expression.

An expression specifying a symbol value could not be parsed.

718 "<segment>" is not in the specified range.

The named segment is not within the allowed address range.

719 "<segment>" is an absolute or located segment. Relocation was ignored.

An attempt was made to relocate an absolutely located segment.

720 "<name> calls <name>" graph node which is not defined.

This message provides detailed information on how an undefined function name is
called.

721 Help file "<name>" not found.

The named help file could not be found. You may need to reinstall the development
system software.
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

288
723 "<name>" has not been ordered.

The named group, section, or address space does not have an order assigned to it.

724 Symbol <name> (<file>) is not defined.

The named symbol is referenced in the given file, but not defined. Only the name of
the file containing the first reference is listed within the parentheses; it can also be
referenced in other files.

726 Expression structure could not be stored. Out of memory.

Memory to store an expression structure could not be allocated.

727 Group structure could not be stored. Out of memory.

Memory to store a group structure could not be allocated.

730 Range structure could not be stored. Out of memory.

Memory to store a range structure could not be allocated.

731 File "<file>" is not found.

The named input file or a library file name or the structure containing a library file
name was not found.

732 Error encountered opening file "<file>".

The named file could not be opened.

736 Recursion is present in call graph.

A loop has been found in the call graph, indicating recursion.

738 Segment "<segment>" is not defined.

The referenced segment name has not been defined.

739 Invalid space "<space>" is defined.

The named address space is not valid. It must be either a group or an address space.

740 Space "<space>" is not defined.

The referenced space name is not defined.

742 <error message>

A general-purpose error message.

743 Vector "<vector>" not defined.

The named interrupt vector could not be found in the symbol table.

745 Configuration bits mismatch in file <file>.

The mode bit in the current input file differs from previous input files.
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

289
746 Symbol <name> not attached to a valid segment.

The named symbol is not assigned to a valid segment.

747 <message>

General-purpose error message for reporting out-of-range errors. An address does not
fit within the valid range.

748 <message>

General-purpose error message for OMF695 to OMF251 conversion. The requested
translation could not proceed.

749 Could not allocate global register.

A global register was requested, but no register of the desired size remains available.

751 Error opening output file "<outfile>".

The named load module file could not be opened.

753 Segment '<segment>' being copied is splittable

A segment, which is to be copied, is being marked as splittable, but startup code might
assume that it is contiguous.
UM014423-0607 Using the Linker/Locator

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

290
Using the Debugger
The source-level debugger is a program that allows you to find problems in your code at
the C or assembly level. You can also write batch files to automate debugger tasks (see
“Using the Command Processor” on page 387). The following topics are covered in this
section:

• “Status Bar” on page 291

• “Code Line Indicators” on page 292

• “Debug Windows” on page 292

• “Using Breakpoints” on page 306

• “Debug Tools” on page 310

• “Targets” on page 311

From the Debug menu, select Reset (or any other execution command) to enter Debug
mode.

You are now in Debug mode as shown in the Debug Output window. (For a description of
this window, see “Debug Output Window” on page 35.)

The Debug toolbar and Debug Windows toolbar are displayed as shown in the following
figure. The Debug toolbar is described in “Debug Toolbar” on page 23; the Debug Win-
dows toolbar is described in “Debug Windows Toolbar” on page 27.
UM014423-0607 Using the Debugger

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

291
Figure 93. Debug and Debug Window Toolbars

NOTE: Project code cannot be rebuilt while in Debug mode. The Development Environment will
prompt you if you request a build during a debug session. If you edit code during a debug
session and then attempt to execute the code, the Development Environment will stop the
current debug session, rebuild the project, and then attempt to start a new debug session if
you elect to do so when prompted.

STATUS BAR
The status bar displays the current status of your program’s execution. The status can be
STOP, STEP, or RUN. The STOP mode indicates that your program is not executing. The
STEP mode indicates that a Step operation (using the Step Into, Step Over, or Step Out
command) is in progress. The RUN mode indicates that the program is executing after a
Go command has been issued. In RUN mode, the following debug operations are avail-
able: Reset, Stop Debugging, Break, and enabling/disabling a breakpoint. Note that
enabling/disabling a breakpoint temporarily stops program execution; program execution
resumes after the breakpoint is enabled or disabled. View/read memory, Step Into, Step
Over, Step Out, and Go are disabled in RUN mode.
UM014423-0607 Using the Debugger

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

292
CODE LINE INDICATORS
The Edit window displays your source code with line numbers and code line indicators.
The debugger indicates the status of each line visually with the following code line indica-
tors:

• A red octagon indicates an active breakpoint at the code line; a white octagon
indicates a disabled breakpoint.

• Blue dots are displayed to the left of all valid code lines; these are lines where
breakpoints can be set, the program can be run to, and so on.

NOTE: Some source lines do not have blue dots because the code has been optimized out of the
executable (and the corresponding debug information).

• A program counter code line indicator (yellow arrow) indicates a code line at which
the program counter is located.

• A program counter code line indicator on a breakpoint (yellow arrow on a red
octagon) indicates a code line indicator has stopped on a breakpoint.

If the program counter steps into another file in your program, the Edit window switches
to the new file automatically.

DEBUG WINDOWS
The Debug Windows toolbar (described in “Debug Windows Toolbar” on page 27) allows
you to display the following Debug windows:

• “Registers Window” on page 292

• “Special Function Registers Window” on page 293

• “Clock Window” on page 294

• “Memory Window” on page 295

• “Watch Window” on page 300

• “Locals Window” on page 302

• “Call Stack Window” on page 303

• “Symbols Window” on page 304

• “Disassembly Window” on page 305

• “Simulated UART Output Window” on page 306

Registers Window
Click the Registers Window button to show or hide the Registers window. The Registers
window displays all the registers in the standard eZ80Acclaim! architecture.
UM014423-0607 Using the Debugger

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

293
Figure 94. Registers Window

To change register values, do the following:

1. In the Registers window, highlight the value you want to change.

2. Type the new value and press the Enter key.

The changed value is displayed in red.

Special Function Registers Window
Click the Special Function Registers Window button to open up to 20 Special Function
Registers windows. Each Special Function Registers window displays the special function
registers in the standard eZ80Acclaim! architecture that belong to the selected group.
Addresses F00 through FFF are reserved for special function registers (SFRs).

Use the Group drop-down list to view a particular group of SFRs.

Figure 95. Special Function Registers Window

NOTE: There are several SFRs that when read are cleared or clear an associated register.
To prevent the debugger from changing the behavior of the code, a special group of
SFRs was created that groups these state changing registers. The group is called
SPECIAL_CASE. If this group is selected, the behavior of the code changes, and
the program must be reset.
UM014423-0607 Using the Debugger

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

294
To change special function register values, do the following:

1. In the Special Function Registers window, highlight the value you want to change.

2. Type the new value and press the Enter key.

The changed value is displayed in red.

Clock Window
Click the Clock Window button to show or hide the Clock window.

The Clock window displays the number of states executed since the last reset. You can
reset the contents of the Clock window at any time by selecting the number of cycles
(1645 in the following figure), type 0, and press the Enter key. Updated values are dis-
played in red.

NOTE: The Clock window will only display clock data when the Simulator is the active
debug tool.

Figure 96. Clock Window
UM014423-0607 Using the Debugger

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

295
Memory Window
Click the Memory Window button to open up to ten Memory windows.

Figure 97. Memory Window

Each Memory window displays data located in the target’s memory. The ASCII text for
memory values is shown in the last column. The address is displayed in the far left column
with an E# to denote the External Io address space, F# to denote the Flash Info address
space, I# to denote the Internal Io address space, or M# to denote the Memory address
space.

Use the Memory window to do the following:

• “Change Values” on page 295

• “View the Values for Other Memory Spaces” on page 296

• “View or Search for an Address” on page 296

• “Fill Memory” on page 297

• “Save Memory to a File” on page 298

• “Load a File into Memory” on page 299

NOTE: The Page Up and Page Down keys (on your keyboard) are not functional in the Memory
window. Instead, use the up and down arrow buttons to the right of the Space and Address
fields.

Change Values
To change the values in the Memory window, do the following:

1. In the window, highlight the value you want to change.
UM014423-0607 Using the Debugger

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

296
The values begin in the second column after the Address column.

2. Type the new value and press the Enter key.

The changed value is displayed in red.

View the Values for Other Memory Spaces
To view the values for other memory spaces, use one of the following procedures:

• Replace the initial letter with a different valid memory prefix and press the entry key.

For example, type I for the Internal Io memory space.

• Select the space name in the Space drop-down list.

View or Search for an Address
To quickly view or search for an address in the Memory window, do the following:

1. In the Memory window, highlight the address in the Address field.

Figure 98. Memory Window—Starting Address

2. Type the address you want to find and press the Enter key.

For example, find 0000B4.

The system moves the selected address to the top of the Memory window, as shown in
the following figure.
UM014423-0607 Using the Debugger

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

297
Figure 99. Memory Window—Requested Address

Fill Memory
Use this procedure to write a common value in all the memory spaces in the specified
address range, for example, to clear memory for the specified address range.

To fill a specified address range of memory, do the following:

1. Select the memory space in the Space drop-down list.

2. Right-click in the list box to display the context menu.

3. Select Fill Memory.

The Fill Memory dialog box is displayed.

Figure 100. Fill Memory Dialog Box

4. In the Fill Value area, select the characters to fill memory with or select the Other
button.
UM014423-0607 Using the Debugger

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

298
If you select the Other button, type the fill characters in the Other field.

5. Type the start address in hexadecimal format in the Start Address (Hex) field and type
the end address in hexadecimal format in the End Address (Hex) field.

This address range is used to fill memory with the specified value.

6. Click OK to fill the selected memory.

Save Memory to a File
Use this procedure to save memory specified by an address range to a binary, hexadeci-
mal, or text file.

Perform the following steps to save memory to a file:

1. Select the memory space in the Space drop-down list.

2. Right-click in the list box to display the context menu.

3. Select Save to File.

The Save to File dialog box is displayed.

Figure 101. Save to File Dialog Box

4. In the File Name field, enter the path and name of the file you want to

 save the memory to or click the Browse button () to search for a file or directory.

5. Type the start address in hexadecimal format in the Start Address (Hex) field and type
the end address in hexadecimal format in the End Address (Hex) field.

This specifies the address range of memory to save to the specified file.

6. Select how many bytes there are in each line or enter a number in the Other field.

7. Select whether to save the file as text, hex (hexadecimal), or binary.
UM014423-0607 Using the Debugger

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

299
8. Click OK to save the memory to the specified file.

Load a File into Memory
Use this procedure to load or to initialize memory from an existing binary, hexadecimal, or
text file.

Perform the following steps to load a file into memory:

1. Select the memory space in the Space drop-down list.

2. Right-click in the list box to display the context menu.

3. Select Load from File.

The Load from File dialog box is displayed.

Figure 102. Load from File Dialog Box

4. In the File Name field, enter the path and name of the file to load or

 click the Browse button () to search for the file.

5. In the Start Address (Hex) field, enter the start address.

6. Select whether to load the file as text, hex (hexadecimal), or binary.

7. Click OK to load the file’s contents into the selected memory.
UM014423-0607 Using the Debugger

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

300
Watch Window
Click the Watch Window button to show or hide the Watch window.

Figure 103. Watch Window

The Watch window displays all the variables and their values defined using the WATCH
command. If the variable is not in scope, the variable is not displayed. The values in the
Watch window change as the program executes. Updated values appear in red.

The 0x prefix indicates that the values are displayed in hexadecimal format. If you want
the values to be displayed in decimal format, select Hexadecimal Display from the con-
text menu.

Use the Watch window to do the following:

• “Add New Variables” on page 301

• “Change Values” on page 301

• “Remove an Expression” on page 301

• “View a Hexadecimal Value” on page 301

• “View a Decimal Value” on page 301

• “View an ASCII Value” on page 302
UM014423-0607 Using the Debugger

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

301
• “View a NULL-Terminated ASCII (ASCIZ) String” on page 302

Add New Variables
To add new variables in the Watch window, use one of the following procedures:

• Click once on <new watch> in the Expression column, type the expression, and press
the Enter key.

• Select the variable in the source file, drag, and drop it into the Watch window.

Change Values
To change values in the Watch window, do the following:

1. In the window, highlight the value you want to change.

2. Type the new value and press the Enter key.

The changed value is displayed in red.

Remove an Expression
To remove an expression from the Watch window, do the following:

1. In the Expression column, click once on the expression you want to remove.

2. Press the Delete key to clear both columns.

View a Hexadecimal Value
To view the hexadecimal values of an expression, do the following:

1. Type hex expression in the Expression column

For example, type hex tens.

NOTE: You can also type just the expression (for example, type tens) to view the hexadecimal
value of any expression. Hexadecimal format is the default.

2. Press the Enter key.

The hexadecimal value displays in the Value column.

To view the hexadecimal values for all expressions, select Hexadecimal Display from the
context menu.

View a Decimal Value
To view the decimal values of an expression, do the following:

1. Type dec expression in the Expression column

For example, type dec huns.

2. Press the Enter key.
UM014423-0607 Using the Debugger

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

302
The decimal value displays in the Value column.

To view the decimal values for all expressions, select Hexadecimal Display from the con-
text menu.

View an ASCII Value
To view the ASCII values of an expression, do the following:

1. Type ascii expression in the Expression column.

For example, type ascii ones.

2. Press the Enter key.

The ASCII value displays in the Value column.

View a NULL-Terminated ASCII (ASCIZ) String
To view the NULL-terminated ASCII (ASCIZ) values of an expression, do the following:

1. Type asciz expression in the Expression column

For example, type asciz ones.

2. Press the Enter key.

The ASCIZ value displays in the Value column.

Locals Window
Click the Locals Window button to show or hide the Locals window. The Locals window
displays all local variables that are currently in scope. Updated values appear in red.

The 0x prefix indicates that the values are displayed in hexadecimal format. If you want
the values to be displayed in decimal format, select Hexadecimal Display from the con-
text menu.
UM014423-0607 Using the Debugger

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

303
Figure 104. Locals Window

Call Stack Window
Click the Call Stack Window button to show or hide the Call Stack window. If you want to
copy text from the Call Stack Window, select the text and then select Copy from the con-
text menu.

Figure 105. Call Stack Window
UM014423-0607 Using the Debugger

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

304
The Call Stack window allows you to view function frames that have been pushed onto the
stack. Information in the Call Stack window is updated every time a debug operation is
processed.

Symbols Window
Click the Symbols Window button to show or hide the Symbols window.

Figure 106. Symbols Window

NOTE: Close the Symbols window before running a command script.

The Symbols window displays the address for each symbol in the program.
UM014423-0607 Using the Debugger

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

305
Disassembly Window
Click the Disassembly Window button to show or hide the Disassembly window.

Figure 107. Disassembly Window

The Disassembly window displays the assembly code associated with the code shown in
the Code window. For each line in this window, the address location, the machine code,
the assembly instruction, and its operands are displayed.

When you right-click in the Disassembly window, the context menu allows you to do the
following:

• Copy text

• Go to the source code

• Insert, edit, enable, disable, or remove breakpoints

For more information on breakpoints, see “Using Breakpoints” on page 306.

• Reset the debugger

• Stop debugging

• Start or continue running the program (Go)

• Run to the cursor

• Pause the debugging (Break)

• Step into, over, or out of program instructions

• Set the next instruction at the current line

• Enable and disable source annotation and source line numbers
UM014423-0607 Using the Debugger

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

306
Simulated UART Output Window
Click the Simulated UART Output Window button to show or hide the Simulated UART
Output window.

Figure 108. Simulated UART Output Window

The Simulated UART Output window displays the simulated output of the selected UART.
Use the drop-down list to view the output for a particular UART.

Right-clicking in the Simulated UART Output window displays a context menu that pro-
vides access to the following features:

• Clear the buffered output for the selected UART.

• Copy selected text to the Windows clipboard.

NOTE: The Simulated UART Output window is available only when the Simulator is the
active debug tool.

USING BREAKPOINTS
The following sections describeshow to work with breakpoints while you are debugging:

• “Inserting Breakpoints” on page 307

• “Viewing Breakpoints” on page 307

• “Moving to a Breakpoint” on page 308

• “Enabling Breakpoints” on page 308

• “Disabling Breakpoints” on page 309

• “Removing Breakpoints” on page 309
UM014423-0607 Using the Debugger

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

307
Inserting Breakpoints
There are three ways to place a breakpoint in your file:

• Click on the line of code where you want to insert the breakpoint. You can set a
breakpoint in any line with a blue dot displayed to the left of the line (shown in Debug
mode only).

Click the Insert/Remove Breakpoint button () on the Build or Debug toolbar.

• Click on the line where you want to add a breakpoint and select Insert Breakpoint
from the context menu. You can set a breakpoint in any line with a blue dot displayed
to the left of the line (shown in Debug mode only).

• Double-click in the gutter to the left of the line where you want to add a breakpoint.
You can set a breakpoint in any line with a blue dot displayed to the left of the line
(shown in Debug mode only).

A red octagon shows that you have set a breakpoint at that location.

Figure 109. Setting a Breakpoint

Viewing Breakpoints
There are two ways to view breakpoints in your project:

• Select Manage Breakpoints from the Edit menu to display the Breakpoints dialog
box.

• Select Edit Breakpoints from the context menu to display the Breakpoints dialog
box.

You can use the Breakpoints dialog box to view, go to, enable, disable, or remove break-
points in an active project when in or out of Debug mode.
UM014423-0607 Using the Debugger

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

308
Figure 110. Viewing Breakpoints

Moving to a Breakpoint
To quickly move the cursor to a breakpoint you have previously set in your project, do the
following:

1. Select Manage Breakpoints from the Edit menu.

The Breakpoints dialog box is displayed.

2. Highlight the breakpoint you want.

3. Click Go to Code.

Your cursor moves to the line where the breakpoint is set.

Enabling Breakpoints
To make all breakpoints in a project active, do the following:

1. Select Manage Breakpoints from the Edit menu.

The Breakpoints dialog box is displayed.

2. Click Enable All.

Check marks are displayed to the left of all enabled breakpoints.

3. Click OK.

There are three ways to enable one breakpoint:

• Double-click on the white octagon to remove the breakpoint and then double-click
where the octagon was to enable the breakpoint.
UM014423-0607 Using the Debugger

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

309
• Place your cursor in the line in the file where you want to activate a disabled
breakpoint and click the Enable/Disable Breakpoint button on the Build or Debug
toolbar.

• Place your cursor in the line in the file where you want to activate a disabled
breakpoint and select Enable Breakpoint from the context menu.

The white octagon becomes a red octagon to indicate that the breakpoint is enabled.

Disabling Breakpoints
There are two ways to make all breakpoints in a project inactive:

• Select Manage Breakpoints from the Edit menu to display the Breakpoints dialog
box. Click Disable All. Disabled breakpoints are still listed in the Breakpoints dialog
box. Click OK.

• Click the Disable All Breakpoints button on the Debug toolbar.

There are two ways to disable one breakpoint:

• Place your cursor in the line in the file where you want to deactivate an active
breakpoint and click the Enable/Disable Breakpoint button on the Build or Debug
toolbar.

• Place your cursor in the line in the file where you want to deactivate an active
breakpoint and select Disable Breakpoint from the context menu.

The red octagon becomes a white octagon to indicate that the breakpoint is disabled.

Removing Breakpoints
There are two ways to delete all breakpoints in a project:

• Select Manage Breakpoints from the Edit menu to display the Breakpoints dialog
box. Click Remove All and then click OK. All breakpoints are removed from the
Breakpoints dialog box and all project files.

• Click the Remove All Breakpoints button on the Build or Debug toolbar.

There are four ways to delete a single breakpoint:

• Double-click on the red octagon to remove the breakpoint.

• Select Manage Breakpoints from the Edit menu to display the Breakpoints dialog
box. Click Remove and then click OK. The breakpoint is removed from the
Breakpoints dialog box and the file.

• Place your cursor in the line in the file where there is a breakpoint and click the Insert/
Remove Breakpoint button on the Build or Debug toolbar.

• Place your cursor in the line in the file where there is a breakpoint and select Remove
Breakpoint from the context menu.
UM014423-0607 Using the Debugger

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

310
DEBUG TOOLS
Debug tools interface with the debugger to execute programs on physical or simulated tar-
get hardware. The following sections describe the available debug tools:

• “Cycle-Accurate Instruction Set Simulator” on page 310

• “Non-Simulator Debug Tools” on page 310

Refer to “Project Settings—Debugger Page” on page 95 for information on selecting and
configuring debug tools. Debug tool configuration must be done before entering Debug
mode.

Cycle-Accurate Instruction Set Simulator
The eZ80Acclaim! Instruction Set Simulator interfaces with the debugger to simulate the
execution of programs without using an emulator or target hardware. The Instruction Set
Simulator uses the commands of the debugger to perform tasks such as simulating timers
and interrupts.

The Instruction Set Simulator also supports the programmable reload timer peripheral
simulation for eZ80Acclaim! devices. You can operate the timers by using the
eZ80Acclaim! I/O instructions to write into the respective control registers. The peripheral
registers can be viewed in the I/O space of the Watch window (see “Watch Window” on
page 300). Currently, viewing the registers in the Special Function Registers window is
not supported. Refer to the individual device product specification for a detailed descrip-
tion on timers.

Non-Simulator Debug Tools
Non-Simulator debug tools interface with the debugger to execute programs on physical
target hardware. These debug tools manage the communication between the host and the
target hardware.

ZDS for the eZ80Acclaim! supports the following non-Simulator debug tools:

• USB Smart Cable

• Ethernet Smart Cable

• Serial Smart Cable

• ZPAK II

Refer to “Project Settings—Debugger Page” on page 95 for a description of the Debugger
page of the Project Settings dialog box. See “Debug Tool” on page 102 for more details
about individual debug tools configuration options.
UM014423-0607 Using the Debugger

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

311
TARGETS
A target is a logical representation of a physical hardware. Targets must be configured
properly to enable the debugger to correctly execute a program on the physical hardware.
the following sections describe the available targets:

• “RAM-Based Targets” on page 311

• “ROM/Flash-Based Targets” on page 311

Refer to “Project Settings—Debugger Page” on page 95 for more details about selecting,
creating, and configuring targets. Target configuration must be done before entering
Debug mode.

RAM-Based Targets
RAM-based debugging is typically used for development purposes. Debugging in RAM
allows you to peek and poke memory and use software breakpoints.

ROM/Flash-Based Targets
ROM/Flash-based targets are used with production hardware or hardware configurations
that do not have RAM.

NOTE: You cannot poke (write) during debugging; peek (view) might work depending on
the Flash configurations. This limitation is not related to the eZ80F91 registers.
UM014423-0607 Using the Debugger

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

312
ZiLOG Standard Library Notes and Tips
Review the following questions to learn more about ZSL:

• “What is ZSL?” on page 313

• “Which on-chip peripherals are supported?” on page 313

• “Where can I find the header files related to ZiLOG Standard Libraries?” on page 313

• “What is the zsldevinit.asm file?” on page 313

• “What initializations are performed in the zsldevinit.asm file?” on page 313

• “What calls the open_periphdevice() function?” on page 313

• “When I use ZiLOG Standard Libraries in my application and build from the
command line, why do I see unresolved errors?” on page 314

• “I do not use the standard boot-up module, but I have manually included ZiLOG
Standard Libraries. When I link my code with the library, why do I get an unresolved
symbols error?” on page 314

• “Where can I get the ZSL source files?” on page 314

• “I need to change the ZSL source code. How can I generate a new library with these
changes included?” on page 314

• “How can I use standard I/O calls like printf() and getch()?” on page 315

• “What is the difference between the Interrupt mode and the Poll mode in the UARTs?”
on page 315

• “What are the default settings for the UART device?” on page 315

• “How can I change the default UART settings for my application?” on page 315

• “I am using the UART in the interrupt mode. Why do I seem to lose some of the data
when I try to print or try to receive a large amount of data?” on page 316

• “When I call open_UARTx() function by configuring it in INTERRUPT mode, the
control never comes back to my program and my program behaves indifferently. Why
is this?” on page 316

• “Where can I find sample applications that demonstrate the use of ZSL?” on page 316

• “I have used init_uart() and other functions provided in the RTL. Do I need to change
my source code because of ZSL?” on page 317
UM014423-0607 ZiLOG Standard Library Notes and Tips

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

313
WHAT IS ZSL?
The ZiLOG Standard Library (ZSL) is a set of library files that provides an interface
between the user application and the on-chip peripherals of the ZDS II microprocessors/
controllers.

WHICH ON-CHIP PERIPHERALS ARE SUPPORTED?
Version 1.0 of ZSL supports UARTs and GPIO peripherals.

WHERE CAN I FIND THE HEADER FILES RELATED TO ZILOG STANDARD
LIBRARIES?

The header files related to ZiLOG Standard Libraries can be found under the following
directory:

ZILOGINSTALL\ZDSII_product_version\include\zilog

where

• ZILOGINSTALL is the ZDS II installation directory. For example, the default
installation directory is C:\Program Files\ZiLOG.

• product is the specific ZiLOG product. For example, product can be Z8Encore!,
eZ80Acclaim!, Crimzon, or Z8GP.

• version is the ZDS II version number. For example, version might be 4.11.0 or
5.0.0.

WHAT IS THE ZSLDEVINIT.ASM FILE?
zsldevinit.asm is a device initialization file. It contains routines to initialize the
devices you have selected in the ZSL page of the Project Settings dialog box.

WHAT INITIALIZATIONS ARE PERFORMED IN THE ZSLDEVINIT.ASM FILE?
The open_periphdevice() routine in zsldevinit.asm initializes the GPIO ports
and UART devices. The functions in the file also initialize other dependent parameters
like the clock speeds and UART FIFO sizes.

WHAT CALLS THE OPEN_PERIPHDEVICE() FUNCTION?
If the standard startup files are used, the open_periphdevice() function is called by
the startup routine just before calling the main function.
UM014423-0607 ZiLOG Standard Library Notes and Tips

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

314
WHEN I USE ZILOG STANDARD LIBRARIES IN MY APPLICATION AND
BUILD FROM THE COMMAND LINE, WHY DO I SEE UNRESOLVED
ERRORS?

Include zsldevinit.asm in your project.

The open_periphdevice() function has some external definitions like transmit and
receive FIFO size required by the ZSL UART library. If you do not want to include this
file, copy the logic that initializes the FIFO from the zsldevinit.asm file and include it
in one of your project files, preferably in the boot-up module.

I DO NOT USE THE STANDARD BOOT-UP MODULE, BUT I HAVE MANU-
ALLY INCLUDED ZILOG STANDARD LIBRARIES. WHEN I LINK MY CODE
WITH THE LIBRARY, WHY DO I GET AN UNRESOLVED SYMBOLS ERROR?

Include zsldevinit.asm in your project.

The open_periiphdevice() function has some external definitions like transmit and
receive FIFO size required by the ZSL UART library. If you do not want to include this
file, copy the logic that initializes the FIFO from the zsldevinit.asm file and include it
in one of your project files, preferably in the boot-up module.

WHERE CAN I GET THE ZSL SOURCE FILES?
The source files for ZSL can be found under the following directory:

ZILOGINSTALL\ZDSII_product_version\src

where

• ZILOGINSTALL is the ZDS II installation directory. For example, the default
installation directory is C:\Program Files\ZiLOG.

• product is the specific ZiLOG product. For example, product can be Z8Encore!,
eZ80Acclaim!, Crimzon, or Z8GP.

• version is the ZDS II version number. For example, version might be 4.11.0 or
5.0.0.

I NEED TO CHANGE THE ZSL SOURCE CODE. HOW CAN I GENERATE A
NEW LIBRARY WITH THESE CHANGES INCLUDED?

A new library can be generated either by building the project under ZDS II by using the
appropriate project file in the source directory or by running the batch files provided in the
source directories. Refer to the ZiLOG Standard Library API Reference Manual
(RM0037) for more details.
UM014423-0607 ZiLOG Standard Library Notes and Tips

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

315
HOW CAN I USE STANDARD I/O CALLS LIKE PRINTF() AND GETCH()?
The standard I/O calls—such as printf(), getch(), and putch()—are routed to
UART0 by default. You can route them to UART1 by setting the UART1 as the default
device.

To do so, open the uart.h file and replace the DEFAULT_UART0 macro with
DEFAULT_UART1 and rebuild the library. The uart.h file is in the following directory:

ZILOGINSTALL\ZDSII_product_version\include\zilog

where

• ZILOGINSTALL is the ZDS II installation directory. For example, the default
installation directory is C:\Program Files\ZiLOG.

• product is the specific ZiLOG product. For example, product can be Z8Encore!,
ZNEO, eZ80Acclaim!, Crimzon, or Z8GP.

• version is the ZDS II version number. For example, version might be 4.11.0 or
5.0.0.

Refer to the ZiLOG Standard Library API Reference Manual (RM0037) for more details.

WHAT IS THE DIFFERENCE BETWEEN THE INTERRUPT MODE AND THE
POLL MODE IN THE UARTS?

The INTERRUPT mode uses UART interrupts to transmit and receive characters to and
from the UARTs; whereas, POLL mode just polls on the UART device for the transmis-
sion and reception of data. Also, the INTERRUPT mode uses software FIFO for data buff-
ering; whereas, POLL mode does not.

WHAT ARE THE DEFAULT SETTINGS FOR THE UART DEVICE?
UART devices are initialized with 57600 baud, 8 data bits, 2 stop bits and no parity. Also,
no flow control mechanism is supported in version 1.0 of the library.

HOW CAN I CHANGE THE DEFAULT UART SETTINGS FOR MY APPLICA-
TION?

UARTs can be initialized to the required settings by the passing appropriate parameter in
the open_UARTx() API during build time or by using the appropriate APIs at run time.
Refer to the ZiLOG Standard Library API Reference Manual (RM0037) for more details.
UM014423-0607 ZiLOG Standard Library Notes and Tips

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

316
I AM USING THE UART IN THE INTERRUPT MODE. WHY DO I SEEM TO
LOSE SOME OF THE DATA WHEN I TRY TO PRINT OR TRY TO RECEIVE A
LARGE AMOUNT OF DATA?

One of the reasons could be that the software FIFO buffer size is small. Try increasing the
size to a bigger value. The default size of the software FIFO is 64. The software FIFO size
is defined in the zsldevinit.asm file as the BUFF_SIZE macro.

WHEN I CALL OPEN_UARTX() FUNCTION BY CONFIGURING IT IN INTER-
RUPT MODE, THE CONTROL NEVER COMES BACK TO MY PROGRAM AND
MY PROGRAM BEHAVES INDIFFERENTLY. WHY IS THIS?

The open_UARTx() function calls the control_UARTx() function, which enables the
UART interrupt. As a result of this, the UARTx transmit empty interrupt is generated
immediately. If the ISR for UART is not installed, the control on the program might be
lost. So install the ISR before calling open_UARTx() in the INTERRUPT mode. This is
not a problem when the standard boot module is used.

WHERE CAN I FIND SAMPLE APPLICATIONS THAT DEMONSTRATE THE
USE OF ZSL?

The following applications have been built and tested using the ZiLOG Standard Library:

• eZ80190 Flash Loader application under the following directory:

ZILOGINSTALL\ZDSII_product_version\Applications\eZ80\eZ80190\Flash_Loader\

where
– ZILOGINSTALL is the ZDS II installation directory. For example, the default

installation directory is C:\Program Files\ZiLOG.
– product is the specific ZiLOG product. For example, product can be Z8Encore!,

eZ80Acclaim!, Crimzon, or Z8GP.
– version is the ZDS II version number. For example, version might be 4.11.0 or

5.0.0.

This application demonstrates the use of ZSL without involving the standard startup
module and zsldevinit.asm file.

• ez80Acclaim! Flash Loader under the following directory:

ZILOGINSTALL\ZDSII_product_version\applications\eZ80Acclaim!\FLashApp\
FlashLoaderApp

This application demonstrates the use of ZSL by using the standard startup
module and zsldevinit.asm file.
UM014423-0607 ZiLOG Standard Library Notes and Tips

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

317
I HAVE USED INIT_UART() AND OTHER FUNCTIONS PROVIDED IN THE
RTL. DO I NEED TO CHANGE MY SOURCE CODE BECAUSE OF ZSL?

No. The sio.c file of RTL has been modified to call ZSL APIs, so you can continue to
use the run-time library (RTL) without changing your source code. But ZiLOG advises
you to change your source code to make direct calls to ZSL. This is recommended for the
following reasons:

• The calls in RTL support only one UART (UART0 or UART1) at any given time in
the library. You cannot switch between the UARTs dynamically.

• There is a small code size increase in the RTL due to the additional overhead of
calling ZSL APIs from sio.c.

• Future releases of RTL might or might not continue to support this method of
indirectly accessing the UARTs via ZSL.
UM014423-0607 ZiLOG Standard Library Notes and Tips

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

318
C Standard Library
As described in “Run-Time Library” on page 154, the eZ80Acclaim! C-Compiler provides
a collection of run-time libraries. The largest section of these libraries consists of an
implementation of much of the C Standard Library.

The eZ80Acclaim! C-Compiler is a conforming freestanding 1989 ANSI C implementa-
tion with some exceptions. In accordance with the definition of a freestanding implemen-
tation, the compiler supports the required standard header files <float.h>,
<limits.h>, <stdarg.h>, and <stddef.h>. It also supports additional standard
header files and ZiLOG-specific nonstandard header files.

The standard header files and functions are, with minor exceptions, fully compliant with
the ANSI C Standard. The deviations from the ANSI Standard in these files are summa-
rized in “Library Files Not Required for Freestanding Implementation” on page 166. The
standard header files provided with the compiler are listed in the following table and
described in detail in “Standard Header Files” on page 319. The following sections
describe the use and format of the standard portions of the run-time libraries:

• “Standard Header Files” on page 319

• “Standard Functions” on page 332

Table 12. Standard Headers

Header Description Location

<assert.h> Diagnostics page 320

<ctype.h> Character-handling functions page 321

<errno.h> Error numbers page 320

<float.h> Floating-point limits page 322

<limits.h> Integer limits page 322

<math.h> Math functions page 324

<setjmp.h> Nonlocal jump functions page 326

<stdarg.h> Variable arguments functions page 326

<stddef.h> Standard defines page 320

<stdio.h> Standard input/output functions page 327

<stdlib.h> General utilities functions page 328

<string.h> String-handling functions page 330
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

319
NOTE: The standard include header files are located in the following directory:

<ZDS Installation Directory>\include\std

where <ZDS Installation Directory> is the directory in which ZiLOG Developer
Studio was installed. By default, this would be C:\Program
Files\ZiLOG\ZDSII_eZ80Acclaim!_<version>, where <version> might be
4.11.0 or 5.0.0.

STANDARD HEADER FILES
Each library function is declared in a header file. The header files can be included in the
source files using the #include preprocessor directive. The header file declares a set of
related functions, any necessary types, and additional macros needed to facilitate their use.

Header files can be included in any order; each can be included more than once in a given
scope with no adverse effect. Header files need to be included in the code before the first
reference to any of the functions they declare or types and macros they define.

The following sections describe the standard header files:

• “Errors <errno.h>” on page 320

• “Standard Definitions <stddef.h>” on page 320

• “Diagnostics <assert.h>” on page 320

• “Character Handling <ctype.h>” on page 321

• “Limits <limits.h>” on page 322

• “Floating Point <float.h>” on page 322

• “Mathematics <math.h>” on page 324

• “Nonlocal Jumps <setjmp.h>” on page 326

• “Variable Arguments <stdarg.h>” on page 326

• “Input/Output <stdio.h>” on page 327

• “General Utilities <stdlib.h>” on page 328

• “String Handling <string.h>” on page 330
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

320
Errors <errno.h>
The <errno.h> header defines macros relating to the reporting of error conditions.

Macros

Additional macro definitions, beginning with E and an uppercase letter, can also be speci-
fied by the implementation.

Standard Definitions <stddef.h>
The following types and macros are defined in several headers referred to in the descrip-
tions of the functions declared in that header, as well as the common <stddef.h> stan-
dard header.

Macros

Types

Diagnostics <assert.h>
The <assert.h> header defines the assert() macro. It refers to the NDEBUG macro,
which is not defined in the header. If NDEBUG is defined as a macro name before the
inclusion of this header, the assert() macro is defined simply as:
#define assert(ignore)((void) 0)

EDOM Expands to a distinct nonzero integral constant expression.
ERANGE Expands to a distinct nonzero integral constant expression.
errno A modifiable value that has type int. Several libraries set errno to a positive value to

indicate an error. errno is initialized to zero at program startup, but it is never set to
zero by any library function. The value of errno can be set to nonzero by a library
function even if there is no error, depending on the behavior specified for the library
function in the ANSI Standard.

NULL Expands to a null pointer constant.
offsetof (type, identifier) Expands to an integral constant expression that has type size_t and

provides the offset in bytes, from the beginning of a structure
designated by type to the member designated by identifier.

ptrdiff_t Signed integral type of the result of subtracting two pointers.
size_t Unsigned integral type of the result of the sizeof operator.
wchar_t Integral type whose range of values can represent distinct codes for all members of

the largest extended character set specified among the supported locales.
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

321
Macro

Character Handling <ctype.h>
The <ctype.h> header declares several macros and functions useful for testing and map-
ping characters. In all cases, the argument is an int, the value of which is represented as
an unsigned char or equals the value of the EOF macro. If the argument has any other
value, the behavior is undefined.

Macros

NOTE: These are nonstandard macros.

Functions

The functions in this section return nonzero (true) if, and only if, the value of the argument
c conforms to that in the description of the function. The term printing character refers to
a member of a set of characters, each of which occupies one printing position on a display
device. The term control character refers to a member of a set of characters that are not
printing characters.

Character Testing

assert(expression); Tests the expression and, if false, prints the diagnostics including the
expression, file name, and line number. Also calls exit with nonzero exit
code if the expression is false.

TRUE Expands to a constant 1.
FALSE Expands to a constant 0.

int isalnum(int c); Tests for alphanumeric character.
int isalpha(int c); Tests for alphabetic character.
int iscntrl(int c); Tests for control character.
int isdigit(int c); Tests for decimal digit.
int isgraph(int c); Tests for printable character except space.
int islower(int c); Tests for lowercase character.
int isprint(int c); Tests for printable character.
int ispunct(int c); Tests for punctuation character.
int isspace(int c); Tests for white-space character.
int isupper(int c); Tests for uppercase character.
int isxdigit(int c); Tests for hexadecimal digit.
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

322
Character Case Mapping

Limits <limits.h>
The <limits.h> header defines macros that expand to various limits and parameters.

Macros

If the value of an object of type char sign-extends when used in an expression, the value of
CHAR_MIN is the same as that of SCHAR_MIN, and the value of CHAR_MAX is the
same as that of SCHAR_MAX. If the value of an object of type char does not sign-extend
when used in an expression, the value of CHAR_MIN is 0, and the value of CHAR_MAX
is the same as that of UCHAR_MAX.

Floating Point <float.h>
The <float.h> header defines macros that expand to various limits and parameters.

int tolower(int c); Tests character and converts to lowercase if uppercase.

int toupper(int c); Tests character and converts to uppercase if lowercase.

CHAR_BIT Maximum number of bits for smallest object that is not a bit-field (byte).
CHAR_MAX Maximum value for an object of type char.
CHAR_MIN Minimum value for an object of type char.
INT_MAX Maximum value for an object of type int.
INT_MIN Minimum value for an object of type int.
LONG_MAX Maximum value for an object of type long int.
LONG_MIN Minimum value for an object of type long int.
SCHAR_MAX Maximum value for an object of type signed char.
SCHAR_MIN Minimum value for an object of type signed char.
SHRT_MAX Maximum value for an object of type short int.
SHRT_MIN Minimum value for an object of type short int.
UCHAR_MAX Maximum value for an object of type unsigned char.
UINT_MAX Maximum value for an object of type unsigned int.
ULONG_MAX Maximum value for an object of type unsigned long int.
USHRT_MAX Maximum value for an object of type unsigned short int.
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

323
Macros

DBL_DIG Number of decimal digits of precision.
DBL_MANT_DIG Number of base-FLT_RADIX digits in the floating-point mantissa.
DBL_MAX Maximum represented floating-point numbers.
DBL_MAX_EXP Maximum integer such that FLT_RADIX raised to that power

approximates a floating-point number in the range of represented
numbers.

DBL_MAX_10_EXP Maximum integer such that 10 raised to that power approximates a
floating-point number in the range of represented value
((int)log10(DBL_MAX), and so on).

DBL_MIN Minimum represented positive floating-point numbers.
DBL_MIN_EXP Minimum negative integer such that FLT_RADIX raised to that power

approximates a positive floating-point number in the range of represented
numbers.

DBL_MIN_10_EXP Minimum negative integer such that 10 raised to that power approximates
a positive floating-point number in the range of represented values
((int)log10(DBL_MIN), and so on).

FLT_DIG Number of decimal digits of precision.
FLT_MANT_DIG Number of base-FLT_RADIX digits in the floating-point mantissa.
FLT_MAX Maximum represented floating-point numbers.
FLT_MAX_EXP Maximum integer such that FLT_RADIX raised to that power

approximates a floating-point number in the range of represented
numbers.

FLT_MAX_10_EXP Maximum integer such that 10 raised to that power approximates a
floating-point number in the range of represented value
((int)log10(FLT_MAX), and so on).

FLT_MIN Minimum represented positive floating-point numbers.
FLT_MIN_EXP Minimum negative integer such that FLT_RADIX raised to that power

approximates a positive floating-point number in the range of represented
numbers

FLT_MIN_10_EXP Minimum negative integer such that 10 raised to that power approximates
a positive floating-point number in the range of represented values
((int)log10(FLT_MIN), and so on).

FLT_RADIX Radix of exponent representation.
FLT_ROUND Rounding mode for floating-point addition.

-1 indeterminable
0 toward zero
1 to nearest
2 toward positive infinity
3 toward negative infinity
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

324
NOTE: The limits for the double and long double data types are the same as that for
the float data type for the eZ80Acclaim! C-Compiler.

Mathematics <math.h>
The <math.h> header declares several mathematical functions and defines one macro.
The functions take double-precision arguments and return double-precision values. Integer
arithmetic functions and conversion functions are discussed later.

NOTE: The double data type is implemented as float in the eZ80Acclaim! C-Compiler.

Macro

Treatment of Error Conditions

The behavior of each of these functions is defined for all values of its arguments. Each
function must return as if it were a single operation, without generating any externally vis-
ible exceptions.

For all functions, a domain error occurs if an input argument to the function is outside the
domain over which the function is defined. On a domain error, the function returns a spec-
ified value; the integer expression errno acquires the value of the EDOM macro.

Similarly, a range error occurs if the result of the function cannot be represented as a dou-
ble value. If the result overflows (the magnitude of the result is so large that it cannot be
represented in an object of the specified type), the function returns the value of the
HUGE_VAL macro, with the same sign as the correct value of the function; the integer

LDBL_DIG Number of decimal digits of precision.
LDBL_MANT_DIG Number of base-FLT_RADIX digits in the floating-point mantissa.
LDBL_MAX Maximum represented floating-point numbers.
LDBL_MAX_EXP Maximum integer such that FLT_RADIX raised to that power

approximates a floating-point number in the range of represented
numbers.

LDBL_MAX_10_EXP Maximum integer such that 10 raised to that power approximates a
floating-point number in the range of represented value
((int)log10(LDBL_MAX), and so on).

LDBL_MIN Minimum represented positive floating-point numbers.
LDBL_MIN_EXP Minimum negative integer such that FLT_RADIX raised to that power

approximates a positive floating-point number in the range of represented
numbers.

LDBL_MIN_10_EXP Minimum negative integer such that 10 raised to that power approximates
a positive floating-point number in the range of represented values
((int)log10(LDBL_MIN), and so on).

HUGE_VAL Expands to a positive double expression, not necessarily represented as a float.
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

325
expression errno acquires the value of the ERANGE macro. If the result underflows (the
magnitude of the result is so small that it cannot be represented in an object of the speci-
fied type), the function returns zero.

Functions

The following sections describe the mathematical functions:

• “Trigonometric” on page 325

• “Hyperbolic” on page 325

• “Exponential” on page 325

• “Logarithmic” on page 326

• “Power” on page 326

• “Nearest Integer” on page 326

Trigonometric

Hyperbolic

Exponential

double acos(double x); Calculates arc cosine of x.
double asin(double x) Calculates arc sine of x.
double atan(double x); Calculates arc tangent of x.
double atan2(double y, double x); Calculates arc tangent of y/x.
double cos(double x); Calculates cosine of x.
double sin(double x); Calculates sine of x.
double tan(double x); Calculates tangent of x.

double cosh(double x); Calculates hyperbolic cosine of x.
double sinh(double x); Calculates hyperbolic sine of x.
double tanh(double x); Calculates hyperbolic tangent of x.

double exp(double x); Calculates exponential function of x.
double frexp(double value, int *exp); Shows x as product of mantissa (the value returned by

frexp) and 2 to the n.
double ldexp(double x, int exp); Calculates x times 2 to the exp.
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

326
Logarithmic

Power

Nearest Integer

Nonlocal Jumps <setjmp.h>
The <setjmp.h> header declares two functions and one type for bypassing the normal
function call and return discipline.

Type

Functions

Variable Arguments <stdarg.h>
The <stdarg.h> header declares a type and a function and defines two macros for
advancing through a list of arguments whose number and types are not known to the called
function when it is translated.

double log(double x); Calculates natural logarithm of x.
double log10(double x); Calculates base 10 logarithm of x.
double modf(double value, double *iptr); Breaks down x into integer (the value returned by

modf) and fractional (n) parts.

double pow(double x, double y); Calculates x to the y.
double sqrt(double x); Finds square root of x.

double ceil(double x); Finds integer ceiling of x.
double fabs(double x); Finds absolute value of x.
double floor(double x); Finds largest integer less than or equal to x.
double fmod(double x,double y); Finds floating-point remainder of x/y.

jmp_buf An array type suitable for holding the information needed to restore a calling
environment.

int setjmp(jmp_buf env); Saves a stack environment.
void longjmp(jmp_buf env, int val); Restores a saved stack environment.
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

327
A function can be called with a variable number of arguments of varying types. “Function
Definitions” parameter list contains one or more parameters. The rightmost parameter
plays a special role in the access mechanism and is designated parmN in this description.

Type

Variable Argument List Access Macros and Function

The va_start and va_arg macros described in this section are implemented as macros, not
as real functions. If #undef is used to remove a macro definition and obtain access to a
real function, the behavior is undefined.

Functions

Input/Output <stdio.h>
The <stdio.h> header declares input and output functions.

Macro

Functions

Formatted Input/Output

va_list An array type suitable for holding information needed by the macro va_arg and the
function va_end. The called function declares a variable (referred to as ap in this
section) having type va_list. The variable ap can be passed as an argument to another
function.

void va_start(va_list ap, parmN); Sets pointer to beginning of argument list.
type va_arg (va_list ap, type); Retrieves argument from list.
void va_end(va_list ap); Resets pointer.

EOF Expands to a negative integral constant. Returned by functions to indicate end of
file.

int printf(const char *format, ...); Writes formatted data to stdout.
int scanf(const char *format, ...); Reads formatted data from stdin.
int sprintf(char *s, const char *format, ...); Writes formatted data to string.
int sscanf(const char *s, const char *format, ...); Reads formatted data from string.
int vprintf(const char *format, va_list arg); Writes formatted data to a stdout.
int vsprintf(char *s, const char *format, va_list arg); Writes formatted data to a string.
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

328
Character Input/Output

General Utilities <stdlib.h>
The <stdlib.h> header declares several types, functions of general utility, and macros.

Types

Macros

Functions

The following sections describe the general utilities functions:

• “String Conversion” on page 329

• “Pseudorandom Sequence Generation” on page 329

• “Memory Management” on page 329

• “Searching and Sorting Utilities” on page 329

int getchar(void); Reads a character from stdin.
char *gets(char *s); Reads a line from stdin.
int putchar(int c); Writes a character to stdout.
int puts(const char *s); Writes a line to stdout.

div_t Structure type that is the type of the value returned by the div function.
ldiv_t Structure type that is the type of the value returned by the ldiv function.
size_t Unsigned integral type of the result of the sizeof operator.
wchar_t Integral type whose range of values can represent distinct codes for all members

of the largest extended character set specified among the supported locales.

EDOM Expands to distinct nonzero integral constant expressions.
ERANGE Expands to distinct nonzero integral constant expressions.
EXIT_SUCCESS Expands to integral expression which indicates successful termination status.
EXIT_FAILURE Expands to integral expression which indicates unsuccessful termination

status.
HUGE_VAL Expands to a positive double expression, not necessarily represented as a

float.
NULL Expands to a null pointer constant.
RAND_MAX Expands to an integral constant expression, the value of which is the

maximum value returned by the rand function.
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

329
• “Integer Arithmetic” on page 330

String Conversion
The atof, atoi, and atol functions do not affect the value of the errno macro on an
error. If the result cannot be represented, the behavior is undefined.

Pseudorandom Sequence Generation

Memory Management
The order and contiguity of storage allocated by successive calls to the calloc, malloc,
and realloc functions are unspecified. The pointer returned if the allocation succeeds is
suitably aligned so that it can be assigned to a pointer to any type of object and then used
to access such an object in the space allocated (until the space is explicitly freed or reallo-
cated).

Searching and Sorting Utilities

double atof(const char *nptr); Converts string to double.
int atoi(const char *nptr); Converts string to int.
long int atol(const char *nptr); Converts string to long.
double strtod(const char *nptr, char **endptr); Converts string pointed to by nptr to a

double.
long int strtol(const char *nptr, char **endptr, int base); Converts string to a long decimal integer

that is equal to a number with the
specified radix.

int rand(void) Gets a pseudorandom number.
void srand(unsigned int seed); Initializes pseudorandom series.

void *calloc(size_t nmemb, size_t size); Allocates storage for array.
void free(void *ptr); Frees a block allocated with calloc, malloc, or realloc.
void *malloc(size_t size); Allocates a block.
void *realloc(void *ptr, size_t size); Reallocates a block.

void *bsearch(void *key, void *base, size_t nmemb,
size_t size, int (*compar)(void *, void *));

Performs binary search.

void qsort(void *base, size_t nmemb, size_t size, int (*compar)(void *,
void *));

Performs a quick sort.
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

330
Integer Arithmetic

String Handling <string.h>
The <string.h> header declares several functions useful for manipulating character
arrays and other objects treated as character arrays. Various methods are used for deter-
mining the lengths of arrays, but in all cases a char* or void* argument points to the initial
(lowest addressed) character of the array. If an array is written beyond the end of an object,
the behavior is undefined.

Type

Macro

Functions

The following sections describe the string-handling functions:

• “Copying” on page 331

• “Concatenation” on page 331

• “Comparison” on page 331

• “Search” on page 331

• “Miscellaneous” on page 332

int abs(int j); Finds absolute value of integer value.
div_t div(int numer, int denom); Computes integer quotient and remainder.
long int labs(long int j); Finds absolute value of long integer value.
ldiv_t ldiv(long int numer, long int denom); Computes long quotient and remainder.

size_t Unsigned integral type of the result of the sizeof operator.

NULL Expands to a null pointer constant.
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

331
Copying

Concatenation

Comparison
The sign of the value returned by the comparison functions is determined by the sign of
the difference between the values of the first pair of characters that differ in the objects
being compared.

Search

void *memcpy(void *s1, const void *s2, size_t n); Copies a specified number of characters
from one buffer to another.

void *memmove(void *s1, const void *s2, size_t n); Moves a specified number of characters
from one buffer to another.

char *strcpy(char *s1, const char *s2); Copies one string to another.
char *strncpy(char *s1, const char *s2, size_t n); Copies n characters of one string to another.

char *strcat(char *s1, const char *s2); Appends a string.
char *strncat(char *s1, const char *s2, size_t n); Appends n characters of string.

int memcmp(const void *s1, const void *s2, size_t n); Compares the first n characters.
int strcmp(const char *s1, const char *s2); Compares two strings.
int strncmp(const char *s1, const char *s2, size_t n); Compares n characters of two strings.

void *memchr(const void *s, int c, size_t n); Returns a pointer to the first occurrence, within a
specified number of characters, of a given
character in the buffer.

char *strchr(const char *s, int c); Finds first occurrence of a given character in
string.

size_t strcspn(const char *s1, const char *s2); Finds first occurrence of a character from a given
character in string.

char *strpbrk(const char *s1, const char *s2); Finds first occurrence of a character from one
string to another.

char *strrchr(const char *s, int c); Finds last occurrence of a given character in
string.

size_t strspn(const char *s1, const char *s2); Finds first substring from a given character set in
string.
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

332
Miscellaneous

STANDARD FUNCTIONS
The following functions are standard functions:

char *strstr(const char *s1, const char *s2); Finds first occurrence of a given string in another
string.

char *strtok(char *s1, const char *s2); Finds next token in string.

void *memset(void *s, int c, size_t n); Uses a given character to initialize a specified number of
bytes in the buffer.

size_t strlen(const char *s); Finds length of string.

abs acos asin assert atan
atan2 atof atoi atol bsearch
calloc ceil cos cosh div
exp fabs floor fmod free
frexp getchar gets isalnum isalpha
iscntrl isdigit isgraph islower isprint
ispunct isspace isupper isxdigit labs
ldexp ldiv log log10 longjmp
malloc memchr memcmp memcpy memmove
memset modf pow printf putchar
puts qsort rand realloc scanf
setjmp sin sinh sprintf sqrt
srand sscanf strcat strchr strcmp
strcpy strcspn strlen strncat strncmp
strncpy strpbrk strrchr strspn strstr
strtod strtok strtol tan tanh
tolower toupper va_arg va_end va_start
vprintf vsprintf
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

333
abs
Computes the absolute value of an integer j. If the result cannot be represented, the behav-
ior is undefined.

Synopsis

#include <stdlib.h>
int abs(int j);

Returns

The absolute value.

Example

int I=-5632;
int j;
j=abs(I);

acos
Computes the principal value of the arc cosine of x. A domain error occurs for arguments
not in the range [-1,+1].

Synopsis

#include <math.h>
double acos(double x);

Returns

The arc cosine in the range [0, pi].

Example

double y=0.5635;
double x;
x=acos(y);

asin
Computes the principal value of the arc sine of x. A domain error occurs for arguments not
in the range [-1,+1].

Synopsis

#include <math.h>
double asin(double x);
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

334
Returns

The arc sine in the range [–pi/2,+pi/2].

Example

double y=.1234;
double x;
x = asin(y);

assert
Puts diagnostics into programs. When it is executed, if expression is false (that is, eval-
uates to zero), the assert macro writes information about the particular call that failed
(including the text of the argument, the name of the source file, and the source line num-
ber—the latter are respectively the values of the preprocessing macros __FILE__ and
__LINE__) on the serial port using the printf() function. It then loops forever.

Synopsis

#include <assert.h>
void assert(int expression);

Returns

If expression is true (that is, evaluates to nonzero), the assert macro returns no value.

Example

#include <assert.h>

char str[] = "COMPASS";

void main(void)
{

assert(str[0] == 'B');
}

atan
Computes the principal value of the arc tangent of x.

Synopsis

#include <math.h>
double atan(double x);

Returns

The arc tangent in the range (–pi/2, +pi/2).
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

335
Example

double y=.1234;
double x;
x=atan(y);

atan2
Computes the principal value of the arc tangent of y/x, using the signs of both arguments
to determine the quadrant of the return value. A domain error occurs if both arguments are
zero.

Synopsis

#include <math.h>
double atan2(double y, double x);

Returns

The arc tangent of y/x, in the range [–pi, +pi].

Example

double y=.1234;
double x=.4321;
double z;
z=atan2(y,x);

atof
Converts the string pointed to by nptr to double representation. Except for the behavior on
error, atof is equivalent to strtod (nptr, (char **)NULL).

Synopsis

#include <stdlib.h>
double atof(char *nptr);

Returns

The converted value.

Example

char str []="1.234";
double x;
x= atof(str);
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

336
atoi
Converts the string pointed to by nptr to int representation. Except for the behavior on
error, it is equivalent to (int)strtol(nptr, (char **)NULL, 10).

Synopsis

#include <stdlib.h>
int atoi(char *nptr);

Returns

The converted value.

Example

char str []="50";
int x;
x=atoi(str);

atol
Converts the string pointed to by nptr to long int representation. Except for the behav-
ior on error, it is equivalent to strtol(nptr, (char **)NULL, 10).

Synopsis

#include <stdlib.h>
long int atol(char *nptr);

Returns

The converted value.

Example

char str[]="1234567";
long int x;
x=atol(str);

bsearch
Searches an array of nmemb objects, the initial member of which is pointed to by base, for
a member that matches the object pointed to by key. The size of each object is specified by
size.

The array has been previously sorted in ascending order according to a comparison func-
tion pointed to by compar, which is called with two arguments that point to the objects
being compared. The compar function returns an integer less than, equal to, or greater
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

337
than zero if the first argument is considered to be respectively less than, equal to, or
greater than the second.

Synopsis

#include <stdlib.h>
void *bsearch(void *key, void *base, size_t nmemb, size_t size, int
(*compar)(void *, void *));

Returns

A pointer to the matching member of the array or a null pointer, if no match is found.

Example

#include <stdlib.h>
int list[]={2,5,8,9};
int k=8;

int compare (void * x, void * y);
int main(void)
{

int *result;
result = bsearch(&k, list, 4, sizeof(int), compare);

}

int compare (void * x, void * y)
{

int a = *(int *) x;
int b = *(int *) y;
if (a < b) return -1;
if (a == b)return 0;
return 1;

}

calloc
Allocates space for an array of nmemb objects, each of whose size is size. The space is
initialized to all bits zero.

Synopsis

#include <stdlib.h>
void *calloc(size_t nmemb, size_t size);

Returns

A pointer to the start (lowest byte address) of the allocated space. If the space cannot be
allocated, or if nmemb or size is zero, the calloc function returns a null pointer.
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

338
Example

char *buf;
buf = (char*)calloc(40, sizeof(char));
if (buf != NULL)
 /*success*/
else
 /*fail*/

ceil
Computes the smallest integer not less than x.

Synopsis

#include <math.h>
double ceil(double x);

Returns

The smallest integer not less than x, expressed as a double.

Example

double y=1.45;
double x;
x=ceil(y);

cos
Computes the cosine of x (measured in radians). A large magnitude argument can yield a
result with little or no significance.

Synopsis

#include <math.h>
double cos(double x);

Returns

The cosine value.

Example

double y=.1234;
double x;
x=cos(y);
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

339
cosh
Computes the hyperbolic cosine of x. A range error occurs if the magnitude of x is too
large.

Synopsis

#include <math.h>
double cosh(double x);

Returns

The hyperbolic cosine value.

Example

double y=.1234;
double x
x=cosh(y);

div
Computes the quotient and remainder of the division of the numerator numer by the
denominator denom. If the division is inexact, the sign of the quotient is that of the
mathematical quotient, and the magnitude of the quotient is the largest integer less than
the magnitude of the mathematical quotient.

Synopsis

#include <stdlib.h>
div_t div(int numer, int denom);

Returns

A structure of type div_t, comprising both the quotient and the remainder. The structure
contains the following members, in either order:
int quot; /* quotient */
int rem; /* remainder */

Example

int x=25;
int y=3;
div_t t;
int q;
int r;
t=div (x,y);
q=t.quot;
r=t.rem;
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

340
exp
Computes the exponential function of x. A range error occurs if the magnitude of x is too
large.

Synopsis

#include <math.h>
double exp(double x);

Returns

The exponential value.

Example

double y=.1234;
double x;
x=exp(y);

fabs
Computes the absolute value of a floating-point number x.

Synopsis

#include <math.h>
double fabs(double x);

Returns

The absolute value of x.

Example

double y=6.23;
double x;
x=fabs(y);

floor
Computes the largest integer not greater than x.

Synopsis

#include <math.h>
double floor(double x);

Returns

The largest integer not greater than x, expressed as a double.
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

341
Example

double y=6.23;
double x;
x=floor(y);

fmod
Computes the floating-point remainder of x/y. If the quotient of x/y cannot be represented,
the behavior is undefined.

Synopsis

#include <math.h>
double fmod(double x, double y);

Returns

The value of x if y is zero. Otherwise, it returns the value f, which has the same sign as x,
such that x – i * y = f for some integer i, where the magnitude of f is less than the magni-
tude of y.

Example

double y=7.23;
double x=2.31;
double z;
z=fmod(y,x);

free
Causes the space pointed to by ptr to be deallocated, that is, made available for further
allocation. If ptr is a null pointer, no action occurs. Otherwise, if the argument does not
match a pointer earlier returned by the calloc, malloc, or realloc function, or if the
space has been deallocated by a call to free or realloc, the behavior is undefined. If
freed space is referenced, the behavior is undefined.

Synopsis

#include <stdlib.h>
void free(void *ptr);

Example

char *buf;
buf=(char*) calloc(40, sizeof(char));
free(buf);
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

342
frexp
Breaks a floating-point number into a normalized fraction and an integral power of 2. It
stores the integer in the int object pointed to by exp.

Synopsis

#include <math.h>
double frexp(double value, int *exp);

Returns

The value x, such that x is a double with magnitude in the interval [1/2, 1] or zero, and
value equals x times 2 raised to the power *exp. If value is zero, both parts of the result are
zero.

Example

double y, x=16.4;
int n;
y=frexp(x,&n);

getchar
Waits for the next character to appear at the serial port and return its value.

Synopsis

#include <stdio.h>
int getchar(void);

Returns

The next character from the input stream pointed to by stdin. If the stream is at end-of-file,
the end-of-file indicator for the stream is set, and getchar returns EOF. If a read error
occurs, the error indicator for the stream is set, and getchar returns EOF.

Example

int i;
i=getchar();

NOTE: This function makes a call to hardware-specific functions to get data from the
UART. You must either link to ZSL to provide these hardware-specific functions
or provide your own equivalent functions. See “Run-Time Library” on page 154.
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

343
gets
Reads characters from the input stream into the array pointed to by s, until end-of-file is
encountered or a new-line character is read. The new-line character is discarded, and a null
character is written immediately after the last character read into the array.

Synopsis

#include <stdio.h>
char *gets(char *s);

Returns

The value of s, if successful. If a read error occurs during the operation, the array contents
are indeterminate, and a null pointer is returned.

Example

char *r;
char buf [80];
r=gets(buf);
if (r==NULL)
 /*No input*/

NOTE: This function makes a call to hardware-specific functions to get data from the
UART. You must either link to ZSL to provide these hardware-specific functions
or provide your own equivalent functions. See “Run-Time Library” on page 154.

isalnum
Tests for any character for which isalpha or isdigit is true.

Synopsis

include <ctype.h>
int isalnum(int c);

Example

int r;
char c='a';
r=isalnum(c);

isalpha
Tests for any character for which isupper or islower is true.

Synopsis

#include <ctype.h>
int isalpha(int c);
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

344
Example

int r;
char c='a';
r=isalpha(c);

iscntrl
Tests for any control character.

Synopsis

#include <ctype.h>
int iscntrl(int c);

Example

int r;
char c=NULL;
r=iscntrl(c);

isdigit
Tests for any decimal digit.

Synopsis

#include <ctype.h>
int isdigit(int c);

Example

int r;
char c='4';
r=isdigit(c);

isgraph
Tests for any printing character except space (' ').

Synopsis

#include <ctype.h>
int isgraph(int c);

Example

int r;
char c='';
r=isgraph(c);
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

345
islower
Tests for any lowercase letter 'a' to 'z'.

Synopsis

#include <ctype.h>
int islower(int c);

Example

int r;
char c='a';
r=islower(c);

isprint
Tests for any printing character including space (' ').

Synopsis

#include <ctype.h>
int isprint(int c);

Example

int r;
char c='1';
r=isprint(c);

ispunct
Tests for any printing character except space (' ') or a character for which isalnum is true.

Synopsis

#include <ctype.h>
int ispunct(int c);

Example

int r;
char c='a';
r=ispunct(c);
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

346
isspace
Tests for the following white-space characters: space (' '), form feed ('\f'), new line ('\n'),
carriage return ('\r'), horizontal tab ('\t'), or vertical tab ('\v').

Synopsis

#include <ctype.h>
int isspace(int c);

Example

int r;
char c='';
r=isspace(c);

isupper
Tests for any uppercase letter 'A' to 'Z'.

Synopsis

#include <ctype.h>
int isupper(int c);

Example

int r;
char c='a';
r=isupper(c);

isxdigit
Tests for any hexadecimal digit '0' to '9' and 'A' to 'F'.

Synopsis

#include <ctype.h>
int isxdigit(int c);

Example

int r;
char c='f';
r=isxdigit(c);
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

347
labs
Computes the absolute value of a long int j.

Synopsis

#include <stdlib.h>
long labs(long j);

Example

long i=-193250;
long j;
j=labs(i);

ldexp
Multiplies a floating-point number by an integral power of 2. A range error can occur.

Synopsis

#include <math.h>
double ldexp(double x, int exp);

Returns

The value of x times 2 raised to the power of exp.

Example

double x=1.235;
int exp=2;
double y;
y=ldexp(x,exp);

ldiv
Computes the quotient and remainder of the division of the numerator numer by the
denominator denom. If the division is inexact, the sign of the quotient is that of the
mathematical quotient, and the magnitude of the quotient is the largest integer less than
the magnitude of the mathematical quotient.

Synopsis

#include <stdlib.h>
ldiv_t ldiv(long numer, long denom);

Example

long x=25000;
long y=300;
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

348
ldiv_t t;
long q;
long r;
t=ldiv(x,y);
q=t.quot;
r=t.rem;

log
Computes the natural logarithm of x. A domain error occurs if the argument is negative. A
range error occurs if the argument is zero.

Synopsis

#include <math.h>
double log(double x);

Returns

The natural logarithm.

Example

double x=2.56;
double y;
y=log(x);

log10
Computes the base-ten logarithm of x. A domain error occurs if the argument is negative.
A range error occurs if the argument is zero.

Synopsis

#include <math.h>
double log10(double x);

Returns

The base-ten logarithm.

Example

double x=2.56;
double y;
y=log10(x);
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

349
longjmp
Restores the environment saved by the most recent call to setjmp in the same invocation
of the program, with the corresponding jmp_buf argument. If there has been no such call,
or if the function containing the call to setjmp has executed a return statement in the
interim, the behavior is undefined.

All accessible objects have values as of the time longjmp was called, except that the val-
ues of objects of automatic storage class that do not have volatile type and have been
changed between the setjmp and longjmp call are indeterminate.

As it bypasses the usual function call and return mechanisms, the longjmp function exe-
cutes correctly in contexts of interrupts, signals, and any of their associated functions.
However, if the longjmp function is invoked from a nested signal handler (that is, from a
function invoked as a result of a signal raised during the handling of another signal), the
behavior is undefined.

Synopsis

#include <setjmp.h>
void longjmp(jmp_buf env, int val);

Returns

After longjmp is completed, program execution continues as if the corresponding call to
setjmp had just returned the value specified by val. The longjmp function cannot cause
setjmp to return the value 0; if val is 0, setjmp returns the value 1.

Example

int i;
jmp_buf env;
i=setjmp(env);
longjmp(env,i);

malloc
Allocates space for an object whose size is specified by size.

NOTE: The existing implementation of malloc() depends on the heap area being located from
the bottom of the heap (referred to by the symbol __heapbot) to the top of the stack (SP).
Care must be taken to avoid holes in this memory range. Otherwise, the malloc()
function might not be able to allocate a valid memory object.

Synopsis

#include <stdlib.h>
void *malloc(size_t size);
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

350
Returns

A pointer to the start (lowest byte address) of the allocated space. If the space cannot be
allocated, or if size is zero, the malloc function returns a null pointer.

Example

char *buf;
buf=(char *) malloc(40*sizeof(char));
if(buf !=NULL)

/*success*/
else

/*fail*/

memchr
Locates the first occurrence of c (converted to an unsigned char) in the initial n charac-
ters of the object pointed to by s.

Synopsis

#include <string.h>
void *memchr(void *s, int c, size_t n);

Returns

A pointer to the located character or a null pointer if the character does not occur in the
object.

Example

char *p1;
char str[]="COMPASS";
c='p';
p1=memchr(str,c,sizeof(char));

memcmp
Compares the first n characters of the object pointed to by s2 to the object pointed to by s1.

Synopsis

#include <string.h>
int memcmp(void *s1, void *s2, size_t n);

Returns

An integer greater than, equal to, or less than zero, according as the object pointed to by s1
is greater than, equal to, or less than the object pointed to by s2.
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

351
Example

char s1[]="COMPASS";
char s2[]="IDE";
int res;
res=memcmp(s1, s2, sizeof (char));

memcpy
Copies n characters from the object pointed to by s2 into the object pointed to by s1. If the
two regions overlap, the behavior is undefined.

Synopsis

#include <string.h>
void *memcpy(void *s1, void *s2, size_t n);

Returns

The value of s1.

Example

char s1[10];
char s2[10] = "COMPASS";
memcpy(s1, s2, 8);

memmove
Moves n characters from the object pointed to by s2 into the object pointed to by s1. Copy-
ing between objects that overlap takes place correctly.

Synopsis

#include <string.h>
void *memmove(void *s1, void *s2, size_t n);

Returns

The value of s1.

Example

char s1[10];
char s2[]="COMPASS";
memmove(s1, s2, 8*sizeof(char));

memset
Copies the value of c (converted to an unsigned char) into each of the first n characters
of the object pointed to by s.
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

352
Synopsis

#include <string.h>
void *memset(void *s, int c, size_t n);

Returns

The value of s.

Example

char str[20];
char c='a';
memset(str, c, 10*sizeof(char));

modf
Breaks the argument value into integral and fractional parts, each of which has the same
sign as the argument. It stores the integral part as a double in the object pointed to by iptr.

Synopsis

#include <math.h>
double modf(double value, double *iptr);

Returns

The signed fractional part of value.

Example

double x=1.235;
double f;
double i;
i=modf(x, &f);

pow
Computes the value of x raised to the power of y. A domain error occurs if x is zero and y
is less than or equal to zero, or if x is negative and y is not an integer. A range error can
occur.

Synopsis

#include <math.h>
double pow(double x, double y);

Returns

The value of x raised to the power y.
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

353
Example

double x=2.0;
double y=3.0;
double res;
res=pow(x,y);

printf
Writes output to the stream pointed to by stdout, under control of the string pointed to by
format that specifies how subsequent arguments are converted for output.

A format string contains two types of objects: plain characters, which are copied
unchanged to stdout, and conversion specifications, each of which fetch zero or more sub-
sequent arguments. The results are undefined if there are insufficient arguments for the
format. If the format is exhausted while arguments remain, the excess arguments are eval-
uated but otherwise ignored. The printf function returns when the end of the format
string is encountered.

Each conversion specification is introduced by the character %. After the %, the following
appear in sequence:

• Zero or more flags that modify the meaning of the conversion specification.

• An optional decimal integer specifying a minimum field width. If the converted value
has fewer characters than the field width, it is padded on the left (or right, if the left
adjustment flag, described later, has been given) to the field width. The padding is
with spaces unless the field width integer starts with a zero, in which case the padding
is with zeros.

• An optional precision that gives the minimum number of digits to appear for the d, i,
o, u, x, and X conversions, the number of digits to appear after the decimal point for e,
E, and f conversions, the maximum number of significant digits for the g and G
conversions, or the maximum number of characters to be written from a string in s
conversion. The precision takes the form of a period (.) followed by an optional
decimal integer; if the integer is omitted, it is treated as zero. The amount of padding
specified by the precision overrides that specified by the field width.

• An optional h specifies that a following d, i, o, u, x, or X conversion character applies
to a short_int or unsigned_short_int argument (the argument has been promoted
according to the integral promotions, and its value is converted to short_int or
unsigned_short_int before printing). An optional l (ell) specifies that a following d, i,
o, u, x or X conversion character applies to a long_int or unsigned_long_int argument.
An optional L specifies that a following e, E, f, g, or G conversion character applies to
a long_double argument. If an h, l, or L appears with any other conversion character, it
is ignored.

• A character that specifies the type of conversion to be applied.
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

354
• A field width or precision, or both, can be indicated by an asterisk * instead of a digit
string. In this case, an int argument supplies the files width or precision. The
arguments specifying field width or precision displays before the argument (if any) to
be converted. A negative field width argument is taken as a - flag followed by a
positive field width. A negative precision argument is taken as if it were missing.

NOTE: For more specific information on the flag characters and conversion characters for the
printf function, see “printf Flag Characters” on page 354.

Synopsis

#include <stdio.h>
int printf(const char *format, ...);

Returns

The number of characters transmitted or a negative value if an output error occurred.

Example

int i=10;
printf("This is %d",i);

NOTE: This function makes a call to hardware-specific functions to get data from the UART. You
must either link to ZSL to provide these hardware-specific functions or provide your own
equivalent functions. See “Run-Time Library” on page 154.

printf Flag Characters

- The result of the conversion is left-justified within the field.
+ The result of a signed conversion always begins with a plus or a minus sign.
space If the first character of a signed conversion is not a sign, a space is added before the result.

If the space and + flags both appear, the space flag is ignored
The result is to be converted to an ''alternate form''. For c, d, i, s, and u conversions, the

flag has no effect. For o conversion, it increases the precision to force the first digit of the
result to be a zero. For x (or X) conversion, a nonzero result always contains a decimal
point, even if no digits follow the point (normally, a decimal point appears in the result of
these conversions only if a digit follows it). For g and G conversions, trailing zeros are not
removed from the result, as they normally are.
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

355
printf Conversion Characters

In no case does a nonexistent or small field width cause truncation of a field. If the result
of a conversion is wider than the field width, the field is expanded to contain the conver-
sion result.

d,i,o,u,x,X The int argument is converted to signed decimal (d or i), unsigned octal (o),
unsigned decimal (u), or unsigned hexadecimal notation (x or X); the letters
abcdef are used for x conversion and the letters ABCDEF for X conversion. The
precision specifies the minimum number of digits to appear; if the value being
converted can be represented in fewer digits, it is expanded with leading zeros.
The default precision is 1. The result of converting a zero value with a precision of
zero is no characters.

f The double argument is converted to decimal notation in the style [-]ddd.ddd,
where the number of digits after the decimal point is equal to the precision
specification. If the precision is missing, it is taken as 6; if the precision is
explicitly zero, no decimal point appears. If a decimal point appears, at least one
digit appears before it. The value is rounded to the appropriate number of digits.

e,E The double argument is converted in the style [-]d.ddde+dd, where there is one
digit before the decimal point and the number of digits after it is equal to the
precision; when the precision is missing, six digits are produced; if the precision is
zero, no decimal point appears. The value is rounded to the appropriate number of
digits. The E conversion character produces a number with E instead of e
introducing the exponent. The exponent always contains at least two digits.
However, if the magnitude to be converted is greater than or equal to lE+100,
additional exponent digits are written as necessary.

g,G The double argument is converted in style f or e (or in style E in the case of a G
conversion character), with the precision specifying the number of significant
digits. The style used depends on the value converted; style e is used only if the
exponent resulting from the conversion is less than -4 or greater than the
precision. Trailing zeros are removed from the result; a decimal point appears
only if it is followed by a digit.

c The int argument is converted to an unsigned char, and the resulting character is
written.

s The argument is taken to be a (const char *) pointer to a string. Characters from
the string are written up to, but not including, the terminating null character, or
until the number of characters indicated by the precision are written. If the
precision is missing it is taken to be arbitrarily large, so all characters before the
first null character are written.

p The argument is taken to be a (const void) pointer to an object. The value of the
pointer is converted to a sequence of hex digits.

n The argument is taken to be an (int) pointer to an integer into which is written the
number of characters written to the output stream so far by this call to printf.
No argument is converted.

% A % is written. No argument is converted.
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

356
putchar
Writes a character to the serial port.

Synopsis

#include <stdio.h>
int putchar(int c);

Returns

The character written. If a write error occurs, putchar returns EOF.

Example

int i;
charc='a';
i=putchar(c);

NOTE: This function makes a call to hardware-specific functions to send data to the
UART. You must either link to ZSL to provide these hardware-specific functions
or provide your own equivalent functions. See “Run-Time Library” on page 154.

puts
Writes the string pointed to by s to the serial port and appends a new-line character to the
output. The terminating null character is not written.

Synopsis

#include <stdio.h>
int puts(char *s);

Returns

EOF if an error occurs; otherwise, it is a non-negative value.

Example

int i;
char strp[]="COMPASS";
i=puts(str);

NOTE: This function makes a call to hardware-specific functions to send data to the
UART. You must either link to ZSL to provide these hardware-specific functions
or provide your own equivalent functions. See “Run-Time Library” on page 154.

qsort
Sorts an array of nmemb objects, the initial member of which is pointed to by any base.
The size of each object is specified by size.
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

357
The array is sorted in ascending order according to a comparison function pointed to by
compar, which is called with two arguments that point to the objects being compared. The
compar function returns an integer less than, equal to, or greater than zero if the first argu-
ment is considered to be respectively less than, equal to, or greater than the second.

If two members in the array compare as equal, their order in the sorted array is unspeci-
fied.

Synopsis
#include <stdlib.h>
void qsort(void *base, size_t nmemb, size_t size, int (*compar)(void *, void *));

Example

int lst[]={5,8,2,9};
int compare (void * x, void * y);
qsort (lst, sizeof(int), 4, compare);

int compare (void * x, void * y)
{

int a = *(int *) x;
int b = *(int *) y;
if (a < b) return -1;
if (a == b)return 0;
return 1;

}

rand
Computes a sequence of pseudorandom integers in the range 0 to RAND_MAX.

Synopsis

#include <stdlib.h>
int rand(void);

Returns

A pseudorandom integer.

Example

int i;
srand(1001);
i=rand();
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

358
realloc
Changes the size of the object pointed to by ptr to the size specified by size. The contents
of the object are unchanged up to the lesser of the new and old sizes. If ptr is a null pointer,
the realloc function behaves like the malloc function for the specified size. Otherwise,
if ptr does not match a pointer earlier returned by the calloc, malloc, or realloc func-
tion, or if the space has been deallocated by a call to the free or realloc function, the
behavior is undefined. If the space cannot be allocated, the realloc function returns a
null pointer and the object pointed to by ptr is unchanged. If size is zero, the realloc
function returns a null pointer and, if ptr is not a null pointer, the object it points to is freed.

Synopsis

#include <stdlib.h>
void *realloc(void *ptr, size_t size);

Returns

Returns a pointer to the start (lowest byte address) of the possibly moved object.

Example

char *buf;
buf=(char *) malloc(40*sizeof(char));
buf=(char *) realloc(buf, 80*sizeof(char));
if(buf !=NULL)

/*success*/
else

/*fail*/

scanf
Reads input from the stream pointed to by stdin, under control of the string pointed to by
format that specifies the admissible input sequences and how they are to be converted for
assignment, using subsequent arguments as pointers to the object to receive the converted
input. If there are insufficient arguments for the format, the behavior is undefined. If the
format is exhausted while arguments remain, the excess arguments are evaluated but oth-
erwise ignored.

The format is composed of zero or more directives from the following list:

• one or more white-space characters

• an ordinary character (not %)

• a conversion specification

Each conversion specification is introduced by the character %. After the %, the following
appear in sequence:

• An optional assignment-suppressing character *.
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

359
• An optional decimal integer that specifies the maximum field width.

• An optional h, l or L indicating the size of the receiving object. The conversion
characters d, l, n, o, and x can be preceded by h to indicate that the corresponding
argument is a pointer to short_int rather than a pointer to int, or by l to indicate that it
is a pointer to long_int. Similarly, the conversion character u can be preceded by h to
indicate that the corresponding argument is a pointer to unsigned_short_int rather than
a pointer to unsigned_int, or by l to indicate that it is a pointer to unsigned_long_int.
Finally, the conversion characters e, f, and g can be preceded by l to indicate that the
corresponding argument is a pointer to double rather than a pointer to float, or by L to
indicate a pointer to long_double. If an h, l, or L appears with any other conversion
character, it is ignored.

• A character that specifies the type of conversion to be applied. The valid conversion
characters are described in the following paragraphs.

The scanf function executes each directive of the format in turn. If a directive fails, as
detailed below, the scanf function returns. Failures are described as input failures (due to
the unavailability of input characters), or matching failures (due to inappropriate input).

A directive composed of white space is executed by reading input up to the first non-
white-space character (which remains unread), or until no more characters can be read. A
white-space directive fails if no white-space character can be found.

A directive that is an ordinary character is executed by reading the next character of the
stream. If the character differs from the one comprising the directive, the directive fails,
and the character remains unread.

A directive that is a conversion specification defines a set of matching input sequences, as
described below for each character. A conversion specification is executed in the follow-
ing steps:

• Input white-space characters (as specified by the isspace function) are skipped,
unless the specification includes a ’[’, ’c,’ or ’n’ character.

• An input item is read from the stream, unless the specification includes an n character.
An input item is defined as the longest sequence of input characters (up to any
specified maximum field width) which is an initial subsequence of a matching
sequence. The first character, if any, after the input item remains unread. If the length
of the input item is zero, the execution of the directive fails: this condition is a
matching failure, unless an error prevented input from the stream, in which case it is
an input failure.

• Except in the case of a % character, the input item (or, in the case of a %n directive, the
count of input characters) is converted to a type appropriate to the conversion
character. If the input item is not a matching sequence, the execution of the directive
fails: this condition is a matching failure. Unless assignment suppression was
indicated by a *, the result of the conversion is placed in the object pointed to by the
first argument following the format argument that has not already received a
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

360
conversion result. If this object does not have an appropriate type, or if the result of
the conversion cannot be represented in the space provided, the behavior is undefined.

NOTE: See “scanf Conversion Characters” for valid input information.

Synopsis

#include <stdio.h>
int scanf(const char *format, ...);

Returns

The value of the macro EOF if an input failure occurs before any conversion. Otherwise,
the scanf function returns the number of input items assigned, which can be fewer than
provided for, or even zero, in the event of an early conflict between an input character and
the format.

Examples

int i
scanf("%d", &i);

The following example reads in two values. var1 is an unsigned char with two decimal
digits, and var2 is a float with three decimal place precision.
scanf("%2d,%f",&var1,&var2);

scanf Conversion Characters

d Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of the strtol function with the value 10 for the base argument. The
corresponding argument is a pointer to integer.

i Matches an optionally signed integer, whose format is the same as expected for the
subject sequence of the strtol function with the value 0 for the base argument. The
corresponding argument is a pointer to integer.

o Matches an optionally signed octal integer, whose format is the same as expected for the
subject sequence of the strtol function with the value 8 for the base argument. The
corresponding argument is a pointer to integer.

u Matches an unsigned decimal integer, whose format is the same as expected for the
subject sequence of the strtol function with the value 10 for the base argument. The
corresponding argument is a pointer to unsigned integer.

x Matches an optionally signed hexadecimal integer, whose format is the same as expected
for the subject sequence of the strtol function with the value of 16 for the base argument.
The corresponding argument is a pointer to integer.

e,f,g Matches an optionally signed floating-point number, whose format is the same as
expected for the subject string of the strtod function. The corresponding argument is a
pointer to floating.
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

361
If a conversion specification is invalid, the behavior is undefined.

The conversion characters e, g, and x can be capitalized. However, the use of upper case is
ignored.

If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs
before any characters matching the current directive have been read (other than leading
white space, where permitted), execution of the current directive terminates with an input
failure; otherwise, unless execution of the current directive is terminated with a matching
failure, execution of the following directive (if any) is terminated with an input failure.

If conversion terminates on a conflicting input character, the offending input character is
left unread in the input stream. Trailing white space (including new-line characters) is left
unread unless matched by a directive. The success of literal matches and suppressed
assignments is not directly determinable other than using the %n directive.

setjmp
Saves its calling environment in its jmp_buf argument, for later use by the longjmp func-
tion.

s Matches a sequence of non-white-space characters. The corresponding argument is a
pointer to the initial character of an array large enough to accept the sequence and a
terminating null character, which is added automatically.

[Matches a sequence of expected characters (the scanset). The corresponding argument is a
pointer to the initial character of an array large enough to accept the sequence and a
terminating null character, which is added automatically. The conversion character
includes all subsequent characters is the format string, up to and including the matching
right bracket (]). The characters between the brackets (the scanlist) comprise the scanset,
unless the character after the left bracket is a circumflex (^), in which case the scanset
contains all characters that do not appear in the scanlist between the circumflex and the
right bracket. As a special case, if the conversion character begins with [] or [^], the right
bracket character is in the scanlist and next right bracket character is the matching right
bracket that ends the specification. If a - character is in the scanlist and is neither the first
nor the last character, the behavior is indeterminate.

c Matches a sequence of characters of the number specified by the field width (1 if no field
width is present in the directive). The corresponding argument is a pointer to the initial
character of an array large enough to accept the sequence. No null character is added.

p Matches a hexadecimal number. The corresponding argument is a pointer to a pointer to
void.

n No input is consumed. The corresponding argument is a pointer to integer into which is to
be written the number of characters read from the input stream so far by this call to the
scanf function. Execution of a %n directive does not increment the assignment count
returned at the completion of execution of the scanf function.

% Matches a single %; no conversion or assignment occurs.
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

362
Synopsis

#include<setjmp.h>
int setjmp(jmp_buf env);

Returns

If the return is from a direct invocation, the setjmp function returns the value zero. If the
return is from a call to the longjmp function, the setjmp function returns a nonzero
value.

Example

int i;
jmp_buf env;
i=setjmp(env);
longjmp(env, i);

sin
Computes the sine of x (measured in radians). A large magnitude argument can yield a
result with little or no significance.

Synopsis

#include <math.h>
double sin(double x);

Returns

The sine value.

Example

double x=1.24;
double y;
y=sin(x);

sinh
Computes the hyperbolic sine of x. A range error occurs if the magnitude of x is too large.

Synopsis

#include <math.h>
double sinh(double x);

Returns

The hyperbolic sine value.
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

363
Example

double x=1.24;
double y;
y=sinh(x);

sprintf
The sprintf function is equivalent to printf, except that the argument s specifies an
array into which the generated output is to be written, rather than to a stream. A null char-
acter is written at the end of the characters written; it is not counted as part of the returned
sum.

Synopsis

#include <stdio.h>
int sprintf(char *s, char *format, ...);

Returns

The number of characters written in the array, not counting the terminating null character.

Example

int d=51;
char buf [40];
sprintf(buf,"COMPASS/%d",d);

sqrt
Computes the non-negative square root of x. A domain error occurs if the argument is neg-
ative.

Synopsis

#include <math.h>
double sqrt(double x);

Returns

The value of the square root.

Example

double x=25.0;
double y;
y=sqrt(x);
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

364
srand
Uses the argument as a seed for a new sequence of pseudorandom numbers to be returned
by subsequent calls to rand. If srand is then called with the same seed value, the
sequence of pseudorandom numbers is repeated. If rand is called before any calls to
srand have been made, the same sequence is generated as when srand is first called with
a seed value of 1.

Synopsis

#include <stdlib.h>
void srand(unsigned int seed);

Example

int i;
srand(1001);
i=rand();

sscanf
Reads formatted data from a string.

Synopsis

#include <stdio.h>
int sscanf(char *s, char *format, ...);

Returns

The value of the macro EOF if an input failure occurs before any conversion. Otherwise,
the sscanf function returns the number of input items assigned, which can be fewer than
provided for, or even zero, in the event of an early conflict between an input character and
the format.

Example

char buf [80];
int i;
sscanf(buf,"%d",&i);

strcat
Appends a copy of the string pointed to by s2 (including the terminating null character) to
the end of the string pointed to by s1. The initial character of s2 overwrites the null charac-
ter at the end of s1.
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

365
Synopsis

#include <string.h>
char *strcat(char *s1, char *s2);

Returns

The value of s1.

Example

char *ptr;
char s1[80]="Production";
char s2[]="Languages";
ptr=strcat(s1,s2);

strchr
Locates the first occurrence of c (converted to a char) in the string pointed to by s. The
terminating null character is considered to be part of the string.

Synopsis

#include <string.h>
char *strchr(char *s, int c);

Returns

A pointer to the located character or a null pointer if the character does not occur in the
string.

Example

char *ptr;
char str[]="COMPASS";
ptr=strchr(str,'p');

strcmp
Compares the string pointed to by s1 to the string pointed to by s2.

Synopsis

#include <string.h>
int strcmp(char *s1, char *s2);

Returns

An integer greater than, equal to, or less than zero, according as the string pointed to by s1
is greater than, equal to, or less than the string pointed to by s2.
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

366
Example

char s1[]="Production";
char s2[]="Programming";
int res;
res=strcmp(s1,s2);

strcpy
Copies the string pointed to by s2 (including the terminating null character) into the array
pointed to by s1. If copying takes place between objects that overlap, the behavior is unde-
fined.

Synopsis

#include <string.h>
char *strcpy(char *s1, char *s2);

Returns

The value of s1.

Example

char s1[80], *s2;
s2=strcpy(s1,"Production");

strcspn
Computes the length of the initial segment of the string pointed to by s1 that consists
entirely of characters not from the string pointed to by s2. The terminating null character is
not considered part of s2.

Synopsis

#include <string.h>
size_t strcspn(char *s1, char *s2);

Returns

The length of the segment.

Example

size_t pos;
char s1[]="xyzabc";
char s2[]="abc";
pos=strcspn(s1,s2);
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

367
strlen
Computes the length of the string pointed to by s.

Synopsis

#include <string.h>
size_t strlen(char *s);

Returns

The number of characters that precede the terminating null character.

Example

char s1[]="COMPASS";
size_t i;
i=strlen(s1);

strncat
Appends no more than n characters of the string pointed to by s2 (not including the termi-
nating null character) to the end of the string pointed to by s1. The initial character of s2
overwrites the null character at the end of s1. A terminating null character is always
appended to the result.

Synopsis

#include <string.h>
char *strncat(char *s1, char *s2, size_t n);

Returns

The value of s1.

Example

char *ptr;
char strl[80]="Production";
char str2[]="Languages";
ptr=strncat(str1,str2,4);

strncmp
Compares no more than n characters from the string pointed to by s1 to the string pointed
to by s2.

Synopsis

#include <string.h>
int strncmp(char *s1, char *s2, size_t n);
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

368
Returns

An integer greater than, equal to, or less than zero, according as the string pointed to by s1
is greater than, equal to, or less than the string pointed to by s2.

Example

char s1[]="Production";
char s2[]="Programming";
int res;
res=strncmp(s1,s2,3);

strncpy
Copies not more than n characters from the string pointed to by s2 to the array pointed to
by s1. If copying takes place between objects that overlap, the behavior is undefined.

If the string pointed to by s2 is shorter than n characters, null characters are appended to
the copy in the array pointed to by s1, until n characters in all have been written.

Synopsis

#include <string.h>
char *strncpy(char *s1, char *s2, size_t n);

Returns

The value of s1.

Example

char *ptr;
char s1[40]="Production";
char s2[]="Languages";
ptr=strncpy(s1,s2,4);

strpbrk
Locates the first occurrence in the string pointed to by s1 of any character from the string
pointed to by s2.

Synopsis

#include <string.h>
char *strpbrk(char *s1, char *s2);

Returns

A pointer to the character, or a null pointer if no character from s2 occurs in s1.
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

369
Example

char *ptr;
char s1[]="COMPASS";
char s2[]="PASS";
ptr=strpbrk(s1,s2);

strrchr
Locates the last occurrence of c (converted to a char) in the string pointed to by s. The
terminating null character is considered to be part of the string.

Synopsis

#include <string.h>
char *strrchr(char *s, int c);

Returns

A pointer to the character, or a null pointer if c does not occur in the string.

Example

char *ptr;
char s1[]="COMPASS";
ptr=strrchr(s1,'p');

strspn
Finds the first substring from a given character set in a string.

Synopsis

#include <string.h>
size_t strspn(char *s1, char *s2);

Returns

The length of the segment.

Example

char s1[]="cabbage";
char s2[]="abc";
size_t res;
res=strspn(s1,s2);
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

370
strstr
Locates the first occurrence of the string pointed to by s2 in the string pointed to by s1.

Synopsis

#include <string.h>
char *strstr(char *s1, char *s2);

Returns

A pointer to the located string or a null pointer if the string is not found.

Example

char *ptr;
char s1[]="Production Languages";
char s2[]="Lang";
ptr=strstr(s1,s2);

strtod
Converts the string pointed to by nptr to double representation. The function recognizes
an optional leading sequence of white-space characters (as specified by the isspace
function), then an optional plus or minus sign, then a sequence of digits optionally con-
taining a decimal point, then an optional letter e or E followed by an optionally signed
integer, then an optional floating suffix. If an inappropriate character occurs before the
first digit following the e or E, the exponent is taken to be zero.
The first inappropriate character ends the conversion. If endptr is not a null pointer, a
pointer to that character is stored in the object endptr points to; if an inappropriate charac-
ter occurs before any digit, the value of nptr is stored.
The sequence of characters from the first digit or the decimal point (whichever occurs
first) to the character before the first inappropriate character is interpreted as a floating
constant according to the rules of this section, except that if neither an exponent part or a
decimal point appears, a decimal point is assumed to follow the last digit in the string. If a
minus sign appears immediately before the first digit, the value resulting from the conver-
sion is negated.

Synopsis

#include <stdlib.h>
double strtod(const char *nptr, char **endptr);

Returns

The converted value, or zero if an inappropriate character occurs before any digit. If the
correct value would cause overflow, plus or minus HUGE_VAL is returned (according to
the sign of the value), and the macro errno acquires the value ERANGE. If the correct
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

371
value causes underflow, zero is returned and the macro errno acquires the value
ERANGE.

Example

char *ptr;
char s[]="0.1456";
double res;
res=strtod(s,&ptr);

strtok
A sequence of calls to the strtok function breaks the string pointed to by s1 into a
sequence of tokens, each of which is delimited by a character from the string pointed to by
s2. The first call in the sequence has s1 as its first argument, and is followed by calls with
a null pointer as their first argument. The separator string pointed to by s2 can be different
from call to call.

The first call in the sequence searches s1 for the first character that is not contained in the
current separator string s2. If no such character is found, there are no tokens in s1, and the
strtok function returns a null pointer. If such a character is found, it is the start of the
first token.

The strtok function then searches from there for a character that is contained in the cur-
rent separator string. If no such character is found, the current token extends to the end of
the string pointed to by s1, and subsequent searches for a token fail. If such a character is
found, it is overwritten by a null character, which terminates the current token. The
strtok function saves a pointer to the following character, from which the next search for
a token starts.

Each subsequent call, with a null pointer as the value of the first argument, starts searching
from the saved pointer and behaves as described in the preceding paragraphs.

Synopsis

#include <string.h>
char *strtok(char *s1, char *s2);

Returns

A pointer to the first character of a token or a null pointer if there is no token.

Example

#include <string.h>
static char str[] = "?a???b, , ,#c";
char *t;
t = strtok(str,"?"); /* t points to the token "a" */
t = strtok(NULL,","); /* t points to the token "??b " */
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

372
t = strtok(NULL,"#,"); /* t points to the token "c" */
t = strtok(NULL,"?"); /* t is a null pointer */

strtol
Converts the string pointed to by nptr to long int representation. The function recognizes
an optional leading sequence of white-space characters (as specified by the isspace func-
tion), then an optional plus or minus sign, then a sequence of digits and letters, then an
optional integer suffix.

The first inappropriate character ends the conversion. If endptr is not a null pointer, a
pointer to that character is stored in the object endptr points to; if an inappropriate charac-
ter occurs before the first digit or recognized letter, the value of nptr is stored.

If the value of base is 0, the sequence of characters from the first digit to the character
before the first inappropriate character is interpreted as an integer constant according to
the rules of this section. If a minus sign appears immediately before the first digit, the
value resulting from the conversion is negated.

If the value of base is between 2 and 36, it is used as the base for conversion. Letters from
a (or A) through z (or Z) are ascribed the values 10 to 35; a letter whose value is greater
than or equal to the value of base ends the conversion. Leading zeros after the optional
sign are ignored, and leading 0x or 0X is ignored if the value of base is 16. If a minus sign
appears immediately before the first digit or letter, the value resulting from the conversion
is negated.

Synopsis

#include <stdlib.h>
long strtol(char *nptr, char **endptr, int base);

Returns

The converted value, or zero if an inappropriate character occurs before the first digit or
recognized letter. If the correct value would cause overflow, LONG_MAX or
LONG_MIN is returned (according to the sign of the value), and the macro errno
acquires the value ERANGE.

Example

char *ptr;
char s[]="12345";
long res;
res=strtol(s,&ptr,10);
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

373
tan
The tangent of x (measured in radians). A large magnitude argument can yield a result
with little or no significance.

Synopsis

#include <math.h>
double tan(double x);

Returns

The tangent value.

Example

double x=2.22;
double y;
y=tan(x);

tanh
Computes the hyperbolic tangent of x.

Synopsis

#include <math.h>
double tanh(double x);

Returns

The hyperbolic tangent of x.

Example

double x=2.22;
double y;
y=tanh(x);

tolower
Converts an uppercase letter to the corresponding lowercase letter.

Synopsis

#include <ctype.h>
int tolower(int c);
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

374
Returns

If the argument is an uppercase letter, the tolower function returns the corresponding
lowercase letter, if any; otherwise, the argument is returned unchanged.

Example

char c='A';
int i;
i=tolower(c);

toupper
Converts a lowercase letter to the corresponding uppercase letter.

Synopsis

#include <ctype.h>
int toupper(int c);

Returns

If the argument is a lowercase letter, the toupper function returns the corresponding
uppercase letter, if any; otherwise, the argument is returned unchanged.

Example

char c='a';
int i;
i=toupper(c);

va_arg
Expands to an expression that has the type and value of the next argument in the call. The
parameter ap is the same as the va_list ap initialized by va_start. Each invocation of
va_arg modifies ap so that successive arguments are returned in turn. The parameter type
is a type name such that the type of a pointer to an object that has the specified type can be
obtained simply by fixing a * to type. If type disagrees with the type of the actual next
argument (as promoted, according to the default argument conversions, into int, unsigned
int, or double), the behavior is undefined.

Synopsis

#include <stdarg.h>
type va_arg(va_list ap, type);
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

375
Returns

The first invocation of the va_arg macro after that of the va_start macro returns the
value of the argument after that specified by parmN. Successive invocations return the val-
ues of the remaining arguments in succession.

Example

The function f1 gathers into an array a list of arguments that are pointers to strings (but not
more than MAXARGS arguments), then passes the array as a single argument to function
f2. The number of pointers is specified by the first argument to f1.
#include <stdarg.h>
extern void f2(int n, char *array[]);
#define MAXARGS 31
void f1(int n_ptrs,...) {

va_list ap;
char *array[MAXARGS];
int ptr_no = 0;

if (n_ptrs > MAXARGS)
n_ptrs = MAXARGS;

va_start(ap, n_ptrs);
while (ptr_no < n_ptrs)

array[ptr_no++] = va_arg(ap, char *);
va_end(ap);
f2(n_ptrs, array);

}

Each call to f1 has in scope the definition of the function of a declaration such as void
f1(int, ...);

va_end
Facilitates a normal return from the function whose variable argument list was referenced
by the expansion of va_start that initialized the va_list ap. The va_end function
can modify ap so that it is no longer usable (without an intervening invocation of
va_start). If the va_end function is not invoked before the return, the behavior is unde-
fined.

Synopsis

#include <stdarg.h>
void va_end(va_list ap);

Example

The function f1 gathers into an array a list of arguments that are pointers to strings (but not
more than MAXARGS arguments), then passes the array as a single argument to function
f2. The number of pointers is specified by the first argument to f1.
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

376
#include <stdarg.h>
extern void f2(int n, char *array[]);
#define MAXARGS 31
void f1(int n_ptrs,...) {

va_list ap;
char *array[MAXARGS];
int ptr_no = 0;

if (n_ptrs > MAXARGS)
n_ptrs = MAXARGS;

va_start(ap, n_ptrs);
while (ptr_no < n_ptrs)

array[ptr_no++] = va_arg(ap, char *);
va_end(ap);
f2(n_ptrs, array);

}

Each call to f1 has in scope the definition of the function of a declaration such as void
f1(int, ...);

va_start
Is executed before any access to the unnamed arguments.

The parameter ap points to an object that has type va_list. The parameter parmN is the
identifier of the rightmost parameter in the variable parameter list in the function defini-
tion (the one just before the , ...). The va_start macro initializes ap for subsequent use
by va_arg and va_end.

Synopsis

#include <stdarg.h>
void va_start(va_list ap, parmN);

Example

The function f1 gathers into an array a list of arguments that are pointers to strings (but not
more than MAXARGS arguments), then passes the array as a single argument to function
f2. The number of pointers is specified by the first argument to f1.
#include <stdarg.h>
extern void f2(int n, char *array[]);
#define MAXARGS 31
void f1(int n_ptrs,...) {

va_list ap;
char *array[MAXARGS];
int ptr_no = 0;

if (n_ptrs > MAXARGS)
n_ptrs = MAXARGS;
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

377
va_start(ap, n_ptrs);
while (ptr_no < n_ptrs)

array[ptr_no++] = va_arg(ap, char *);
va_end(ap);
f2(n_ptrs, array);

}

Each call to f1 has in scope the definition of the function of a declaration such as void
f1(int, ...);

vprintf
Equivalent to printf, with the variable argument list replaced by arg, which has been ini-
tialized by the va_start macro (and possibly subsequent va_arg calls). The vprintf
function does not invoke the va_end function.

Synopsis

#include <stdarg.h>
#include <stdio.h>
int vprintf(char *format, va_list arg);

Returns

The number of characters transmitted or a negative value if an output error occurred.

Example

va_list va;
/* initialize the variable argument va here */
vprintf("%d %d %d",va);

vsprintf
Equivalent to sprintf, with the variable argument list replaced by arg, which has been
initialized by the va_start macro (and possibly subsequent va_arg calls). The
vsprintf function does not invoke the va_end function.

Synopsis

#include <stdarg.h>
#include <stdio.h>
int vsprintf(char *s, char *format, va_list arg);

Returns

The number of characters written in the array, not counting the terminating null character.
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

378
Example

va_list va;
char buf[80];
/*initialize the variable argument va here*/
vsprint(buf, "%d %d %d",va);
UM014423-0607 C Standard Library

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

379
Running ZDS II from the Command Line
You can run ZDS II from the command line. ZDS II generates a make file
(project_Debug.mak or project_Release.mak, depending on the project configuration)
every time you build or rebuild a project. For a project named test.zdsproj set up in
the Debug configuration, ZDS II generates a make file named test_Debug.mak in the
project directory. You can use this make file to run your project from the command line.

This section covers the following topics:

• “Building a Project from the Command Line” on page 379

• “Running the Compiler from the Command Line” on page 380

• “Running the Assembler from the Command Line” on page 380

• “Running the Linker from the Command Line” on page 380

• “Assembler Command Line Options” on page 381

• “Compiler Command Line Options” on page 383

• “Librarian Command Line Options” on page 385

• “Linker Command Line Options” on page 385

BUILDING A PROJECT FROM THE COMMAND LINE
To build a project from the command line, use the following procedure:

1. Add the ZDS II bin directory (for example, C:\Program
Files\ZiLOG\ZDSII_eZ80Acclaim!_4.11.0\bin) to your path by setting the
PATH environment variable.

The make utility is available in this directory.

2. Open the project using the IDE.

3. Export the make file for the project using the Export Makefile command in the Project
menu.

4. Open a DOS window and change to the intermediate files directory.

5. Build the project using the make utility on the command line in a DOS window.

To build a project by compiling only the changed files, use the following command:
make -f sampleproject_Debug.mak

To rebuild the entire project, use the following command:
make rebuildall -f sampleproject_Debug.mak
UM014423-0607 Running ZDS II from the Command Line

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

380
RUNNING THE COMPILER FROM THE COMMAND LINE
To run the compiler from the command line:

1. Open the make file in a text editor.

2. Copy the options in the CFLAGS section.

3. In a Command Prompt window, type the path to the compiler, the options from the
CFLAGS section (on a single line and without backslashes), and your C file. For
example:

C:\PROGRA~1\ZiLOG\ZDSII_eZ80Acclaim!_4.11.0\bin\eZ80cc -alias -asm -const:RAM
-debug -define:_EZ80F91 -NOexpmac -NOfplib -intsrc -intrinsic -NOkeepasm -NOkeeplst
-NOlist -NOlistinc -maxerrs:50 -NOmodsect -promote -quiet -NOstrict -NOwatch -optsize
-localopt -localcse -localfold -localcopy -peephole -globalopt -NOglobalcse
-NOglobalfold -NOglobalcopy -NOloopopt -NOsdiopt -NOjmpopt
-stdinc:"..\include;C:\PROGRA~1\ZiLOG\ZDSII_eZ80Acclaim!_4.11.0\include"
-usrinc:"..\include" -cpu:EZ80F91 -bitfieldsize:24 -charsize:8 -doublesize:32
-floatsize:32 -intsize:24 -longsize:32 -shortsize:16 -asmsw:"-cpu:EZ80F91" test.c

NOTE: If you use DOS, use double quotation marks for the -stdinc and -usrinc
commands for the C-Compiler. For example:

 -stdinc:"C:\eZ80\include"

If you use cygwin, use single quotation marks on both sides of a pair of braces for the
-stdinc and -usrinc commands for the C-Compiler. For example:
 -stdinc:'{C:\eZ80\include}'

RUNNING THE ASSEMBLER FROM THE COMMAND LINE
To run the assembler from the command line:

1. Open the make file in a text editor.

2. Copy the options in the AFLAGS section.

3. In a Command Prompt window, type the path to the assembler, the options from the
AFLAGS section (on a single line and without backslashes), and your assembly file.
For example:

C:\PROGRA~1\ZiLOG\ZDSII_eZ80Acclaim!_4.11.0\bin\eZ80asm -debug -genobj
-NOigcase -include:"..\include" -list -NOlistmac -name -pagelen:56
-pagewidth:80 -quiet -warn -NOzmasm -cpu:EZ80F91 test.asm

RUNNING THE LINKER FROM THE COMMAND LINE
To run the linker from the command line:

1. Open the make file in a text editor.
UM014423-0607 Running ZDS II from the Command Line

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

381
2. In a Command Prompt window, type the path to the linker and your linker file. For
example:

C:\PROGRA~1\ZiLOG\ZDSII_eZ80Acclaim!_4.11.0\bin\eZ80lnk @e:\ez80\rtl\testfiles\test\test.linkcmd

ASSEMBLER COMMAND LINE OPTIONS
The following table describes the assembler command line options.

NOTE: If you use DOS, use double quotation marks for the -stdinc and -usrinc
commands for the C compiler. For example:

 -stdinc:"C:\eZ80\include"

If you use cygwin, use single quotation marks on both sides of a pair of braces for the
-stdinc and -usrinc commands for the C compiler. For example:

 -stdinc:'{C:\eZ80\include}'

Table 13. Assembler Command Line Options

Option Name Description

-cpu:name Sets the CPU.

-debug Generates debug information for the symbolic debugger. The default setting is
-nodebug.

-define:name[=value] Defines a symbol and sets it to the constant value. For example:
 -define:DEBUG=0
This option is equivalent to the C #define statement. The alternate syntax,
 -define:myvar, is the same as -define:myvar=1.

-genobj Generates an object file with the .obj extension. This is the default setting.

-help Displays the assembler help screen.

-igcase Suppresses case sensitivity of user-defined symbols. When this option is used, the
assembler converts all symbols to uppercase. This is the default setting.

-include:path Allows the insertion of source code from another file into the current source file during
assembly.

-list Generates an output listing with the .lst extension. This is the default setting.

-listmac Expands macros in the output listing. This is the default setting.

-listoff Does not generate any output in list file until a directive in assembly file sets the listing
as on.

-metrics Keeps track of how often an instruction is used. This is a static rather than a dynamic
measure of instruction frequency.

-name Displays the name of the source file being assembled.
UM014423-0607 Running ZDS II from the Command Line

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

382
-nodebug Does not create a debug information file for the symbolic debugger. This is the default
setting.

-nogenobj Does not generate an object file with the .obj extension. The default setting is
genobj.

-noigcase Enables case sensitivity of user-defined symbols. The default setting is igcase.

-nolist Does not create a list file. The default setting is list.

-nolistmac Does not expand macros in the output listing. The default setting is listmac.

-noquiet Displays title and other information. This is the default.

-nosdiopt Does not perform span-dependent optimizations. All size optimizable instructions use
the largest instruction size. The default is sdiopt.

-nowarns Suppresses the generation of warning messages to the screen and listing file. A warning
count is still maintained. The default is to generate warning messages.

-pagelength:n Sets the new page length for the list file. The page length must immediately follow the =
(with no space between). The default is 56. For example:
 -pagelength=60

-pagewidth:n Sets the new page width for the list file. The page width must immediately follow the =
(with no space between). The default and minimum page width is 80. The maximum
page width is 132. For example:
 -pagewidth=132

-quiet Suppresses title information that is normally displayed to the screen. Errors and
warnings are still displayed. The default setting is to display title information.

-relist:mapfile Generates an absolute listing by making use of information contained in a linker map
file. This results in a listing that matches linker-generated output. mapfile is the name of
the map file created by the linker. For example:
 -relist:product.map

-sdiopt Performs span-dependent optimizations. The smallest instruction size allowed is
selected for all size optimizable instructions. This is the default setting.

-trace Debug information for internal use.

-version Prints the version number of the assembler.

-warns Toggles display warnings.

Table 13. Assembler Command Line Options (Continued)

Option Name Description
UM014423-0607 Running ZDS II from the Command Line

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

383
COMPILER COMMAND LINE OPTIONS
The following table describes the compiler command line options.

NOTE: If you use DOS, use double quotation marks for the -stdinc and -usrinc
commands for the C compiler. For example:

 -stdinc:"C:\eZ80include"

If you use cygwin, use single quotation marks on both sides of a pair of braces for the
-stdinc and -usrinc commands for the C compiler. For example:

 -stdinc:'{C:\eZ80\include}'

Table 14. Compiler Command Line Options

Option Name Description

-asm Assembles compiler-generated assembly file. This switch results in the generation of an
object module. The assembly file is deleted if no assemble errors are detected and the
keepasm switch is not given. The default is asm.

-asmsw:"sw" Passes sw to the assembler when assembling the compiler-generated assembly file.

-cpu:cpu Sets the CPU. For example:
 -cpu:EZ80F91

-debug Generates debug information for the symbolic debugger.

-define:def Defines a symbol and sets it to the constant value. For example:
 -define:DEBUG=0
This option is equivalent to the C #define statement. The alternate syntax,
-define:myvar, is the same as -define:myvar=1.

-genprintf The format string is parsed at compile time, and direct inline calls to the lower level helper
functions are generated. The default is genprintf.

-help Displays the compiler help screen.

-keepasm Keeps the compiler-generated assembly file. The default is nokeepasm.

-keeplst Keeps the assembly listing file (.lst). The default is nokeeplst.

-list Generates a .lis source listing file. The default is nolist.

-listinc Displays included files in the compiler listing file.

-model:model This option has no effect on the eZ80Acclaim! compiler.

-modsect Generate distinct code segment name for each module.

-noasm Does not assemble the compiler-generated assembly file. This default is asm.

-nodebug Does not generate symbol debug information.

-nogenprint A call to printf() or sprintf() parses the format string at run time to generate the
required output. The default is genprintf.
UM014423-0607 Running ZDS II from the Command Line

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

384
-nokeepasm Deletes the compiler-generated assembly file. This is the default.

-nokeeplst Does not keep the assembly listing file (.lst). This is the default.

-nolist Does not produce a source listing. All errors are identified on the console. This is the
default.

-nolistinc Does not show include files in the compiler listing file.

-nomodsect Does not generate distinct code segment name for each module. The code segment is
named as “code” for every module. This is the default.

-nopromote Turns off ANSI promotions (deprecated).

-noquiet Displays the title information.

-noregvar This option has no effect on eZ80Acclaim!.

-promote Turns on ANSI promotions.

-quiet Suppresses title information that is normally displayed to the screen. Errors and warnings
are still displayed. The default setting is to display title information.

-regvar This option has no effect on eZ80Acclaim!.

-stdinc:"path" Sets the path for the standard include files. This defines the location of include files using
the #include file.h syntax. Multiple paths are separated by semicolons. For example:
 -stdinc:"c:\rtl;c:\myinc"
In this example, the compiler looks for the include file in
1. the default directory
2. the c:\rtl directory
3. the c:\myinc directory
If the file is not found after searching the entire path, the compiler flags an error.

Omitting this switch tells the compiler to search only the current directory.

-usrinc:"path" Sets the search path for user include files. This defines the location of include files using
the #include "file.h" syntax. Multiple paths are separated by semicolons. For
example:
 -usrinc:"c:\rtl;c:\myinc"
In this example, the compiler looks for the include file in
1. the default directory
2. the c:\rtl directory
3. the c:\myinc directory
If the file is not found after searching the entire path, the compiler flags an error.

Omitting this switch tells the compiler to search only the current directory.

-version Prints the version number of the compiler.

Table 14. Compiler Command Line Options (Continued)

Option Name Description
UM014423-0607 Running ZDS II from the Command Line

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

385
LIBRARIAN COMMAND LINE OPTIONS
The following table describes the librarian command line options.

NOTE: If you use DOS, use double quotation marks for the -stdinc and -usrinc
commands for the C compiler. For example:

 -stdinc:"C:\eZ80\include"

If you use cygwin, use single quotation marks on both sides of a pair of braces for the
-stdinc and -usrinc commands for the C compiler. For example:

 -stdinc:'{C:\eZ80\include}'

LINKER COMMAND LINE OPTIONS
The following table describes the linker command line options.

NOTE: If you use DOS, use double quotation marks for the -stdinc and -usrinc
commands for the C compiler. For example:

 -stdinc:"C:\eZ80\include"

If you use cygwin, use single quotation marks on both sides of a pair of braces for the
-stdinc and -usrinc commands for the C compiler. For example:

 -stdinc:'{C:\eZ80\include}'

Table 15. Librarian Command Line Options

Option Name Description

-help Displays the librarian help screen.

-list Generates an output listing with the .lst extension. This is the default setting.

-noquiet Displays the title information.

-nowarn Suppresses warning messages.

-quiet Suppresses title information that is normally displayed to the screen. Errors and warnings are still
displayed. The default setting is to display title information.

-version Displays the version number.

-warn Displays warnings.
UM014423-0607 Running ZDS II from the Command Line

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

386
Table 16. Linker Command Line Options

Option Name Description

copy segment = space Makes a copy of a segment into a specified address space.

-debug Turns on debug information generation.

define symbol = expr Defines a symbol and sets it to the constant value. For
example:
 -define:DEBUG=0
This option is equivalent to the C #define statement. The
alternate syntax,
-define:myvar, is the same as -define:myvar=1.

-format:[intel32|omf695] Sets the format of the hex file output of the linker to
intel32 (Intel Hex records) or omf695 (IEEE695 format).

-igcase Suppresses case sensitivity of user-defined symbols. When
this option is used, the linker converts all symbols to
uppercase. This is the default setting.

locate segment at expr Specifies the address where a group, address space, or
segment is to be located.

-nodebug Turns off debug information generation.

-noigcase Enables case sensitivity of user-defined symbols. The default
setting is igcase.

order segment_list or space_list Establishes a linking sequence and sets up a dynamic range
for contiguously mapped address spaces.

range space = address_range Sets the lower and upper bounds of a group, address space, or
segment.

sequence segment_list or space_list Allocates a group, address space, or segment in the order
specified.
UM014423-0607 Running ZDS II from the Command Line

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

387
Using the Command Processor
The Command Processor allows you to use commands or script files to automate the exe-
cution of a significant portion of the integrated development environment (IDE). This sec-
tion covers the following topics:

• “Sample Command Script File” on page 391

• “Supported Script File Commands” on page 392

• “Running the Flash Loader from the Command Processor” on page 412

You can run commands in one of the following ways:

• Using the Command Processor toolbar in the IDE.

Commands entered into the Command Processor toolbar are executed after you press
the Enter (or Return) key or click the Run Command button. The toolbar is described
in “Command Processor Toolbar” on page 22.

• Using the batch command to run a command script file from the Command
Processor toolbar in the IDE.

For example:
batch "c:\path\to\command\file\runall.cmd"
batch "commands.txt"

• Passing a command script file to the IDE when it is started.

You need to precede the script file with an at symbol (@) when passing the path and
name of the command file to the IDE on the command line. For example:
zds2ide @c:\path\to\command\file\runall.cmd
zds2ide @commands.txt

Processed commands are echoed, and associated results are displayed in the Command
Output window in the IDE and, if logging is enabled (see “log” on page 400), in the log
file as well.

Commands are not case sensitive.

In directory or path-based parameters, you can use \, \\, or / as separators as long as you
use the same separator throughout a single parameter. For example, the following exam-
ples are legal:
cd "..\path\to\change\to"
cd "..\\path\\to\\change\\to"
cd "../path/to/change/to"

The following examples are illegal:
cd "..\path/to\change/to"
cd "..\\path\to\change\to"
UM014423-0607 Using the Command Processor

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

388
The following table lists ZDS II menu commands and dialog box options that have corre-
sponding script file commands.

Table 17. Script File Commands

ZDS II
Menus ZDS II Commands Dialog Box Options Script File Commands Location

File New Project new project page 400

Open Project open project page 401

Exit exit page 398

Edit Manage Breakpoints
Go to Code
Enable All
Disable All
Remove
Remove All

list bp

cancel bp
cancel all

page 399

page 393
page 393

Project Add Files add file page 392

Settings (General page) CPU Family
CPU
Show Warnings
Generate Debug Information
Ignore Case of Symbols
Intermediate Files Directory

option general cpu
option general warn
option general debug
option general igcase
option general outputdir

Table 21

Settings (Assembler page) Includes
Defines
Generate Assembly Listing Files
 (.lst)
Expand Macros
Page Width
Page Length
Jump Optimization

option assembler include
option assembler define
option assembler list

option assembler listmac
option assembler pagewidth
option assembler pagelen
option assembler sdiopt

Table 19

Settings (Code Generation
page)

Optimize For
Limit Optimizations for Easier
 Debugging

option compiler optspeed
option compiler reduceopt

Table 20

Settings (Listing Files page) Generate C Listing Files (.lis)
With Include Files
Generate Assembly Source Code
Generate Assembly Listing Files
 (.lst)

option compiler list
option compiler listinc
option compiler keepasm
option compiler keeplst

Table 20

Settings (Preprocessor page) Preprocessor Definitions
Standard Include Path
User Include Path

option compiler define
option compiler stdinc
option compiler usrinc

Table 20
UM014423-0607 Using the Command Processor

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

389
Settings (Advanced page) Generate Printfs Inline
Distinct Code Segment for Each
 Module

option compiler genprintf
option compiler modsect

Table 20

Settings (Deprecated page) Disable ANSI Promotions option compiler promote Table 20

Settings (Librarian page) Output File Name option librarian outfile Table 22

Settings (ZSL page) Include ZiLOG Standard Library
 (Peripheral Support)
Ports
Uarts

option middleware usezsl

option middleware zslports
option middleware zsluarts

Table 24

Settings (Commands page) Link Configuration
Always Generate from Settings
Additional Directives
Edit (Additional Linker
 Directives dialog box)
Use Existing

option linker createnew
option linker useadddirective
option linker directives

option linker linkctlfile

Table 23

Settings (Objects and
Libraries page)

Additional Object/Library Modules
Standard
Included in Project
Use Standard Startup Linker
 Commands
Use C Runtime Library
Floating Point Library
ZiLOG Standard Library (Peripheral
 Support)

option linker objlibmods
option linker startuptype
option linker startuptype
option linker startuplnkcmds

option linker usecrun
option linker fplib

Table 23

Settings (Address Spaces
page)

ROM
RAM
ExtIO
IntIO
FlashInfo

option linker rom
option linker ram
option linker extio
option linker intio
option linker flashinfo

Table 23

Settings (Warnings page) Treat All Warnings as Fatal
Treat Undefined Symbols as Fatal
Warn on Segment Overlap

option linker warnisfatal
option linker undefisfatal
option linker warnoverlap

Table 23

Table 17. Script File Commands (Continued)

ZDS II
Menus ZDS II Commands Dialog Box Options Script File Commands Location
UM014423-0607 Using the Command Processor

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

390
Settings (Output page) Output File Name
Generate Map File
Sort Symbols By
Show Absolute Addresses in
 Assembly Listings
Executable Formats
Fill Unused Hex File Bytes with
 0xFF
Maximum Bytes per Hex File Line

option linker of
option linker map
option linker sort
option linker relist

option linker exeform
option linker padhex

option linker maxhexlen

Table 23

Settings (Debugger page) Use Page Erase Before Flashing
Target
 Setup
 Add
 Copy
 Delete
Debug Tool
 Setup

target set
target options
target create
target copy

debugtool set
debugtool set

page 411
page 411
page 410
page 409

page 396
page 396

Export Makefile makfile
makefile

page 400
page 400

Build Build build page 393

Rebuild All rebuild page 408

Stop Build stop page 409

Set Active Configuration set config page 408

Manage Configurations set config
delete config

page 408

Debug Stop Debugging quit page 407

Reset reset page 408

Go go page 399

Break stop page 409

Step Into stepin page 409

Step Over step page 409

Step Out stepout page 409

Tools Flash Loader page 412

Calculate File Checksum checksum page 394

Table 17. Script File Commands (Continued)

ZDS II
Menus ZDS II Commands Dialog Box Options Script File Commands Location
UM014423-0607 Using the Command Processor

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

391
SAMPLE COMMAND SCRIPT FILE
A script file is a text-based file that contains a collection of commands. The file can be
created with any editor that can save or export files in a text-based format. Each command
must be listed on its own line. Anything following a semicolon (;) is considered a com-
ment.

The following is a sample command script file:
; change to correct default directory
cd "m:\eZ80Acclaim!\test\focustests"
open project "focus1.zdsproj"
log "focus1.log" ; Create log file
log on ; Enable logging
rebuild
reset
bp done
go
wait 2000 ; Wait 2 seconds
print "pc = %x" reg PC
log off ; Disable logging
quit ; Exit debug mode
close project
wait 2000
open project "focus2.zdsproj"
reset
bp done
go
wait 2000 ; Wait 2 seconds
log "focus2.log" ; Open log file
log on ; Enable logging
print "pc = %x" reg PC
log off ; Disable logging
quit ; Exit debug mode

This script consecutively opens two projects, sets a breakpoint at label done, runs to the
breakpoint, and logs the value of the PC register. After the second project is complete, the
script exits the IDE. The first project is also rebuilt.
UM014423-0607 Using the Command Processor

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

392
SUPPORTED SCRIPT FILE COMMANDS
The Command Processor supports the following script file commands:

In the following syntax descriptions, items enclosed in angle brackets (< >) need to be
replaced with actual values, items enclosed in square brackets ([]) are optional, double
quotes (") indicate where double quotes must exist, and all other text needs to be included
as is.

add file
The add file command adds the given file to the currently open project. If the full path
is not supplied, the current working directory is used. The following is the syntax of the
add file command:
add file "<[path\]<filename>"

For example:
add file "c:\project1\main.c"

batch
The batch command runs a script file through the Command Processor. If the full path is
not supplied, the current working directory is used. The following is the syntax of the
batch command:
batch [wait] "<[path\]<filename>"

wait blocks processing of the current script until the invoked batch file
completes—useful when nesting script files

add file
batch
bp
build
cancel all
cancel bp
cd
checksum
debugtool copy
debugtool create
debugtool get
debugtool help
debugtool list
debugtool save
debugtool set
debugtool setup
defines
delete config

examine (?) for Expressions
examine (?) for Variables
exit
fillmem
go
list bp
loadmem
log
makfile or makefile
new project
open project
option
print
pwd
quit
rebuild
reset
savemem

set config
step
stepin
stepout
stop
target copy
target create
target get
target help
target list
target options
target save
target set
target setup
wait
wait bp
UM014423-0607 Using the Command Processor

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

393
For example:
BATCH "commands.txt"
batch wait "d:\batch\do_it.cmd"

bp
The bp command sets a breakpoint at a given label in the active file. The syntax can take
one of the following forms:
bp line <line number>

sets/removes a breakpoint on the given line of the active file.
bp <symbol>

sets a breakpoint at the given symbol. This version of the bp command can only be used
during a debug session.

For example:
bp main
bp line 20

build
The build command builds the currently open project. This command blocks the execu-
tion of other commands until the build process is complete. The following is the syntax of
the build command:
build

cancel all
The cancel all command clears all breakpoints in the active file. The following is the
syntax of the cancel all command:
cancel all

cancel bp
The cancel bp command clears the breakpoint at the bp list index. Use the list bp
command to retrieve the index of a particular breakpoint. The following is the syntax of
the cancel bp command:
cancel bp <index>

For example:
cancel bp 3
UM014423-0607 Using the Command Processor

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

394
cd
The cd command changes the working directory to dir. The following is the syntax of the
cd command:
cd "<dir>"

For example:
cd "c:\temp"
cd "../another_dir"

checksum
The checksum command calculates the checksum of a hex file. The following is the syn-
tax of the checksum command:
checksum "<filename>"

For example, if you use the following command:
checksum "ledblink.hex"

The file checksum for the example is:
0xCEA3

debugtool copy
The debugtool copy command creates a copy of an existing debug tool with the given
new name. The syntax can take one of two forms:
• debugtool copy NAME="<new debug tool name>"

creates a copy of the active debug tool named the value given for NAME.
• debugtool copy NAME="<new debug tool name>" SOURCE="<existing

debug tool name>"

creates a copy of the SOURCE debug tool named the value given for NAME.

For example:
debugtool copy NAME="Sim3" SOURCE="eZ80190"

debugtool create
The debugtool create command creates a new debug tool with the given name and
using the given communication type: usb, tcpip, ethernet, or simulator. The fol-
lowing is the syntax of the debugtool create command:
debugtool create NAME="<debug tool name>" COMMTYPE="<comm type>"

For example:
debugtool create NAME="emulator2" COMMTYPE="ethernet"
UM014423-0607 Using the Command Processor

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

395
debugtool get
The debugtool get command displays the current value for the given data item for the
active debug tool. Use the debugtool setup command to view available data items and
current values. The following is the syntax of the debugtool get command:
debugtool get "<data item>"

For example:
debugtool get "ipAddress"

debugtool help
The debugtool help command displays all debugtool commands. The following is
the syntax of the debugtool help command:
debugtool help

debugtool list
The debugtool list command lists all available debug tools. The syntax can take one
of two forms:
• debugtool list

displays the names of all available debug tools.
• debugtool list COMMTYPE="<type>"

displays the names of all available debug tools using the given communications type:
usb, tcpip, ethernet, or simulator.

For example:
debugtool list COMMTYPE="ethernet"

debugtool save
The debugtool save command saves a debug tool configuration to disk. The syntax can
take one of two forms:
• debugtool save

saves the active debug tool.

• debugtool save NAME ="<Debug Tool Name>"

saves the given debug tool.

For example:
debugtool save NAME="USBSmartCable"
UM014423-0607 Using the Command Processor

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

396
debugtool set
The debugtool set command sets the given data item to the given data value for the
active debug tool or activates a particular debug tool. The syntax can take one of two
forms:
• debugtool set "<data item>" "<new value>"

sets data item to new value for the active debug tool. Use debugtool setup to view
available data items and current values.

For example:
debugtool set "ipAddress" "123.456.7.89"

• debugtool set "<debug tool name>"

activates the debug tool with the given name. Use debugtool list to view
available debug tools.

debugtool setup
The debugtool setup command displays the current configuration of the active debug
tool. The following is the syntax of the debugtool setup command:
debugtool setup

defines
The defines command provides a mechanism to add to, remove from, or replace define
strings in the compiler preprocessor defines and assembler defines options. This command
provides a more flexible method to modify the defines options than the option com-
mand, which requires that the entire defines string be set with each use. Each defines
parameter is a string containing a single define symbol, such as "TRACE" or
"_SIMULATE=1". The defines command can take one of three forms:
• defines <compiler|assembler> add "<new define>"

adds the given define to the compiler or assembler defines, as indicated by the first
parameter.

• defines <compiler|assembler> replace "<new define>" "<old
define>"

replaces <old define> with <new define> for the compiler or assembler defines, as
indicated by the first parameter. If <old define> is not found, no change is made.

• defines <compiler|assembler> remove "<define to be removed>"

removes the given define from the compiler or assembler defines, as indicated by the
first parameter.

For example:
defines compiler add "_TRACE"
UM014423-0607 Using the Command Processor

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

397
defines assembler add "_TRACE=1"
defines assembler replace "_TRACE" "_NOTRACE"
defines assembler replace "_TRACE=1" "_TRACE=0"
defines compiler remove "_NOTRACE"

delete config
The delete config command deletes the given existing project build configuration.
The following is the syntax of the delete config command:
delete config "<config_name>"

If <config_name> is active, the first remaining build configuration, if any, is made active.
If <config_name> does not exist, no action is taken.

For example:
delete config "MyDebug"

examine (?) for Expressions
The examine command evaluates the given expression and displays the result. It accepts
any legal expression made up of constants, program variables, and C operators. The exam-
ine command takes the following form:
? [<data_type>] [<radix>] <expr> [:<count>]

<data_type> can consist of one of the following types:

short
int[eger]
long
ascii
asciz

<radix> can consist of one of the following types:

dec[imal]
hex[adecimal]
oct[al]
bin[ary]

Omitting a <data_type> or <radix> results in using the $data_type or $radix pseudo-
variable, respectively.

[:<count>] represents the number of items to display.

The following are examples:
? x

shows the value of x using $data_type and $radix.
? ascii STR
UM014423-0607 Using the Command Processor

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

398
shows the ASCII string representation of STR.
? 0x1000

shows the value of 0x1000 in the $data_type and $radix.
? *0x1000

shows the byte at address 0x1000.
? *0x1000 :25

shows 25 bytes at address 0x1000.
? L0

shows the value of register D0:0 using $data_type and $radix.
? asciz D0:0

shows the null-terminated string pointed to by the contents of register D0:0.

examine (?) for Variables
The examine command displays the values of variables. This command works for values
of any type, including arrays and structures. The following is the syntax:

? <expression>

The following are examples:

To see the value of z, enter
?z

To see the nth value of array x, enter
? x[n]

To see all values of array x, enter
?x

To see the nth through the n+5th values of array x, enter
?x[n]:5

If x is an array of pointers to strings, enter
? asciz *x[n]

NOTE: When displaying a structure’s value, the examine command also displays the names of
each of the structure's elements.

exit
The exit command exits the IDE. The following is the syntax of the exit command:
UM014423-0607 Using the Command Processor

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

399
fillmem
The fillmem command fills a block of a specified memory space with the specified
value. The functionality is similar to the Fill Memory command available from the context
menu in the Memory window (see “Fill Memory” on page 297). The following is the syn-
tax of the fillmem command:

fillmem SPACE="<displayed spacename>" FILLVALUE="<hexcadecimal value>"
[STARTADDRESS="<hexadecimal address>"] [ENDADDRESS="<hexadecimal address>"]

If STARTADDRESS and ENDADDRESS are not specified, all the memory contents of a spec-
ified space are filled.

For example:
fillmem SPACE="ROM" VALUE="AA"
fillmem SPACE="ROM" VALUE="AA" STARTADDRESS="1000" ENDADDRESS="2FFF"

go
The go command executes the program code from the current program counter until a
breakpoint or, optionally, a symbol is encountered. This command starts a debug session if
one has not been started. The go command can take one of the following forms:
• go

resumes execution from the current location.

• go <symbol>

resumes execution at the function identified by <symbol>. This version of the go
command can only be used during a debug session.

The following are examples:
go
go myfunc

list bp
The list bp command displays a list of all of the current breakpoints of the active file.
The following is the syntax of the list bp command:
list bp

loadmem
The loadmem command loads the data of an Intel hex file, a binary file, or a text file to a
specified memory space at a specified address. The functionality is similar to the Load
from File command available from the context menu in the Memory window (see “Load a
File into Memory” on page 299). The following is the syntax of the loadmem command:

loadmem SPACE="<displayed spacename>" FORMAT=<HEX | BIN |TEXT> "<[PATH\]name>"
[STARTADDRESS="<hexadecimal address>"]
UM014423-0607 Using the Command Processor

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

400
If STARTADDRESS is not specified, the data is loaded at the memory lower address.

For example:
loadmem SPACE="RDATA" FORMAT=BIN "c:\temp\file.bin" STARTADDRESS="20"
loadmem SPACE="ROM" FORMAT=HEX "c:\temp\file.hex"
loadmem SPACE="ROM" FORMAT=TEXT "c:\temp\file.txt" STARTADDRESS="1000"

log
The log command manages the IDE’s logging feature. The log command can take one of
three forms:
• log "<[path\]filename>" [APPEND]

sets the path and file name for the log file. If APPEND is not provided, an existing log
file with the same name is truncated when the log is next activated.

• log on

activates the logging of data.
• log off

deactivates the logging of data.

For example:
log "buildall.log"
log on
log off

makfile or makefile
The makfile and makefile commands export a make file for the current project. The
syntax can take one of two forms:
• makfile "<[path\]file name>"

• makefile "<[path\]file name>"

If path is not provided, the current working directory is used.

For example:
makfile "myproject.mak"
makefile "c:\projects\test.mak"

new project
The new project command creates a new project designated by project_name, target,
and the type supplied. If the full path is not supplied, the current working directory is used.
UM014423-0607 Using the Command Processor

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

401
By default, existing projects with the same name are replaced. Use NOREPLACE to prevent
the overwriting of existing projects. The syntax can take one of the following forms:
• new project "<[path\]name>" "<target>" "<exe|lib>" ["<cpu>"]

[NOREPLACE]

• new project "<[path\]name>" "<target>" "<project type>"
"<exe|lib>" "<cpu>" [NOREPLACE]

where

• <name> is the path and name of the new project. If the path is not provided, the
current working directory is assumed. Any file extension can be used, but none is
required. If not provided, the default extension of .zdsproj is used.

• <target> must match that of the IDE (that is, the eZ80Acclaim! IDE can only create
eZ80Acclaim!-based projects).

• <exe|lib> The type parameter must be either exe (Executable) or lib (Static
Library).

• ["<cpu>"] is the name of the CPU to configure for the new project.

• "<project type"> can be "Standard" or "Assembly Only". Standard is the
default.

• NOREPLACE is an optional parameter to use to prevent the overwriting of existing
projects

For example:
new project "test1.zdsproj" "eZ80Acclaim!" "exe"
new project "test1.zdsproj" "eZ80Acclaim!" "exe" NOREPLACE

open project
The open project command opens the project designated by project_name. If the full
path is not supplied, the current working directory is used. The command fails if the spec-
ified project does not exist. The following is the syntax of the open project command:
open project "<project_name>"

For example:
open project "test1.zdsproj"
open project "c:\projects\test1.zdsproj"

option
The option command manipulates project settings for the active build configuration of
the currently open project. Each call to option applies to a single tool but can set multiple
options for the given tool. The following is the syntax for the option command:
option <tool_name> expr1 expr2 . . . exprN,
UM014423-0607 Using the Command Processor

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

402
where

expr is (<option name> = <option value>)

For example:
option assembler debug = TRUE
option compiler debug = TRUE keeplst = TRUE
option debugger readmem = TRUE
option linker igcase = "FALSE"
option linker code = 0000-FFFF
option general cpu=ez80F91

NOTE: Many of these script file options are also available from the command line. For
more details, see “Running ZDS II from the Command Line” on page 379.

The following table lists some command line examples and the corresponding script file
commands.

The following script file options are available:

• “Assembler Options” on page 403

• “Compiler Options” on page 403

• “Debugger Options” on page 404

• “General Options” on page 404

• “Librarian Options” on page 405

• “Linker Options” on page 405

• “ZSL Options” on page 406

Table 18. Command Line Examples

Script File Command Examples Corresponding Command Line Examples

option compiler keepasm = TRUE eZ80cc -keepasm

option compiler keepasm = FALSE eZ80cc -nokeepasm

option compiler const = RAM eZ80cc -const:RAM

option assembler debug = TRUE eZ80asm -debug

option linker igcase = "FALSE" eZ80link -NOigcase

option librarian warn = FALSE eZ80lib -nowarn
UM014423-0607 Using the Command Processor

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

403
Assembler Options

Compiler Options

Table 19. Assembler Options

Option Name
Description or Corresponding Option in Project
Settings Dialog Box Acceptable Values

define Assembler page, Defines field string (separate multiple defines with
semicolons)

include Assembler page, Includes field string (separate multiple paths with
semicolons)

list Assembler page, Generate Assembler Listing Files
(.lst) check box

TRUE, FALSE

listmac Assembler page, Expand Macros check box TRUE, FALSE

pagelen Assembler page, Page Length field integer

pagewidth Assembler page, Page Width field integer

quiet Toggles quiet assemble. TRUE, FALSE

sdiopt Toggles Jump Optimization. TRUE, FALSE

Table 20. Compiler Options

Option Name
Description or Corresponding Option in Project Settings
Dialog Box Acceptable Values

define Preprocessor page, Preprocessor Definitions field string (separate
multiple defines with
semicolons)

genprintf Advanced page, Generate Printfs Inline check box TRUE, FALSE

keepasm Listing Files page, Preprocessor Definitions field

keeplst Listing Files page, Generate Assembly Listing Files (.lst) check
box

TRUE, FALSE

list Listing Files page, Generate C Listing Files (.lis) check box TRUE, FALSE

listinc Listing Files page, With Include Files check box
Only applies if list option is currently true.

TRUE, FALSE

modsect Advanced page, Distinct Code Segment for Each Module check
box

TRUE, FALSE
UM014423-0607 Using the Command Processor

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

404
Debugger Options
For debugger options, use the target help and debugtool help commands.

General Options

optspeed Toggles optimizing for speed. TRUE (optimize for
speed), FALSE
(optimize for size)

promote Deprecated page, Disable ANSI Promotions check box
NOTE: This option is deprecated.

TRUE, FALSE
(FALSE disables the
ANSI promotions)

reduceopt Code Generation page, Limit Optimizations for Easier Debug
check box

TRUE, FALSE

stdinc Preprocessor page, Standard Include Path field string (separate
multiple paths with
semicolons)

usrinc Preprocessor page, User Include Path field string (separate
multiple paths with
semicolons)

Table 21. General Options

Option Name Corresponding Option in Project Settings Dialog Box Acceptable Values

cpu General page, CPU drop-down field string (valid CPU name)

debug General page, Generate Debug Information check box TRUE, FALSE

igcase General page, Ignore Case of Symbols check box TRUE, FALSE

outputdir General page, Intermediate Files Directory field string (path)

warn General page, Show Warnings check box TRUE, FALSE

Table 20. Compiler Options (Continued)

Option Name
Description or Corresponding Option in Project Settings
Dialog Box Acceptable Values
UM014423-0607 Using the Command Processor

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

405
Librarian Options

Linker Options

Table 22. Librarian Options

Option Name Corresponding Option in Project Settings Dialog Box Acceptable Values

outfile Librarian page, Output File Name field string (library file name with option path)

Table 23. Linker Options

Option Name
Description or Corresponding Option in Project Settings
Dialog Box Acceptable Values

createnew Commands page, Always Generate from Settings button TRUE, FALSE

directives Commands page, Edit button, Additional Linker Directives
dialog box
Contains the text for additional directives.

string

exeform Output page, Executable Formats area string (one or more of
“IEEE 695” or “Intel
Hex32”)

extio Address Spaces page, ExtIO field string (address range in
the format <low>-
<high>)

flashinfo Address Spaces page, FlashInfo field string (min-max, for
example, "00-FF")

fplib Objects and Libraries page, Floating Point Library drop-down
list box

string (“real”, “dummy”,
or “none”)

intio Address Spaces page, IntIO field string (address range in
the format <low>-
<high>)

linkconfig Commands page, Use Existing button, Select Linker
Command File dialog box

string (“All Internal” or
“External Included”)

linkctlfile Sets the linker command file (path and) name. The value is
only used when createnew is set to 1.

string

map Output page, Generate Map File check box TRUE, FALSE

maxhexlen Output page, Maximum Bytes per Hex File Line drop-down
list box

integer (16, 32, 64, or
128)
UM014423-0607 Using the Command Processor

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

406
ZSL Options
For ZSL options, the tool_name is middleware. For example:
option middleware usezsl = TRUE

objlibmods Objects and Libraries page, Additional Object/Library
Modules field

string (separate multiple
modules names with
commas)

of Output page, Output File Name field string (path and file
name, excluding file
extension)

padhex Output page, Fill Unused Hex File Bytes with 0xFF check
box

TRUE, FALSE

ram Address Spaces page, Internal RAM (RAM) field string (address range in
the format “<low>-
<high>”)

relist Output page, Show Absolute Addresses in Assembly check
box

TRUE, FALSE

rom Address Spaces page, Constant Data (ROM) field string (address range in
the format “<low>-
<high>”)

sort Output page, Sort Symbols By buttons string

startuplnkcmds Objects and Libraries page, Use Standard Startup Linker
Commands check box

TRUE, FALSE

startuptype Objects and Libraries page, C Startup Module area string (“standard” or
“included”)

useadddirectives Commands page, Additional Directives check box TRUE, FALSE

usecrun Objects and Libraries page, Use C Runtime Library check
box

TRUE, FALSE

undefisfatal Warnings page, Treat Undefined Symbols as Fatal check box TRUE, FALSE

warnisfatal Warnings page, Treat All Warnings as Fatal check box TRUE, FALSE

warnoverlap Warnings page, Warn on Segment Overlap check box TRUE, FALSE

Table 23. Linker Options (Continued)

Option Name
Description or Corresponding Option in Project Settings
Dialog Box Acceptable Values
UM014423-0607 Using the Command Processor

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

407
Next: “print” on page 407

Previous: “Linker Options” on page 405

print
The print command writes formatted data to the Command Output window and the log
(if the log is enabled). Each expression is evaluated, and the value is inserted into the
format_string, which is equivalent to that supported by a C language printf. The follow-
ing is the syntax of the print command:
print "<format_string>" expression1 expression2 ... expressionN

For example:
PRINT "the pc is %x" REG PC
print "pc: %x, sp: %x" REG PC REG SP

pwd
The pwd command retrieves the current working directory. The following is the syntax of
the pwd command:
pwd

quit
The quit command ends the current debug session. The following is the syntax of the
quit command:
quit

Table 24. ZSL Options

Option Name Corresponding Option in Project Settings Dialog Box Acceptable Values

usezsl ZSL page, Include ZiLOG Standard Library (Peripheral Support)
check box or Objects and Libraries page, ZiLOG Standard
Library (Peripheral Support) check box

TRUE, FALSE

zslports ZSL page, Ports area comma-delimited string
(“Port A,Port D”)

zsluarts ZSL page, Uarts area comma-delimited string
(“UART0,UART1”)
UM014423-0607 Using the Command Processor

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

408
rebuild
The rebuild command rebuilds the currently open project. This command blocks the
execution of other commands until the build process is complete. The following is the syn-
tax of the rebuild command:
rebuild

reset
The reset command resets execution of program code to the beginning of the program.
This command starts a debug session if one has not been started. The following is the syn-
tax of the reset command:
reset

By default, the reset command resets the PC to symbol 'main'. If you deselect the Reset
to Symbol 'main' (Where Applicable) check box on the Debugger tab of the Options dia-
log box (see “Options—Debugger Tab” on page 127), the PC resets to the first line of the
program.

savemem
The savemem command saves the memory content of the specified range into an Intel hex
file, a binary file, or a text file. The functionality is similar to the Save to File command
available from the context menu in the Memory window (see “Save Memory to a File” on
page 298). The following is the syntax of the savemem command:

savemem SPACE="<displayed spacename>" FORMAT=<HEX | BIN |TEXT> "<[PATH\]name>"
[STARTADDRESS="<hexadecimal address>"] [ENDADDRESS="<hexadecimal address>"]

If STARTADDRESS and ENDADDRESS are not specified, all the memory contents of a spec-
ified space are saved.

For example:
savemem SPACE="RDATA" FORMAT=BIN "c:\temp\file.bin" STARTADDRESS="20" ENDADDRESS="100"
savemem SPACE="ROM" FORMAT=HEX "c:\temp\file.hex"
savemem SPACE="ROM" FORMAT=TEXT "c:\temp\file.txt" STARTADDRESS="1000" ENDADDRESS="2FFF"

set config
The set config command activates an existing build configuration for or creates a new
build configuration in the currently loaded project. The following is the syntax of the set
config command:
set config "config_name" ["copy_from_config_name"]

The set config command does the following:

• Activates config_name if it exists.

• Creates a new configuration named config_name if it does not yet exist. When
complete, the new configuration is made active. When creating a new configuration,
UM014423-0607 Using the Command Processor

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

409
the Command Processor copies the initial settings from the copy_from_config_name
parameter, if provided. If not provided, the active build configuration is used as the
copy source. If config_name exists, the copy_from_config_name parameter is ignored.

NOTE: The active/selected configuration is used with commands like option tool
name="value" and build.

step
The step command performs a single step (stepover) from the current location of the pro-
gram counter. If the count is not provided, a single step is performed. This command starts
a debug session if one has not been started. The following is the syntax of the step com-
mand:
step

stepin
The stepin command steps into the function at the PC. If there is no function at the cur-
rent PC, this command is equivalent to step. This command starts a debug session if one
has not been started. The following is the syntax of the stepin command:
stepin

stepout
The stepout command steps out of the function. This command starts a debug session if
one has not been started. The following is the syntax of the stepout command:
stepout

stop
The stop command stops the execution of program code. The following is the syntax of
the stop command:
stop

target copy
The target copy command creates a copy of the existing target with a given name with
the given new name. The syntax can take one of two forms:
• target copy NAME="<new target name>"

creates a copy of the active target named the value given for NAME.
• target copy NAME="<new target name>" SOURCE="<existing target

name>"

creates a copy of the SOURCE target named the value given for NAME.
UM014423-0607 Using the Command Processor

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

410
For example:
target copy NAME="mytarget" SOURCE="Sim3"

target create
The target create command creates a new target with the given name and using the
given CPU. The following is the syntax of the target create command:
target create NAME="<target name>" CPU="<cpu name>"

For example:
target create NAME="mytarget" CPU="eZ80190"

target get
The target get command displays the current value for the given data item for the
active target. The following is the syntax of the target get command:
target get "<data item>"

Use the target setup command to view available data items and current values.

For example:
target get "cpu"

target help
The target help command displays all target commands. The following is the syntax
of the target help command:
target help

target list
The target list command lists all available targets. The syntax can take one of three
forms:
• target list

displays the names of all available targets (restricted to the currently configured CPU
family).

• target list CPU="<cpu name>"

displays the names of all available targets associated with the given CPU name.
• target list FAMILY="<family name>"

displays the names of all available targets associated with the given CPU family name.

For example:
target list FAMILY="eZ80"
UM014423-0607 Using the Command Processor

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

411
target options
NOTE: See a target in the following directory for a list of categories and options:

<ZDS Installation Directory>\targets

where <ZDS Installation Directory> is the directory in which ZiLOG Developer
Studio was installed. By default, this would be C:\Program
Files\ZiLOG\ZDSII_eZ80Acclaim!_<version>, where <version> might be
4.10.0 or 5.0.0.

To set a target value, use one of the following syntaxes:
target options CATEGORY="<Category>" OPTION="<Option>" "<token name>"="<value to set>"
target options CATEGORY="<Category>" "<token name>"="<value to set>"
target options "<token name>"="<value to set>"

To select a target, use the following syntax:
target options NAME ="<Target Name>"

target save
The target save command saves a target. To save the selected target, use the following
syntax:
target save

To save a specified target, use the following syntax:
target save NAME="<Target Name>"

For example:
target save Name="Sim3"

target set
The target set command sets the given data item to the given data value for the active
target or activates a particular target. The syntax can take one of two forms:
• target set "<data item>" "<new value>"

Sets data item to new value for the active debug tool. Use target setup to view
available data items and current values.

For example:
target set "frequency" "20000000"

• target set "<target name>"

Activates the target with the given name. Use target list to view available targets.
UM014423-0607 Using the Command Processor

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

412
target setup
The target setup command displays the current configuration. The following is the
syntax of the target setup command:
target setup

wait
The wait command instructs the Command Processor to wait the specified milliseconds
before executing the next command. The following is the syntax of the wait command:
wait <milliseconds>

For example:
wait 5000

wait bp
The wait bp command instructs the Command Processor to wait until the debugger stops
executing. The optional max_milliseconds parameter provides a method to limit the
amount of time a wait takes (that is, wait until the debugger stops or max_milliseconds
passes). The following is the syntax of the wait bp command:
wait bp [max_milliseconds]

For example:
wait bp
wait bp 2000

RUNNING THE FLASH LOADER FROM THE COMMAND PROCESSOR
You can run the Flash Loader from the Command field. Command Processor keywords
have been added to allow for easy scripting of the Flash loading process. Each of the
parameters is persistent, which allows for the repetition of the Flash and verification pro-
cesses with a minimum amount of repeated key strokes.

Use the following procedure to run the Flash Loader:

1. Create a project or open a project with EZ80L92, EZ80190, EZ80F91, EZ80F92, or
EZ80F93 selected in the CPU field on the General page of the Project Settings dialog
box (see “Project Settings—General Page” on page 57).

2. The Flash Loader requires RAM memory for execution and also requires the correct
external Flash memory chip select parameters and memory limits. If there is internal
RAM memory, the Flash Loader uses that memory for execution. The parameters are
entered in the Configure Target dialog box (see “Setup” on page 96). The ZPAK II
Ethernet address is also needed by the Flash Loader and can be entered in the Setup
TCP/IP Communication dialog box (see “Debug Tool” on page 102).
UM014423-0607 Using the Command Processor

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

413
3. In the Command field (in the Command Processor toolbar), type in the command
sequences in the following sections to use the Flash Loader:
– “Displaying Flash Help” on page 413
– “Setting Up Flash Options” on page 413
– “Executing Flash Commands” on page 414
– “Examples” on page 414

Displaying Flash Help

Setting Up Flash Options

Flash Setup Displays the Flash setup in the Command Output window
Flash Help Displays the Flash command format in the Command Output window

Flash Options "<File Name>" File to be flashed
Flash Options FLASHBASE = "<address>" Start location for external Flash

memory
Flash Options NUMFLASH = <1-8> Number of stack Flash devices
Flash Options OFFSET = "<address>" Offset address in hex file
Flash Options NAUTO Do not automatically select

external Flash device
Flash Options AUTO Automatically select external

Flash device
Flash Options INTMEM Set to internal memory
Flash Options EXTMEM Set to external memory
Flash Options BOTHMEM Set to internal and external

memory
Flash Options MANUF="<manufacture name>" DEVICE="<Name of Device>" Set the Flash device
Flash Options NEBF Do not erase before flash
Flash Options EBF Erase before flash
Flash Options NEIP Do not erase info page
Flash Options EIP Erase info page
Flash Options NISN Do not include serial number
Flash Options ISN Include a serial number
Flash Options NPBF Do not page-erase Flash memory;

use mass erase
UM014423-0607 Using the Command Processor

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

414
Executing Flash Commands

Examples
The following are valid examples for a target with an eZ80F91 and external Flash mem-
ory:
FLASH Options INTMEM

Flash Options PBF Page-erase Flash memory
Flash Options SERIALADDRESS = "<address>" Serial number address
Flash Options SERIALNUMBER = "<Number in Hex>" Initial serial number value
Flash Options SERIALSIZE = <1-8> Number of bytes in serial number
Flash Options INCREMENT = "<Decimal value>" Increment value for serial number
Flash Options NIP No info page
Flash Options IP Info page

Flash READSERIAL Read the serial number
Flash READSERIAL REPEAT Read the serial number and repeat
Flash BURNSERIAL Program the serial number
Flash BURNSERIAL REPEAT Program the serial number and repeat
Flash ERASE Erase Flash memory
Flash ERASE REPEAT Erase Flash memory and repeat
Flash BURN Program Flash memory
Flash BURN REPEAT Program Flash memory and repeat
Flash BURNVERIFY Program and verify Flash memory
Flash BURNVERIFY REPEAT Program and verify Flash memory and repeat
Flash VERIFY Verify Flash memory
Flash VERIFY REPEAT Verify Flash memory and repeat

The Flash Loader dialog box and the Command Processor interface use the
same parameters. If an option is not specified with the Command Processor
interface, the current setting in the Flash Loader dialog box is used. If a
setting is changed in the Command Processor interface, the Flash Loader
dialog box settings are changed.
UM014423-0607 Using the Command Processor

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

415
FLASH Options "c:\testing\test.hex"
FLASH Options OFFSET="0x1000"
FLASH Options EBF
FLASH BURN REPEAT

or
flash options intmem
flash options "c:\testing\test.hex"
flash options offset="0x1000"
flash options ebf
flash burn repeat

The file test.hex is loaded into internal Flash memory with a value of 0x1000 added to
all addresses. The Flash memory is erased before flashing. After the flashing is completed,
you are prompted to program an additional unit.
FLASH VERIFY

The file test.hex is verified against internal Flash memory with a offset value of
0x1000.
target set "flashManufacturer" "Micron"
target set "flashDevice" "MT28F008B3xx-xxB"
FLASH VERIFY

The file test.hex (from the first example) is verified against the external specific Flash
device.
FLASH SETUP

The current Flash Loader parameters settings are displayed in the Command Output win-
dow.
FLASH HELP

The current Flash Loader command options are displayed in the Command Output win-
dow.
Flash Options NAUTO

The Flash Loader does not automatically select the external Flash device.
Flash Options PBF

Page erase is enabled instead of mass erase for internal and external Flash programming.
UM014423-0607 Using the Command Processor

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

416
Compatibility Issues
The following sections describe assembler and compiler compatibility issues:

• “Asssembler Compatibility Issues” on page 416

• “Compiler Compatibility Issues” on page 419

ASSSEMBLER COMPATIBILITY ISSUES
The following table shows the equivalences between eZ80Acclaim! directives and those
of other assemblers that are also supported by the eZ80Acclaim! assembler. ZMASM
directives that are compatible with eZ80Acclaim! directives are also listed. The
eZ80Acclaim! assembler directives in the left column are the preferred directives, but the
assembler also accepts any of the directives in the right column.

Table 25. eZ80Acclaim! Directive Compatibility

eZ80Acclaim!
Assembler Compatible With

ALIGN .align

ASCII .ascii

ASCIZ .asciz

ASECT .ASECT

ASG .ASG

ASSUME .ASSUME

BES .bes

BREAK .$BREAK,.$break

BSS .bss

CHIP chip, .cpu

CONTINUE .$CONTINUE, .$continue

DATA .data

DB .byte, .ascii, DEFB, FCB, STRING, .STRING, byte, .asciz

DD .double

DEFINE .define

DF .float

DL .long, long

DR <none>
UM014423-0607 Compatibility Issues

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

417
DS .block

DW .word, word, .int

DW24 .word24, .trio, .DW24

ELIF .ELIF, .ELSEIF, ELSEIF, .$ELSEIF, .$elseif

ELSE .ELSE, .$ELSE, .$else

END .end

ENDIF .endif, .ENDIF, ENDC, .$ENDIF, .$endif

ENDMAC .endm, ENDMACRO, .ENDMACRO, .ENDMAC, ENDM, .ENDM, MACEND,

.MACEND

ENDSTRUCT .ENDSTRUCT

ERROR .emsg

EQU .equ, .EQU, EQUAL, .equal

EVAL .EVAL

FCALL .FCALL

FILE .file

FRAME .FRAME

GREG GREGISTER

IF .if, .IF, IFN, IFNZ, COND, IFTRUE, IFNFALSE, .$IF, .$if, .IFTRUE

INCLUDE .include, .copy

LIST .list <on> or <off>, .LIST

MACCNTR <none>

MACEXIT <none>

MACLIST <none>

MACNOTE .mmsg

MACRO .macro, .MACRO

MLIST <none>

MNOLIST <none>

NEWBLOCK .NEWBLOCK

NEWPAGE .page [<len>] [<width>], PAGE

Table 25. eZ80Acclaim! Directive Compatibility (Continued)

eZ80Acclaim!
Assembler Compatible With
UM014423-0607 Compatibility Issues

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

418
NIF IFZ, IFE, IFFALSE, IFNTRUE, .IFNTRUE

NOLIST .NOLIST

NOSAME IFDIFF, IFNSAME

ORG .org, ORIGIN

PE V

P0 NV

POPSEG <none>

PRINT <none>

PT <none>

PUSHSEG <none>

REPEAT .$REPEAT, .$repeat

SAME IFNDIFF, IFSAME

SBLOCK .SBLOCK

SCOPE <none>

SEGMENT .section, SECTION

STRUCT .STRUCT

TAG .TAG

TEXT .text

TITLE .title

UNTIL .$UNTIL, .until

VAR .VAR, SET, .SET

VECTOR <none>

WARNING .wmsg, MESSAGE

WEND .$WEND, .$wend

WHILE .$WHILE, .$while

XDEF .global, GLOBAL, .GLOBAL, .public, .def, public

XREF EXTERN, EXTERNAL, .extern, .ref

ZIGNORE <none>

Table 25. eZ80Acclaim! Directive Compatibility (Continued)

eZ80Acclaim!
Assembler Compatible With
UM014423-0607 Compatibility Issues

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

419
COMPILER COMPATIBILITY ISSUES
NOTE: Use of the #pragmas documented in this section should not be necessary in ZDS II

release 4.10 and later. ZiLOG does not recommend their use, especially in new
projects because it is extremely difficult to validate that they continue to work
correctly as the compiler is updated and in all circumstances. They continue to be
supported as they have been in older releases and will be accepted by the compiler.

Compiler options can be set in the Project Settings dialog box (on the C pages) or by using
the following #pragma directives:

If the #pragma directive is inserted in your code, it overrides the selections you made in
the Project Settings dialog box.

#pragma alias
Enables alias checking. The compiler assumes that program variables can be aliased. This
pragma is the default.

ZSECT .sect

ZUSECT .USECT

#pragma alias
#pragma noalias
#pragma cpu <cpu name>
#pragma globalcopy
#pragma noglobalcopy
#pragma globalcse
#pragma noglobalcse
#pragma globaldeadvar
#pragma noglobaldeadvar
#pragma globalfold
#pragma noglobalfold
#pragma intrinsics: <state>
#pragma nointrinsics

#pragma nobss
#pragma jumpopt
#pragma nojumpopt
#pragma localcopy
#pragma nolocalcopy
#pragma localcse
#pragma nolocalcse
#pragma localfold
#pragma nolocalfold
#pragma localopt
#pragma nolocalopt
#pragma noopt
#pragma optlink

#pragma nooptlink
#pragma optsize
#pragma optspeed
#pragma peephole
#pragma nopeephole
#pragma promote
#pragma nopromote
#pragma sdiopt
#pragma nosdiopt
#pragma stkck
#pragma nostkck
#pragma strict
#pragma nostrict

Table 25. eZ80Acclaim! Directive Compatibility (Continued)

eZ80Acclaim!
Assembler Compatible With
UM014423-0607 Compatibility Issues

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

420
#pragma noalias
Disables alias checking. Before using this pragma, be sure that the program does not use
aliases, either directly or indirectly. An alias occurs when two variables can reference the
same memory location. The following example illustrates an alias:

func()
{
 int x,*p;
 p = &x; /* both “x” and “*p” refer to same location */
 .
 .
 .
}

If both *p and x are used below the assignment, then malignant aliases exist and the
NOALIAS switch must not be used. Otherwise, alias is benign, and the NOALIAS switch
can be used.

#pragma cpu <cpu name>
Defines the target processor to the compiler.

#pragma globalcopy
Enables global copy propagation.

#pragma noglobalcopy
Disables global copy propagation.

#pragma globalcse
Enables global common elimination unless local common subexpressions are disabled.

#pragma noglobalcse
Disables global copy subexpression elimination.

#pragma globaldeadvar
Enables global dead variable removal.

#pragma noglobaldeadvar
Disables global dead variable removal.
UM014423-0607 Compatibility Issues

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

421
#pragma globalfold
Enables global constant folding.

#pragma noglobalfold
Disables global constant folding.

#pragma intrinsics: <state>
Defines whether the compiler-defined intrinsic functions are to be expanded to inline
code.

NOTE: The intrinsic property is only available for compiler-defined intrinsic functions;
user-defined intrinsics are not supported.

<state> can be ON or OFF. This pragma, with <state> ON, is the default.

#pragma nointrinsics
Disables the INTRINSICS switch.

#pragma nobss
Does not put uninitialized static data in bss segment, instead it puts it in data segment and
initializes it at link time.

#pragma jumpopt
Enables jump optimizations.

#pragma nojumpopt
Disables jump optimizations.

#pragma localcopy
Enables local copy propagation.

#pragma nolocalcopy
Disables local copy propagation.

#pragma localcse
Enables local common subexpression elimination.

#pragma nolocalcse
Disables local and global common subexpression elimination.
UM014423-0607 Compatibility Issues

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

422
#pragma localfold
Enables local constant folding.

#pragma nolocalfold
Disables local constant folding.

#pragma localopt
Enables all local optimizations.

#pragma nolocalopt
Disables all local optimizations.

#pragma noopt
Disables all optimizations.

#pragma optlink
Enables optimized linkage calling conventions.

#pragma nooptlink
Disables optimized linkage calling conventions.

#pragma optsize
Optimizes code to minimize size.

#pragma optspeed
Optimizes code to minimize execution time.

#pragma peephole
Enables peephole optimizations.

#pragma nopeephole
Disables peephole optimizations.

#pragma promote
Enables ANSI integer promotions.
UM014423-0607 Compatibility Issues

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

423
#pragma nopromote
Disables ANSI integer promotions.

#pragma sdiopt
Performs span-dependent instruction optimization. This optimization results in branches
generated by the compiler taking the shortest form possible. This pragma is the default.

#pragma nosdiopt
Disables span-dependent instruction optimizations.

#pragma stkck
Performs stack checking.

#pragma nostkck
Does not perform stack checking.

#pragma strict
Checks for conformance to the ANSI standard and its obsolescent features. These include
old-style parameter type declarations, empty formal parameter lists, and calling functions
with no prototype in scope. When any of these features are used a warning is flagged. The
compiler requires this switch for proper code generation because it makes use of a static
frame.

#pragma nostrict
Does not flag warnings for obsolete features.
UM014423-0607 Compatibility Issues

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

424
Index

Symbols
(prefix character) 225
Bytes drop-down list box 119, 120
#include 64, 66, 319
#pragma alias 419
#pragma asm 143
#pragma cpu 420
#pragma globalcopy 420
#pragma globalcse 420
#pragma globaldeadvar 420
#pragma globalfold 421
#pragma interrupt 135
#pragma intrinsics 421
#pragma jumpopt 421
#pragma localcopy 421
#pragma localcse 421
#pragma localfold 422
#pragma localopt 422
#pragma noalias 420
#pragma nobss 421
#pragma noglobalcopy 420
#pragma noglobalcse 420
#pragma noglobaldeadvar 420
#pragma noglobalfold 421
#pragma nointrinsics 421
#pragma nojumpopt 421
#pragma nolocalcopy 421
#pragma nolocalcse 421
#pragma nolocalfold 422
#pragma nolocalopt 422
#pragma noopt 422
#pragma nooptlink 422
#pragma nopeephole 422
#pragma nopromote 423
#pragma nosdiopt 423
#pragma nostkck 423
#pragma nostrict 423

#pragma optlink 422
#pragma optsize 422
#pragma optspeed 422
#pragma peephole 422
#pragma promote 422
#pragma sdiopt 423
#pragma stkck 423
#pragma strict 423
#pragma, using 419
$$ 220
& (and) 260
* (multiply) 262
+ (add) 259
.class file extension 55
.COMMENT directive 197
.ENDSTRUCT directive 211
.ENDWITH directive 215
.gif file extension 55
.hex file extension 94
.htm file extension 55
.html file extension 55
.IVECTS segment 158
.jar file extension 55
.jpeg file extension 55
.jpg file extension 55
.map file extension 253, 286
.RESET segment 158
.STARTUP segment 158
.STRUCT directive 211
.TAG directive 213
.UNION directive 214
.wav file extension 55
.WITH directive 215
/ (divide) 261
<< (shift left) 263
<assert.h> header 320
<ctype.h> header 321
UM014423-0607 Index

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

425
<errno.h> header 320
<float.h> header 322
<limits.h> header 322
<math.h> header 324
<outputfile>=<module list> command 248
<setjmp.h> header 326
<stdarg.h> header 326
<stddef.h> header 320
<stdio.h> header 327
<stdlib.h> header 328
<string.h> header 330
>> (shift right) 263
?, script file command

for expressions 397
for variables 398

^ (bitwise exclusive or) 264
__ACCLAIM__ 148
__DATE__ 148
__EZ80__ 148
__FILE__ 148
__FPLIB__ 148
__LINE__ 148
__STDC__ 148
__TIME__ 148
__VECTORS segment 184
__ZDATE__ 148
__ZILOG__ 148
_Align directive 143
_At directive 142, 143
_init_default_vectors function 138
_set_vector function 136
| (or) 263
~ (not) 264

A
abs function 330, 333
Absolute segments 185, 186, 204

definition 183, 235
locating 252

Absolute value, computing 333, 340, 347

__ACCLAIM__ 148
acos function 325, 333
Activate Breakpoints check box 128
Add button 100
Add File Group dialog box 129
add file, script file command 392
Add Files to Project dialog box 7, 55
Add Project Configuration dialog box 109
Adding breakpoints 307
Adding files to a project 6, 54
Adding web files to a project 55
Additional Directives check box 82
Additional Linker Directives dialog box 82
Additional Object/Library Modules field 85
Address button 94
Address Hex field 119
Address spaces

allocation order 256
definition 236
grouping 252
linking sequence 254
locating 252
moving 248
predefined 183
renaming 248
setting maximum size 253
setting ranges 255

Addresses
finding 296
viewing 296

Addressing modes in assembly 224
prefix character 225

Alias checking, enabling 419
Alias, defined 420
ALIGN clause 204
ALIGN directive 197
All RAM configuration 78
All RAM link configuration 242

directives 266
Allocating space 349
Always Generate from Settings button 81
UM014423-0607 Index

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

426
Always Rebuild After Configuration Activated
check box 123
Anonymous labels 222
Another Location button 101
Another Location field 101
ANSI C language, described 318, 387
ANSI C-Compiler

command line options 383
comments 147
compatibility issues 419
data type sizes 147
error messages 168
running from the command line 380
run-time library 154, 318
warning messages 168
writing C programs 134

arc cosine, computing 333
arc sine, computing 333
arc tangent, computing 334, 335
Argument

location 153
passing 150
variable 326

Arithmetic operators in assembly 192
Arithmetic, basic fractional 146
Array function 337
ASCII values, viewing 302
ASCIZ values, viewing 302
asctime function 148
asin function 325, 333
asm statement 143
Assembler

adding null characters 192
addressing modes 224
arithmetic operators 192
binary numbers 195
Boolean operators 193
character constants 195
character strings 192
command line options 381
decimal numbers 194

directive compatibility 416
directives 196
error messages 230
expressions 192
floating-point numbers 191
generating listing file (.lst) 186
generating object file 186
hexadecimal numbers 194
numeric representation 191
octal numbers 195
operator precedence 195
options 403
relational operators 193
reserved words 190
running from the command line 380
setup 59
syntax 225
using 182
warning messages 230

Assembler page, Project Settings dialog box 59
Assembly language

adding null characters 192
addressing modes 224
argument location 153
arithmetic operators 192
backslash 188
binary numbers 195
blank lines 188
Boolean operators 193
calling C functions from 153
calling from C 152
character constants 195
character strings 192
comments 188
decimal numbers 194
directive compatibility 416
directives 189, 196
expressions 192
floating-point numbers 191
function names 152
hexadecimal numbers 194
UM014423-0607 Index

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

427
instructions 189
labels 188, 222
line continuation 188
line definition 188
line length 188
macro expansion 60
numeric representation 191
octal numbers 195
operator precedence 195
prefix character 225
preserving registers 153
relational operators 193
reserved words 190
return values 153
source line 188
structure 188
structures 210
syntax 225
unions 210
variable names 152

assert function 334
assert macro 321
<assert.h> header 320
Associated File Types field 129
atan function 325, 334
atan2 function 325, 335
atof function 329, 335
atoi function 329, 336
atol function 329, 336
Auto Indent check box 125
Automatically Detect Device check box 99
Automatically Reload Externally Modified
Files check box 123

B
Backslash, used in assembly 188
BASE OF 250
BASE OF operator 260
Basic fractional arithmetic 146
batch, script file command 387, 392

Baud Rate list box 103
Baud rate, choosing 103
Beginning a project 2
BFRACT directive 200
Binary numbers in assembly 195
Bitwise logical operations 146
BLKB directive 201
BLKL directive 201
BLKP directive 201
BLKW directive 201
Blue dots 21, 26, 292, 307
Bookmarks

adding 33
deleting 34
finding 34
inserting 33
jumping to 34
moving to 34
next bookmark 34
previous bookmark 34
removing 34
setting 33
using 32

Bookmarks toolbar 22, 23
Boolean operators in assembly 193
bp, script file command 393
Break button 26
Breakpoints 307

adding 307
deleting 309
disabling 309
enabling 308
finding 308
jumping to 308
making active 308
making inactive 309
moving to 308
removing 309
viewing 307

Breakpoints dialog box 52, 307, 308
Broadcast Address field 102
UM014423-0607 Index

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

428
bsearch function 329, 336
BSS segment 158, 185
BUFF_SIZE macro 316
Build button 18
Build menu 107

Build 107
Clean 107
Compile 107
Manage Configurations 109
Rebuild All 107
Set Active Configuration 108
shortcuts 132
Stop Build 107
Update All Dependencies 107

Build Output window 35
Build toolbar 18
Build Type list box 3, 40
build, script file command 393
Building a project 12, 107

from the command line 379

C
C

calling assembly from 152
calling from assembly 153
converting web files to 55
escape sequences 143
language, described 318, 387
preserving routines 153
return values 153
run-time library 154, 318
writing programs 134

C run-time initialization file 157
C Startup Module area 86
Calculate Checksum dialog box 120
Call Stack window 303
Call Stack Window button 28
Calling assembly from C 152
calloc function 329, 337
cancel all, script file command 393

cancel bp, script file command 393
Cascade the files 130
C-Compiler

command line options 383
comments 147
compatibility issues 419
data type sizes 147
error messages 168
pseudoinstruction macros 156
running from the command line 380
run-time library 154, 318
warning messages 168
writing C programs 134

cd, script file command 394
ceil function 326, 338
CHANGE command 248, 284
Changing object size 358
char enumerations 146
CHAR_BIT 322
CHAR_MAX 322
CHAR_MIN 322
Character case mapping functions 322
Character constants in assembly 195
Character strings in assembly 192
Character testing functions 321
Character-handling functions 321
checksum, script file command 394
Chip Select Registers drop-down list box 97
.class file extension 55
Clear button 123
Clock window 294
Clock Window button 28
Close Dialog When Complete check box 118
Code line indicators 292
CODE segment 158, 185
Color dialog box 126
Command field 22
Command line

building a project from 379
examples 402
running the assembler from 380, 381
UM014423-0607 Index

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

429
running the compiler from 380, 383
running the librarian from 385
running the linker from 380, 386
running ZDS II from 379

Command Output window 36, 37
Command Processor

running the Flash Loader from 412
using 387

Command processor
script file commands 392

Command Processor toolbar 22
Command script file

commands 392
example 391

Commands
linker 247
linker command file 247
running 387

Commands to Keep field 123
.COMMENT directive 197
Comments

C++ style 147
in assembly language 188

Comparing characters 350, 367
Comparing strings 365, 366
Comparison functions 331
Compatibility of assembly directives 416
Compile/Assemble File button 18
Compiler

command line options 383
comments 147
compatibility issues 419
data type sizes 147
error messages 168
options 403
pseudoinstruction macros 156
running from the command line 380
run-time library 154, 318
setting options 419
warning messages 168
writing C programs 134

Compiling a project 107
Computing string length 367
Concatenating strings 364, 367
Concatenation character 219
Concatenation functions 331
Conditional assembly 216
Conditional assembly directives 216

IF 216
IFDEF 217
IFMA 218, 221
IFSAME 218

Configuration Name field 109
Configurations

copying 109
linker 240
setting 108

Configure Target dialog box 96
Connect to Target button 19
Context menus

Call Stack window 303
Disassembly window 305
in Edit window 31
in Project Workspace window 30
Locals window 302
Simulated UART Output window 306
Watch window 300, 301, 302

control_UARTx() function 316
Converting letter case 373, 374
Converting strings 370, 372
Converting web files to C 55
COPY BASE OF command 250
COPY BASE operator 261
Copy button 17, 101
COPY command 249, 284
Copy Configuration Settings dialog box 110
Copy segments 236
Copy Settings From list box 109, 110
Copy Settings To field 110
Copy to RAM configuration 80
Copy to RAM link configuration 244

directives 266
UM014423-0607 Index

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

430
COPY TOP OF command 250
COPY TOP operator 261
Copying characters 351, 368
Copying functions 331
Copying strings 366
Copying values 351
cos function 325, 338
cosh function 325, 339
cosine, calculating 338
CPU directive 198
CPU Family list box 40
CPU list box 40, 57
CPU selection 57
CpuflashDevice.xml file 99, 116
Create New Target Wizard dialog box 100
Creating a project 2

adding linker directives 246
initializing variables 246

<ctype.h> header 321
Current drop-down list box 102
Custom configuration 81
Custom link configuration 244

directives 267
Customer service xviii
Customer support xviii
Customize dialog box 121, 122
Cut button 17
Cycle-accurate Instruction Set Simulator 310

D
Data directives in assembly 199
DATA segment 158, 185
Data type sizes 147
__DATE__ 148
DB directive 201
DBL_DIG 323
DBL_MANT_DIG 323
DBL_MAX 323
DBL_MAX_10_EXP 323
DBL_MAX_EXP 323

DBL_MIN 323
DBL_MIN_10_EXP 323
DBL_MIN_EXP 323
DD directive 202
Deallocating space 341
DEBUG command 251
Debug configuration 108
Debug information, generating 251, 254, 284
Debug menu 111

Break 114
Connect to Target 111
Download Code 112
Go 113
Reset 112
Run to Cursor 113
Set Next Instruction 114
shortcuts 132
Step Into 114
Step Out 114
Step Over 114
Stop Debugging 112
Verify Download 112

Debug mode
RUN 291
STEP 291
STOP 291
switching to 290

Debug Output window 35
Debug Tool area 102, 103, 104
Debug toolbar 23, 24
Debug tools 310
Debug tools, using 14
Debug windows 54
Debug Windows toolbar 27, 292
Debugger

description 95, 290
status bar 291

Debugger page, Project Settings dialog box 95
Debugger script file

commands 392
example 391
UM014423-0607 Index

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

431
Debugger tab, Options dialog box 127
Debugging code 284
debugtool copy, script file command 394
debugtool create, script file command 394
debugtool get, script file command 395
debugtool help, script file command 395
debugtool list, script file command 395
debugtool save, script file command 395
debugtool set, script file command 396
debugtool setup, script file command 396
Dec button 119
Decimal numbers in assembly 194
Decimal numeric values 262
Decimal values, viewing 301
DEFINE 185, 203, 204, 251
Defines field 60
defines, script file command 396
Delete Bookmarks button 23
Delete button 17, 101
delete config, script file command 397
Delete Source Target After Copy check box
101
Deleting files from a project 38
Deprecated Custom link configuration 81, 245
Developer’s environment tutorial 1
DF directive 202
Diagnostics function 334
Directives

.COMMENT 197

.ENDSTRUCT 211

.ENDWITH 215

.STRUCT 211

.TAG 213

.UNION 214

.WITH 215
_Align 143
_At 142, 143
ALIGN 197
BFRACT 200
BLKB 201
BLKL 201

BLKP 201
BLKW 201
compatibility 416
CPU 198
data 199
DB 201
DD 202
DEFINE 185, 203, 204
definition 196
DF 202
DL 202
DS 205
DW 203
END 205
ENDMACRO 219
EQU 205
EXTERN 223
FRACT 200
IF 216
IFDEF 217
IFMA 218
IFSAME 218
in assembly 189, 196
INCLUDE 206
LIST 207
MACDELIM 222
MACEXIT 221
MACRO 219
NEWPAGE 207
NOLIST 207
ORG 208
placement 142
SCOPE 223
SEGMENT 185, 208
TITLE 209
UBFRACT 200
UFRACT 200
VAR 209
XDEF 210
XREF 210, 223

Disable All Breakpoints button 27
UM014423-0607 Index

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

432
Disable All button 52, 309
Disable ANSI Promotions check box 70
Disable Breakpoint command 309
Disassembly window 305
Disassembly Window button 28
Distinct Code Segment for Each Module check
box 68
div function 330, 339
div_t 328
DL directive 202
Do Not Erase Info Page 118
Down button 49
Download Code button 19, 24
DS directive 205
DW directive 203

E
Edit Breakpoints command 307
Edit button 82
Edit menu 47

Copy 48
Cut 48
Delete 48
Find 48
Find Again 49
Find in Files 49
Go to Line 51
Manage Breakpoints 52
Paste 48
Redo 48
Replace 50
Select All 48
shortcuts 131
Show Whitespaces 48
Undo 48

Edit window 30, 31
code line indicators 292

Editor tab, Options dialog box 124
EDOM 320, 328
Enable All button 52, 308

Enable Breakpoint command 309
Enable check box 119
Enable/Disable Breakpoint button 21, 27
END directive 205
ENDMACRO directive 219
.ENDSTRUCT directive 211
.ENDWITH directive 215
enumeration data type 146
EOF macro 327
EQU directive 205
ERANGE 320, 328
Erase Before Flashing check box 118
ERASE button 118
errno macro 320
<errno.h> header 320
Error conditions 320, 324
Error messages

ANSI C-Compiler 168
assembler 230
linker/locator 286

Ethernet Smart Cable requirements xviii
Executable Formats area 94
Executable formats, for Linker 94
exit, script file command 398
EXIT_FAILURE macro 328
EXIT_SUCCESS macro 328
exp function 325, 340
Expand Macros check box 60
Exponential functions 325, 340
Exporting project as make file 106

from the command line 379
Expressions

arithmetic operators 192
binary numbers 195
Boolean operators 193
character constants 195
decimal numbers 194
hexadecimal numbers 194
HIGH operator 193
HIGH16 operator 194
in assembly 192
UM014423-0607 Index

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

433
linker 258
LOW operator 193
LOW16 operator 194
octal numbers 195
operator precedence 195
relational operators 193

Extensions, language 135
EXTERN directive 223
External Flash Base field 100
External Flash check box 117
External references, resolving 251
EXTIO 184
EXX instruction 136
__EZ80__ 148
eZ80F91, using 115
eZ80F92, using 115
eZ80F93, using 115

F
fabs function 326, 340
False macro 321
FAQ.txt, location of xix
__FILE__ 148
File

adding 6, 54
opening 8
reading 8
viewing 8

File extensions
.class 55
.gif 55
.hex 94
.htm 55
.html 55
.jar 55
.jpeg 55
.jpg 55
.lod 94
.lst 186
.map 253, 286

.obj 186, 187

.wav 55

.wsp 44

.zdsproj 2
File menu 37

Close File 38
Close Project 45
Exit 47
New File 38
New Project 39
Open File 38
Open Project 43
Print 45
Print Preview 46
Print Setup 47
Recent Files 47
Recent Projects 47
Save 45
Save All 45
Save As 45
Save Project 44
shortcuts 131

File Name field
Open dialog box 45
Save As dialog box 106
Select Project Name dialog box 39

File Offset field 118
File toolbar 16, 17
File Type drop-down list box 125
File Types tab, Options dialog box 128
Fill Memory dialog box 297
Fill Unused Hex File Bytes with 0xFF check
box 94
FILLMEM, script file command 399
Find button 50
Find dialog box 48, 49
Find field 21, 50
Find in Files 2 Output window 35, 36
Find in Files button 21
Find in Files dialog box 49, 50
Find in Files Output window 35, 36
UM014423-0607 Index

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

434
Find list box 50
Find Next button 49, 51
Find toolbar 21
Find What field 51
Find What list box 51
Finding characters 365, 368, 369
Finding strings 370
Fixed-point representations, fractional 144
Flash Base field 117
Flash Configuration area 117
Flash Loader

running from the Command Processor 412
using the GUI 115

Flash Loader Processor dialog box 116
Flash Options area 116
FlashDevice.xml file 99, 117
<float.h> header 322
Floating Point Library drop-down list box 88
floor function 326, 340
FLT_DIG 323
FLT_MANT_DIG 323
FLT_MAX 323
FLT_MAX_10_EXP 323
FLT_MAX_EXP 323
FLT_MIN 323
FLT_MIN_10_EXP 323
FLT_MIN_EXP 323
FLT_RADIX 323
FLT_ROUND 323
fmod function 326, 341
Font dialog box 127
FORMAT command 251
__FPLIB__ 148
fract 144

assigning values 145
FRACT directive 200
Fractional arithmetic, scaled 146
Fractional expressions 145
Fractional fixed-point representations 144
Fractional numbers 144
free function 329, 341

FREEMEM operator 261
frexp function 325, 342
Function names in assembly 152
Functions

abs 333
acos 333
asctime 148
asin 333
assert 334
atan 334
atan2 335
atof 335
atoi 336
atol 336
bsearch 336
calloc 337
ceil 338
character case mapping 322
character handling 321
character input 328
character output 328
character testing 321
comparison 331
concatenation 331
copying 331
cos 338
cosh 339
detailed descriptions of 332
div 339
error conditions 324
exp 340
exponential 325
fabs 340
floor 340
fmod 341
formatted input 327
formatted output 327
free 341
frexp 342
getchar 342
gets 343
UM014423-0607 Index

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

435
hyperbolic 325
integer arithmetic 330
isalnum 343
isalpha 343
iscntrl 344
isdigit 344
isgraph 344
islower 345
isprint 345
ispunct 345
isspace 346
isupper 346
isxdigit 346
labs 347
ldexp 347
ldiv 347
library 319
log 348
log10 348
logarithmic 326
longjmp 349
malloc 349
mathematical 325
memchr 350
memcmp 350
memcpy 351
memmove 351
memory management 329
memset 351
modf 352
multiplication 347
nearest integer 326
nonlocal jumps 326
pow 352
power 326
printf 353
pseudorandom sequence generation 329
putchar 356
puts 356
qsort 356
rand 357

realloc 358
scanf 358
search 329, 331
setjmp 361
sin 362
sinh 362
sorting 329
sprintf 363
sqrt 363
srand 364
sscanf 364
strcat 364
strchr 365
strcmp 365
strcpy 366
strcspn 366
string conversion 329
strlen 367
strncat 367
strncmp 367
strncpy 368
strpbrk 368
strrchr 369
strspn 369
strstr 370
strtod 370
strtok 371
strtol 372
tan 373
tanh 373
testing characters 343, 344, 345, 346
tolower 373
toupper 374
trigonometric 325
va_arg 374
va_end 375
va_start 376
vprintf 377
vsprintf 377
UM014423-0607 Index

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

436
G
General page, Project Settings dialog box 9, 57
General tab, Options dialog box 123, 124
Generate Assembly Listing Files (.lst) check
box 60, 65
Generate Assembly Source Code check box 64
Generate C Listing Files (.lis) check box 64
Generate Debug Information check box 58
Generate Map File check box 93
Generate Printfs Inline check box 67
getchar function 328, 342
gets function 328, 343
.gif file extension 55
Go button 20, 25
Go To button 51
Go to Code button 52, 308
Go to Line Number dialog box 51
go, script file command 399
GROUP command 252
Group Name field 129
Groups

allocation order 256
definition 236
linking sequence 254
locating 252
renaming 248
setting maximum size 253
setting ranges 255

H
Headers 319

character handling 321
diagnostics 320
error reporting 320
floating point 322
general utilities 328
input 327
limits 322
location 319
mathematics 324

nonlocal jumps 326
output 327
standard 318
standard definitions 320
string handling 330
variable arguments 326
ZSL 313

HEADING command 252
Help menu 130

About 130
Help Topics 130
Technical Support 130

Hex button 119
Hex code, size of 286
.hex file extension 94
Hex file, size of 286
Hexadecimal Display check box 128
Hexadecimal numbers

in assembly 194
viewing 301

Hexadecimal values in linker expressions 263
HIGH operator 193
HIGH16 operator 194
HIGHADDR operator 262
.htm file extension 55
.html file extension 55
HUGE_VAL macro 324, 328
Hyperbolic cosine, computing 339
Hyperbolic functions 325
Hyperbolic sine, computing 362
Hyperbolic tangent, calculating 373

I
IEEE 695 format 94, 251
IEF1 bit flag 224
IEF2 224
IF directive 216
IFDEF directive 217
IFMA directive 218, 221
IFSAME directive 218
UM014423-0607 Index

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

437
Ignore Case of Symbols check box 58
In File Types list box 50
In Folder list box 50
INCLUDE directive 206
#include directive 64, 319
Include Serial in Burn check box 119
Include ZiLOG Standard Library (Peripheral
Support) check box 76
Included in Project button 86

caution 246
Includes field 60
Increment Dec (+/-) field 119
Input/output macro 327
Insert Breakpoint command 307
Insert Spaces button 125
Insert/Remove Breakpoint button 21, 26, 307
Inserting breakpoints 307
Installation 1
Instruction Set Simulator 310
Instructions in assembly 189
INT_MAX 322
Integer arithmetic functions 330
Intel Hex16 - Records check box 94
Intel Hex16 format 94
Intel Hex32 - Records check box 94
Intel Hex32 format 94
Intermediate Files Directory field 59
Internal Flash check box 99, 116
interrupt handlers 135
interrupt keyword 135
INTERRUPT mode 315, 316
INTIO 184
Intrinsic functions 421
IP Address field 102, 105
isalnum function 321, 343
isalpha function 321, 343
iscntrl function 321, 344
isdigit function 321, 344
isgraph function 321, 344
islower function 321, 345
isprint function 321, 345

ispunct function 321, 345
isspace function 321, 346
isupper function 321, 346
isxdigit function 321, 346
.IVECTS segment 158

J
.jar file extension 55
jmp_buf 326
.jpeg file extension 55
.jpg file extension 55
Jump Optimization check box 61

K
Keep Tabs button 125
-keepasm 187
Keywords 135

L
Labels

$$ 222
$B 222
$F 222
anonymous 222
assigning to a space 223
exporting 223
importing 223
in assembly language 188, 222
local ($) 223
local (?) 223

labs function 330, 347
Language extensions 135
Largest integer, computing 340
LD BC,DE 156
LDBL_DIG 324
LDBL_MANT_DIG 324
LDBL_MAX 324
LDBL_MAX_10_EXP 324
UM014423-0607 Index

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

438
LDBL_MAX_EXP 324
LDBL_MIN 324
LDBL_MIN_10_EXP 324
LDBL_MIN_EXP 324
ldexp function 325, 347
ldiv function 330, 347
ldiv_t 328
LENGTH operator 262
Librarian

command line options 385
options 405

Librarian page, Project Settings dialog box 74
Libraries

defining 248
functions 332
object 235

Library functions 319, 332
Limit Optimizations for Easier Debugging
check box 62
<limits.h> header 322
__LINE__ 148
Line continuation in assembly 188
Link Configuration drop-down list box 77, 240
Link Configurations list box 43
Link map file

contents 253
creating 253, 254

Linker
command line options 386
commands 247
configuring 240
creating link map file 253, 254
creating linking sequence 254
debugging code 284
defining holes in memory 90
detailed description 235
error messages 286
expressions 258
file format 251
generating debug information 251, 254,

284

generating warnings 257
interactions with assembler 236
interactions with compiler 236
invoking 246
map file 267
memory used 286
objects manipulated during linking 235
opening 246
options 405
reducing execution times 284
running 246
running from the command line 380
search order 255
speeding up 284
starting 246
suppressing warnings 254
symbols 160
troubleshooting 283
using directives to initialize variables 246
warning messages 246, 286

Linker command file 246
commands 247
for C programs 158
linker symbols 160
referenced files 159
sample 161

Linker commands
<outputfile>=<module list> 248
BASE OF 250
CHANGE 248
COPY 249
COPY BASE OF 250
COPY TOP OF 250
DEBUG 251
DEFINE 251
FORMAT 251
GROUP 252
HEADING 252
LOCATE 252
MAP 253
MAXHEXLEN 253
UM014423-0607 Index

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

439
MAXLENGTH 253
NODEBUG 254
NOMAP 253, 254
NOWARN 254
ORDER 254
RANGE 255
SEARCHPATH 255
SEQUENCE 256
SORT 256
SPLITTABLE 256
TOP OF 250
UNRESOLVED IS FATAL 257
WARN 257
WARNING IS FATAL 258
WARNOVERLAP 258

Linker directives
adding to new project 246
using to initialize variables 246

Linker expressions
- (subtract) 263
& (and) 260
* (multiply) 262
+ (add) 259
/ (divide) 261
<< (shift left) 263
>> (shift right) 263
^ (bitwise exclusive or) 264
| (or) 263
~ (not) 264
BASE OF 260
COPY BASE 261
COPY TOP 261
decimal numeric values 262
FREEMEM 261
hexadecimal numeric values 263
HIGHADDR 262
LENGTH 262
LOWADDR 262
TOP OF 264

Linker map file, sample 267
Linker/locator error messages 286

Linker/locator warning messages 286
Linking sequence, creating 254
list bp, script file command 399
LIST directive 207
Listing file, assembly 186
Load Debug Information (Current Project)
check box 128
Load from File dialog box 299
Load Last Project on Startup check box 123
LOADMEM, script file command 399
Local labels in assembly 223
Local macro label 220
Locals window 302, 303
Locals Window button 28
LOCATE command 252
Locator

detailed description 235
error messages 286
warning messages 286

.lod file extension 94
log function 326, 348
log, script file command 400
log10 function 326, 348
Logarithm, computing 348
Logarithmic functions 326
long long int type 147
LONG_MAX 322
LONG_MIN 322
longjmp function 326, 349
Look In drop-down list box

Add Files to Project dialog box 55
Select Linker Command File dialog box 84

Look in Subfolders check box 50
LOW operator 193
LOW16 operator 194
LOWADDR operator 262
.lst file extension 186
UM014423-0607 Index

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

440
M
MACDELIM directive 222
MACEXIT directive 221
Macro Assembler

adding null characters 192
addressing modes 224
arithmetic operators 192
binary numbers 195
Boolean operators 193
character constants 195
character strings 192
command line options 381
decimal numbers 194
directive compatibility 416
directives 196
error messages 230
expressions 192
floating-point numbers 191
generating listing file (.lst) 186
generating object file 186
hexadecimal numbers 194
numeric representation 191
octal numbers 195
operator precedence 195
relational operators 193
reserved words 190
running from the command line 380
setup 59
syntax 225
using 182
warning messages 230

MACRO directive 219
Macros 219

__ACCLAIM__ 148
__DATE__ 148
__EZ80__ 148
__FILE__ 148
__FPLIB__ 148
__LINE__ 148
__STDC__ 148
__TIME__ 148

__ZDATE__ 148
__ZILOG__ 148
character handling 321
concatenation character 219
defining 219
delimiter characters 222
delimiting arguments 222
diagnostics 321
error reporting 320
exiting 221
expanding 60
floating point 323
general utility 328
input/output 327
invocation 220
labels 220
limits 322
mathematical 324
optional arguments 221
predefined 148
standard definitions 320
string handling 330

MADL bit flag 224
Make file, exporting 106
makefile, script file command 400
makfile, script file command 400
malloc function 329, 349
Manage Configurations dialog box 109, 110
MAP command 253
.map file extension 253, 286
Mark All button 49
Match Case check box 49, 50, 51
Match Whole Word Only check box 49, 50, 51
<math.h> header 324
Mathematical functions 325
Mathematical macro 324
MAXHEXLEN command 253
Maximum Bytes per Hex File Line drop-down
list box 94
MAXLENGTH command 253
memchr function 331, 350
UM014423-0607 Index

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

441
memcmp function 331, 350
memcpy function 331, 351
memmove function 331, 351
Memory

amount used by program 286
defining holes 90
defining locations 183
filling 297
loading to file 299
saving to file 298

Memory management functions 329
Memory range, syntax 90
Memory window 295

changing memory spaces 296
changing values 295
filling memory 297
finding addresses 296
loading to file 299
saving to file 298
viewing addresses 296

Memory Window button 28
memset function 332, 351
Menus

Build 107
Edit 47
File 37
Help 130
Project 54
shortcuts 131
Tools 114
View 53
Windows 129

Messages Output window 36
Minimum requirements for ZDS II xvii
modf function 326, 352
Modules

defining 248
definition 235

Moving characters 351

N
Name button 94
Name for New Target field 101
Nearest integer functions 326
nested_interrupt 135
New button 17
New project

adding files 6, 54
adding linker directives 246
building 12
configuring 8
creating 2, 39
deleting files 38
initialize variables 246
saving 13
setting up 8

New Project dialog box 3, 39
New Project Wizard dialog box 4, 5, 6, 41, 42,
43
new project, script file command 400
New segments, creating 185
NEWPAGE directive 207
Next Bookmark button 23
NODEBUG command 254
NOLIST directive 207
NOMAP command 253, 254
NOWARN command 254
NULL macro 320, 328, 330
NULL, using 249, 251
NULL-terminated ASCII, viewing 302
Numbers

binary 195
decimal 194
hexadecimal 194
octal 195

O
.obj file extension 186, 187
Object code file 187
UM014423-0607 Index

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

442
Object formats
for Linker 94
IEEE 695 94
Intel Hex16 94
Intel Hex32 94
OMF695 186, 187

Object libraries 235
Octal numbers in assembly 195
offsetof macro 320
OMF695 format 186, 187
Open button 17
Open dialog box 38
Open Project dialog box 44
open project, script file command 401
open_periphdevice() function 313, 314
open_UARTx() function 315, 316
Operator precedence in assembly 195
Operators

- (subtract) 263
& (and) 260
* (multiply) 262
+ (add) 259
/ (divide) 261
<< (shift left) 263
>> (shift right) 263
^ (bitwise exclusive or) 264
| (or) 263
~ (not) 264
arithmetic 192
BASE OF 260
Boolean 193
COPY BASE 261
COPY TOP 261
FREEMEM 261
HIGH 193
HIGH16 194
HIGHADDR 262
LENGTH 262
LOW 193
LOW16 194
LOWADDR 262

precedence 195
relational 193
TOP OF 264

Optimize For drop-down list box 62
option, script file command 401
Options 401

assembler 403
compiler 403
general 404
librarian 405
linker 405

Options dialog box 122
Debugger tab 127, 128
Editor tab 124, 125
File Types tab 128, 129
General tab 123, 124

ORDER command 254, 259
ORG clause 204
ORG directive 208
Output File Name field 93
Output to Pane 2 check box 50
Output Window button 17

P
Page Length field 60
Page Width field 60
Paste button 17
PC, definition 292
Place Target File In area 101
Place Target File in Project Directory check
box 100
Placement directives 142
Placing breakpoints 307
POLL mode 315
Ports area 76
pow function 326, 352
Power functions 326
#pragma alias 419
#pragma asm 143
#pragma bss 421
UM014423-0607 Index

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

443
#pragma cpu 420
#pragma globalcopy 420
#pragma globalcse 420
#pragma globaldeadvar 420
#pragma globalfold 421
#pragma intrinsics 421
#pragma jumpopt 421
#pragma localcopy 421
#pragma localcse 421
#pragma localfold 422
#pragma localopt 422
#pragma noalias 420
#pragma noglobalcopy 420
#pragma noglobalcse 420
#pragma noglobaldeadvar 420
#pragma noglobalfold 421
#pragma nointrinsics 421
#pragma nojumpopt 421
#pragma nolocalcopy 421
#pragma nolocalcse 421
#pragma nolocalfold 422
#pragma nolocalopt 422
#pragma noopt 422
#pragma nooptlink 422
#pragma nopeephole 422
#pragma nopromote 423
#pragma nosdiopt 423
#pragma nostkck 423
#pragma nostrict 423
#pragma optlink 422
#pragma optsize 422
#pragma optspeed 422
#pragma peephole 422
#pragma promote 422
#pragma sdiopt 423
#pragma stkck 423
#pragma strict 423
#pragma, using 419
Predefined address spaces 183
Predefined macros 148
Prefix character 225

Preprocessing, predefined macros 148
Preprocessor Definitions field 66
Previous Bookmark button 23
Print button 17
Print Preview window 46
print, script file command 407
printf function 327, 353

conversion characters 355
flag characters 354

Program and Verify button 118
Program button 118
Project

adding files 6, 54
adding web files 55
building 12, 107
compiling 107
configuring 8, 108
copying configurations 109
creating 2, 39
deleting files 38
exporting as make file 106
saving 13
setting up 8

Project Directory button 101
Project file, creating 2
Project menu 54

Add Files 54
Export Makefile 106
Remove Selected File(s) 55
Settings 55
shortcuts 132

Project Settings dialog box 55
Address Spaces page 89
Advanced page 66, 67
Assembler page 10, 59
Code Generation page 11, 61, 62
Commands page 77
Debugger page 95
Deprecated page 69, 70
General page 9, 57
Librarian page 74, 75
UM014423-0607 Index

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

444
Listing Files page 63, 64
Objects and Libraries page 84, 85
Output page 12, 92, 93
Preprocessor page 65
Warnings page 90, 91
ZSL page 75, 76

Project Type field 3, 40
Project Workspace window 29, 30
Pseudoinstruction macros 156
Pseudorandom sequence generation 329, 357,
364
ptrdiff_t 320
Public symbols, creating 251
putchar function 328, 356
puts function 328, 356
pwd, script file command 407

Q
qsort function 329, 356
Quick tour

developer’s environment 1
ZDS II 1

quit, script file command 407
Quotient, computing 339, 347

R
RAM 183
rand function 329, 357
RAND_MAX macro 328
RANGE command 255
Range error, generating 90
Reading input 358
Readme.txt, location of xix
realloc function 329, 358
Rebuild All button 18
rebuild, script file command 408
Red octagon 292, 307
Refresh button 102

Registers
changing values 293
preserving 153

Registers window 292, 293
Registers Window button 27
Regular Expression check box 49, 51
Relational operators, in assembly 193
Release configuration 108
Relocatable segments 183, 186, 235
Remainder, computing 341
Remove All Breakpoints button 21, 27
Remove All button 52, 309
Remove Breakpoint command 309
Remove button 52, 309
Replace All button 51
Replace button 51
Replace dialog box 50, 51
Replace With field 51
Replace With list box 51
Requirements for ZDS II xvii
Reserved words, in assembly 190
Reset button 20, 25
.RESET segment 158
Reset to Symbol ’main’ (Where Applicable)
check box 127
reset, script file command 408
Return values 153
Revision history iii
ROM 183
RTL

definition 317
switching to ZSL 317

Run Command button 22
Run to Cursor button 26
Run-time library 154, 318

formatting 154, 318
functions 332
standard headers 318
using functions 319
using headers 319
UM014423-0607 Index

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

445
S
Save All button 17
Save As dialog box 45, 106
Save as Type drop-down list box 45
Save button 17
Save Files Before Build check box 123
Save In drop-down list box 45, 106
Save Project Before Start of Debug Session
check box 127
Save to File dialog box 298
Save/Restore Project Workspace check box
123
SAVEMEM, script file command 408
Saving a project 13
Scaled fractional arithmetic 146
scanf function 327, 358

conversion characters 360
SCHAR_MAX 322
SCHAR_MIN 322
SCOPE directive 223
Script file

commands 392
definition 391
example 391

Search functions 329, 331, 336
SEARCHPATH command 255
SEGMENT directive 185, 208
Segments 158, 182

absolute 183, 185, 186, 204, 235
address space 205
alignment 185, 204
allocation order 256
attaching code 185
attaching data 185
copy 236
copying 249, 250
creating 185
defining 185, 203
description 184, 235
linking sequence 254
locating 204, 252

moving 248
new 185
origin 185
relocatable 183, 186, 235
renaming 248
setting maximum size 253
setting ranges 255
splitting 256
types 183
user defined 185

Select Build Configuration list box 18
Select Configuration dialog box 108
Select Linker Command File dialog box 84
Select Project Name dialog box 2, 39
SEQUENCE command 256, 259
Serial Number list box 104
Serial number, choosing 104
Serial Smart Cable requirements xviii
Serial Value field 119
Set Bookmark button 23
set config, script file command 408
Set Next Instruction button 26
setjmp function 326, 361
<setjmp.h> header 326
Setting breakpoints 307
Setup button, Target area 96
Setup Ethernet Smart Cable Communication
dialog box 102
Setup Serial Communication dialog box 103
Setup TCP/IP Communication dialog box 105
Setup USB Communication dialog box 104
SEXT HL 156
SFR, definition 293
short enumerations 146
Shortcut keys 131
Show Absolute Addresses in Assembly List-
ings check box 94
Show DataTips Pop-Up Information check box
127
Show the Full Path in the Document Window’s
Title Bar check box 123
UM014423-0607 Index

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

446
SHRT_MAX 322
SHRT_MIN 322
Signed fractional arithmetic 146
Simulated UART Output window 306
Simulated UART Output Window button 28
Simulator 310
sin function 325, 362
Sine, computing 362
sinh function 325, 362
size_t 320, 328, 330
Smallest integer, computing 338
Smart Cables Available area 102
Software installation 1
SORT command 256
Sort Symbols By area 94
Sorting arrays 356
Sorting functions 329
Source line

contents 188
definition 188
labels 188, 222

SPACE clause 205
Special function registers

changing values 294
location of 293

Special Function Registers window 293, 294
Special Function Registers Window button 28
SPECIAL_CASE 293
SPLITTABLE command 256
sprintf function 327, 363
sqrt function 326, 363
Square root, calculating 363
srand function 329, 364
sscanf function 327, 364
Standard button 86
Standard configuration 79
Standard field 66
Standard link configuration 241

directives 266
Starting a project 2
Startup files 157

.STARTUP segment 158
Status bar 291
<stdarg.h> header 326
__STDC__ 148
<stddef.h> header 320
<stdio.h> header 327
<stdlib.h> header 328
Step Into button 26
Step Out button 26
Step Over button 26
step, script file command 409
stepin, script file command 409
stepout, script file command 409
Stop Build button 18
Stop Command button 22
Stop Debugging button 25
stop, script file command 409
strcat function 331, 364
strchr function 331, 365
strcmp function 331, 365
strcpy function 331, 366
strcspn function 331, 366
String comparison 365, 366
String conversion functions 329, 335, 336, 370,
372
<string.h> header 330
String-handling functions 330
strlen function 332, 367
strncat function 331, 367
strncmp function 331, 367
strncpy function 331, 368
strpbrk function 331, 368
strrchr function 331, 369
STRSECT segment 158, 184
strspn function 331, 369
strstr function 332, 370
strtod function 329, 370
strtok function 332, 371
strtol function 329, 372
.STRUCT directive 211
Structures in assembly 210
UM014423-0607 Index

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

447
- (subtract) 263
Symbols window 304
Symbols Window button 28
Symbols, predefined 198
Symbols, public 251
System requirements for ZDS II xvii

T
Tab Size field 125
.TAG directive 213
tan function 325, 373
Tangent, calculating 373
tanh function 325, 373
Target area 96
Target Copy or Move dialog box 101
target copy, script file command 409
target create, script file command 410
Target File button 101
target get, script file command 410
target help, script file command 410
Target list box 42
target list, script file command 410
target options, script file command 411
target save, script file command 411, 412
target set, script file command 411
Target, selecting 95
Targets 311
TCP Port field 102, 105
Technical service xviii
Technical support xviii
TEXT segment 158, 184
Tile the files 130
__TIME__ 148
TITLE directive 209
tolower function 322, 373
Toolbars

Bookmarks 22
Build 18
Command Processor 22
Debug 23

Debug Windows 27, 292
File 16
Find 21

Tools menu 114
Calculate File Checksum 120
Customize 121
Firmware Upgrade 120
Flash Loader 115
Options 122

TOP OF command 250
TOP OF operator 264
toupper function 322, 374
Treat All Warnings as Fatal check box 91
Treat Undefined Symbols as Fatal check box
91
Trigonometric functions 325
Troubleshooting

assembler 229
linker 283

True macro 321
Tutorials

developer’s environment 1
ZDS II 1

Type sizes 147

U
UARTs

changing default settings 315
default settings 315
INTERRUPT mode 315, 316
POLL mode 315
switching 315

Uarts area 77
UBFRACT directive 200
UCHAR_MAX 322
UEXT HL 156
UFRACT directive 200
UINT_MAX 322
ULONG_MAX 322
.UNION directive 214
UM014423-0607 Index

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

448
Unions in assembly 210
Units drop-down list box 100, 117
UNRESOLVED IS FATAL command 257
Up button 49
USB Smart Cable requirements xviii
Use Alternate ZDI Clock Frequency check box
102, 103, 104, 105
Use C Runtime Library check box 88
Use Default Libraries area 87
Use Existing button 83
Use Page Erase Before Flashing check box 42,
96
Use Page Erase check box 118
Use Selected Target button 101
Use Standard Startup Linker Commands check
box 87
User field 66
User-defined segments 185
USHRT_MAX 322

V
va_arg function 327, 374
va_end function 327, 375
va_list 327
va_start function 327, 376
Values, return 151, 153
VAR directive 209
Variable arguments 326
Variable names in assembly 152
Variables

alignment 143
consecutive 143
placement 142

Verify button 118
Verify Download button 25
Verify File Downloads--Read After Write
check box 128
Verify File Downloads--Upon Completion
check box 128
View menu 53

Debug Windows 53
Output 54
Status Bar 54
Workspace 54

vprintf function 327, 377
vsprintf function 327, 377

W
wait bp, script file command 412
wait, script file command 412
WARN command 257
Warn on Segment Overlap check box 92
WARNING IS FATAL command 258
Warning messages

ANSI C-Compiler 168
assembler 230
generating 257
linker/locator 286
suppressing 254

WARNOVERLAP command 258
Watch window 300

adding new variables 301
changing values 301
removing expressions 301
viewing ASCII values 302
viewing ASCIZ values 302
viewing decimal values 301
viewing hexadecimal values 301
viewing NULL-terminated ASCII 302

Watch Window button 28
.wav file extension 55
wchar_t 320, 328
Web Files folder, contents of 55
Web files-to-C conversion 55
White octagon 292
Windows menu 129

Arrange Icons 130
Cascade 130
Close 130
Close All 130
UM014423-0607 Index

ZiLOG Developer Studio II
eZ80Acclaim!® User Manual

449
New Window 130
Tile 130

.WITH directive 215
With Include Files check box 64
Workspace Window button 17
Writing characters 356
Writing output 353, 363
Writing strings 356
.wsp file extension 44

X
XDEF directive 210
XREF directive 210, 223

Y
Yellow arrow 292
Yellow arrow on red octagon 292

Z
__ZDATE__ 148
ZDS

definition xix
latest released version xix

ZDS Default Directory button 101
ZDS II

installation 1
quick tour 1
running from the command line 379
system requirements xvii

.zdsproj file extension 2
__ZILOG__ 148
ZiLOG Standard Library

changing source files 314
finding source files 314
header files 313
notes and tips 312
on-chip peripherals 313
settings 75, 89

switching UARTs 315
unresolved errors 314
unresolved symbols error 314
using standard I/O calls 315

ZiLOG Standard Library (Peripheral Support)
check box 89
ZiLOG web site URL xviii
ZMASM compatibility 416
ZPAK II requirements xviii
ZSL

changing source files 314
definition 75, 89, 313
finding source files 314
header files 313
notes and tips 312
on-chip peripherals 313
switching UARTs 315
unresolved errors 314
unresolved symbols error 314
using standard I/O calls 315

ZSL page, Project Settings dialog box 75
zsldevinit.asm file 313

initializations 313
UM014423-0607 Index

	ZiLOG Developer Studio II- eZ80Acclaim!®
	Revision History
	Table of Contents
	Introduction
	ZDS II System Requirements
	Supported Operating Systems
	Recommended Host System Configuration
	Minimum Host System Configuration
	When Using the USB Smart Cable
	When Using the Ethernet Smart Cable
	When Using the Serial Smart Cable
	When Using ZPAK II

	ZiLOG Technical Support
	Before Contacting Technical Support

	Getting Started
	Installing ZDS II
	Developer’s Environment Tutorial
	Create a New Project
	Add a File to the Project
	Set Up the Project
	Save the Project

	Using Non-Simulator Debug Tools

	Using the Integrated Development Environment
	Toolbars
	File Toolbar
	Build Toolbar
	Find Toolbar
	Command Processor Toolbar
	Bookmarks Toolbar
	Debug Toolbar
	Debug Windows Toolbar

	Windows
	Project Workspace Window
	Edit Window
	Output Windows

	Menu Bar
	File Menu
	Edit Menu
	View Menu
	Project Menu
	Build Menu
	Debug Menu
	Tools Menu
	Window Menu
	Help Menu

	Shortcut Keys
	File Menu Shortcuts
	Edit Menu Shortcuts
	Project Menu Shortcuts
	Build Menu Shortcuts
	Debug Menu Shortcuts

	Using the ANSI C-Compiler
	Language Extensions
	Interrupt Support
	Placement Directives
	Inline Assembly
	fract Keyword
	Char and Short Enumerations
	Supported New Features from the 1999 Standard

	Type Sizes
	Predefined Macros
	Examples

	Calling Conventions
	Function Call Mechanism
	Special Cases

	Calling Assembly Functions from C
	Function Naming Convention
	Variable Naming Convention
	Argument Locations
	Return Values
	Preserving Registers

	Calling C Functions from Assembly
	Assembly File
	Referenced C Function Prototype

	Command Line Options
	Run-Time Library
	Pseudoinstruction Macros Generated by the C-Compiler
	UEXT HL (Unsigned Extension)
	SEXT HL (Signed Extension)
	LD BC,DE

	Startup Files
	Segment Naming
	Linker Command Files for C Programs
	Linker Referenced Files
	Linker Symbols
	Sample Linker Command File

	ANSI Standard Compliance
	Freestanding Implementation
	Deviations from ANSI C

	Locating Variables at Specific Addresses: Older Method
	Assembly File
	C File

	Warning and Error Messages
	Preprocessor Warning and Error Messages
	Front-End Warning and Error Messages
	Optimizer Warning and Error Messages
	Code Generator Warning and Error Messages

	Using the Macro Assembler
	Address Spaces and Segments
	Allocating Processor Memory
	Address Spaces
	Segments
	Assigning Memory at Link Time

	Output Files
	Source Listing (.lst) Format
	Object Code (.obj) File

	Source Language Structure
	General Structure
	Assembler Rules

	Expressions
	Arithmetic Operators
	Relational Operators
	Boolean Operators
	HIGH and LOW Operators
	HIGH16 and LOW16 Operators
	Decimal Numbers
	Hexadecimal Numbers
	Binary Numbers
	Octal Numbers
	Character Constants
	Operator Precedence

	Directives
	ALIGN
	.COMMENT
	CPU
	Data Directives
	DEFINE
	DS
	END
	EQU
	INCLUDE
	LIST
	NEWPAGE
	NOLIST
	ORG
	SEGMENT
	TITLE
	VAR
	XDEF
	XREF
	Structures and Unions in Assembly Code

	Conditional Assembly
	IF
	IFDEF
	IFSAME
	IFMA

	Macros
	MACRO Definition
	Concatenation
	Macro Invocation
	Local Macro Labels
	Optional Macro Arguments
	Exiting a Macro
	Delimiting Macro Arguments

	Labels
	Anonymous Labels
	Local Labels
	Importing and Exporting Labels
	Label Spaces

	Addressing Modes
	Representing Immediate Value

	Source Language Syntax
	Compatibility Issues
	Troubleshooting the Assembler
	Warning and Error Messages

	Using the Linker/Locator
	Linker Interactions with the Compiler and Assembler
	eZ80Acclaim! Address Spaces
	Segments

	Linker Configurations
	Standard Configuration
	All RAM Configuration
	Copy to RAM Configuration
	Custom Configuration
	Deprecated Custom Configuration
	Components Used in All Linker Configurations

	Invoking the Linker
	Linker Commands
	<outputfile>=<module list>
	CHANGE
	COPY
	DEBUG
	DEFINE
	FORMAT
	GROUP
	HEADING
	LOCATE
	MAP
	MAXHEXLEN
	MAXLENGTH
	NODEBUG
	NOMAP
	NOWARN
	ORDER
	RANGE
	SEARCHPATH
	SEQUENCE
	SORT
	SPLITTABLE
	UNRESOLVED IS FATAL
	WARN
	WARNING IS FATAL
	WARNOVERLAP

	Linker Expressions
	+ (Add)
	& (And)
	BASE OF
	COPY BASE
	COPY TOP
	/ (Divide)
	FREEMEM
	HIGHADDR
	LENGTH
	LOWADDR
	* (Multiply)
	Decimal Numeric Values
	Hexadecimal Numeric Values
	| (Or)
	<< (Shift Left)
	>> (Shift Right)
	- (Subtract)
	TOP OF
	^ (Bitwise Exclusive Or)
	~ (Not)

	Using Modified ZDS II Startup Modules
	Directives for All Configurations

	Sample Linker Map File
	Troubleshooting the Linker
	How do I speed up the linker?
	How do I generate debug information without generating code?
	How can I debug code already programmed in ROM?
	How much memory is my program using?
	How do I determine the size of my actual hex code?

	Warning and Error Messages

	Using the Debugger
	Status Bar
	Code Line Indicators
	Debug Windows
	Registers Window
	Special Function Registers Window
	Clock Window
	Memory Window
	Watch Window
	Locals Window
	Call Stack Window
	Symbols Window
	Disassembly Window
	Simulated UART Output Window

	Using Breakpoints
	Inserting Breakpoints
	Viewing Breakpoints
	Moving to a Breakpoint
	Enabling Breakpoints
	Disabling Breakpoints
	Removing Breakpoints

	Debug Tools
	Cycle-Accurate Instruction Set Simulator
	Non-Simulator Debug Tools

	Targets
	RAM-Based Targets
	ROM/Flash-Based Targets

	ZiLOG Standard Library Notes and Tips
	What is ZSL?
	Which on-chip peripherals are supported?
	Where can I find the header files related to ZiLOG Standard Libraries?
	What is the zsldevinit.asm file?
	What initializations are performed in the zsldevinit.asm file?
	What calls the open_periphdevice() function?
	When I use ZiLOG Standard Libraries in my application and build from the command line, why do I see unresolved errors?
	I do not use the standard boot-up module, but I have manually included ZiLOG Standard Libraries. When I link my code with the library, why do I get an unresolved symbols error?
	Where can I get the ZSL source files?
	I need to change the ZSL source code. How can I generate a new library with these changes included?
	How can I use standard I/O calls like printf() and getch()?
	What is the difference between the Interrupt mode and the Poll mode in the UARTs?
	What are the default settings for the UART device?
	How can I change the default UART settings for my application?
	I am using the UART in the interrupt mode. Why do I seem to lose some of the data when I try to print or try to receive a large amount of data?
	When I call open_UARTx() function by configuring it in INTERRUPT mode, the control never comes back to my program and my program behaves indifferently. Why is this?
	Where can I find sample applications that demonstrate the use of ZSL?
	I have used init_uart() and other functions provided in the RTL. Do I need to change my source code because of ZSL?

	C Standard Library
	Standard Header Files
	Errors <errno.h>
	Standard Definitions <stddef.h>
	Diagnostics <assert.h>
	Character Handling <ctype.h>
	Limits <limits.h>
	Floating Point <float.h>
	Mathematics <math.h>
	Nonlocal Jumps <setjmp.h>
	Variable Arguments <stdarg.h>
	Input/Output <stdio.h>
	General Utilities <stdlib.h>
	String Handling <string.h>

	Standard Functions
	abs
	acos
	asin
	assert
	atan
	atan2
	atof
	atoi
	atol
	bsearch
	calloc
	ceil
	cos
	cosh
	div
	exp
	fabs
	floor
	fmod
	free
	frexp
	getchar
	gets
	isalnum
	isalpha
	iscntrl
	isdigit
	isgraph
	islower
	isprint
	ispunct
	isspace
	isupper
	isxdigit
	labs
	ldexp
	ldiv
	log
	log10
	longjmp
	malloc
	memchr
	memcmp
	memcpy
	memmove
	memset
	modf
	pow
	printf
	putchar
	puts
	qsort
	rand
	realloc
	scanf
	setjmp
	sin
	sinh
	sprintf
	sqrt
	srand
	sscanf
	strcat
	strchr
	strcmp
	strcpy
	strcspn
	strlen
	strncat
	strncmp
	strncpy
	strpbrk
	strrchr
	strspn
	strstr
	strtod
	strtok
	strtol
	tan
	tanh
	tolower
	toupper
	va_arg
	va_end
	va_start
	vprintf
	vsprintf

	Running ZDS II from the Command Line
	Building a Project from the Command Line
	Running the Compiler from the Command Line
	Running the Assembler from the Command Line
	Running the Linker from the Command Line
	Assembler Command Line Options
	Compiler Command Line Options
	Librarian Command Line Options
	Linker Command Line Options

	Using the Command Processor
	Sample Command Script File
	Supported Script File Commands
	add file
	batch
	bp
	build
	cancel all
	cancel bp
	cd
	checksum
	debugtool copy
	debugtool create
	debugtool get
	debugtool help
	debugtool list
	debugtool save
	debugtool set
	debugtool setup
	defines
	delete config
	examine (?) for Expressions
	examine (?) for Variables
	exit
	fillmem
	go
	list bp
	loadmem
	log
	makfile or makefile
	new project
	open project
	option
	print
	pwd
	quit
	rebuild
	reset
	savemem
	set config
	step
	stepin
	stepout
	stop
	target copy
	target create
	target get
	target help
	target list
	target options
	target save
	target set
	target setup
	wait
	wait bp

	Running the Flash Loader from the Command Processor
	Displaying Flash Help
	Setting Up Flash Options
	Executing Flash Commands
	Examples

	Compatibility Issues
	Asssembler Compatibility Issues
	Compiler Compatibility Issues
	#pragma alias
	#pragma noalias
	#pragma cpu <cpu name>
	#pragma globalcopy
	#pragma noglobalcopy
	#pragma globalcse
	#pragma noglobalcse
	#pragma globaldeadvar
	#pragma noglobaldeadvar
	#pragma globalfold
	#pragma noglobalfold
	#pragma intrinsics: <state>
	#pragma nointrinsics
	#pragma nobss
	#pragma jumpopt
	#pragma nojumpopt
	#pragma localcopy
	#pragma nolocalcopy
	#pragma localcse
	#pragma nolocalcse
	#pragma localfold
	#pragma nolocalfold
	#pragma localopt
	#pragma nolocalopt
	#pragma noopt
	#pragma optlink
	#pragma nooptlink
	#pragma optsize
	#pragma optspeed
	#pragma peephole
	#pragma nopeephole
	#pragma promote
	#pragma nopromote
	#pragma sdiopt
	#pragma nosdiopt
	#pragma stkck
	#pragma nostkck
	#pragma strict
	#pragma nostrict

	Index

