Z8 Encore! ®, eZ80Acclaim! ®, and ZNEO™

ZiLOG Nexus Interface
API

Reference Manual

RM004502-0506

ZiLOG Worldwide Headquarters ¢ 532 Race Street * San Jose, CA 95126
Telephone: 408.558.8500 « Fax: 408.558.8300 « www.ZiLOG.com

http://www.zilog.com
http://www.zilog.com

Nexus Interface API
Reference Manual

ZiLOG

This publication is subject to replacement by a later edition. To determine whether a later
edition exists, or to request copies of publications, contact:

ZiLOG Worldwide Headquarters
532 Race Street

San Jose, CA 95126

Telephone: 408.558.8500

Fax: 408.558.8300
www.ZiLOG.com

Document Disclaimer

ZiLOG is a registered trademark of ZiLOG Inc. in the United States and in other countries. All other products
and/or service names mentioned herein may be trademarks of the companies with which they are associated.

©2006 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices,
applications, or technology described is intended to suggest possible uses and may be superseded. ZiLOG,
INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF
THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZiLOG
ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT
RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY
DESCRIBED HEREIN OR OTHERWISE. Devices sold by ZiLOG, Inc. are covered by warranty and
limitation of liability provisions appearing in the ZiLOG, Inc. Terms and Conditions of Sale. ZiLOG, Inc.
makes no warranty of merchantability or fitness for any purpose Except with the express written approval of
ZiLOG, use of information, devices, or technology as critical components of life support systems is not
authorized. No licenses are conveyed, implicitly or otherwise, by this document under any intellectual
property rights.

RM004502-0506

http://www.ZiLOG.com

Nexus Interface API
Reference Manual

’Z iLOG
Table of Contents

Table of Contentso vttt e e e et e ii
Listof Tablesot e e A%
Introduction i e 1
CONVENLIONS . .o\ttt e et et e et et e e e 2
Trademarks e 2
Online Information 2
Implementation. 3
Vendor EXtensionsiuiniiiii i, 3
Naming Conventionsouermtninenenenenenenennn. 3
Target Addresst 3
Target Wordo e 4
Target Registerscoitiiiin it 4
Target Events e 4
Target SPeC . .o vt 5
Control OPerationsouuit it 5
Control Data 7

Set Event Extensions, 12
APTCommandst 13
void nx_ClearEvent (nxt Handle * handle, constinteid) 13
nxt_Status nx_Close (nxt Handle * handle) 14

RM004502-0506

nxt_Status nx_Control (nxt Handle * handle, nxt CtrlData ctrl)14
nxt_Status nx_GetEvent (nxt Handle * handle, nxt ReceivedEvent *
event, int maxBytes, constintblock) 15
nxt_Status nx_GetLastError (nxt_Handle * handle, char * lastError, int
MaxBytes) 16
nxt Handle* nx Open (const nxt_TargetSpec * tSpec, void(*
errorCallback)(const char *), nxt Status * status) 17

Table of Contents

iii

Nexus Interface API
Reference Manual

iv zZiLoG

nxt_Status nx_ReadMem (nxt_Handle * handle, const int map, const int
accessPriority, const nxvt Address addr, const size t numBytes,

const int accessSize, void ** bytesRead) 17
nxt_Status nx_SetEvent (nxt Handle * handle, const nxt SetEvent *
setEvent) 18

nxt_Status nx WriteMem (nxt_Handle * handle, const int map, const int
accessPriority, const nxvt_Address addr, const size_t numBytes,

const int accessSize, const void * bytesToWrite) 19
APPeNdiX. . ..o 21
GloSSaTY . o\ttt 21
Nexus Vendor Extensions Reference 21
Defines 21
Typedefs 23
Enumerations 23
StrUCTUIES . .ottt e 28
nxvt ExtProgramErase i ., 30
nxvt ExtProgramSet 32
nxvt TargetConfiguration, 34
nxvt IntProgramErase........ i L. 38
nxvt IntProgramSet 39
nxvt RegiSterso e 40
nxvt_VendorDefinedCtrlData 40
nxvt VendorDefinedTargetSpec 45
nxvt VendorDefinedBasicSetEvent 45
Standard Registers ACCESS . ..o v vttt 46
Z8ENCOTe! . .o 46
eZ80Acclaim! 48
INEO 50

Table of Contents RMO004502-0506

Nexus Interface API
Reference Manual

ZiLOG

List of Tables

RM004502-0506

Table 1.
Table 2.
Table 3.

Table 4.

Table 5.

Vendor-Specific Target Event Types 4
Nexus API Vendor-Specific Control Operations 6
NXV_CTRL_GET REGISTER Index Values for
Z8EnNcore! 47
NXV_CTRL_GET REGISTER Index Values for
eZ80Acclaim! 49

NXV_CTRL_GET REGISTER Index Values for ZNEO .50

List of Tables

Nexus Interface API
Reference Manual

vi zZiLoG

List of Tables RM004502-0506

Nexus Interface API
Reference Manual

/]
//

ZiLOG

Introduction

RM004502-0506

The Nexus Forum 5001 standard is an open industry standard that pro-
vides a general-purpose interface for the software development and
debugging of embedded processors.

The Nexus API defines two layers of abstraction: Target Abstraction
Layer (TAL) and Hardware Abstraction Layer (HAL). The TAL provides
an implementation of the Nexus debug semantics, using the underlying
target's on-chip debug hardware. The HAL is the underlying layer that
communicates with the target system.

Tools are built on top of the TAL, which is also referred to as the Nexus
API. As a general rule, the Nexus API only provides facilities to access
the debug hardware features and does not implement functionality that is
normally provided in the tool vendor's higher-level APIs. For example,
the Nexus API provides facilities to run and single step one instruction. It
is up to the tool vendor to provide source level single step, step over, and
step out.

In order to allow for processor specific features, the Nexus standard
allows vendor-defined extensions in terms of:

® Vendor-defined extensions to standard Nexus operations
® Additional vendor-defined operations
® Additional vendor-defined information in messages

In addition, basic data types associated with addresses, target data and
registers are also defined through vendor extensions.

This document defines vendor-specific extensions used in the ZiLOG
implementation of the [IEEE ISTO-5001 Nexus Standard TAL.

The IEEE ISTO-5001 Nexus Standard is available from the IEEE ISTO
organization at http:/www.nexus5001.org.

http://www.nexus5001.org

Nexus Interface API
Reference Manual

ZiLOG

In the context of this document, the term vendor refers to ZiLOG.

) Note: Support for Z8 components is not provided in this release. Refer-

ences to Z8 components in Nexus headers are preliminary.

Conventions

The following assumptions and conventions are adopted to provide clarity
and ease of use:

Courier Typeface

Commands, code lines and fragments, bits, equations, hexadecimal
addresses, and various executable items are distinguished from general
text by the use of the Courier typeface.

Hexadecimal Values

Hexadecimal values are designated by a lowercase / and appear in the
Courier typeface.

® Example: STAT is set to F8h.
Asterisks

An asterisk preceding a parameter denotes the parameter as a pointer.

Trademarks

eZSO®, 78 Encore!®, and eZ80Acclaim!® are registered trademarks of
ZiLOG, Inc. ZNEO™ js a trademark of ZiLOG, Inc.

Online Information

Introduction

Please visit ZILOG’s website for:

® Product information for Z8 Encore!®, eZSOAcclaim!®, and ZNEOQ™
microprocessors and microcontrollers.

® Online copies of Z8 Encore!®, eZ8OAcclaim!®, and ZNEO™ docu-
mentation.

RM004502-0506

http://www.zilog.com

Nexus Interface API
Reference Manual

ZiLOG

Implementation

The ZiLOG Nexus API extends the standard Nexus API by providing the
necessary vendor extensions to support ZiLOG part families, debug com-
munication tools and emulators.

The following ZiLOG debug tools are currently supported by the ZiLOG
Nexus API:

® FEthernet Smart Cable
® USB Smart Cable

® ZPAKII

® Serial Smart Cable

Vendor Extensions

The Nexus API uses vendor defined data types, either embedded in stan-
dard Nexus data structures or passed directly in to Nexus API functions.
Refer to the appendix for a detailed reference of ZiLOG's vendor exten-
sion data types.

Naming Conventions

Per the Nexus API specification, the following naming conventions are
used for ZiLOG's vendor extensions:

® Data types are prefixed with "nxvt ".

® Constants are prefixed with "NXV _".

Target Address

The type nxvt_Address,which specifies a target address, is defined as
an unsigned long based on the requirement to support addresses up to 32

RMO004502-0506 Vendor Extensions

Nexus Interface API
Reference Manual

4 ZiLOG

bits. nxvt Address is used for setting up events triggered by an address,
such as execution breakpoints. nxvt Address is also used by
nx_ReadMem and nx WriteMem for memory access.

Target Word

The type nxvt_Word, which specifies a target word, is defined as an
unsigned 1ong based on the requirement to support 32-bit register values.
nxvt Word is used for setting data-triggered breakpoints and events.

Target Registers

The type nxvt_Registers specifies target register format. Since the
format of the registers is processor-dependent, this is defined simply as a
buffer to hold the processor's standard register set.

nxvt_ Registers is included in the structure that holds received events.
The nxvt Registers type is also used by the control operations
NX_CTRL_RESTART FROM BREAKSTEP and
NXV_CTRL GET REGISTERS ALL.

Target Events

The Nexus API defines event types for break and step. These are supple-
mented by the event types listed in Table 1. Note that these events are
read-only and are therefore prefixed with NXV_READ EVENT in order to
distinguish them from settable events, such as breakpoints.

Table 1. Vendor-Specific Target Event Types

Event Type Description

NXV_READ EVENT HALT SLP Target has entered halt or
lower power sleep mode.

NXV_READ EVENT EXT RESET Target reset has been
detected.

Implementation RM004502-0506

Nexus Interface API
Reference Manual

ZiLOG

Table 1. Vendor-Specific Target Event Types

Event Type Description

NXV_READ EVENT POWER LOSS Target power loss has
been detected

NXV_READ EVENT CONNECTION CLOSED Target connection has
been closed.

NXV_READ EVENT BREAK TRACEFULL Target has ceased
execution due to a trace
buffer full condition.

NXV_READ EVENT BREAK EVENT Target has ceased
execution due to an event
system match.

Target Spec

The nxvt VendorDefinedTargetSpec structure contains vendor-spe-
cific information required to establish a connection with a target.

nxvt VendorDefinedTargetSpec is embedded within the

nxt TargetSpec structure that is passed to nx_Open.

nxvt_VendorDefinedTargetSpec contains the following members:

® pOpenParameters — String containing target or implementation
specific parameters needed during a communication session.

® comminfo — Structure that contains the type of communication
method to use between host and target, with associated parameters.
Control Operations

The Nexus API function nx_Control provides general purpose target
control. The Nexus specification defines a set of standard control opera-
tions while enabling vendors to define processor-specific control opera-
tions that extend functionality.

RMO004502-0506 Vendor Extensions

Nexus Interface API
Reference Manual

ZiLOG

Table 2 lists the ZiLOG Nexus API vendor-specific control operations.

Table 2. Nexus API Vendor-Specific Control Operations

Operation Type

Description

NXV_CTRL_CANCEL

Cancel an operation in progress.

NXV_CTRL_CRC_MEMORY

Calculate CRC over a range of
memory.

NXV_CTRL_ERASE_EXT PROGRAM

Erase external program flash
memory.

NXV_CTRL_ERASE_INT PROGRAM

Erase internal program flash
memory.

NXV_CTRL_GET REGISTER

Get the value of a standard or on-
chip peripheral register.

NXV_CTRL_GET REGISTERS ALL

Get all standard registers.

NXV_CTRL_GET TARGET STATUS

Get the target status (running,
halted, etc).

NXV_CTRL_GET TRACE

Retrieve trace frame.

NXV_CTRL_ INITIALIZE TARGET

Initialize the target debug session.

NXV_CTRL_OTP_ CONFIGURE

Configure OTP EPROM

NXV_CTRL_OTP_CONTROL

Perform an OTP control operation
(read, burn, blank check, etc.).

NXV_CTRL_SET EXT PROGRAM
Program external program
memory .

Write a value to a standard or on-
chip peripheral register.

NXV_CTRL_SET INT PROGRAM

Implementation

Program internal program
memory. This may be flash RAM,
OTP or other, depending on the
processor.

RM004502-0506

Nexus Interface API
Reference Manual

ZiLOG

Table 2. Nexus API Vendor-Specific Control Operations

Operation Type Description

NXV_CTRL SET REGISTER Write a value to a standard or on-
chip peripheral register.

NXV_CTRL_SET ZDI_ FREQUENCY Set the debug frequency.

NXV_CTRL TRACE_ CONTROL Trace control and configuration.

NXV_CTRL UPGRADE FIRMWARE Upgrade debug tool firmware.
Currently supported only for USB
Smart Cable and Ethernet Smart
Cable.

Control Data

nxvt VendorDefinedCtrlData is defined as a union of structures,
each of which contains the parameters for a given vendor-specific Control
Operation. nxvt VendorDefinedCtrlData is a member of the

nxt CtrlData structure.

The nxt_CtrlData structure is passed in by value to nx_Control.
Therefore any data to be returned to the caller must be done through the
use of pointer data types within nxvt VendorDefinedCtrlData.

nxvt VendorDefinedCtrlData contains the structures listed in the
following sections.

setRegister. setRegister contains parameters for
NXV_CTRL_SET REGISTER. It contains the following members:

® type — Indicates whether register is a standard register, on-chip
peripheral register, or other.

® address — Register index for standard registers, or address for
peripheral register.

® value — The value to write.

RMO004502-0506 Vendor Extensions

Nexus Interface API
Reference Manual

ZiLOG

Implementation

getRegister. getRegister contains parameters for
NXV_CTRL GET REGISTER. It contains the following members:

® type — Indicates whether register is a standard register, on-chip
peripheral register, or other.

® address — Register index for standard registers, or address for
peripheral register.

® pvalue — Pointer to a long in which to store for the value read.

getRegistersAll. setRegistersAll is used with
NXV_CTRL GET REGISTERS ALL. It contains a pointer to
nxvt Registers type to store the standard register values returned.

getTargetStatus. get TargetStatus is used with
NXV_CTRL_GET_TARGET STATUS. It contains a pointer to an
nxvt TargetStatusType to hold the returned target status.

initializeTarget. initializeTarget is used with

NXV_CTRL INITIALIZE TARGET. It contains a pointer to a structure
containing information about the target configuration that is used to ini-
tialize a debug session. The NXV_CTRL_INITIALIZE TARGET com-
mand is normally sent immediately after calling nx_open in order to
establish and initialize the connection to the target.

setIntProgram. set Int Program is used by
NXV_CTRL SET INT PROGRAM, which is used to program internal flash
or OTP memory. It contains the following members:

® infoPage — Indicates whether to program the flash info page or nor-
mal program memory.

® address — The starting address .
® pbData — Pointer to a buffer containing the data to program.

® numberOfBytes — Size of the data in bytes.

RM004502-0506

Nexus Interface API
Reference Manual

ZiLOG

eraselntProgram. eraset IntProgram is used by
NXV_CTRL ERASE INT PROGRAM, which is used to erase internal flash
memory. It contains the following members:

® startPage — The page to start erase.

® numberOfPages — Number of pages to erase.

eraseExtProgram. eraseExtProgram is used by
NXV_CTRL_ERASE EXT PROGRAM, which is used to erase external flash
memory. It contains the following members:

® DbyData — Indicates whether the erase algorithm sequence consists of
data only, or both addresses and data.

® pBlockAddressList — List of the first address of each block or sec-
tor to erase.

® numberOfBlocks — Number of blocks to erase.
® pbhataEraseSeq — The sequence of bytes to erase a block.

® pAddrEraseSeq — Sequence of addresses at which to write erase
sequence values (used only if byData is zero).

® segSize — Size of erase sequence.
® verifyValue — Status value that indicates erase is complete.

® verifyMask — Mask value to AND with status value before compar-
ing to verifyvalue.

setExtProgram. set Ext Program is used by
NXV_CTRL_SET EXT PROGRAM, which is used to program external flash
or other type of non-volatile memory. It contains the following members:

® DbyData — Indicates type of programming algorithm to use. If non-
zero, the programming sequence consists of writing a sequence of
bytes to the address to be written. If zero, the programming algorithm
consists of an address/data sequence to unlock the memory, followed
by data writes.

RMO004502-0506 Vendor Extensions

10

Nexus Interface API
Reference Manual

ZiLOG

Implementation

address — Address to start programming.

pData — The program data.

numberOfBytes — Size of data, in bytes.

pWriteSeqg— Write sequence (used if byData is nonzero).
pDataUnlockSeq — Unlock sequence data (used if byData is zero).

pAddrUnlockSeq — Unlock sequence addresses (used if byData is
Z€T10).

segSize — Size of write or unlock sequence.
verifyValue — Status value that indicates erase is complete.

verifyMask — Mask value to AND with status value before compar-
ing to verifyvalue.

upgradeFirmware. upgradeFirmware is used by
NXV_CTRL_UPGRADE FIRMWARE, which is used to update the debug tool
firmware. It contains the following members:

pFirmware — Binary firmware image.

size — Size of firmware image in bytes.

getTrace. get Trace is used by NXV_CTRL GET TRACE, which is used to
upload a block of trace frames from the debugger. It contains the follow-
ing members:

of fset — Offset of first frame to retrieve, relative to the oldest frame
in the buffer.

numberOfFrames — Number of frames to retrieve. May be zero if
caller wishes only to query number of available frames.

pBuf fer — Buffer to hold the trace frames. May be NULL if
numberOfFrames is zero.

pAvailable — (optional) Set to total number of frames available
upon successful return.

RM004502-0506

RM004502-0506

Nexus Interface API
Reference Manual

ZiLOG 11

traceControl. traceControl is an enumerated type used by
NXV_CTRL TRACE CONTROL, which is used to configure and control
trace features. traceControl specifies an operation to perform, such as
reset trace system, reset trace buffer, and enable break on trace full.

setZdiFrequency. set ZdiFrequency is used by
NXV_CTRL_SET zDI_ FREQUENCY, which is used to set the debugger
Frequency for eZ80Acclaim! It contains the following members:

® frequency - Desired frequency, in hertz.

® tableSelect - Selects which frequency table to use, with zero
being the default. Set this to one to use the alternate frequency table.

otpConfigure. otpConfigure is used by NXV_CTRL_OTP_CONFIGURE,
which is used to set OTP EPROM configuration options. It contains the
following members:

® optionSize - Size of option data, in bytes.
® optionData - The option data.
® optionMask - Mask for option data.

® algoSize - Size of the algorithm, if included. Algorithm information
is optional. Set to zero if pAlgoData not set.

® pAlgoData - Pointer to a character array containing an algorithm.
Algorithm information is optional. Set to zero if no algorithm pro-
vided.

otpControl. otpControl contains parameters for
NXV_CTRL_OTP_CONTROL, which is used to perform OTP operations. It
contains the following members:

® operation - Indicates the type of OTP operation to be performed.
Set to one of NXV_OTP_CTRL BLANK CHECK,
NXV_OTP CTRL WRITE, NXV OTP CTRL READ,
NXV_OTP_ CTRL VERIFY, or NXV_OTP CTRL READ OPTIONS.

Vendor Extensions

12

Nexus Interface API
Reference Manual

ZiLOG

® param - Operation-specific data. Currently used only with
NXV_OTP_CTRL_READ OPTIONS as a pointer to an unsigned long
value to store the option data read.

crcMemory. crcMemory contains parameters used by
NXV_CTRL_ CRC MEMORY.

crcMemory is currently supported only for Z8 Encore! and ZNeo.

® address - Address at which to begin CRC calculation. This is used
only for ZNEO and must be aligned to 4KB boundary. The address
parameter is ignored for Z8 Encore!, which always starts CRC from
address zero.

® numBytes - Number of bytes to CRC. numBytes is used only for
ZNEO, and must ¢ a multiple of 4096. The numBytes parameter is
ignored for Z8 Encore!, which performs CRC on entire range of inter-
nal flash memory.

® pCrc - Pointer to CRC value returned.

Set Event Extensions

Implementation

The nxvt_VendorDefinedExtensionSetEvent and

nxvt VendorDefinedBasicSetEvent types are intended to be used
to support event features not provided for in the standard Nexus API
event types.

nxvt VendorDefinedBasicSetEvent is used to support ZiLOG
emulator advanced break and event capabilities that support features
beyond simple breakpoints, such as starting and stopping trace on an
event trigger. The nxvt VendorDefinedBasicSetEvent structure
contains event data which defines the event trigger, a data mask to mask
off don't care bits in the event data, and an enumerated type

nxvt EventAction that defines the action to take. The event trigger
data format is processor-specific. At minimum it consists of status flags,
data, and address.

RM004502-0506

Nexus Interface API
Reference Manual

ZiLOG 13

nxvt VendorDefinedExtensionSetEvent is currently not used, and
is simply typedef'ed as an int.

API Commands

This section lists the Nexus API commands implemented by ZiLOG.

void nx_ClearEvent (nxt_Handle * handle, const int eid)

The nx_ClearEvent function clears a debug event previously set with
nx SetEvent.

Only execution breakpoint events are supported by the on-chip debug
capability embedded in the processors. The Z8Encore! emulator has
richer event capabilities, including support for access and data break-
points, in addition to execution breakpoints.

The eid value must be a value between breakMinEventId and break-
MaxEventId, inclusive. breakMinEventId and breakMaxEventId
are members of the nxt Capability structure in the handle returned
from nx_Open. Note that nx_ClearEvent does not return a status, so
there is no error feedback if the event ID value is out of range or has no
active event associated with it.

Preconditions:

® handle identifies an active Nexus session. It is returned is from a
successful invocation of nx_Open.

® cidisthe ID of an event previously set up with nx SetEvent.

Postconditions: Once this function completes, the specified event will be
disabled.

Note that target processor execution must be suspended in order to clear
breakpoint events.

RM004502-0506 API Commands

Nexus Interface API
Reference Manual

14 ZiLOG

nxt_Status nx_Close (nxt_Handle * handle)

nx_Close terminates an open connection to a target. An attempt to close
a connection that is not open will return NX ERROR FAILED.

Preconditions: Handle is from successful invocation of nx Open.
Postconditions:

® (Closes the connection and deallocates the resources allocated for the
Nexus session.

® Returned status indicates whether the close was successful.

nxt_Status nx_Control (nxt Handle * handle, nxt_CtrlData ctrl)

Implementation

nx_Control is used for non-event related target control, such as run,
stop, and go. Trace features are also implemented through nx _Control.

Preconditions:
® handle is from a successful invocation of nx_Open.
® ctrl specifies the control operation to apply.

Postconditions: If successful, returns NX_ERROR_NONE; otherwise may
invoke the error callback installed with nx_Open, then returns
NX_ERROR_FAILED or NX_ERROR NO_ CAPABILITY

The following control operations are currently supported:

® NX CTRL RESETORHALT — Put processor in reset, resume execution
from current PC, or stop execution.

® NX CTRL_CLIENTBREAK — Enable or disable breakpoints.

® NX CTRL RESTART FROM BREAKSTEP — Restart from a previous
breakpoint.

In addition to the standard Nexus operations listed above, several vendor-
specific operations are also supported. Refer to Table 2 for a list of ven-
dor-specific operations.

RM004502-0506

Nexus Interface API
Reference Manual

ZiLOG 15

nxt_Status nx_GetEvent (nxt_Handle * handle,
nxt_ReceivedEvent * event, int maxBytes, const int block)

The nx_GetEvent function is used to read read a target event. Events are
generated when target execution is suspended, such as in single step, or
halted due to a due to a breakpoint previously set with nx_SetEvent.
The received event data for single step and breakpoints includes an

nxvt Registers structure that contains the target's register state at the
time of the event.

Vendor specific events are generated upon detection of processor entering
halt mode, external reset, and target power loss. There is no additional
data associated with these events.

For eZ80Acclaim! family processors, once the processor enters halt mode
it no longer responds to debug commands and therefore requires a reset
command to be issued via nx_Control to re-enter debug mode. This is
not the case for Z8 Encore! and ZNEO family processors.

Preconditions:
® handle is a from a successful invocation of nx_Open.
® event is a pointer to a block of memory to receive the event.

® maxBytes is set by the caller to indicate the number of bytes that can
be received in the event block of memory.

® Dblock specifies whether this function will block until an event is
available from the target.

Postconditions: If no event is available, NX ERROR_FAILED is returned.
If an event is available, the event data is written to the event buffer passed
in, and NX_ ERROR_NONE is returned.

If the connection to the target is closed while a caller is blocked
innx_GetEvent, nx_GetEvent will return event
NXV_READ EVENT CONNECTION CLOSED.

RM004502-0506 API Commands

Nexus Interface API
Reference Manual

16 ZiLOG

The following receive event types are supported. Those with the NXV_
prefix are ZiLOG vendor extensions.

NX_BREAK STEP
NXV_READ EVENT HALT SLP
NXV_READ EVENT EXT RESET
NXV_READ EVENT POWER LOSS
NXV_READ EVENT CONNECTION CLOSED
NXV_READ EVENT TRACEFULL
NXV_READ EVENT BREAK EVENT

nxt_Status nx_GetLastError (nxt_ Handle * handle, char *
lastError, int maxBytes)

Implementation

The nx_GetLastError function returns error/status code from most
recent nexus API call, and optionally a message containing details for the
error. This API was not included in the nx_api .h from IEEE ISTO but is
mentioned in the Nexus Standard as an optional feature that can be used
as an alternative to the error callback mechanism.

Preconditions:

handle is a from a successful invocation of nx_Open.

lastError event is a pointer to a block of memory to receive mes-
sage. May be set to NULL if caller is only interested in the actual sta-
tus code.

maxBytes is set by the caller to indicate the number of bytes that can
be received in the block of memory.

Postconditions: Returns Nexus error/status code from last Nexus API call.

RM004502-0506

Nexus Interface API
Reference Manual

ZiLOG 17

nxt Handle* nx_Open (const nxt_TargetSpec * tSpec, void(*
errorCallback)(const char *), nxt_Status * status)

The nx_Open function opens a Nexus debug session.
Preconditions:

® tSpec specifies the target setup (byte ordering and port type). It also
contains the vendor defined nxvt vVenderDefinedTargetSpec
which contains parameters necessary to establish communication
between the host and the target.

® errorCallback is a callback function which may be invoked when
errors occur. It may be set to NULL to prevent callbacks.

Postconditions: If successful, a handle is returned and status is set to
NX_ ERROR_NONE. If fails, NULL is returned, and status is set to
NX ERROR NO CAPABILITY.

The nxt Handle structure contains an nxt Capability structure. The
nxt Capability structure is filled out according to the processor's
capabilities upon successful open. The nxt Capability structure con-
tains number of breakpoints and memory spaces supported, the Nexus
API version and build version, and the debugger firmware version. The
nxt Handle type also contains a copy of tSpec.

nxt_Status nx_ReadMem (nxt_Handle * handle, const int map,
const int accessPriority, const nxvt_Address addr, const size t
numBytes, const int accessSize, void ** bytesRead)

The nx ReadMem function reads from target memory.
Preconditions:

® handle from a successful invocation of nx_Open.

® map specifies a memory map or space (not used for ZNEO).

® accessPriority specifies bus priority.

RM004502-0506 API Commands

18

Nexus Interface API
Reference Manual

ZiLOG

® address is the address to read from.
® numBytes is used to specify how many bytes to read.

® accessSize is used to specify the byte access size to be used during
the data transfer.

® DbytesRead points to where the data should be stored.

Postconditions: If successful, returns NX ERROR NONE and bytesRead
points to the data read from the target's memory. If fails, may invoke the
error callback installed with nx_Open, then returns NX ERROR_FAILED.

AccessPriority and accessSize are not currently used by the
ZiLOG Nexus API and are ignored. The map parameter specifies the
address space. A set of defines with the prefix NXv_ADDR SPACE are
defined in nxvtypes.h for this parameter.

Note that target execution must be suspended in order to read target mem-
ory.

nxt_Status nx_SetEvent (nxt_Handle * handle, const
nxt_SetEvent * setEvent)

Implementation

Set a breakpoints or single-step event.
Preconditions:
® handle is from a successful invocation of nx_Open.

® setEvent defines the event to set. It is used with breakpoint events,
but not single step events.

Postconditions: If successful, returns NX ERROR_NONE else may invoke
the error callback installed with nx_Open, then returns
NX_ ERROR_FAILED or NX ERROR NO CAPABILITY.

The following event types are supported for all ZiLOG processors:
® NX ETYPE_ STEP

RM004502-0506

Nexus Interface API
Reference Manual

ZiLOG

® NX ETYPE BREAKPOINT with breakpoint.op set to
NX_ BREAKPOINT INSTRADDR

The following event types are additionally be supported for emulators:

® NX ETYPE BREAKPOINT with breakpoint .op set to
NX BREAKPOINT DATA ADDR, NX BREAKPOINT DATAVALUE, Or
NX_ BREAKPOINTDATAADDR AND DATAVALUE

® NX ETYPE BREAKPOINT with breakpoint.op set to
NXV_BREAKPOINT TRACEFULL

® NXV_ETYPE EVENT

nxt_Status nx_WriteMem (nxt_Handle * handle, const int map,
const int accessPriority, const nxvt_Address addr, const size t
numBytes, const int accessSize, const void * bytesToWrite)

Write to target memory.

Preconditions:

® Thandle from a successful invocation of nx_Open.

® map specifies a memory map or address space (not used for ZNEO).
accessPriority specifies bus priority (not used).

® addr is the address to write to.

numBytes is used to specify how many bytes to write.

® accessSize isused to specify the byte access size to be used during
the data transfer.

® DpytesToWrite is a pointer to the data to write.

Postconditions: If successful, returns NX ERROR NONE and writes speci-
fies data to the target's memory. Otherwise may invoke the error callback
installed with nx_Open, then returns NX ERROR FAILED.

RM004502-0506 API Commands

19

Nexus Interface API
Reference Manual

20 ZiLOG

accessPriority and accessSize are not currently used by the Nexus
API and are ignored. The map parameter specifies the address space. A
set of defines with the prefix NXv_ADDR SPACE_ are defined in nxv-
types.h for the map parameter.

Implementation RM004502-0506

Nexus Interface API
Reference Manual

ZiLOG

Appendix

Glossary

TAL — Nexus Target Abstraction Layer (Nexus API)
HAL — Nexus Hardware Abstraction Layer
API — Application Programming Interface

ICE — In-circuit Emulator

DTL — Data Transfer Language. Communication language used between

the host PC and a debug tool.

Nexus — IEEE ISTO-5001 Standard

eZ80 — ZiLOG Acclaim! Family processor
eZ8 — ZiLOG Encore! Family processor
ZNEO — ZiLOG ZNEO family processor

Nexus Vendor Extensions Reference

Defines

RM004502-0506

#define NXV_ADDR SPACE_eZ8 ROM 0

#define NXV_ADDR SPACE eZ8 XRAM 1
#define NXV_ADDR SPACE eZ8 RDATA 2
#define NXV_ADDR SPACE eZ8 EDATA 3
#define NXV_ADDR SPACE eZ8 NVDS 4
#define NX ADDR_SPACE eZ8 PRAM 5

#define NXV_ADDR SPACE eZ80 RAM 0

PRELIMINARY Glossary

21

22

Nexus Interface API
Reference Manual

ZiLOG

#define
#define
#define
#define

NXV_ADDR SPACE eZ80 ROM 1
NXV_ADDR SPACE eZ80 EXTIO 2
NXV_ADDR SPACE eZ80 INTIO 3
NXV_ADDR_SPACE_eZ80 FLASHINFO 4

Note: ZNeo processor has a single unified memory

space,

#define
#define

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

Appendix

NXV_REGISTER_STANDARD (0)
NXV_REGISTER PERIPHERAL (1)

NXV_CTRL_SET_REGISTER (0x101)
NXV_CTRL_GET_REGISTER (0x102)
NXV_CTRL_GET_REGISTERS_ALL (0x103)
NXV_CTRL INITIALIZE TARGET (0x104)
NXV_CTRL GET TARGET STATUS (0x105)
NXV_CTRL_ERASE INT PROGRAM (0x106)
NXV_CTRL_SET_INT_PROGRAM (0x107)
NXV_CTRL_ERASE EXT PROGRAM (0x108)
NXV_CTRL_SET_EXT_PROGRAM (0x109)
NXV_CTRL_UPGRADE FIRMWARE (0x10A)
NXV_CTRL GET TRACE (0x10B)
NXV_CTRL_TRACE_CONTROL (0x10C)
NXV_CTRL_SET_ZDI_FREQUENCY (0x10D)
NXV_CTRL_CANCEL (0x10E)
NXV_CTRL_OTP_CONFIGURE (0x11F)
NXV_CTRL OTP_CONTROL (0x110)
NXV_CTRL_CRC MEMORY (0x111)

so there are no defined address spaces.

RM004502-0506

Nexus Interface API
Reference Manual

ZiLOG 23

#define NXV_READ EVENT HALT SLP 0x100

#define NXV_READ EVENT EXT RESET 0x101

#define NXV_READ EVENT POWER LOSS 0x102
#define NXV_READ EVENT CONNECTION CLOSED 0x103
#define NXV_READ EVENT TRACEFULL 0x104

#define NXV_READ EVENT BREAK EVENT 0x105
#define NXV_ETYPE EVENT 0x100

#define NXV_BREAKPOINT TRACEFULL 0x100

Typedefs

Types used for target addresses and data in Nexus data structures and
APIL:

typedef unsigned long nxvt Address
typedef unsigned long nxvt Word

Enumerations

RM004502-0506

nxvt_TargetStatus

The nxvt TargetStatus enumeration type represents the target status.
It is used for status values returned from
NXV_CTRL GET TARGET STATUS control command.

typedef enum

{

NXV_TARGET STATUS NOT CONNECTED,
NXV_TARGET STATUS IN RESET,
NXV_TARGET STATUS RUNNING,
NXV_TARGET STATUS DEBUG,
NXV_TARGET STATUS HALT SLP,

Nexus Vendor Extensions Reference

24

Nexus Interface API
Reference Manual

ZiLOG

Appendix

NXV_TARGET STATUS OCD DISABLED,
NXV_TARGET STATUS UNKNOWN

} nxvt TargetStatus;

NXV_TARGET_STATUS_NOT_CONNECTED. Indicates communication
between the host PC and debug tool has not been established, or the con-
nection has been closed.

NXV_TARGET_STATUS_IN_RESET. Indicates the target has been reset
by an external source. When a reset is detected, a reset command must be
issued from Nexus to re-synchronize communication with target. Alterna-
tively, the connection may be closed and re-opened.

NXV_TARGET_STATUS_RUNNING. The target CPU is running.

NXV_TARGET_STATUS_DEBUG. The target CPU execution has been
suspended. Debug commands such as reading and writing memory and
registers are only allowed in this mode.

NXV_TARGET_STATUS_HALT_SLP. The target CPU is running in low
power mode due to execution of a HALT or STOP instruction.

NXV_TARGET_STATUS_OCD_DISABLE. The on-chip debug (OCD)
capability has been disabled. OCD capability is disabled by clearing cer-
tain option bits in the internal flash memory. Re-enabling the OCD usu-
ally requires mass-erase of the internal flash memory, which resets the
option bits to ones. Applicable to ZNEO and Z8 Encore! only.

NXV_TARGET_STATUS_UNKNOWN. Indicates the target status cannot
be determined. This may be due to communication problem between the
host PC and debug tool, or between the debug tool and the target CPU.

nxvt _EventAction

The nxvt EventAction enumeration type specifies the action to take
when an event is triggered. They may be ORed together when multiple
actions are needed.

RM004502-0506

Nexus Interface API
Reference Manual

ZiLOG 25

nxvt EventAction values are used with NXV_SET EVENT to define
the action to take when the event is trigger. Only Z8 Encore! emulators
support these complex events.

typedef enum

{

NXV_EVENT ACTION NONE = 0,
NXV_EVENT ACTION BREAK = 1,
NXV_EVENT ACTION TRACE_ START = 2,
NXV_EVENT ACTION TRACE STOP = 4,
NXV_EVENT ACTION TRACE WHILE = 8,
NXV_EVENT ACTION EVENT IN = 0x10,
NXV_EVENT ACTION EVENT OUT = 0x20,
NXV_EVENT ACTION EVENT OUT PULSE = 0x40,
NXV_EVENT ACTION ARM NEXT EVENT 0x80

} nxvt EventAction;

NXV_EVENT_ACTION_NONE. Indicates that no action is to be taken.
This effectively disables an event.

NXV_EVENT_ACTION_BREAK. Suspend target execution when an
event is triggered.

NXV_EVENT_ACTION_TRACE_START. Start capturing trace frames
when event is triggered.

NXV_EVENT_ACTION_TRACE_STOP. Stop capturing trace frames
when event is triggered.

NXV_EVENT_ACTION_TRACE_WHILE. Capture trace frames as long
as the event is active.

NXV_EVENT_ACTION_EVENT_IN. Event action is taken only if the
input trigger is active when an event match occurs.

NXV_EVENT_ACTION_EVENT_OUT. Generate an output signal when
event is triggered. the output signal level is pulsed if

NXV_EVENT ACtION EVENT OUT PULSE is set. Otherwise, the signal
level is toggled.

RMO004502-0506 Nexus Vendor Extensions Reference

26

Nexus Interface API
Reference Manual

ZiLOG

Appendix

NXV_EVENT_ACTION_EVENT_OUT_PULSE. Pulse the output when
event is triggered. Applicable only if NXV_EVENT ACTION EVENT OUT
is also set.

NXV_EVENT_ARM_NEXT_EVENT. Arm the next event when event is
triggered. the next event is the identified by the current event ID plus one.
For example, if event 2 is triggered, then event 3 would be armed if this
action is set for event 2.

nxvt CommType

The nxvt CommType enumeration type specifies the communication
protocols used between host PC and target debug tool:

typedef enum

{

NXV_COMM TYPE ETHERNET
NXV_COMM_TYPE_SERIAL =
NXV_COMM_ TYPE PARALLEL = 2,
NXV_COMM_TYPE_USB = 3

} nxvt_ CommType;

NXV_COM_TYPE_ETHERNET. Host PC is connected to debug tool
through a TCP/IP Ethernet connection. This type of communication is
used with the ZiLOG ZPAKII and Ethernet Smart Cable.

NXV_COM_TYPE_SERIAL. Host PC is connected to a debug tool
through the serial port.

NXV_COM_TYPE_PARALLEL. Host PC is connected via parallel port.
Currently not supported by any ZiLOG debug tools.

NXV_COM_TYPE_USB. Host PC is connected to a debug tool on USB.
This is used with the ZiLOG USB Smart Cable.

o

nxvt_TargetRegisterType

The nxvt TargetRegisterType enumeration type specifies the type
of register to read or write when used with the

NXV_CTRL_GET REGISTER and NXV_CTRL_SET REGISTER com-
mands.

RM004502-0506

Nexus Interface API
Reference Manual

ZiLOG 27

typedef enum

{

NXV_REGISTER_ STANDARD, NXV_REGISTER PERIPHERAL,
} nxvt TargetRegisterType;

NXV_REGISTER_STANDARD. Standard registers are internal processor

registers, and include the program counter, stack pointer, flags, and gen-
eral purpose data registers.

NXV_REGISTER_PERIPHERAL. Peripheral registers are used to control
behavior of on-chip peripherals, such as UARTs, GPIO Ports, Timers, etc.

nxvt_TraceControl

The nxvt TraceControl enumeration type is used with the
NXV_CTRL TRACE CONTROL operation to control the trace system. Only
78 Encore! emulators currently support trace.

typedef enum

{

NXV_TRACE CTRL RESET BUFFER,
NXV_TRACE CTRL RESET SYSTEM,
NXV_TRACE CTRL_ENABLE,

NXV_TRACE CTRL DISABLE,
NXV_TRACE CTRL ENABLE BREAKONLIMIT,
NXV_TRACE CTRL DISABLE BREAKONLIMIT
} nxvt TraceControl;

NXV_TRACE_CTRL_RESET BUFFER. Clear the trace buffer to zeroes
and reset the trace write pointer to the beginning of the buffer.

NXV_TRACE_CTRL_RESET SYSTEM. Reset trace system
NXV_TRACE_CTRL_ENABLE. Enable trace capture.

NXV_TRACE_CTRL_DISABLE. Disable trace capture. Note that for Z8
Encore! emulators, the trace system must be disabled in order to use com-
plex events.

NXV_TRACE_CTRL_ENABLE_BREAKONLIMIT. Suspend target exe-
cution when trace buffer is full, or the number of frames captured reaches
a predefined limit.

RMO004502-0506 Nexus Vendor Extensions Reference

28

Nexus Interface API
Reference Manual

ZiLOG

NXV_TRACE_CTRL_DISABLE_BREAKONLIMIT. Do not suspect tar-
get execution when trace buffer fills or reaches limit.

nxvt_OtpControl

The nxvt OtpControl enumeration type is used with the
NXV_CTRL_OTP_CONTROL operation to execute an OTP operation.

typedef enum

{

NXV_OTP_CTRIL_BLANK CHECK,
NXV_OTP_CTRI, READ,
NXV_OTP_CTRL_WRITE,
NXV_OTP_CTRL_VERIFY,
NXV_OTP_CTRI, READ OPTIONS,
} nxvt_OtpControl;

NXV_OTP_CTRL_BLANK_CHECK. Determine if OTP is blank

NXV_OTP_CTRL_READ. Reads contents of OTP into emulator or OTP
Programmer RAM.

NXV_OTP_CTRL_WRITE. Writes contents of emulator or OTP Pro-
grammer RAM to OTP

NXV_OTP_CTRL_VERIFY. Verifies contents of OTP against contents of
emulator or OTP Programmer RAM.

NXV_OTP_CTRL_READ_OPTIONS. Read current OTP option settings

Structures

Appendix

nxvt_CommlInfo

The nxvt CommInfo structure contains information needed to establish
a connection between the host and target. See

nxvt VendorDefinedTargetSpec and nxvt TargetSpec
typedef struct

nxvt CommType type;
union {

RM004502-0506

RM004502-0506

Nexus Interface API
Reference Manual

ZiLOG

struct
unsigned char flowcontrol;
unsigned char port;
unsigned char parity;
unsigned int baudrate;
unsigned char databits;
unsigned char stopbits;

} serial;
struct
char addr [16];
int port;
} ethernet;
struct
char usbId [255];
} usb;
}ou;
} nxvt CommInfo;

Members

type. Specifies the type of communicaton protocol to use. Valid values
NXV_COMM_TYPE SERIAL,NXV COMM TYPE ETHERNET, Or
NXV_COMM TYPE SERIAL

serial.flowcontrol. Non-zero value enables flow control for serial connec-
tion.

serial.port. COM port to user for serial connections. e.g., if using COM1
set to 1, for COM2 set to 2, etc.

serial.parity. Non-zero value enables parity checking for serial connec-
tion.

serial.baudrate. Bit rate to use for serial port. Typical values are 19200,
38400, 57600, and 115200.

serial.databits. Number of data bits per character for serial connection,
usually set to 8.

Nexus Vendor Extensions Reference

29

Nexus Interface API
Reference Manual

30 ZiLOG

serial.stopbits. Number of stop bits per character for serial connection,
usually 1.

ethernet.addr. Null-terminated string containing the IP address to used for
establishing an Ethernet connection, such as "168.192.1.50"

ethernet.port. TCP port number used with an ethernet connection.

usb.usbId. Vendor or implementation-specific string than uniquely identi-
fies the usb device. If using ZiLOG USB Smart Cable driver, this is set to
the USB Smart Cable serial number, which is embedded in the device
descriptor. Sample code provided with the Nexus SDK shows how to get
the serial number from a connected device.

nxvt_ExtProgramErase

Appendix

The nxvt ExtProgramErase structure contains external program
memory erase parameters to use with NXV_CTRL ERASE EXT PROGRAM
control command.

typedef struct
int byData;
const unsigned long * pBlockAddressList;
unsigned numberOfBlocks;
const unsigned char * pDataEraseSeq;
const unsigned long * pAddrEraseSeq;
int segSize;
int verifyValue;
int verifyMask;
} nxvt ExtProgramErase;

Detailed Description

Parameters to use with NXV_CTRL_ERASE EXT PROGRAM control com-
mand (eZ80 only).

if byData is true, the erase algorithm consists of writing a certain data
sequence to the first address of each block to be erased, such as used with
Micron MT series Q-Flash parts.

RM004502-0506

Nexus Interface API
Reference Manual

'ZiLOG 31

If byData is false, then the erase algorithm consists of writing specific
data values to specific addresses in sequence. For example, a sequence
may consist of writing 0xaa to address 0x555, 0x55 to address 0x2AA,
etc., terminated by a write of the block or sector address to be erased. This
type of algorithm is used for AMD, Atmel, and STMicro flash memory
devices.

For example, to erase the first two sectors of AMD 29L.V008B flash
located at base address 0x100000, the parameters should be set as fol-
lows:

byData = false
pBlockAddressList = { 0x100000, 0x104000 }

numberOfBlocks = 2

pDataEraseSeq = { O0xAA, 0x55, 0x80, O0xAA, 0x55,
0x30 }

pAddrEraseSeq = {0x555,0x2AA, 0x555, 0x555, 0x2AA, 0}
seqgSize = 6

verifyValue = 0x80
verifyMask = 0x80

To erase two sectors of Micron MT28F008B located at address
0x100000, set parameters as follows:
byData = true
pBlockAddressList = { 0x100000, 0x104000 }
numberOfBlocks = 2
pDataEraseSeq = { 0x50, 0x20, 0xDO }
segSize = 3
verifyValue = 0x80
verifyMask = O0xF8

pAddrEraseSeq is not used in this case.

Members

byData. Flag to indicate type of erase algorithm. A nonzero value indi-
cates by-data erase algorithm.

RMO004502-0506 Nexus Vendor Extensions Reference

32

Nexus Interface API
Reference Manual

ZiLOG

pBlockAddressList. Array containing the start address of each block (or
sector) to erase.

numberOfBlocks. Number of blocks to erase.
pDataEraseSeq. Array of bytes that define the erase sequence data.

pAddrEraseSeq . Array of addresses to write the erase sequence data to
(used only if !byData).

eqSize. Size of erase sequence.
verifyValue. Status value that indicates erasure is complete.

verifyMask. Mask value to AND with status value to mask off don't care
bits before comparing against verify Value.

nxvt ExtProgramSet

Appendix

The nxvt ExtProgramSet structure contains external Program Mem-
ory programming parameters to use with
NXV_CTRL_SET EXT PROGRAM.

typedef struct
int byData;
unsigned long address;
const unsigned char * pData;
unsigned numberOfBytes;
const unsigned char * pWriteSeq;
const unsigned char * pDataUnlockSeq;
const unsigned long * pAddrUnlockSeq;
int segSize;
int verifyValue;
int verifyMask;

} nxvt_ ExtProgramSet;

Detailed Description

if byData is true, the programming algorithm consists of writing one or
more setup byte values to the address to be programmed, followed by the
data.

RM004502-0506

Nexus Interface API
Reference Manual

ZiLOG 33

If byData is false, the programming algorithm consists of unlocking the
flash part by a sequence of writes of specific data values to specific
addresses, followed by one or more data writes.

For example, to program 256 bytes of AMD AM29LV008B flash mem-
ory at address 0x100000, set the structure members as follows:

byData = false

address = 0x100000

pData = mydata, where mydata is a buffer containing
256 bytes of data

numberOfBytes = 256

pDataUnlockSeq = {0xAA, 0x55, O0xA0 }
pAddrUnlockSeq = { 0x555, O0x2AA, 0x555 }
segSize = 3

verifyMask = Oxff
verifyValue is not used here — the verify value is the value written.

To program 256 bytes of Micron MT28F008B flash memory at address
0x100000, set the structure members as follows:

byData = true
address = 0x100000
pData = mydata, where mydata is a buffer containing
256 bytes of data
numberOfBytes = 256
pWriteSeq = { 0x50, 0x40 }
seqgSize = 2
verifyValue =0x80
verifyMask = 0xF8
note that pDataUnlockSeq and pAddrUnlockSeq are
not used here

Members

byData. Flag that indicates type of programming algorithm to use. Non-
zero value indicates by-data programming algorithm.

address. Address at which to start programming.

RMO004502-0506 Nexus Vendor Extensions Reference

34

Nexus Interface API
Reference Manual

ZiLOG

pData. The data to write to the flash memory.

numberOfBytes. Size of data, in bytes.

pWriteSeq. Array containing the flash write sequence (if byData).
pDataUnlockSeq. Array containing the unlock sequence data (if !byData).

pAddrUnlockSeq. Array of addresses at which to write the unlock
sequence data bytes (if !byData).

seqSize. Size of write sequence (if byData) or unlock sequence (if
byData).

verifyValue. Status value that indicates successful completion (if byData).

verifyMask. Mask value to AND with status value to mask off don't care
bits before comparing against the verifyvalue.

nxvt_TargetConfiguration

Appendix

The nxvt_TargetConfiguration structure contains target configura-
tion parameters used to initialize the target for a debug session.

typedef struct
int size;
char cpuName [32];
int internalClock;
unsigned long systemClockFreq;
unsigned long targetClockFreq;
unsigned long internalROMSize;
union {
struct
unsigned char adl;
unsigned long pc;
unsigned long spl;
unsigned long sps;
int zdiAlternate;
unsigned long flashLoaderRAM;
unsigned long flashLoaderRAMSize;
struct {
unsigned char enable;

RM004502-0506

Nexus Interface API
Reference Manual

ZiLOG 35

unsigned char enableEMAC;
unsigned char page;
} internalRAM;
struct
unsigned char enable;
unsigned char waitStates;
unsigned char page;
} internalFlash;
struct
unsigned char 1Bound;
unsigned char uBound;
unsigned char control;
unsigned char busMode;
} chipSelects [4];
} ez80
struct
int configTarget;
int dac;
int pinouts;
int optBitsSize;
struct
unsigned long address;
unsigned char value;
} optBits[128];
} ezs;
struct
float targetVcc;
unsigned long otpBitMask;
unsigned long config;
int fwImageIndex;
} z8;
struct
int externalBusSize;
struct
unsigned char controlH;
unsigned char controlL;
unsigned char port;

RMO004502-0506 Nexus Vendor Extensions Reference

36

Nexus Interface API
Reference Manual

ZiLOG

Appendix

chipSelects[6];
} zneo;
Y
} nxvt TargetConfiguration;
Detailed Description

This structure is used by the NXV_CTRL INITIALIZE TARGET control
command. The data contained within is required to initialize the target to
start a debug session.

Processor specific data members are defined in structures within a union.

The eZ80 structure contains information that is unique to eZ80Acclaim!
family processors. Not all data is relevant to all processors. For example,
if the processor has no internal Flash, the internalFlash specific data
can be ignored.

The iceOptions structure is used only for Z8 Encore! emulators, and
should be zeroed when connecting to "real" Z8 Encore! targets.
Members

size. The size of this structure in bytes.

cpuName. Null terminated string containing the CPU name, such as
"eZ80F91".

internalClock. If non-zero, indicates target CPU is using internal clock
source.

systemClockFreq. The target CPU system clock frequency, in Hertz.

targetClockFreq. Target CPU oscillator clock frequency, in Hertz. This
value is the same value as systemClockFreq unless a PLL or divider is
used.

internaROMSize. Size of internal flash or OTP memory, in bytes.
eZ.80.adl. Initial value of ADL following a reset
¢Z.80.pc. Initial value for PC following a reset

€Z.80.spl. Initial value for SPL following a reset

RM004502-0506

Nexus Interface API
Reference Manual

ZiLOG 37

¢Z.80.sps. Initial value for SPS following a reset

eZ80.zdiAlternate. If non-zero, use lower ZDI clock frequencies. Using a
the lower frequency settings may be required if the normal ZDI clock fre-
quency settings do not give reliable performance.

eZ80.flashLoaderRAM. Address of a portion of RAM that flash erase and
programming commands may use for scratch-pad. For the eZ80F92, this
should normally be an address in external RAM due to a silicon bug that
precludes use of internal RAM when erasing internal Flash RAM pages.

If external RAM is not available, mass erase must be used instead of page
erase for internal flash.

¢Z.80.flashLoaderRAMSize. Size of scratchpad RAM. 4 to 8 kb is recom-
mended.

eZ80.internalRAM.enable. If nonzero, internal RAM is enabled.

eZ80.internalRAM.enableEMAC. If nonzero, EMAC ram is also enabled
(if available)

eZ80.internalRAM.page. Page at which to map internal RAM. For exam-

ple, if the CPU has 8KB of internal RAM and page is set to 0xB7, internal
RAM addresses will range from 0xB7E000 to 0xB7FFFF.

eZ.80.internalFlash.enable. If nonzero, internal flash memory is enabled.

eZ80.internalFlash.waitStates. Number of wait status to use for internal
flash memory.

eZ.80.internalFlash.page. Page at which to map internal Flash. For exam-
ple, if the CPU has 128k Internal RAM and page is set to 0, Flash RAM
will be mapped to the address range 0x000000 to 0x01FFFF.

¢Z.80.chipSelects[n].IBound. The upper 8 address bits of the lower bound
of chip select n. n is a value between 0 and 3.

€Z.80.chipSelects[n].uBound. The upper 8 address bits of the upper bound
of chip select n. for example, if a chip select is used for addresses
0x100000 to O0x1FFFFF, 1Bound should be set to 0x10, and uBound
should be set to Ox1F.

RMO004502-0506 Nexus Vendor Extensions Reference

38

Nexus Interface API
Reference Manual

ZiLOG

¢Z.80.chipSelects[n].control. The control value for chip select n. Refer to
the CPU Product Specification for detailed information.

¢Z.80.chipSelects[n].busMode. The bus mode value for chip select n. Refer
to the CPU Product Specification for detailed information.

eZ.8.configTarget(Z8 Encore! emulator only). If true, indicates the follow-
ing settings are to be used to configure the emulator following reset.

eZ8.dac (Z8 Encore! emulator only). DAC configuration.
eZ.8.pinouts (Z8 Encore! emulator only). Output pin configuration.
eZ.8.0ptBitsSize (Z8 Encore! emulator only). Number of option values

eZ.8.0ptBits[n].address (Z8 Encore! emulator only). Array of option
addresses.

eZ8.optBits[n].value (Z8 Encore! emulator only). Array of option values.

zneo.externalBusSize. Size of external data bus. Valid values are 0, 8, and
16. Set to zero if external bus is disabled.

zneo.chipSelects[n].controlH. Upper byte of chip select control register. n
is a value between 0 and 5, which identifies which of the 6 chip selects.
See the ZNeo CPU product Specification for details.

zneo.chipSelects[n].controlL. lower. Byte of chip select control register.

zneo.chipSelects[n].port. Which port is used for chip select. Set to'A' for
portA, 'B' for portB, etc.

nxvt_IntProgramErase

Appendix

The nxvt IntProgramErase structure contains internal flash memory
erase parameters to use with NXV_CTRL_ERASE INT PROGRAM.
typedef struct

int startPage;

int numberOfPages;
} nxvt IntProgramErase;

RM004502-0506

Nexus Interface API
Reference Manual

ZiLOG 39

Detailed Description

Internal flash may be erased by page or mass erased. Set
numberOfPages to -1 to do mass erase.

The number and size of the flash pages are processor-dependent.

Some eZ80Acclaim! Processors have a flash info page in addition to the
normal internal program flash memory. The program flash is in pages 0
to 0x7f£, and the flash info page is page 0x80.

Members

numberOfPages. Number of pages to erase, or -1 for mass erase

startPage. First page to erase

nxvt_IntProgramSet

The nxvt IntProgramSet structure contains internal Program memory
programming parameters to use with NXV_CTRL SET INT PROGRAM
control command.

typedef struct
int infoPage;
unsigned long address;
const unsigned char * pData;
unsigned numberOfBytes;
} nxvt IntProgramSet;
Detailed Description
Parameters used with NXV_CTRL SET INT PROGRAM control command
to write to internal flash program memory.
Members

infoPage. Flag that indicates whether writing to the info page or program
flash. if non-zero, program info page (eZ80 only).

address. Address at which to start programming

pData. The data to program into the flash memory.

RMO004502-0506 Nexus Vendor Extensions Reference

Nexus Interface API
Reference Manual

40 ZiLOG

numberOfBytes. Size of data, in bytes.

nxvt_Registers

The nxvt Registers structure holds target register values. Format and
contents of standard registers are processor-specific.

typedef struct

unsigned long pc;

unsigned char standard [92];
} nxvt Registers;

Members

pc. Program counter. This is separated out from the other standard regis-
ters in order to facilitate run-from-break implementation in the nexus
API. It may also be included in the standard register block data as well.

standard. Standard register set, including Stack Pointer, Flags, and gen-
eral purpose registers. Format is processor specific. See "Standard Regis-
ters Access" on page 46.

nxvt_VendorDefinedCtrlData

The nxvt VendorDefinedCtrlData structure holds information for
vendor defined control operations (see nx_Control).

typedef struct
union {

struct
nxvt TargetRegisterType type;
int address;
unsigned long value;

} setRegister ;

struct {
nxvt TargetRegisterType type;
int address;
unsigned long * pValue;

Appendix RM004502-0506

RM004502-0506

Nexus Interface API
Reference Manual

/ZiLOG 41

} getRegister;
struct
nxvt Registers * pBuf;
} getRegistersAll;
struct
nxvt TargetStatus * pStatus;
} getTargetStatus;
nxvt TargetConfiguration initializeTarget;
nxvt IntProgramErase eraselIntProgram;
nxvt IntProgramSet setIntProgram ;
nxvt ExtProgramErase eraseExtProgram;
nxvt ExtProgramSet setExtProgram;
struct
const unsigned char * pFirmware
unsigned size;
} upgradeFirmware;
struct
unsigned offset;
unsigned numberOfFrames;
unsigned char *pBuffer;
unsigned *pAvailable;
} getTrace;
struct
nxvt TraceControl operation;
unsigned long param;
} traceControl;
struct
unsigned long frequency;
int tableSelect;
} setzZdiFrequency;
struct
unsigned optionSize;
unsigned long optionData;
unsigned long optionMask;
unsigned algoSize;
const unsigned char *pAlgoData;
} otpConfigure;

Nexus Vendor Extensions Reference

42

Nexus Interface API
Reference Manual

ZiLOG

Appendix

struct
nxvt OtpControl operation;
unsigned long param;
} otpControl;
struct
nxvt_Address address;
unsigned long numBytes;
unsigned long *pCrc;
} crcMemory;
bou;
} nxvt VendorDefinedCtrlData;

Detailed Description

This structure consists of a union of structures, each of which contains
parameters specific to a control command. In keeping with the Standard
Nexus types, the union is named u.

Members

setRegister.type. type of register to write to. Valid values are
NXV_REGISTER_STANDARD Or NXV_REGISTER PERIPHERAL. Use with
NXV_CTRL_SET REGISTER.

setRegister.address. Identifies which register to write to. Set to register
index if standard register, or register address if peripheral register. Use
with NXV_CTRL_SET REGISTER.

setRegister.value. The value to write to the register. Use with
NXV_CTRL SET REGISTER.

getRegister.type. Type of register to read. Valid values are
NXV_REGISTER_STANDARD or NXV_REGISTER PERIPHERAL. Use with
NXV_CTRL_GET REGISTER.

getRegister.address. Identifies which register to read. Set to register index
if standard register, or register address if peripheral register. Use with
NXV_CTRL GET REGISTER.

getRegister.pValue. Pointer to the register value read. Use with
NXV_CTRL_GET REGISTER.

RM004502-0506

Nexus Interface API
Reference Manual

ZiLOG 43

getRegistersAll.pBuf. Pointer to buffer to hold standard registers values.
See definition of nxvt Registers structure. Use with
NXV_CTRL GET REGISTERS ALL.

getTargetStatus.pStatus. Pointer to status value. Use with
NXV_CTRL_GET TARGET STATUS.

initializeTarget. Target specific configuration parameters. See definition
of nxvt TargetConfiguration structure. Use with
NXV_CTRL_ INITIALIZE TARGET.

eraselntProgram. Parameters used for erasing internal flash memory. Use
with NXV_CTRL_ERASE INT PROGRAM.

setIntProgram. Parameters and data to program internal flash memory.
Use with NXV_CTRL_SET INT PROGRAM.

eraseExtProgram. Parameters used for erasing external flash memory. Use
with NXV_CTRL ERASE EXT PROGRAM.

setExtProgram. Parameters and data to program external flash memory.
Use with NXV_CTRL_SET EXT PROGRAM.

upgradeFirmware.pFirmware. Pointer to buffer containing the firmware
image. Use with NXV_CTRL UPGRADE FIRMWARE.

upgradeFirmware.size. Size of firmware image, in bytes. Use with
NXV_CTRL_UPGRADE FIRMWARE.

getTrace.offset (Z8Encore emulator only). Trace frame offset relative to
oldest frame in the buffer. Since the trace buffer wraps around, the oldest
frame is not necessarily the frame at location zero in the buffer. Use with
NXV_CTRL GET TRACE.

getTrace.numberOfFrames (Z8Encore emulator only). Number of trace
frames to retrieve. Use with NXV_CTRL GET TRACE.

getTrace.pBuffer (Z8Encore emulator only). Pointer to buffer to store trace
frames. Use with NXV_CTRL GET TRACE.

getTrace.pAvailable (Z8Encore emulator only). Number of trace frames
available in the trace buffer. Use with NXV_CTRL_GET TRACE.

RMO004502-0506 Nexus Vendor Extensions Reference

44

Nexus Interface API
Reference Manual

ZiLOG

Appendix

traceControl.operation (Z8Encore emulator only). Specifies a trace con-
trol operation to perform. Use with NXV_CTRL TRACE CONTROL.

traceControl.param (Z8Encore emulator only). Operation-specific param-
eter. Use with NXV_CTRL_TRACE_CONTROL

setZdiFrequency.frequency (eZ80Acclaim! only). The target clock fre-
quency upon which the ZDI frequence setting is to be based on. Use with
NXV_CTRL_SET ZDI_ FREQUENCY.

setZdiFrequency.tableSelect (eZ80Acclaim! only). Set to one to select alter-
nate frequency settings for ZDI Clock. use with
NXV_CTRIL_SET ZDI_FREQUENCY.

otpConfigure.optionSize (Z8 only). Size of OTP option data, in bytes. Use
with NXV_CTRL_OTP CONFIGURE.

otpConfigure.optionData (Z8 only). OTP option data. Use with
NXV_CTRL OTP_CONFIGURE.

otpConfigure.optionMask (Z8 only). OTP option data mask. Use with
NXV_CTRL_OTP_CONFIGURE.

otpConfigure.algoSize (Z8 only). Size of OTP programming algorithm.
Use with NXV_CTRL OTP_CONFIGURE.

otpConfigure.pAlgoData (Z8 only). OTP programming algorithm. Use
with NXV_CTRL_OTP_CONFIGURE.

otpControl.operation (Z8 only). Specifies an OTP operation to perform.
Use with NXV_CTRL_OTP_CONTROL.

otpControl.param (Z8 only). OTP operation-specific parameter. Use with
NXV_CTRL_OTP CONTROL.

crcMemory.address. address of block of memory to calculate CRC on.
Used for ZNeo only, and must be aligned to 4KB boundary.

crcMemory.numBytes. number of bytes in block of memory to CRC. Used
for Zneo only, and must be multiple of 4096.

crcMemory.pCre. pointer to returned memory CRC value.

RM004502-0506

Nexus Interface API
Reference Manual

ZiLOG 45

nxvt_VendorDefinedTargetSpec

The nxvt VendorDefinedTargetSpec structure contains vendor-spe-
cific parameters needed to establish connection to target. See
nxt TargetSpec and nx_Open
typedef struct
char const * pOpenParameters;
nxvt CommInfo comminfo;
} nxvt VendorDefinedTargetSpec;

Detailed Description

pOpenParameters contains implementation specific parameters. For
the ZiLOG Nexus API implementation, this should be set to the path and
name of the algorithm ini file.

Members
comminfo. Communication parameters.

pOpenParameters. String containing processor and/or vendor specific tar-
get parameters.

nxvt_VendorDefinedBasicSetEvent

The nxvt VendorDefinedBasicSetEvent structure contains infor-
mation for setting data breakpoints and events. Events are only supported
on emulator targets.
typedef struct

nxvt EventAction action;

unsigned char trigger [8];

unsigned char mask [8];

nxvt Address stepEnd;
} nxvt_ VendorDefinedBasicSetEvent;

Detailed Description

The action, trigger, and mask members are used for setting complex
events. An event is triggered when the processor state matches the trigger

RMO004502-0506 Nexus Vendor Extensions Reference

Nexus Interface API
Reference Manual

46 ZiLOG

settings. The mask can be used to mask off "don't care" bits. Complex
events are currently only supported on Z8 Encore! emulators. The format
of data contained in trigger and mask arrays is as follows:

Byte 0: register address (MSB)

Byte 1: register address (LSB)

Byte 2: register data

Byte 3: CPU flags

Byte 4: PC (MSB)

Byte 5: PC (LSB)

Byte 6: reserved for future use

Byte 7: reserved for future use
Members

action. Action to take upon event detection (NXVT ETYPE EVENT).

trigger. Array containing the conditions that trigger an event for complex
events (NXVT ETYPE EVENT).

Array containing trigger data mask for complex events
(NXVT_ETYPE_EVENT).

stepEnd. The end address used for stepto events. Stepto events are used
to step as long as the PC is between the starting PC value and the ste-
pEnd value. (NXVT ETYPE STEPTO).

Standard Registers Access

7.8 Encore!

Appendix

Table 3 contains the index value to be used with
NXV_CTRL GET REGISTER for reading standard register values. This is
also the format of the register block buffer returned by
NXV_CTRL GET REGISTERS ALL command. Note that where size is 2
bytes, the most significant byte is first in the buffer returned by
NXV_CTRL_GET REGISTERS_ ALL. Note that the size is given in bytes,

RM004502-0506

Nexus Interface API
Reference Manual

ZiLOG

but in some cases not all bits are used. Also note that flags bits can be

accessed individually, or as a register.

Table 3. NXV_CTRL_GET_REGISTER Index Values for Z8 Encore!

RM004502-0506

Register Names Index

Size in bytes

PC 0 2
SP 1 2
RO 2 1
R1 3 1
R2 4 1
R3 5 1
R4 6 1
R5 7 1
R6 8 1
R7 9 1
R8 10 1
R9 11 1
R10 12 1
R11 13 1
R12 14 1
R13 15 1
R14 16 1
R15 17 1
FLAGS 18 1
RP 19 1
RRO 20 2

Standard Registers Access

47

48

Nexus Interface API
Reference Manual

ZiLOG

Register Names Index Size in bytes
RR2 21 2
RR4 22 2
RR6 23 2
RR8 24 2
RR10 25 2
RR12 26 2
RR14 27 2
Carry Flag 28 1
Zero Flag 29 1
Signed Flag 30 1
Overflow Flag 31 1
Decimal Carry 32 1
Flag

Half Carry Flag 33 1
User defined 34 1
Flag 1

User defined 35 1

Flag 2

eZ80Acclaim!

Appendix

Table 3. NXV_CTRL_GET_REGISTER Index Values for Z8 Encore!

The following table contains the index value to be used with
NXV_CTRL GET REGISTER for reading standard register values. This is
also the format of the register block buffer returned by

NXV_CTRL_GET REGISTERS ALL command. Note that where size is

RM004502-0506

Nexus Interface API
Reference Manual

ZiLOG

more than one byte, the least significant byte is first in the register block
buffer returned by NXV_CTRL_GET REGISTERS ALL.

Table 4. NXV_CTRL_GET_REGISTER Index Values for eZ80Acclaim!

RM004502-0506

Register Names Index Size in bytes

A 0 1

F 1 1

BC 2 3

DE 3 3

HL 4 3

A 5 1

F' 6 1

BC' 7 3

DE' 8 3

HL' 9 3

IX 10 3

Y 11 3

I 12 1 or 2 bytes,
depending on
processor. See
processor
documentation
for size of
Interrupt Page
Register

R 13 1

ADL 14 1

MADL 15 1

Standard Registers Access

49

Nexus Interface API
Reference Manual

50 ZiLOG

Table 4. NXV_CTRL_GET_REGISTER Index Values for eZ80Acclaim!

Register Names Index Size in bytes
MBASE 16 1
IEF1 17 1
IEF2 18 1
SPL 19 3
SPS 20 2
PC 21 3

ZNEO

The following table contains the index value to be used with
NXV_CTRL GET REGISTER for reading standard register values. This is
also the format of the register block buffer returned by

NXV_CTRL_GET REGISTERS ALL command. Note that where size is
more than one byte, the least significant byte is first in the register block
buffer returned by NXV_CTRL_GET REGISTERS ALL.

Table 5. NXV_CTRL_GET_REGISTER Index Values for ZNEO

Register Names Index Size in bytes
RO 0 4
R1 1 4
R2 2 4
R3 3 4
R4 4 4
R5 5 4
R6 6 4

Appendix RM004502-0506

Nexus Interface API
Reference Manual

V4

ZiLOG 51

Table 5. NXV_CTRL_GET_REGISTER Index Values for ZNEO

Register Names Index Size in bytes
R7 7 4
R8 8 4
R9 9 4
R10 10 4
R11 11 4
R12 12 4
R13 13 4
R14 14 4
R15 15 4
SP 16 4
PC 17 4
FLAGS 18 1
CARRY FLAG 19 1
ZERO FLAG 20 1
SIGN FLAG 21 1
OVERFLOW FLAG 22 1
BLANK FLAG 23 1
USER 1 FLAG 24 1
USER 2 FLAG 25 1
INTERRUPT 26 1
ENABLE

PCOV 27 4

RMO004502-0506 Standard Registers Access

Nexus Interface API
Reference Manual

52 ZiLOG

Table 5. NXV_CTRL_GET_REGISTER Index Values for ZNEO

Register Names Index
SPOV 28
CPUCTL 29

Size in bytes
4
1

Appendix RM004502-0506

Nexus Interface API
Reference Manual

ZiLOG 53

A

API Commands 13
nxt_Handle* nx_Open (const nxt_TargetSpec * tSpec, void(* errorCallback)(const
char *), nxt_Status * status) 17
nxt_Status nx_Close (nxt Handle * handle) 14
nxt_Status nx_Control (nxt Handle * handle, nxt CtrlData ctrl) 14
nxt_Status nx_GetEvent (nxt_Handle * handle, nxt ReceivedEvent * event, int
maxBytes, const int block) 15
nxt_Status nx_GetLastError (nxt_Handle * handle, char * lastError, int maxBytes) 16
nxt_Statusnx_ReadMem (nxt_Handle * handle, const int map, const int accessPriority,
const nxvt Address addr, const size t numBytes, const int accessSize, void **
bytesRead) 17
nxt_Status nx_SetEvent (nxt Handle * handle, const nxt SetEvent * setEvent) 18
nxt_Status nx_WriteMem (nxt_Handle * handle, const int map, const int
accessPriority, const nxvt_Address addr, const size_t numBytes, const int
accessSize, const void * bytesToWrite) 19
void nx_ClearEvent (nxt Handle * handle, const int eid) 13
Asterisks 2

C

Control Data 7
eraseExtProgram 9
eraselntProgram 9
getRegister 8
getRegistersAll 8
getTargetStatus 8
getTrace 10
initializeTarget 8
setExtProgram 9
setIntProgram 8
setRegister 7
traceControl 11
upgradeFirmware 10

RMO004501-0405 PRELIMINARY

54

Nexus Interface API
Reference Manual

ZiLOG

Control Operations 5, 6
Conventions 2
Courier Typeface 2

E
eZ80 2

G
Glossary 21

H

Hexadecimal Values 2

I

Implementation 3

M
Manual Objectives 1

N

Nexus Vendor Extensions Reference 21

NXVT COMMINFO Struct Reference 28
NXVT_EXTPROGRAMERASE Struct Reference 30
NXVT_EXTPROGRAMSET Struct Reference 32
NXVT_INTPROGRAMERASE Struct Reference 38
NXVT_INTPROGRAMSET Struct Reference 39
NXVT REGISTERS Struct Reference 40

PRELIMINARY

RMO004501-0405

NXVT_TARGETCONFIGURATION Struct Reference 34

(0]

Online Information 2

S

Set Event Extensions 12

T

Target Address 3
Target Events 4
Target Registers 4
Target Spec 5
Target Word 4
Trademarks 2

\%

Vendor Extensions 3

RMO004501-0405 PRELIMINARY

Nexus Interface API
Reference Manual

ZiLOG

55

	ZiLOG Nexus Interface API
	Table of Contents
	List of Tables
	Introduction
	Conventions
	Trademarks
	Online Information

	Implementation
	Vendor Extensions
	Naming Conventions
	Target Address
	Target Word
	Target Registers
	Target Events
	Target Spec
	Control Operations
	Control Data
	Set Event Extensions

	API Commands
	void nx_ClearEvent (nxt_Handle * handle, const int eid)
	nxt_Status nx_Close (nxt_Handle * handle)
	nxt_Status nx_Control (nxt_Handle * handle, nxt_CtrlData ctrl)
	nxt_Status nx_GetEvent (nxt_Handle * handle, nxt_ReceivedEvent * event, int maxBytes, const int block)
	nxt_Status nx_GetLastError (nxt_Handle * handle, char * lastError, int maxBytes)
	nxt_Handle* nx_Open (const nxt_TargetSpec * tSpec, void(* errorCallback)(const char *), nxt_Status * status)
	nxt_Status nx_ReadMem (nxt_Handle * handle, const int map, const int accessPriority, const nxvt_Address addr, const size_t numBytes, const int accessSize, void ** bytesRead)
	nxt_Status nx_SetEvent (nxt_Handle * handle, const nxt_SetEvent * setEvent)
	nxt_Status nx_WriteMem (nxt_Handle * handle, const int map, const int accessPriority, const nxvt_Address addr, const size_t numBytes, const int accessSize, const void * bytesToWrite)

	Appendix
	Glossary
	Nexus Vendor Extensions Reference
	Defines
	Typedefs
	Enumerations
	Structures
	nxvt_ExtProgramErase
	nxvt_ExtProgramSet
	nxvt_TargetConfiguration
	nxvt_IntProgramErase
	nxvt_IntProgramSet
	nxvt_Registers
	nxvt_VendorDefinedCtrlData
	nxvt_VendorDefinedTargetSpec
	nxvt_VendorDefinedBasicSetEvent

	Standard Registers Access
	Z8 Encore!
	eZ80Acclaim!
	ZNEO

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

