
An Company

C

eZ80AcclaimPlus!™ Family of
Microprocessors

Zilog Standard Library
API

Reference Manual
RM003708-0910
opyright ©2010 by Zilog®, Inc. All rights reserved.
www.zilog.com

http://www.zilog.com
http://www.zilog.com

Zilog Standard Library API
eZ80® Family of Microprocessors

RM003708-0910

DO NOT USE IN LIFE SUPPORT

LIFE SUPPORT POLICY

ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE
EXPRESS PRIOR WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL
COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant
into the body, or (b) support or sustain life and whose failure to perform when properly
used in accordance with instructions for use provided in the labeling can be reasonably
expected to result in a significant injury to the user. A critical component is any
component in a life support device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or system or to affect its safety or
effectiveness.

Document Disclaimer

©2010 by Zilog, Inc. All rights reserved. Information in this publication concerning the
devices, applications, or technology described is intended to suggest possible uses and
may be superseded. ZILOG, INC. DOES NOT ASSUME LIABILITY FOR OR
PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION,
DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO
D O E S N O T A S S U M E LI A B I L I T Y F O R I N T E L L EC T U A L PR O P E RT Y
INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION,
DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The
information contained within this document has been verified according to the general
principles of electrical and mechanical engineering.

Z8, Z8 Encore!, Z8 Encore! XP, Z8 Encore! MC, Crimzon, eZ80, and ZNEO are
trademarks or registered trademarks of Zilog, Inc. All other product or service names are
the property of their respective owners.

Warning:

Zilog Standard Library API
Reference Manual

RM003708-0910 Revision History

iii

Revision History
Each instance in the Revision History reflects a change to this document
from its previous revision. For more details, refer to the corresponding
pages or appropriate link given in the table below.

Date
Revision
Level Description

Page
No.

September
2010

08 Updated copyright date and logos. All

December
2007

07 Updated the latest disclaimer page and
implemented Style Guide. Also replaced
eZ80Acclaim! to eZ80AcclaimPlus! and
eZ80F91 MCU to eZ80F91.

All

May 2006 06 Added examples in setbaud_UARTx. Fixed
broken cross-reference.

33

Mar 2006 05 Added registered trademark symbol ® to
eZ80 and eZ80Acclaim!.

All

Oct 2004 04 Modified alternate function content and
explanatory notes in open_UARTx. Added
explanatory note in control_UARTx.

27 and
30

Oct 2004 03 Removed references to Fatbrain.com. All

Zilog Standard Library API
eZ80® Family of Microprocessors

iv
Table of Contents
Introduction .vi

About This Manual . vi
Intended Audience . vi
Manual Organization . vi
Related Documents . vii
Definition . viii
Abbreviations/Acronyms . ix
Manual Conventions . ix
Safeguards . x

Zilog Standard Library Overview. 1
Zilog Standard Library Architecture . 1
Zilog Standard Library Directory Structure 2
Building the Zilog Standard Libraries . 4
Start-up Routine . 7

Zilog Standard Library API Overview . 8
API Definition Format . 8

ZSL GPIO API Description . 10
GPIO Port Initialization in the Startup Routine 10
GPIO APIs . 10

open_Portx . 11
control_Portx . 12
getsettings_Portx . 13
setmode_Portx . 14
close_Portx . 16

ZSL GPIO Macros . 17

ZSL UART API Description . 19
UART Initialization . 19
Generic UART APIs . 21
Table of Contents RM003708-0910

Zilog Standard Library API
Reference Manual

v

getch . 22
putch . 23
kbhit . 24
peekc . 25

UARTx APIs . 26
open_UARTx . 27
control_UARTx . 30
setbaud_UARTx . 33
setparity_UARTx . 34
setstopbits_UARTx . 35
setdatabits_UARTx . 36
settriggerlevel_UARTx . 37
sendbreak_UARTx . 38
clearbreak_UARTx . 39
flush_UARTx . 40
write_UARTx . 41
read_UARTx . 42
enableparity_UARTx . 44
disableparity_UARTx . 45
close_UARTx . 46

Customer Support. 47
RM003708-0910 Table of Contents

Zilog Standard Library API
eZ80® Family of Microprocessors

vi
Introduction
This Reference Manual describes the Zilog Standard Library (ZSL) and
its associated application programming interface (API). ZSL is available
as part of the Zilog Developer Studio Integrated Developer 
Environment (ZDS II-IDE) version 4.8.0 and later, for Zilog’s
eZ80AcclaimPlus!™ product line of microcontrollers and
microprocessors.

ZSL is a set of library files that provides an interface between your
application and the on-chip peripherals. Currently, Zilog’s eZ80Acclaim!/
eZ80AcclaimPlus! product line includes the eZ80190 and eZ80L92
microprocessors, and the eZ80F91, eZ80F92, and eZ80F93
microcontrollers.

About This Manual

Zilog recommends that you read and understand everything in this 
manual before using the product. We have designed this manual to be
used as a reference guide for the ZSL APIs.

Intended Audience

This document provides reference information for Zilog customers
towards understanding the ZSL implementation. This reference manual
guides you to interface the application with the on-chip peripherals of the
eZ80Acclaim!/eZ80AcclaimPlus! family of devices.

Manual Organization

This reference manual is divided into following three chapters.

Zilog Standard Library Overview

This chapter provides an overview of Zilog Standard Library, directory
structure, and its release and debug versions.
Introduction RM003708-0910

Zilog Standard Library API
Reference Manual

vii
ZSL GPIO API Description

This chapter provides a detailed description of the GPIO APIs and how to
interface your application with eZ80Acclaim!/eZ80AcclaimPlus! MPU/
MCU GPIO peripheral(s).

ZSL UART API Description

This chapter provides a detailed description of the UART APIs and how
to interface your application with eZ80Acclaim!/eZ80AcclaimPlus!
MPU/MCU UART peripheral(s).

Related Documents

Table 1 lists the related documents for ZSL.

Table 1. Related Documentation

Zilog Developer Studio-eZ80Acclaim User Manual UM0144

ZPAK II Product User Guide PUG0015

eZ80Acclaim Development Kits Quick Start Guide QS0020

eZ80® CPU User Manual UM0077
RM003708-0910 Introduction

Zilog Standard Library API
eZ80® Family of Microprocessors

viii
Definition

Table 2 lists the definitions of some common terms used in this document.

Table 2. Definition of Common Terms

Terms Definitions

ANSI C Standard A standard for C language proposed by the
American National Standards Institute.

Language tools A suite of software applications that form a
subset of the XTools development tools bundled
in the ZDS II IDE. The language tools are
oriented that allows you to create code and
place it into the target platform. The language
tools comprise of a compiler, an assembler, a
linker, and a librarian.

IDE Integrated Development Environment—a
general term for software that provides a
number of development tools in a unified
package. Specifically, the Zilog Xtools
development tools are bundled into the ZDS II
IDE, which includes a GUI. The term IDE is often
used internally to refer to the higher levels of the
overall software package that accepts user
commands and displays results of actions.
Introduction RM003708-0910

Zilog Standard Library API
Reference Manual

ix
Abbreviations/Acronyms

Table 3 lists the abbreviations used in this document.

Manual Conventions

The following convention is adopted to provide clarity and ease of use:

Courier Typeface

Code lines and fragments, functions, and various executable items are 
distinguished from general text by appearing in the Courier typeface.
This convention is used within tables.

For example, zsldevinit.asm.

Table 3. Abbreviations/Acronyms

Abbreviations Expansion

ALT2 Alternate Register 2

API Application Program Interface

DDR Data Direction Register

DR Data Register

GPIO General Purpose Input Output

ISR Interrupt Service Routine

RTL ANSI C Run-Time Library

SB Send Break

SPR Scratch Pad Register (of UART device)

UART Universal Asynchronous Receiver
Transmitter

ZDS II Zilog Developer Studio II

ZSL Zilog Standard Library
RM003708-0910 Introduction

Zilog Standard Library API
eZ80® Family of Microprocessors

x

Safeguards

When you use the Zilog Standard Library along with the ZDS II-IDE and
any of the Zilog’s development platforms, follow the precautions listed
below to avoid permanent damage to the development platform.

Always use a grounding strap to prevent damage resulting from
electrostatic discharge (ESD).

1. Power-up precautions:

(a) Apply power to the PC and ensure that it is running properly.

(b) Start the terminal emulator program on the PC.

(c) Apply power through connector P3 on the development platform.

2. Power-down precautions:

when powering down, follow the sequence below:

(a) Quit the monitor program.

(b) Remove power from the development platform.

Note:
Introduction RM003708-0910

Zilog Standard Library API
Reference Manual

1

Zilog Standard Library Overview
This chapter provides an overview of the Zilog Standard Library (ZSL),
architecture and its debug and release versions. It also provides detailed
information on how to build libraries using the batch script files. This
chapter also explains the start-up routine and a summary of the ZSL APIs.

The ZSL is a collection of various libraries, each comprised of device
driver APIs to program various on-chip peripherals to the eZ80190 and
eZ80L92 microprocessors and the eZ80F91/F92/F93 microcontrollers.
This library is a collection of various device drivers that allows you to
communicate with on-chip peripherals or devices without having a
knowledge of register details and how to program them.

Zilog’s comprehensive set of standard library APIs is easy to use. 
You can use the source code files provided with the ZSL release to 
modify these libraries to suit your specific requirements.

Zilog Standard Library Architecture

Figure 1 displays a block diagram of the ZSL architecture.

Figure 1. The ZSL Architecture

User Application

Zilog Standard Library

On-Chip Peripherals
 (UART, GPIO)
RM003708-0910 Zilog Standard Library Overview

Zilog Standard Library API
eZ80® Family of Microprocessors

2

Zilog Standard Library Directory Structure

Figure 2 displays the directory structure of the ZSL. Table 4 on page 3
describes the contents of the ZSL sub-directory.

In Figure 2, \{zdsroot} specifies the root directory of the ZDS II 
installation, for example, ZDS II_eZ80Acclaim!/
eZ80AcclaimPlus!_4.8.0 and later.

Figure 2. ZSL Directory Structure

Note:
Zilog Standard Library Overview RM003708-0910

Zilog Standard Library API
Reference Manual

3

Table 4. ZSL Directory Structure Description*

Directory Path Description

\Include Contains subfolders that contain the include files

\Include\std Header files relevant to the C Run Time Library (RTL)

\Include\zilog Header files relevant to the ZSL device drivers

\Lib Contains subfolders that contain the libraries files

\Lib\std Library files relevant to the C Run Time Library (RTL)

\Lib\zilog Library files relevant to the device drivers

\Src Contains subfolder which contains source for each of the
device

\Src\boot\common Boot-related files common to all targets

\Src\boot\ez80F91 Boot-related files specific to ez80F91

\Src\boot\ez80F92 Boot-related files specific to ez80F92

\Src\boot\ez80F93 Boot-related files specific to ez80F93

\Src\boot\ez80190 Boot-related files specific to ez80190

\Src\boot\ez80L92 Boot-related files specific to ez80L92

\Src\<device>\common Device-related files common to all targets

\Src\<device>\ez80F91 Device-related files specific to ez80F91

\Src\<device>\ez80F92 Device-related files specific to ez80F92

\Src\<device>\ez80F93 Device-related files specific to ez80F93

\Src\<device>\ez80190 Device-related files specific to ez80190

\Src\<device>\ez80L92 Device-related files specific to ez80L92

Note: <device> specifies the on-chip peripheral device; for example, GPIO or UART.
RM003708-0910 Zilog Standard Library Overview

Zilog Standard Library API
eZ80® Family of Microprocessors

4

ZSL Debug and Release Version

ZSL has two versions—the debug version and the release version
available for every eZ80Acclaim!/eZ80AcclaimPlus! on-chip peripheral
device. The debug version of the library is built to contain debug informa-
tion without any optimization, whereas the release version is built to con-
tain no debug information but is optimized for speed. The debug version
of the library is built by defining the macro PARAMETER_CHECKING,
which is used by some of the APIs to check for the validity of the param-
eters passed. This macro is absent in the ZSL release version, which does
not perform any check on the API parameters. As a result, there is a sig-
nificant difference in the overall size of the generated library from the two
versions. See individual APIs in this manual to check if an API uses the
PARAMETER_CHECKING macro or not.

Building the Zilog Standard Libraries

You can develop applications using these APIs for specific peripherals,
and make use of the ZSL to interface with eZ80Acclaim!/
eZ80AcclaimPlus! peripheral devices. However, if you must customize
these library files by modifying the source code, this section describes
how the modified library is built using batch files and ZDS II script files.

As a general rule, when batch files are executed, the libraries for each 
on-chip peripheral device are rebuilt and copied to the ..\lib\zilog
directory. When a device has a different set of features across different
target processors, separate libraries are built for each target processor. In
addition, you must make a selection to build either the debug version or
the release version of the ZSL.

For the UART peripheral, the register definitions are not same for all the
eZ80Acclaim!/eZ80AcclaimPlus! processors. Therefore, separate 
libraries are built for each processor.
Zilog Standard Library Overview RM003708-0910

Zilog Standard Library API
Reference Manual

5

The following table provides two examples:

For GPIO peripherals, which features register addresses and definitions
common to all of the target devices, a single set of debug (gpioD.lib)
and release (gpio.lib) libraries are built.

The source directory for every on-chip peripheral device contains a single
batch file that you must execute to build all the libraries for the target
devices pertinent to a device. The source directory also contains
individual batch files which you can execute to build the libraries specific
to a target processor.

Each of these batch files calls other batch files that perform specific
operations in the overall build process as described in the following
sections. For example, the UART device on the eZ80F91, Figure 3 on
page 6 displays the hierarchy of batch file calls.

Processor UART Library

eZ80F91 uartf91D.lib

uartf91.lib

eZ80F92 uartf92D.lib

uartf92.lib
RM003708-0910 Zilog Standard Library Overview

Zilog Standard Library API
eZ80® Family of Microprocessors

6

Follow the steps below to build a library:

1. Generating a ZDS II Project File—A ZDS II project is created for
the specific target processor using a ZDS II script file. The script file
used for this purpose has the same name as the calling batch file with
a .scr extension. The script file creates a ZDS II project and 
configures the project settings for both the debug and release versions
of the library. The script file also calls another script file to add all of
the source files associated with the library into the project. For 
example, in case of eZ80F91 UART, the
gen_f91_uart_projects.bat batch file is used to generate the
project file. It calls the gen_f91_uart_projects.scr script file to
create the ZDS II project and invoke another script file,
add_f91_uart_projectfiles.scr, to add all of the source files
relevant to the library.

2. Generating Make Files—From the project generated in Step 1,
Make files for both the debug and release versions are generated

Figure 3. Flow of Batch File Calls to Build the UART–eZ80F91 Library

builduart_all.bat

Calls all target-specific batch files

build_ez80F91_uart.bat

Calls eZ80F91-specific batch files
build_ez80F92_uart.bat

Calls eZ80F92-specific batch files

process_f91_uart_makefiles.bat

Generates debug and release libraries
gen_f91_uart_makefiles.bat

Generates makefiles

gen_f91_uart_projects.bat

Generates the ZDS II project for

eZ80F91
Zilog Standard Library Overview RM003708-0910

Zilog Standard Library API
Reference Manual

7

using a batch file and a ZDS II script file. For the eZ80F91 UART, the
gen_f91_uart_projects.bat batch file invokes a ZDS II script
file, gen_f91_uart_projects.scr, to create both the debug and
release versions of the Make files.

3. Generating Libraries—The Make files generated in Step 2 are used
along with ZDS II to generate the debug and release versions of the
library. The libraries are automatically copied to the standard reposi-
tory under ..\lib\zilog directory. For example, in the case of the
eZ80F91 UART, the process_f91_uart_makefiles.bat batch
file generates the uartf91D.lib and uartf91.lib files.

Start-up Routine

The ZSL is integrated with ZDS II, which allows you to choose the
device(s) required for your application, and also specify some of the
device-dependent parameters. The option to choose the device and 
specify its parameters is available in ZDS II under the menu sequence
ProjectSettingsZSL. For more information on using ZSL from
within ZDS II, refer to ZDS II–eZ80Acclaim User Manual (UM0144),
available with the ZDS II tool package on www.zilog.com.

ZDS II copies the Zilog Standard Library device initialization file
zsldevinit.asm into the project when ZSL is selected from within
ZDS II. The initialization file contains the _open_periphdevice()
function that calls the initialization routines for all of the devices used in
the user application. The _open_periphdevice() routine is invoked
from the startup routine before the main() function is called. Depend-
ing on the device selected, ZDS II defines specific macros for each
device.

Your application initializes the required device(s) to their default values
without calling the startup routine. To do so, the application must call
the _open_periphdevice() function, before making any specific calls
to the device(s).
RM003708-0910 Zilog Standard Library Overview

http//:www.zilog.com

Zilog Standard Library API
eZ80® Family of Microprocessors

8

Zilog Standard Library API Overview

This section provides a brief description on topics related to the Zilog
Standard Library APIs for eZ80Acclaim!/eZ80AcclaimPlus! peripheral
devices.

Standard Data Types

The ZSL employs user-defined data types in all the APIs. These user-
defined data types are defined in the header file defines.h, which is
located in the following directory:

..\include\zilog

API Definition Format

All ZSL APIs are described under following headings:

Prototype

This section contains the exact declaration of the API.

Description

This section provides a description of the API.

Argument(s)

This section describes all the parameters (if any) to the API. By default,
all parameters are input parameters unless explicitly specified.

Return Value(s)

This section describes all return values (if any) of the API. This also
includes the possible error values.
Zilog Standard Library Overview RM003708-0910

Zilog Standard Library API
Reference Manual

9

Table 5 lists the eZ80Acclaim!/eZ80AcclaimPlus! devices for which ZSL
APIs are provided with the release of ZDS II–eZ80Acclaim!/
eZ80AcclaimPlus! v 4.8.0 and later.

Table 5. ZSL APIs for eZ80AcclaimPlus! On-Chip Devices

Device Name Type of API Description

UART UART (generic) APIs These APIs are the standard RTL I/O routines.

UARTx APIs These APIs are specific to a particular UART
device, either UART0 or UART1. The x in the
API name represents the selected UART
device.

GPIO GPIO APIs These APIs are specific to the GPIO ports A, B,
C, and D. The x in the API name represents the
selected GPIO port.
RM003708-0910 Zilog Standard Library Overview

Zilog Standard Library API
eZ80® Family of Microprocessors

10
ZSL GPIO API Description
This chapter describes the ZSL GPIO APIs. To use the ZSL GPIO APIs,
the header file gpio.h must be included in the application program.

GPIO Port Initialization in the Startup Routine

The ZSL is integrated with ZDS II, thereby allowing you to select or
deselect eZ80Acclaim!/eZ80AcclaimPlus! GPIO ports. For more infor-
mation on start-up routines, see Start-up Routine on page 7. When a GPIO
port is selected in ZDS II using the sequence ProjectSettingsZSL,
ZDS II generates a compiler predefine, ZSL_DEVICE_PORTx, in which
x can be one of the A, B, C, or D GPIO ports.

ZDS II also adds a device initialization file, zsldevinit.asm, to the
project. The zsldevinit.asm file uses compiler predefines (macros) to
initialize the ports to their default states. The _open_periphdevice()
function in zsldevinit.asm calls open_Portx() API for each of the
ports selected from within the ZDS II IDE.

GPIO APIs

Table 6 lists all GPIO APIs.

Table 6. ZSL GPIO APIs

open_Portx setmode_Portx

control_Portx close_Portx

getsettings_Portx
ZSL GPIO API Description RM003708-0910

Zilog Standard Library API
Reference Manual

11
open_Portx

Prototype

VOID open_Portx(PORT * pPort);

Description

The open_Portx() API opens the selected port by initializing the port
registers with the values supplied in the PORT structure parameter. If
NULL value is passed, the API configures the port as standard digital
input pin (GPIO mode 2) by setting the port registers with appropriate
values as defined in gpio.h file. The API then calls the
control_Portx() API to set the port register values.

Argument(s)

Return Value(s)

pPort A pointer to the structure of type PORT defined in the gpio.h file.

None.
RM003708-0910 ZSL GPIO API Description

Zilog Standard Library API
eZ80® Family of Microprocessors

12
control_Portx

Prototype

VOID control_Portx(PORT * pPort);

Description

The control_Portx()API sets the values of the selected port registers
by using the values in the PORT structure parameter. This API is used to
set all the registers of the port at one time. To set individual registers, the
predefined macros defined in gpio.h file are used.

Argument(s)

Return Value(s)

pPort A pointer to the structure of type PORT defined in the gpio.h file.

None.
ZSL GPIO API Description RM003708-0910

Zilog Standard Library API
Reference Manual

13
getsettings_Portx

Prototype

VOID getsettings_Portx(PORT * pPort);

Description

The getsettings_Portx()API retrieves values of the selected port
registers. The values of DR, DDR, ALT1, and ALT2 registers are returned
via the PORT structure.

Argument(s)

Return Value(s)

pPort A pointer to the structure of type PORT defined in the gpio.h file.

None.
RM003708-0910 ZSL GPIO API Description

Zilog Standard Library API
eZ80® Family of Microprocessors

14
setmode_Portx

Prototype

UCHAR setmode_Portx(UCHAR pins, GPIOMODES mode);

Description

This setmode_Portx() API is used to configure one or more pins of the
selected GPIO port for any of the nine modes supported by the
eZ80Acclaim!/eZ80AcclaimPlus! family of devices. The mode for each
pin is controlled by setting each register bit pertinent to the pin to be con-
figured.

For example, the operating mode for Port A Pin 7 (PA7) is set by the 
values contained in PA_DR[7], PA_DDR[7], PA_ALT1[7], and
PA_ALT2[7] registers.

A combination of the GPIO Control register bits allows individual 
configuration of each port pin for nine modes. For example, to set Pin 1 of
Port A (PA1) into output mode (mode 1), bit 1 of each of the PA_DDR,
PA_ALT1, PA_ALT2 must be set to 0. To accomplish this setting, call the
setmode_PortA() API by specifying the bit corresponding to the pin
by using the definitions provided in the gpio.h file as illustrated below:

setmode_PortA(PORTPIN_ONE,GPIOMODE_OUTPUT);

More than one pin can be set to the same mode by applying the OR 
logical operator to the pins in the call to the API. For example, to set pin 5
and pin 7 of Port A into output mode, the API is used as illustrated below:

setmode_PortA(PORTPIN_FIVE|PORTPIN_SEVEN,GPIO_OUTPUT);

The API does not alter the states of the other pins.

Argument(s)

pins The bitwise ORed value indicates the pins of a port as defined as
gpio.h file.

mode The mode to which the pins are configured.

Note:
ZSL GPIO API Description RM003708-0910

Zilog Standard Library API
Reference Manual

15
Return Value(s)

GPIOERR_FAILURE The specified mode is not supported by this port. This
return value implies that either the mode parameter
passed is not one of the nine modes or the API is called
to set Port A for alternate function mode, which is
invalid.
RM003708-0910 ZSL GPIO API Description

Zilog Standard Library API
eZ80® Family of Microprocessors

16
close_Portx

Prototype

VOID close_Portx(VOID);

Description

The close_Portx()API resets all the selected port registers and
configures the port as a standard digital input pin (GPIO mode 2). All the
registers, except the DR register, are set with reset values.

Argument(s)

Return Value(s)

None.

None.
ZSL GPIO API Description RM003708-0910

Zilog Standard Library API
Reference Manual

17
ZSL GPIO Macros

Table 7 lists the ZSL GPIO macro definitions.

Table 7. ZSL GPIO Macro Definitions

Macro Description

SETDR_PORTB(x)(PB_DR = (x)) Set Port B Data Register with the value
specified by argument x

SETDDR_PORTB(x)(PB_DDR = (x)) Set Port B Data Direction Register with the
value specified by argument x

SETALT1_PORTB(x)(PB_ALT1 = (x)) Set Port B Alternate Register-1 with the
value specified by argument x

SETALT2_PORTB(x)(PB_ALT2 = (x)) Set Port B Alternate Register-2 with the
value specified by argument x

GETDR_PORTB(x)(x) = PB_DR) Read Port B Data Register into argument x

GETDDR_PORTB(x)((x) = PB_DDR) Read Port B Data Direction Register into
argument x

GETALT1_PORTB(x)((x) = PB_ALT1) Read Port B Alternate Register-1 into
argument x

GETALT2_PORTB(x)((x) = PB_ALT2) Read Port B Alternate Register-2 into
argument x

SETDR_PORTC(x)(PC_DR = (x)) Set Port C Data Register with the value
specified by argument x

SETDDR_PORTC(x)(PC_DDR = (x)) Set Port C Data Direction Register with the
value specified by argument x

SETALT1_PORTC(x)(PC_ALT1 = (x)) Set Port C Alternate Register-1 with the
value specified by argument x

SETALT2_PORTC(x)(PC_ALT2 = (x)) Set Port C Alternate Register-2 with the
value specified by argument x
RM003708-0910 ZSL GPIO API Description

Zilog Standard Library API
eZ80® Family of Microprocessors

18
GETDR_PORTC(x)((x) = PC_DR) Read Port C Data Register into argument x

GETDDR_PORTC(x)((x) = PC_DDR) Read Port C Data Direction Register into
argument x

GETALT1_PORTC(x)((x) = PC_ALT1) Read Port C Alternate Register-1 into
argument x

GETALT2_PORTC(x)((x) = PC_ALT2) Read Port C Alternate Register-2 into
argument x

SETDR_PORTD(x)(PD_DR = (x)) Set Port D Data Register with the value
specified by argument x

SETDDR_PORTD(x)(PD_DDR = (x)) Set Port D Data Direction Register with the
value specified by argument x

SETALT1_PORTD(x)(PD_ALT1 = (x)) Set Port D Alternate Register-1 with the
value specified by argument x

SETALT2_PORTD(x)(PD_ALT2 = (x)) Set Port D Alternate Register-2 with the
value specified by argument x

GETDR_PORTD(x)((x) = PD_DR) Read Port D Data Register into argument x

GETDDR_PORTD(x)((x) = PD_DDR) Read Port D Data Direction Register into
argument x

GETALT1_PORTD(x)((x) = PD_ALT1) Read Port D Alternate Register-1 into
argument x

GETALT2_PORTD(x)((x) = PD_ALT2) Read Port D Alternate Register-2 into
argument x

Table 7. ZSL GPIO Macro Definitions (Continued)

Macro Description
ZSL GPIO API Description RM003708-0910

Zilog Standard Library API
Reference Manual

19
ZSL UART API Description
This chapter provides detailed description of the ZSL UART APIs. To use
the ZSL UART APIs, the file uart.h must be included in the application
program.

UART Initialization

The ZSL is integrated with ZDS II and allows you to select or deselect
eZ80Acclaim!/eZ80AcclaimPlus! UARTs. For more information on start-
up routines, see Start-up Routine on page 7. While initializing the UART
devices in the Start-up routine, the following points must be considered:

1. When a UART device is selected, by using the sequence Project
SettingsZSL in ZDS II, the ZDS II generates a compiler pre-
define, ZSL_DEVICE_UARTx, for the _open_periphdevice() 
routine to use. The _open_periphdevice() routine uses the
open_UARTx() function to initialize the UARTx device with default
values when the ZSL_DEVICE_UARTx symbol is supplied. Therefore,
your application can use the APIs directly to drive any UART device
without making a specific call to the init_UARTx() routine.

2. To use the UART0 device, GPIO Port D is initialized; UART1 device
requires Port C to be initialized. These GPIO ports must be initialized
before initializing the UART. ZDS II defines the macro,
ZSL_DEVICE_PORTD when UART0 is selected, and
ZSL_DEVICE_PORTC, when UART1 is selected. These ports are
initialized to mode 2 in the zsldevinit.asm file.

3. All the standard RTL I/O functions, putch(), getch(), kbhit(),
and peekc(), are mapped to the default UART device—implying
that the standard RTL I/O functions invoke the default UART device
APIs. In the Zilog Standard Library distribution, UART0 is
configured as the default device. To use UART1 as the default device,
RM003708-0910 ZSL UART API Description

Zilog Standard Library API
eZ80® Family of Microprocessors

20
in uart.h file, the macro DEFAULT_UART0 is undefined, a macro
DEFAULT_UART1 is defined and the library is rebuilt.

4. You can modify the default values to suit the application
specifications by making appropriate changes in the device-specific
source code files. Default device parameters like optimization type,
mode of operations, and blocking or non-blocking, can be changed to
suit the requirements. Default values for one or both the UART
devices may be modified. However, on modifying the default values,
the library must be rebuilt for the changes to take effect.

Exercise caution while making changes to default values else
undesirable results can occur. By default, the UART devices are set to
interrupt mode, with blocking calls. Certain calls, such as getch(),
block indefinitely, and represent the standard defined behavior. If the
getch()call is changed to a non-blocking type of call, ZSL cannot be
used by the RTL function call, getch().

5. The UART driver operates in two modes—interrupt mode and poll
mode. In each mode, the calls are always of the blocking type.The
interrupt mode of operation uses a software buffer for both transmit
and receive FIFO buffers. Therefore, each UART device features two
FIFO buffers defined as global static arrays of fixed size (64 bytes) in
the file zsldevinit.asm.You can change the default size to any
value and rebuild the application for changes to take effect.

Caution:
ZSL UART API Description RM003708-0910

Zilog Standard Library API
Reference Manual

21
Generic UART APIs

Table 8 lists the generic UART APIs.

Table 8. Generic UART APIs

getch kbhit

putch peekc
RM003708-0910 ZSL UART API Description

Zilog Standard Library API
eZ80® Family of Microprocessors

22
getch

Prototype

INT24 getch(VOID);

Description

The getch() API reads a data byte from the default UART device. If
there is no data in the UART device, the API gets blocked till the data
becomes available. When the FIFO buffer is enabled, this getch() API
returns the data byte at the top of the FIFO buffer.

This API calls the read_UARTx() API. If there is any error in the
received data byte, an error code is set in the UARTx_SPR register. The
application determines the error by updating the UARTx_SPR register with
a known value, before calling the API and read the UARTx_SPR register
again to determine whether that value has changed. For possible list of
errors, see read_UARTx on page 42.

Argument(s)

Return Value(s)

None.

Returns the character received.
ZSL UART API Description RM003708-0910

Zilog Standard Library API
Reference Manual

23
putch

Prototype

VOID putch(INT24 ich);

Description

The putch() API writes a data byte into the default UART transmit
buffer. In case of the INTERRUPT mode where the FIFO buffer is enabled,
the data byte is written into the end of the FIFO buffer. If the data byte
written is a newline character, then the putch() API writes an additional
carriage return character into the UART transmit buffer.

Argument(s)

Return Value(s)

Character to write to transmit buffer.

None.
RM003708-0910 ZSL UART API Description

Zilog Standard Library API
eZ80® Family of Microprocessors

24
kbhit

Prototype

UCHAR kbhit(VOID);

Description

The kbhit() API detects for any keystrokes on the default UART
device. If a keystroke is detected the kbhit() API returns 1 else 0 is
returned. The API returns immediately without blocking when the UART
is configured to work either in POLL mode or in the INTERRUPT mode.

The API does not read the data but returns the status.

Argument(s)

Return Value(s)

None.

1 Indicates that a key was hit.

0 Indicates that no key strokes were detected.

Note:
ZSL UART API Description RM003708-0910

Zilog Standard Library API
Reference Manual

25
peekc

Prototype

INT24 peekc(VOID);

Description

The peekc() API is supported only when a UART device is configured
for the INTERRUPT mode. This API checks for any data in the receive
FIFO buffer and returns the data, if present. However, the character
checked in the receive FIFO buffer is not cleared from the buffer. This
peekc() function returns -1 if invoked in POLL mode, or if the FIFO
buffer contains an error.

If there is an error in the received data byte, an error code is set in the
UARTx_SPR register. Your application determines the error by updating
the UARTx_SPR register with a known value, before calling the API and
reading the UARTx_SPR register again to determine whether that value
has changed. For possible errors, see read_UARTx on page 42.

Argument(s)

Return Value(s)

None.

Returns the character on top of the FIFO buffer without clearing the character
from the FIFO buffer.

Returns -1 in case of an error or when the API is invoked in the POLL mode. In
this case, UARTx_SPR register contains the exact error code.
RM003708-0910 ZSL UART API Description

Zilog Standard Library API
eZ80® Family of Microprocessors

26
UARTx APIs

The UARTx APIs listed in this section are used for either of the UART
devices on the eZ80Acclaim!/eZ80AcclaimPlus! family of microcontrol-
lers. The x in UARTx signifies 0 or 1 for the UART0 or UART1 devices,
respectively.

Table 9 lists the UARTx APIs.

Table 9. UARTx APIs

open_UARTx clearbreak_UARTx

control_UARTx flush_UARTx

setbaud_UARTx write_UARTx

setparity_UARTx read_UARTx

setstopbits_UARTx enableparity_UARTx

setdatabits_UARTx disableparity_UARTx

settriggerlevel_UARTx close_UARTx

sendbreak_UARTx
ZSL UART API Description RM003708-0910

Zilog Standard Library API
Reference Manual

27
open_UARTx

Prototype

UCHAR open_UARTx(UART * pUART);

Description

The open_UARTx() API opens the UARTx device by initializing the
UARTx Control registers with the values supplied in the UART structure
parameter. If NULL value is passed, then the API sets the UARTx Control
registers with the default values.

In either case, this API calls the control_UARTx() API to set the
UARTx Control register values, which configures the Port D bits 0 and 1
for alternate functions.

In either case, this API configures the required port pins for alternate
functions and calls the control_UARTx() API to set the UARTx control
registers.
RM003708-0910 ZSL UART API Description

Zilog Standard Library API
eZ80® Family of Microprocessors

28
Argument(s)

Return Value(s)

pUART Pointer to a structure of the type UART as defined in uart.h file.
If NULL value is passed, the following default values are set.

uartmode  interrupt or poll.

baudrate  Default value: 57600
Other valid values are 9600, 19200,
38400, 115200.

databits  Default value: 8
Other valid values are 8, 7, 6, 5.

stopbits  Default value: 2
Other valid values are 1, 2.

parity  Default value: disable
Other valid values are
PAR_NOPARITY,
PAR_ODPARITY,
PAR_EVPARITY.

fifotriggerlevel  Default value: 1
Other valid values are1, 4, 8, 14.

hwflowcontrol  Default value: disable

swflowcontrol  Default value: disable

UART_ERR_NONE On successful execution of the API.

UART_ERR_INVBAUDRATE Error due to invalid baudrate value
passed.

UART_ERR_INVDATABITS Error due to invalid databits value
passed.

UART_ERR_INVSTOPBITS Error due to invalid stopbits value
passed.
ZSL UART API Description RM003708-0910

Zilog Standard Library API
Reference Manual

29
1. The hardware and software flow controls are not yet supported in the
Zilog Standard Library. Therefore, hwflowcontrol and
swflowcontrol must always be disabled.

2. When the UART channels are used in INTERRUPT mode,
set_vector() must be called by passing the appropriate vector and
handler.

3. While using the eZ80F91 Mini Module, and in addition to calling
open_UART0(), the ENABLE_UART0() macro must be explicitly
called in the application prior to any UART related APIs.

UART_ERR_INVPARITY Error due to invalid parity value passed.

UART_ERR_INVTRIGGERLEVEL Error due to invalid trigger level value
passed.

Notes:
RM003708-0910 ZSL UART API Description

Zilog Standard Library API
eZ80® Family of Microprocessors

30
control_UARTx

Prototype

UCHAR control_UARTx(UART * pUART);

Description

The control_UARTx() API is used to configure the UARTx device with
the values specified by the pointer to the UART structure passed as the
parameter. The values in the structure are used to write into 
appropriate UARTx device Control registers. The API checks the validity
of the parameters passed when the debug version of ZSL is used. The
PARAMETER_CHECKING macro is defined in the debug version. In the
release version of ZSL the macro PARAMETER_CHECKING is undefined
and therefore this check is not performed. In the release version, the API
configures the UARTx with the value passed in the pUART parameter.
ZSL UART API Description RM003708-0910

Zilog Standard Library API
Reference Manual

31
Argument(s)

Return Value(s)

pUART Pointer to a structure of the type UART as defined in uart.h file

uartmode  Interrupt

baudrate  Default value: 57600
Other valid values are 9600, 19200,
38400, 115200.

databits  Default value: 8
Other valid values are 8, 7, 6, 5.

stopbits  Default value: 2
Other valid values are 1, 2.

parity  Default value: disable
Other valid values are PAR_NOPARITY,
PAR_ODPARITY,PAR_EVPARITY.

fifotriggerle
vel

 Default value: 1
Other valid values are 1, 4, 8, 14.

hwflowcontrol  Default value: disable

swflowcontrol  Default value: disable

UART_ERROR_NONE On successful execution of the API.

UART_ERR_INVBAUDRATE Error due to invalid baudrate value
passed.

UART_ERR_INVDATABITS Error due to invalid databits value passed.

UART_ERR_INVSTOPBITS Error due to invalid stopbits value passed.

UART_ERR_INVPARITY Error due to invalid parity value passed.

UART_ERR_INVTRIGGERLEVEL Error due to invalid trigger level value
passed.
RM003708-0910 ZSL UART API Description

Zilog Standard Library API
eZ80® Family of Microprocessors

32
The hardware and software flow controls are not yet supported in the
Zilog Standard Library. Therefore, hwflowcontrol and
swflowcontrol must always be disabled.

Note:
ZSL UART API Description RM003708-0910

Zilog Standard Library API
Reference Manual

33
setbaud_UARTx

Prototype

UCHAR setbaud_UARTx(INT24 baud);

Description

The setbaud_UARTx() API configures the baudrate for the UARTx
device with the specified value. The API checks the validity of the 
parameters passed when the debug version of ZSL is used. The
PARAMETER_CHECKING macro is defined in the debug version. In the
release version of ZSL the macro PARAMETER_CHECKING is undefined
and therefore this check is not performed. In the release version, the API
configures UARTx with the value passed in the baud parameter.

Example:

setbaud_UART0(115200);

Argument(s)

Return Value(s)

baud Specifies the new baudrate to be set. This value along with the target
clock frequency value set during the opening of UART, are used to
calculate the value for Baudrate Generator registers.

baudrate  Default value: 57600
Other valid values are 9600, 19200, 38400, 115200.

UART_ERROR_NONE On successful execution of the API.

UART_ERR_INVBAUDRATE Error due to invalid baudrate value passed.
RM003708-0910 ZSL UART API Description

Zilog Standard Library API
eZ80® Family of Microprocessors

34
setparity_UARTx

Prototype

UCHAR setparity_UARTx(UCHAR parity);

Description

The setparity_UARTx() API configures the parity for the UARTx
device. This API checks the validity of the parameters passed when the
debug version of ZSL is used. The PARAMETER_CHECKING macro is
defined in the debug version. In the release version of ZSL the macro
PARAMETER_CHECKING is undefined and therefore this check is not 
performed. In the release version, the API configures the UARTx with the
value passed in the parity parameter.

Argument(s)

Return Value(s)

parity Specifies the new parity value.

parity  Default value: disable
Other valid values are PAR_NOPARITY,
PAR_ODPARITY,PAR_EVPARITY.

UART_ERROR_NONE On successful execution of the API.

UART_ERR_INVPARITY Error due to invalid parity values.
ZSL UART API Description RM003708-0910

Zilog Standard Library API
Reference Manual

35
setstopbits_UARTx

Prototype

UCHAR setstopbits_UARTx(UCHAR stopbits);

Description

The setstopbits_UARTx() API sets the stopbits for the UARTx
device. The API checks the validity of the parameters passed when the
debug version of ZSL is used. The PARAMETER_CHECKING macro is
defined in the debug version. In the release version of ZSL the macro
PARAMETER_CHECKING is undefined and therefore this check is not 
performed. In the release version, the API configures the UARTx with the
value passed in the stopbits parameter.

Argument(s)

Return Value(s)

stopbits Number of valid stopbits set.

stopbits  Default value: 2
Other valid values are1, 2.

UART_ERROR_NONE On successful execution of the API.

UART_ERR_INVSTOPBITS Error due to invalid stopbits.
RM003708-0910 ZSL UART API Description

Zilog Standard Library API
eZ80® Family of Microprocessors

36
setdatabits_UARTx

Prototype

UCHAR setdatabits_UARTx(UCHAR databits);

Description

The setdatabits_UARTx() API configures the data bits for the
UARTx device. The API checks the validity of the parameters passed
when the debug version of ZSL is used; the PARAMETER_CHECKING
macro is defined in the debug version. In the release version of ZSL the
macro PARAMETER_CHECKING is undefined and therefore this check is
not performed. In the release version, the API configures the UARTx with
the value passed in the databits parameter.

Argument(s)

Return Value(s)

databits Value of databits to be set.

databits  Default value: 8
Other valid values are 8, 7,
6, 5.

UART_ERROR_NONE On successful execution of the API.

UART_ERR_INVDATABITS Error due to invalid databits.
ZSL UART API Description RM003708-0910

Zilog Standard Library API
Reference Manual

37
settriggerlevel_UARTx

Prototype

UCHAR settriggerlevel_UARTx(UCHAR trglevel);

Description

The settriggerlevel_UARTx() API configures the receive FIFO
trigger level for the UARTx device by setting the trglevel value to the
UARTx FIFO Control Register. When there are specified number of bytes
in the FIFO buffer, receive-data interrupt is generated. This API checks
the validity of the parameters passed when the debug version of ZSL is
used. The PARAMETER_CHECKING macro is defined in the debug version.
In the release version of ZSL, the macro PARAMETER_CHECKING is unde-
fined and therefore this check is not performed. In the release 
version, this API configures the UARTx with the value passed in the
trglevel parameter

Argument(s)

Return Value(s)

trglevel Receive FIFO trigger level.

fifotriggerlevel  Default value: 1
Other valid values are 1, 4, 8,
14.

UART_ERROR_NONE On successful execution of the API.

UART_ERR_INVTRIGGERLEVEL Error due to invalid trigger level.
RM003708-0910 ZSL UART API Description

Zilog Standard Library API
eZ80® Family of Microprocessors

38
sendbreak_UARTx

Prototype

VOID sendbreak_UARTx(void);

Description

The sendbreak_UARTx() API sets the Send Break bit in the
UARTx_LCTL, forcing the UARTx device to send continuous zeros.

Argument(s)

Return Value(s)

None.

None.
ZSL UART API Description RM003708-0910

Zilog Standard Library API
Reference Manual

39
clearbreak_UARTx

Prototype

VOID clearbreak_UARTx(void);

Description

The clearbreak_UARTx() API clears the Send Break bit in the
UARTx_LCTL, forcing the UARTx device to stop sending the break
signals.

Argument(s)

Return Value(s)

None.

None.
RM003708-0910 ZSL UART API Description

Zilog Standard Library API
eZ80® Family of Microprocessors

40
flush_UARTx

Prototype

UCHAR flush_UARTx(UCHAR fifo);

Description

The flush_UARTx () API flushes both hardware and software FIFO 
buffers. You can flush either the transmit FIFO buffer or the receive FIFO
buffer or both by passing appropriate values in the fifo parameter. The
contents of both the hardware and software FIFO buffers are cleared.

Argument(s)

Return Value(s)

fifo Specifies the FIFO buffers to be flushed.

FLUSHFIFO_TX  flushing Tx FIFO buffer.

FLUSHFIFO_RX  flushing Rx FIFO buffer.

FLUSH_ALL  flushing both Tx and Rx FIFO buffers.

None.
ZSL UART API Description RM003708-0910

Zilog Standard Library API
Reference Manual

41
write_UARTx

Prototype

UCHAR write_UARTx(CHAR *pData, UINT24 nbytes);

Description

The write_UARTx() API writes data bytes into the UARTx device. The
API accepts a pointer to the buffer containing data to be transmitted and
the number of bytes to be transmitted. Depending on the mode, the
write_UARTx() API either polls or uses an interrupt to transmit the data
bytes. When the GPIO port is configured for the INTERRUPT mode, this
API puts the data in the transmit FIFO buffer. If the value of nbytes is
greater than the size of the transmit FIFO buffer, and if the transmit FIFO
buffer is full, the API blocks until the data bytes are transmitted.

Argument(s)

Return Value(s)

pData Pointer to a buffer containing the data to transmit.

nbytes Number of bytes to transmit.

UART_ERR_NONE Successful execution of the API.
RM003708-0910 ZSL UART API Description

Zilog Standard Library API
eZ80® Family of Microprocessors

42
read_UARTx

Prototype

UCHAR read_UARTx(CHAR *pData, UINT24 *nbytes);

Description

The read_UARTx() API reads data bytes from the UARTx device. This
API accepts a pointer to a buffer for storing data bytes received and the
number of bytes to be read. Depending on the mode, it either polls or uses
the interrupts to receive data bytes.

If the specified number of bytes are not available, the API gets blocked
indefinitely until the data becomes available. If the data byte received in
the receive FIFO buffer contains errors, the API returns with an error
code. The value in the nbytes parameter indicates the number of data
bytes actually read and the last byte in the receive buffer is the data byte
containing the error.

When an error occurs, ensure that the application flushes the receive
FIFO buffer (if operating in the INTERRUPT mode), using the
flush_UARTx() API before calling the next read_UARTx() API.

Argument(s)

pData Pointer to a buffer to receive data.

nbytes Number of bytes to read. In case of an error, the API fills this variable
with the actual number of bytes read. The application then determines
the data byte that is with an error.

Note:
ZSL UART API Description RM003708-0910

Zilog Standard Library API
Reference Manual

43
Return Value(s)

UART_ERR_FRAMINGERR Indicates that a framing error
occurred in the character received.

UART_ERR_PARITYERR Indicates that a parity error
occurred in the character received.

UART_ERR_OVERRUNERR Indicates an overrun error occurred
in the receive buffer register.

UART_ERR_BREAKINDICATIONERR Indicates that a Break condition is
set.
RM003708-0910 ZSL UART API Description

Zilog Standard Library API
eZ80® Family of Microprocessors

44
enableparity_UARTx

Prototype

VOID enableparity_UARTx(void);

Description

The enableparity_UARTx() API enables parity checking (even parity
or odd parity) on the incoming data received by the UARTx device. When
a parity error is detected in the incoming data, the UARTx device logs this
error in the Line Status register. This error is indicated to the 
application in the read_UARTx on page 42 API.

Argument(s)

Return Value(s)

None.

None.
ZSL UART API Description RM003708-0910

Zilog Standard Library API
Reference Manual

45
disableparity_UARTx

Prototype

VOID disableparity_UARTx(void);

Description

The disableparity_UARTx() API disables the parity checking (even
parity or odd parity) on the incoming data received by the UARTx device.

Argument(s)

Return Value(s)

None.

None.
RM003708-0910 ZSL UART API Description

Zilog Standard Library API
eZ80® Family of Microprocessors

46
close_UARTx

Prototype

VOID close_UARTx(void);

Description

The close_UARTx() API is used to close the UARTx device. When
close_UARTx()API is called, interrupts related to the default UART
device are disabled. It also clears the Control registers so as to render the
UART device non-functional. The application uses the UART device
again only after calling the open_UARTx() API.

Argument(s)

Return Value(s)

None.

None.
ZSL UART API Description RM003708-0910

Zilog Standard Library API
Reference Manual

RM003708-0910 Customer Support

47

Customer Support
For answers to technical questions about the product, documentation, or
any other issues with Zilog’s offerings, please visit Zilog’s 
Knowledge Base at http://www.zilog.com/kb.

For any comments, detail technical questions, or reporting problems,
please visit Zilog’s Technical Support at http://support.zilog.com.

http://www.zilog.com/kb
http://support.zilog.com

	Zilog Standard Library API
	Revision History
	Table of Contents
	Introduction
	About This Manual
	Intended Audience
	Manual Organization
	Related Documents
	Definition
	Abbreviations/Acronyms
	Manual Conventions
	Safeguards

	Zilog Standard Library Overview
	Zilog Standard Library Architecture
	Zilog Standard Library Directory Structure
	Building the Zilog Standard Libraries
	Start-up Routine
	Zilog Standard Library API Overview
	API Definition Format

	ZSL GPIO API Description
	GPIO Port Initialization in the Startup Routine
	GPIO APIs
	open_Portx
	control_Portx
	getsettings_Portx
	setmode_Portx
	close_Portx

	ZSL GPIO Macros

	ZSL UART API Description
	UART Initialization
	Generic UART APIs
	getch
	putch
	kbhit
	peekc

	UARTx APIs
	open_UARTx
	control_UARTx
	setbaud_UARTx
	setparity_UARTx
	setstopbits_UARTx
	setdatabits_UARTx
	settriggerlevel_UARTx
	sendbreak_UARTx
	clearbreak_UARTx
	flush_UARTx
	write_UARTx
	read_UARTx
	enableparity_UARTx
	disableparity_UARTx
	close_UARTx

	Customer Support

