
Copyright ©2008 by Zilog®, Inc. All rights reserved.
www.zilog.com

White Paper

Z8 Encore!® Using Zilog
Standard Library (ZSL)

WP001002-0208

http://www.zilog.com

Z8 Encore!® Using Zilog Standard Library (ZSL)
Abstract
This White Paper explains how to use the new Zilog Standard Library (ZSL) software
component in Zilog Developer Studio II (ZDS II)—Z8 Encore!® projects. Different mod-
els are described for using, or not using ZSL.

Introduction
The Zilog Developer Studio II (ZDS II)—Z8 Encore! v4.9.0 distribution includes a new
software component called the Zilog Standard Library (ZSL). ZSL is a set of library files
that provides an interface between the application and on-chip peripherals of the
Z8 Encore! microcontrollers. The ZSL included in this ZDS II distribution supports GPIO
and UART on-chip peripherals.
To integrate the new ZSL software component, changes are done to the C-language run-
time library (RTL) sio.c and sio.h files. These files originally held UART-related
implementations that now reside in the ZSL. To make migration to ZDS II v4.9.0 easier,
the sio.c and sio.h files still exist in the RTL as a wrapper for corresponding ZSL func-
tions. That is, functions called from the sio.c file now call ZSL functions in turn to
access the UART.

Supported Use Models
ZSL is created with the following use models:

• Migrating an existing application to ZDS II v4.9.0, adopting ZSL. This model has two
different scenarios:
– Using the RTL I/O functions.
– Using ZSL APIs directly.

• Using ZSL in a completely new project.

• Running ZSL code on the simulator.

• Choosing not to adopt ZSL.

• Using ZSL with custom startup or link control files.
These models are described in the following sections.

Migrating an Existing Application to ZDS II v4.9.0
When you use ZDS II v4.9.0 to open a project created for an earlier version, the project is
converted to a new format with the file extension .zdsproj. As part of this conversion,
ZDS II also performs the following functions:

• Copies a new file, zsldevinit.asm, into the project. This is a ZSL-specific device
initialization file. It contains the routine _open_periphdevice(), which initializes
WP001002-0208 Page 2 of 6

Z8 Encore!® Using Zilog Standard Library (ZSL)
device-related parameters needed for ZSL to work properly. The standard startup
module calls this initialization routine before calling the main() function.

• If the project uses any RTL or ZSL I/O calls, ZDS II automatically links the ZSL
libraries relevant to the memory model (small or large) and stack frames (static or
dynamic) used in the project.

• If the application does not use any RTL or ZSL I/O calls, ZSL still adds the following
overhead to the application:
– A call to _open_periphdevice() from the startup routine. In this case the

_open_periphdevice() is an empty function that simply returns.
– Five bytes of global variables (four bytes of g_clock0/1 and one byte of

g_simulate), declared in the zsldevinit.asm file.
When the project conversion completes, the project can be rebuilt and downloaded as
usual.

Using RTL I/O Functions
As mentioned in the Introduction, the RTL I/O calls defined in sio.c file act as a wrapper
for underlying ZSL APIs in ZDS II v4.9.0. This wrapper function has the following limita-
tions:

• Only one UART can be used at any given time. You cannot dynamically switch
between UARTs with the RTL init_uart() or select_port() functions, because
they can only act on the default UART. These functions return an error if they do not
reference the default UART.

The default UART is set in ZSL’s uartcontrol.h file by the following macro
definition:
#define DEFAULT_UARTUARTx /* UARTx is the default device */

where x is either 0 or 1 for UART0 or UART1, respectively.

After the default UART is changed, the ZSL and RTL libraries must be rebuilt before
the UART is used in the application. For more information on building the ZSL
libraries, refer to Zilog Standard Library API Reference Manual (RM0038).

• Calling ZSL I/O functions via the RTL results in a slightly larger application size. This
is worth considering when the application is written for a small memory model.

Using ZSL APIs Directly
If higher-level RTL I/O functions are not required, then the sio.h include file can be
omitted and the ZSL API calls can be used directly.
WP001002-0208 Page 3 of 6

Z8 Encore!® Using Zilog Standard Library (ZSL)
Using ZSL in a New Project
ZSL provides a number of APIs to use and configure GPIO and UART peripheral devices.
ZDS II v4.9.0 has a new GUI that allows you to specify some of the device-dependent
parameters.
A new tab named ZSL has been added to the Project → Settings dialog box. The new tab
allows you to select or deselect GPIO ports and UARTs to be used in the project. Based on
the selection, ZDS II defines various C and assembly macros to initialize each selected
device.
For more information on the ZDS II GUI, refer to Zilog Developer Studio II—Z8 Encore!®
User Manual (UM0130). For detailed steps to create a new project with ZSL and list of
APIs, refer to Zilog Standard Library API Reference Manual (RM0038) available for
download at www.zilog.com.

Running ZSL Code in the Simulator
When ZSL functions are executed in the ZDS II simulator, characters printed via the
UART are routed back for display in the Debug tab of the Output window. No special
action is required to use this feature, but the following considerations apply:

• Rebuild the project whenever the debugger driver is changed, (that is, Simulator,
USB, or Serial Driver).

• The Simulator driver in ZDS II v4.9.0 cannot simulate read-related I/O calls such as
scanf(), getch() and getchar(), so these do not work when this driver is
selected. This restriction does not apply when running ZSL code on a development
board or target hardware.

Choosing Not to Adopt ZSL
If you want to bypass ZSL and use your own peripheral driver for UART or GPIO access,
the best way is to simply include your driver source files inside the project. This ensures
that the application is always linked with the source file’s implementation instead of
ZSL’s.
If your peripheral driver is in the form of a library, ensure that it comes before ZSL in the
linking order. This is not an issue if ZDS II generates the link control file; in this case you
can either add the library directly to the project like any source file, or include the library
name in the linker settings.

Using ZSL with Custom Startup or Link Control Files
If you do not use the startup module provided with ZDS II, your application should explic-
itly call the function _open_periphdevice() from zsldevinit.asm before calling
any ZSL functions.
WP001002-0208 Page 4 of 6

http://www.zilog.com

Z8 Encore!® Using Zilog Standard Library (ZSL)
Follow the steps below if you are using your own link control file:

• Define a linker directive _zsl_g_clock_xdefine and equate it with the value of
the target clock frequency. For example, if the target clock frequency is 18432000, the
directive should be:
define _zsl_g_clock_xdefine = 18432000

This definition is used inside the zsldevinit.asm file to configure the UART baud
rate generators.

• Include ZSL libraries relevant to the desired target memory model (small or large) and
stack frame model (static or dynamic). For a list of available libraries and their
description, refer to Zilog Standard Library API Reference Manual (RM0038)
included with the ZDS II tool package available for download at www.zilog.com.
WP001002-0208 Page 5 of 6

http://www.zilog.com

Z8 Encore!® Using Zilog Standard Library (ZSL)
DO NOT USE IN LIFE SUPPORT

LIFE SUPPORT POLICY
ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)
support or sustain life and whose failure to perform when properly used in accordance with instructions for
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A
critical component is any component in a life support device or system whose failure to perform can be
reasonably expected to cause the failure of the life support device or system or to affect its safety or
effectiveness.

Document Disclaimer
©2008 by Zilog, Inc. All rights reserved. Information in this publication concerning the devices,
applications, or technology described is intended to suggest possible uses and may be superseded. ZILOG,
INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY
OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT.
ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY
INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR
TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this
document has been verified according to the general principles of electrical and mechanical engineering.

Z8, Z8 Encore!, Z8 Encore! XP, Z8 Encore! MC, Crimzon, eZ80, and ZNEO are trademarks or registered
trademarks of Zilog, Inc. All other product or service names are the property of their respective owners.

Warning:
WP001002-0208 Page 6 of 6

	Z8 Encore!® Using Zilog Standard Library (ZSL)
	Abstract
	Introduction
	Supported Use Models
	Migrating an Existing Application to ZDS II v4.9.0
	Using RTL I/O Functions
	Using ZSL APIs Directly

	Using ZSL in a New Project
	Running ZSL Code in the Simulator
	Choosing Not to Adopt ZSL
	Using ZSL with Custom Startup or Link Control Files

