
ZiLOG Worldwide Headquarters • 532 Race Street • San Jose, CA 95126
Telephone: 408.558.8500 • Fax: 408.558.8300 • www.zilog.com

White Paper

Using the ZiLOG Xtools
Z8 Encore!® C Compiler

WP000602-0904

http://www.zilog.com

White Paper
Using the ZiLOG Xtools Z8 Encore!® C Compiler
Abstract
The Xtools Z8 Encore!® C compiler is an optimizing compiler for C code based on
the ANSI C standard, with modifications to support specialized needs of the
embedded developer. Basic information about the use of the compiler and details
of how it supports particular Z8 Encore! features are given in the ZiLOG Devel-
oper Studio II User Manual. This white paper is oriented toward helping users
make the most effective use of the compiler by describing how to deal with some
specific issues that often arise in customer usage. We place a special emphasis
on practical tips about using the compiler to create efficient code with a small foot-
print.

We will begin with a short description of how the Xtools compiler differs from a
pure implementation of the ANSI C Standard; this section should clarify exactly
what the compiler is. Then we will talk about how to use the compiler, giving
guidelines for writing code and creating projects that make good use of the com-
piler.

Embedded Modifications to the ANSI C Standard
In most ways the Xtools Z8 Encore! compiler is simply an implementation of the
ANSI C Standard. However, tailoring a development tool to the needs of the
embedded system developer means making a few changes to the standard.
Some of these are extensions to the standard which add special capabilities for
the embedded arena, and others are restrictions - areas where the standard calls
for features that are unnecessary or too bloated to use in embedded applications.

The Xtools Z8 Encore! compiler offers several C language extensions to enhance
the language's support for embedded development and tailor it to the Z8 Encore!
processor. Exhaustive technical detail on the comparison of the Xtools Z8 Encore!
compiler to the ANSI Standard are given in the ZiLOG White Paper, ZiLOG Z8
Encore! Compiler Compliance With ANSI STANDARD C, WP0008.

The most important extensions in everyday use are those that support the practi-
cal concept of alternative memory models. The basic concept of the Z8 Encore!
memory models is that there are a couple of different, commonly used ways to
partition the Z8 Encore! register file between areas used for the stack, and for
local and global variables. By giving the compiler information on where in the reg-
ister file these different kinds of data will be located, the user allows it to choose
the most efficient instructions and addressing modes for any given data access.
The better model to use depends on the memory requirements of the user's appli-
cation.

The two compiler-supported Z8 Encore! memory models are the small and large
models, selected using the Project > Settings > C > General >Memory Model
setting. Details of the models are given in the ZDS II User Manual. Briefly, in the
Using the ZiLOG Xtools Z8 Encore!® C Compiler WP000602-0904

White Paper
Using the ZiLOG Xtools Z8 Encore!® C Compiler

3

small model the stack and, by default, all global and local variables are stored in
the lowest 256-byte page of the register file, with addresses up to FFH. The
advantage of this is that the instructions that manipulate data in this address
range can use shorter addressing modes and so the overall code size will be sig-
nificantly smaller. (Note that the space available for code is the same in both mod-
els; the "small" and "large" memory models refer to small or large default data
memory spaces.) In the large model, the stack and, by default, global and local
variables are stored in the extended register file with addresses beginning at
100H and extending to EFFH (or a smaller limit in parts that don't have 4K of reg-
ister RAM). The memory spaces used by the small and large models are also
called Rdata (00H-FFH, for "register" data) and Edata (100H-FFFH, for
"extended" data), respectively.

The Xtools C compiler provides the extension keywords near, far, and rom to
help users tailor their memory usage with finer granularity than provided by the
memory models. These keywords are storage class specifiers that can be used to
override the default memory allocations provided by the memory model. A near
variable is always located in Rdata, a far variable is always located in Edata, and
a rom variable is always located in Program rom, regardless of the memory
model. These keywords are used like the standard storage class specifiers const
and volatile. For example:

near char buffer[20];

If pointers to near, far, or rom variables are used, the pointer declarations must
match the types of the variables to which they point (see the User Manual). This
allows another potential code size optimization, since a near pointer occupies
less space than a far pointer.

Another way in which the Xtools Z8 Encore! C compiler is adapted to the special
needs of the embedded developer is its support for either static or dynamic call
frames. The most familiar type of call frames, used exclusively by most desktop-
oriented compilers, are dynamic frames: when a function is called, space is
dynamically allocated on the stack to hold its return address, function parameters,
and local variables. However, C also allows a more restrictive call-frame scheme
using static frames. In this scheme, a single, statically allocated frame for each
function in the program is allocated at compile time for storing the function's
parameters and local variables.

The advantage of static frames is that since the compiler knows the absolute
address of each function parameter, it can generate more compact code to
access parameters than in dynamic frames where they must be accessed by off-
setting from the stack pointer. For the Z8 Encore! instruction set architecture, this
code size savings is substantial. It should be emphasized that the savings comes
primarily not from using less space for frames, but from using less code to access
data in the frames. Thus, it is primarily a savings in code space, not in data space.
It could actually require more data space, although to mitigate this the Z8 Encore!
Using the ZiLOG Xtools Z8 Encore!® C Compiler WP000602-0904

White Paper
Using the ZiLOG Xtools Z8 Encore!® C Compiler

4

linker uses call-graph techniques to overlay some function frames that cannot be
simultaneously active.

The disadvantages of static frames are that they do not support two features of
the C language: recursion, and making calls through function pointers. To allow a
broader range of applications to get the benefits of using static frames, the Xtools
Z8 Encore! compiler provides the reentrant keyword as another C language
extension. This keyword notifies the compiler that in an application that otherwise
uses static frames, a dynamic frame must be used for any function declared
reentrant:

reentrant recursive_fn (int x)

Obviously, if large numbers of functions in an application must be declared
reentrant, the benefit of using static frames diminishes proportionately.

The Xtools compiler also extends the ANSI standard with the language extension
keyword interrupt to make interrupt handler development easier. This keyword
is available only as a function qualifier, for example:

void interrupt my_handler (void)

The compiler responds to the interrupt keyword by automatically generating code
to save machine state on function entry and restore it on function entry. Since
interrupt handlers are not explicitly called as other functions are, they cannot take
arguments or return values; both the parameter list and return type must be void.
See the ZDS II for Z8 Encore! User Manual (UM0130) for details.

Another extension to the C standard is the ability to embed Z8 Encore! assembly
code inside a C program. This makes it easy to create a project in which only cer-
tain performance-critical procedures, or even critical sections of a function, are
coded in assembly while the bulk of the application is developed in C. The ZDS II
for Z8 Encore! User Manual (UM0130) describes two methods for embedding
assembly code in a C file.

There are several areas in which the Xtools Z8 Encore! compiler by design does
not support the full ANSI Standard. The largest group of these is the omission of
parts of the Standard Library which are not useful for embedded applications,
such as those relating to file I/O and other services that would typically be pro-
vided in a desktop operating system. This type of limitation is common enough
that ANSI actually designates a class of compilers with the term free-standing
implementation, to indicate that they are intended to be used in an environment
where the services of a large-scale operating system are not available. A free-
standing implementation is only required to support the part of the Standard
Library contained in the headers <stddef.h>, <stdarg.h>, <limits.h>, and
<float.h>.

The Xtools Z8 Encore! compiler actually implements much more of the Standard
Library than required by this definition, including the majority of the headers and
Using the ZiLOG Xtools Z8 Encore!® C Compiler WP000602-0904

White Paper
Using the ZiLOG Xtools Z8 Encore!® C Compiler

5

functions of the Standard Library. These library modules are delivered with the
compiler inside each distribution of ZDS II, in the form of both source code and
pre-compiled libraries. For a full listing of the library functions supported by the
compiler, see the ZDS II for Z8 Encore! User Manual (UM0130).

Because of the Z8 Encore!'s nature as an 8-bit processor, double-precision (64-
bit) floating-point computations would be very slow on the Z8 Encore! and are not
supported. The compiler treats the keyword double as being identical to float
and implements single-precision IEEE standard floating-point values in either
case. For performance reasons, the Xtools compiler does not implement the full
IEEE floating-point standard: overflow/underflow detection and the NotANumber
convention are not fully supported. These restrictions should not affect most
embedded developers' use of floating-point computation.

Guidelines for Writing Robust and Efficient Code
In addition to standard good practice for developing C applications in any environ-
ment, there are some additional issues that embedded developers need to con-
cern themselves with, especially when trying to keep code size to a minimum. In
this section we offer some advice on several topics that frequently cause prob-
lems in user applications: ANSI type promotions, memory model and frame
usage, the volatile keyword, large local arrays, use of the floating-point library,
and the standard library function sprintf(). We close the section with some
comments on how to benchmark code.

Users will also find the ZiLOG white paper Z8 Encore! Reducing Compiled Code
Size: Case Study and Programming Tips, WP0009, useful as a case study of the
application of many of these ideas to a real-world example.

Integer Type Promotions
The Xtools Z8 Encore! compiler follows all the rules of the ANSI Standard for eval-
uating integer expressions. However, some of the standard's rules for integer type
promotions require the compiler to generate code that, in practice, is much larger
than necessary. There are even cases where the standard-compliant code may
not work as intended. There are a couple of approaches to avoiding these prob-
lems. In this section we first explain the reason for this issue and then describe
how to avoid it.

The standard has fairly elaborate rules for the promotion of integer types (elabo-
rate partly because of C's convention that the actual sizes of the integer types can
vary from one machine to another). The basic idea is that in every operation that
takes two integer operands, the compiler should make sure that the two operands
are of the same real type (i.e., occupy the same number of bytes, and are either
both signed or both unsigned) before performing the operation. To ensure this, if
the types are different, then the compiler must generate code to "promote" the
Using the ZiLOG Xtools Z8 Encore!® C Compiler WP000602-0904

White Paper
Using the ZiLOG Xtools Z8 Encore!® C Compiler

6

smaller type to the larger type before doing the operation. For example, if an 8-bit
char is to be compared to a 32-bit long, the char will first be promoted by con-
verting it to a long; then two longs are compared.

This promotion rule can wreak havoc in embedded applications because the stan-
dard defines the data type of any integer constant value as int unless appended
with "U" (making it an unsigned int) or "L" (making it a long). Notice that there is
no way to designate that an integer constant should be treated as a char. This
definition means that in simple code like

char x;

x = 'T';

or

char y;

…

y &= 0x55;

the constants 'T' (i.e., the ASCII code for capital T) and 0x55 are to be treated as
being of int type. Despite the almost irresistible tendency of the embedded pro-
grammer to think of these as "char constants", they are not, according to the stan-
dard.

The following example will illustrate the problems that result from this situation.
Consider the code

char buffer[20];

…

if (buffer[0] == 0xff) do_something();

This code will cause two problems. First, unnecessary object code will be gener-
ated to promote the char value buffer[0] to an int so that it can be compared
to the int value 0xff. But more surprisingly, the comparison will always say that
the two values are unequal, even when the value of buffer[0] is 0xff! That
happens because buffer, not being explicitly stated to be unsigned, is taken to
be an array of signed chars. Therefore, when converting it to an int (which by
default is 16 bits in the Z8 Encore!), its value is sign-extended to 0xffff. How-
ever, the constant 0xff is by definition a signed int, so written in the same format
its value is 0x00ff. This is virtually certain not to be the behavior intended by the
developer, but it is correct compiler behavior and is required for compliance with
the ANSI standard. The most widely used C compiler for the desktop behaves the
same way. What's unique to the embedded environment is the prevalence of code
like this as designers, rightly, try to minimize the data sizes of their variables to
reduce memory requirements.
Using the ZiLOG Xtools Z8 Encore!® C Compiler WP000602-0904

White Paper
Using the ZiLOG Xtools Z8 Encore!® C Compiler

7

Aside from missing the code designer's intent, the code bloat problem can easily
be even worse than we have suggested so far. Consider code like:

char a, b, c;

…

a = (b | c) & 3;

Because 3 is defined by the standard to be an int constant, the compiler has to
generate code to promote both b and c to ints, do all the operations on the right-
hand side of the assignment on int (16-bit) quantities, and then convert the result
back to a char at the end of the statement before assigning it to a.

Fortunately, it's relatively easy to avoid all these problems. The simplest way is to
disable strict ANSI promotions when compiling the code. You can do that in the
Xtools C compiler by deselecting the check box for for Project > Settings > C >
Code > Generation > ANSI Promotions. This will have the effect of treating both
sides of the comparison in the last example as (char) type. This is the best solu-
tion for most users who are developing typical embedded applications and, begin-
ning with release 4.8 of ZDS II for the Z8 Encore!, is now the default. The Xtools
Z8 Encore! compiler can provide a compile-time message when promotions are
skipped by using the #pragma WARNSKIP. After encountering this #pragma, the
compiler will issue a warning whenever it detects that a promotion will be ignored.

Applications that benefit from disabling promotions generally use char variables
for 3 reasons: to represent 8-bit registers or hardware devices, to represent actual
text characters like 'Q' in text-oriented applications, or to do simple arithmetic (for
example, incrementing a counter, or adding very small integers). These are all
characteristic of typical applications of the Z8 Encore!.

The kinds of applications that would have trouble with this approach are those that
rely on the ANSI Standard's special handling of chars (and shorts) in some special
circumstances. The ZDS II User Manual explains those circumstances in detail
with example code. To summarize, these special circumstances occur either
when a computation is done on unsigned char variables and then the result is
assigned to a signed int, or when the comparison operators like < and > are
used to compare a signed char to an unsigned char. Both of these are generally
bad practice. In these special cases, the ANSI Standard promotions in effect put
in a "miracle promotion" to "save" the bad code, by promoting the variables to a
type that makes these dangerous operations give the expected result. However,
the standard only does this for chars and shorts; it doesn't apply this rescue to the
same dubious code if the variables are ints or longs. And the price for this rescue
is bloated code for a great variety of char operations, including many that would
be safe without it. It's almost always better to turn off the promotions and simply
avoid writing that kind of code. Note that disabling promotions does means that
the programmer must be sure that the value of the char variable will not exceed
the limits of an 8-bit quantity.
Using the ZiLOG Xtools Z8 Encore!® C Compiler WP000602-0904

White Paper
Using the ZiLOG Xtools Z8 Encore!® C Compiler

8

If you can't purge your code of those kinds of operations, or if portability is a great
concern, there is an alternative solution to the problem shown above. You can
modify your code to explicitly cast "char constants" to char:

char buffer[20];
…
if (buffer[0] == (char)0xff) do_something();
/* Now it works! */

This is the only way to create char constants while remaining in strict compliance
with the standard. Since this uses only elements of the language standard, it is
guaranteed to give the same results on any platform and with any compliant com-
piler. The drawbacks are the need to modify your code and to make sure that you
catch every example of a place where the cast could be needed.

Finally, on the other end of the spectrum from what we have considered so far, the
absence of promotions when needed can also sometimes cause incorrect results.
Consider this code:

#define PROCESSOR_CLOCK_FREQ 18432000 /* 18.432 MHz */
#define UART_BIT_RATE 9600 /* 9.6 kbit/s */
#define BRDIV (PROCESSOR_CLOCK_FREQ / (UART_BIT_RATE * 16))

The calculation for BRDIV comes out completely wrong.

Here the culprit is a necessary promotion that does not take place. Again, both
9600 and 16 are taken by the compiler to be ints. But in the calculation of BRDIV,
their product is too large to fit into a 16-bit quantity, and so is truncated, giving a
completely incorrect result. (The constant 18432000 in this case was treated as a
long, since the compiler can tell that it's too large to fit into a 16-bit int.) The pro-
motion to a long doesn't occur until the next step in the complex calculation when
this product has to be divided into a long, which is too late to save the situation.
Again, the compiler behavior is correct but the result is wrong.

There are several ways to fix this problem. The safest is to promote the constants
involved to longs (which, by the rules of type conversion, will force any other val-
ues used in calculations with these constants also to be longs). So either or both
of the following changes will solve the problem:

#define UART_BIT_RATE 9600L /* 9.6 kbit/s */

or
#define BRDIV (PROCESSOR_CLOCK_FREQ / UART_BIT_RATE * 16L))

Memory Models and Call Frames
Several issues related to memory model and call frame usage can have a major
effect on code size. The relative importance of these items and, in extreme cases,
even the sign of the effect (i.e., whether they help or hurt) can vary widely depend-
Using the ZiLOG Xtools Z8 Encore!® C Compiler WP000602-0904

White Paper
Using the ZiLOG Xtools Z8 Encore!® C Compiler

9

ing on the mix of code constructs in your application, so when code size is an
issue, it's a good idea to experiment.

In many cases the greatest single code savings is to use static frames if possible.
As discussed above in "Embedded Modifications to the ANSI C Standard" on
page 2, this option must be used with some care because errors will ensue if it is
applied blindly and your code uses either recursion or calls through function point-
ers. You can avoid those errors by finding the functions that use those language
features and declaring them reentrant. Note that in the case of function pointers,
it is the functions to which the pointers refer, not the functions that make the calls,
that must be marked as reentrant.

The small memory model will always produce more efficient code than the large
model, if your application can use it. Use of the small model places stringent limits
on the data space available for the stack and data, as discussed in "Embedded
Modifications to the ANSI C Standard" on page 2. Use of the small model does not
impose any restriction on your code size. It does help to produce smaller code, by
enabling the compiler to use shorter instructions with more compact addressing
modes. If you are near but slightly over the data-space limits of the small model,
you might still be able to use the small model by declaring enough selected global
or static variables as far to get your usage of Rdata down to the available space.
The code used to access those far variables will be less efficient than the default
data-access code, so if you follow this plan you should choose variables that are
seldom accessed to be far.

Conversely, if (like most Z8 Encore! users) you are forced to use the large model
because of your data space and stack requirements, you can still get some of the
benefit of the more efficient code which is typical of the small model. To do so,
carefully choose the most frequently used global or static variables and declare
them near. This will help with both code size and even more so with execution
speed, since your more frequently executed code will be more efficient.

One way of minimizing the amount of RAM data space your application needs is
to allocate a single buffer in RAM to hold, for example, the largest of a number of
strings you might need to display. The numerous strings are stored permanently in
ROM where space is often less tight. Each string in turn is then copied from ROM
to RAM at the moment when it is needed. Example code to do this is given in both
the ZDS II distribution FAQ, and the ZDS II for Z8 Encore! User Manual (UM0130)
under "Minimizing use of Rdata".

Another way of saving space when data space (Rdata and Edata; see the ZDS II
for Z8 Encore! User Manual, UM0130) is at a premium would be to declare initial-
ized tables that are not modified in the code with the rom keyword. The trade-off
here is that the execution speed is likely to be somewhat slower, as the number of
addressing modes available to the compiler for accessing rom variables is very
small.
Using the ZiLOG Xtools Z8 Encore!® C Compiler WP000602-0904

White Paper
Using the ZiLOG Xtools Z8 Encore!® C Compiler

10
Volatile
The keyword volatile was a relatively late addition to the ANSI standard, but is
crucial in many embedded applications. Normally, a compiler assumes that the
values of variables do not change except when the program writes to them explic-
itly. But this assumption can be disastrous in an embedded system where the vari-
able represents the contents of a hardware register that can be modified
asynchronously by the system hardware. As an example, consider code like:

int system_var = 0;

for (counter = 0; counter < 1000; counter++)
{

if (system_var)
{

/* ... critical processing loop ... */
system_var = 0;

}
}

Here the programmer's intent is that system_var, which is updated by hardware
when certain system events take place, be used as a flag to drive critical process-
ing when the events occur. However, the optimizing compiler can see that
system_var is only assigned to in two statements, and is assigned to be 0 in both
locations. Therefore, the compiler would normally be entitled to assume that
system_var is 0 at all times. In this case, that means that the condition if
(system_var) can never be true; therefore the critical processing loop can never
be reached (it is "dead code"). Therefore, in turn, the entire contents of the for
loop are empty and the compiler is justified in generating no object code for this at
all! Here's a case where the compiler's reduction of code size is a bit too extreme
for anyone's taste.

The solution is to declare system_var as volatile:
volatile int system_var = 0;

The volatile keyword was added to the language to handle exactly this situa-
tion. It lets the compiler know that this variable must be assumed to be unknown
at all times, so that its value must be freshly read every time it is accessed.

Large Local Arrays
Due to the Z8 Encore! processor architecture, accesses to stack variables can be
done efficiently as long as the stack offset is no larger than 127 bytes. For larger
stack offsets, the variables must be accessed by a different method which is much
less efficient in both code size and execution speed. This limitation doesn't often
come into play unless the programmer allocates a local array that exceeds this
size. Manipulating large arrays will be much more efficient if the arrays are allo-
Using the ZiLOG Xtools Z8 Encore!® C Compiler WP000602-0904

White Paper
Using the ZiLOG Xtools Z8 Encore!® C Compiler

11
cated as global or static variables. If static frames are in use, this restriction does
not apply.

Floating-Point Library

Users who are working with floating-point values in their calculations need to
make sure that they are linking to the "real" floating-point library. The Xtools distri-
bution provides a dummy version of the floating-point library as well, as docu-
mented in the section "Troubleshooting C Programs" of the ZDS II for Z8 Encore!
User Manual (UM0130). In that dummy version, all of the floating-point functions
are replaced with stubbed-out versions, reducing code size to a minimum. If these
stubbed-out versions are linked into an application that does actual floating-point
calculations, garbage results will be computed.

To link in the real floating-point library, make sure you have checked the box
Project > Settings > C > General > Use Floating Point Library. As with any
library, the linker will pull in functions from the floating point library only if they are
actually called by your application.

The reason for the existence of the dummy floating-point library is explained in the
item on sprintf() below.

Sprintf

One of the most common causes of user code becoming substantially larger than
expected is the use of the standard library function sprintf(). This is, of course,
commonly used in embedded applications for tasks like outputting text to a display
device. Unfortunately, it typically increases the size of the overall application by
something in the neighborhood of 5 kbytes, even if used only for a couple of sim-
ple calls.

The problem is that sprintf(), like all members of the printf() family of func-
tions, must be prepared to accept a great number of formats and so the code for
sprintf() contains calls to a large number of other functions. The ZDS II linker is
smart and, when resolving symbols, will only link in code for functions that may be
called by the application - it doesn't link in the entire library containing those func-
tions. So if you check the box Project > Settings > Linker > Input > Use C Runt-
ime Library, which allows the linker to link to the pre-compiled library if necessary
to resolve function calls, it will pull in only those functions called by sprintf(),
plus the functions called by those functions, etc. The trouble is that by the time all
these calls are resolved, a large number of functions have been pulled in at a sig-
nificant cost in code size. The basic difficulty here is that the linker can see the
large number of functions that may be called by sprintf(), but doesn't know that
in your application the number of functions that will be called may be much
smaller if, for example, you only use one or two simple formats.
Using the ZiLOG Xtools Z8 Encore!® C Compiler WP000602-0904

White Paper
Using the ZiLOG Xtools Z8 Encore!® C Compiler

12
Beginning with release 4.9 of ZDS II for the Z8 Encore!, the solution to these prob-
lems is to select the check box Project>Settings>C>Code Generation>Gener-
ate Printfs Inline (this check box is selected by default). When this option is
selected, the compiler parses the format strings used in calls to printf() and
sprintf(), and replaces the function call with direct calls to lower level helper
functions. This removes the rather huge footprint required to parse the format
strings at runtime, and results in only functions actually required by the format
strings being linked into the application. For example, if you do not attempt to
print a floating point value, a call to printf() no longer links in the floating point
library.

In order for this option to be beneficial, it is important that all calls to printf() and
sprintf() be replaced; otherwise you get the huge footprint of the runtime pars-
ing routines plus the somewhat larger inline code for those calls that were handled
inline. And in order that a call to printf() or sprintf() be replaced, it is
required that the format be a string literal rather than a pointer to a character. For
example, the following code will NOT allow the compiler to achieve the code size
benefits:

char hello[]="Hello World\n";
printf(hello); // Can't do this inline

but the following will work:
char hello[]="Hello World";
printf("%s\n", hello); // OK

Another requirement for inline processing of printf() and sprintf() to be ben-
eficial is that the related functions vprintf() and vsprintf() not be used. This
is because these functions cannot be processed inline, so that using them pulls in
the large footprint of the real (s)printf routines.

If either of these conditions is violated, the compiler will generate a warning mes-
sage to tell you that the intended benefit of inline generation of printfs is not being
obtained.

If you must disable the inline generation of printf() calls, and if your application
does not use floating point calculations, you should disable the floating point
library by deselecting the check box Projects > Settings > C > General > Use
floating Point Library. This is because the print function does not know that you
are not going to use a %f or %e format, and so must contain code to format floating
point values, which will then generate calls to add, subtract, and compare floating
point values, pulling in a large part of the floating point library for no purpose.

Benchmarking Code
Users often want to create a benchmark compilation of some test code for evalua-
tion purposes. Even more importantly, most users are concerned with how they
Using the ZiLOG Xtools Z8 Encore!® C Compiler WP000602-0904

White Paper
Using the ZiLOG Xtools Z8 Encore!® C Compiler

13
can be sure they have done the best job of optimizing the compiled code by some
criterion, most frequently code size. Here we offer some concise guidelines on
how to evaluate these kinds of questions.

The first point to make sure of in doing any kind of benchmark comparisons is to
compare like against like. For the Z8 Encore!, this means that of course the only
appropriate comparisons are to other 8-bit processors. If the benchmark code
uses larger data sizes than 8-bit entities extensively, 8-bit processors in general
will have to use more instructions than, say, a 16-bit processor to manipulate
those larger entities and will therefore tend to have larger compiled code.

To generate the most compact or fastest code for any particular C program on the
Encore, some experimentation is usually required. The first questions to look into
are whether you can use static frames and/or the small memory model, which are
usually preferable from the standpoint of efficiency. See "Memory Models and Call
Frames" on page 8 for a discussion of the issues involved. Sometimes, minor
changes to your code in this phase can have a big payoff if they allow you to use
those configurations. Once you have settled on the memory model and frame
type, investigate "Optimization Settings" on page 13. Again, a little experimenta-
tion will quickly show you which of the available optimizations are useful in your
particular application.

Project Settings and Configuration
In this final section, we offer a few comments on project settings and configuration
issues.

Optimization Settings

The best combination of optimization settings can depend on the mix of code
within a given project, so when trying to obtain the smallest code size or fastest
execution, some experimentation is a good idea. The two main optimizations are
available on the page Project > Settings > C > General > Optimizations: Mini-
mize Size and Maximize Speed. Since in most cases smaller code also runs
faster, in the great majority of C code these two optimizations will produce exactly
the same object code, but there can be small differences. It is also possible that
even the "Minimum Size" optimization can actually increase code size, by apply-
ing a tradeoff that will cut code size in most applications but doesn't work in your
particular application. Use your map file to check code size results and, again,
experiment.

For reasons described above in "Integer Type Promotions" on page 5, disabling
the setting Project > Settings > C > Code Generation > ANSI Promotions will
eliminate some type conversions that can, for some applications, result in a signif-
icant reduction in code size and execution time.
Using the ZiLOG Xtools Z8 Encore!® C Compiler WP000602-0904

White Paper
Using the ZiLOG Xtools Z8 Encore!® C Compiler

14
Another setting which usually, but not always, gives a modest decrease in code
size is to select Project > Settings > C > General > Debug Information > None.
When the compiler is asked to generate debug information, it also disables some
optimizations that tend to save space but confuse the debugger.

Greater control over individual optimizations can be achieved through the selec-
tion Project > Settings > C > Optimizations > Optimizations > Custom. How-
ever, there is generally no reason to go to this level of granularity. The Xtools
compiler applies all the optimizations that it safely can, consistent with the higher-
level optimization settings.

Standard setup
The default startup modules provided for Z8 Encore! projects (startupl.asm or star-
tups.asm for the large or small model, respectively) set up a number of required
initializations. Users who for whatever reason choose not to use these default
modules need to understand the services they provide and create their own
replacements if necessary. The appropriate default module, whose source code is
included in the release, is usually a good place to start and a good example. In a
nutshell, this code sets up some necessary vector tables, initializes the stack
pointer and register pointer, and then initializes the C runtime environment.

This initialization includes setting the near/far uninitialized global and static vari-
ables to zero, and copying the initialized variables from ROM to their near/far loca-
tions in the register file. If you are using the large model and you do not have any
near data then you can modify startup to remove the unnecessary initialization,
and vice versa for the small model. To do this you will have to add the modified
startup module to your project and set Project > Settings > Linker > Input >
Startup Module > Included In Project.

One item that is sometimes overlooked when users create custom setups is to set
the symbol _far_heapbot appropriately. This only arises with the large model,
because the small model doesn't have enough data space to perform dynamic
memory management. In the large model, if any dynamic memory allocation is
done in the user's application, malloc() will ultimately need to resolve this sym-
bol so that it knows where to find the memory heap. If the user uses the default
linker command file generated by the ZDS II IDE, _far_heapbot will be defined
by the linker. Otherwise, choosing an appropriate location for this depends on
details of the user's memory map. The heap is taken to begin at address
_far_heapbot + 1 and grow up from this location up to the stack pointer.

Header Files and Project Organization
The ZDS II distribution includes specific header files for each member of the Z8
Encore! family, which simplify the job of developing embedded C code for the indi-
vidual family members (e.g., eZ8F6422, eZ8F3221, etc.). These header files
Using the ZiLOG Xtools Z8 Encore!® C Compiler WP000602-0904

White Paper
Using the ZiLOG Xtools Z8 Encore!® C Compiler

15
define names and addresses (in the processor's internal I/O address space) of all
the Special Function Registers (SFRs) of the given family member, as well as the
Z8 Encore! interrupt vectors. When the appropriate header file is included in your
project, you can access each SFR by name in your C code. The SFR names used
are given in the Register File Address Map section of the Product Specification for
that family member, which is included among the documentation in the ZDS II
installation.

Beginning with the version 4.7 maintenance release of ZDS II for the Z8 Encore!,
it is no longer necessary to explicitly include a variant-specific header file such as
ez8f3221.h in your projects. Instead, you can now simply say

include <eZ8.h>

When this file is included, it will automatically define only those registers that are
appropriate for your selected CPU variant. This is done using conditional compila-
tion based on a preprocessor macro that represents your variant. This macro is
set on the basis of the setting Project > Settings > General > CPU in your
project. For backward compatibility, the older style, variant-specific header names
will still be supported for a time, but those headers will simply point at the new,
generic Z8 Encore! header eZ8.h.

Since these headers are all located in the directory "include" below your ZDS II
installation directory, that directory must be among the directories listed in Project
> Settings > C > Preprocessor > Include Paths. You do not ordinarily need to
do anything to set this up, as it should be included by default in the "User Paths"
part of that dialog setting.

The Xtools toolchain places no special requirements on the directory structure you
use to organize your project. You can use the Project > Add Files feature to
browse to your source files wherever you choose to locate them. As with any soft-
ware build system, you will need to make sure that if you change the locations of
header files and object files from the defaults, you also update the relevant project
settings so that the compiler and linker, respectively, can find them.

The one subtlety that can crop up occurs if you are using a fixed Link Control File
rather than letting the system build a fresh one with each build to match your
project settings. This happens if you have selected Project > Settings > Linker >
Input > Link Control File > Use Existing. In this case, when you add a new file
to your project and build it, the linker does not automatically become aware of the
new object file and add it to the link. You will need to go in and edit the Link Con-
trol File to add the new object.
Using the ZiLOG Xtools Z8 Encore!® C Compiler WP000602-0904

White Paper
Using the ZiLOG Xtools Z8 Encore!® C Compiler

16
This publication is subject to replacement by a later edition. To determine whether a later edition
exists, or to request copies of publications, contact:

ZiLOG Worldwide Customer Support Center
532 Race Street
San Jose, CA 95126
USA
Telephone: 408.558.8500
Fax: 408.558.8300
www.zilog.com

ZiLOG is a registered trademark of ZiLOG Inc. in the United States and in other countries. All other
products and/or service names mentioned herein may be trademarks of the companies with which
they are associated.

Information Integrity
The information contained within this document has been verified according to the general
principles of electrical and mechanical engineering. Any applicable source code illustrated in the
document was either written by an authorized ZiLOG employee or licensed consultant. Permission
to use these codes in any form, besides the intended application, must be approved through a
license agreement between both parties. ZiLOG will not be responsible for any code(s) used
beyond the intended application. Contact the local ZiLOG Sales Office to obtain necessary license
agreements.

Document Disclaimer
©2004 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices, applications,
or technology described is intended to suggest possible uses and may be superseded. ZiLOG, INC. DOES
NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZiLOG ALSO DOES
NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER
TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE.
Devices sold by ZiLOG, Inc. are covered by warranty and limitation of liability provisions appearing in the
ZiLOG, Inc. Terms and Conditions of Sale. ZiLOG, Inc. makes no warranty of merchantability or fitness for any
purpose Except with the express written approval of ZiLOG, use of information, devices, or technology as
critical components of life support systems is not authorized. No licenses are conveyed, implicitly or
otherwise, by this document under any intellectual property rights.
Using the ZiLOG Xtools Z8 Encore!® C Compiler WP000602-0904

http://www.zilog.com

	Abstract
	Embedded Modifications to the ANSI C Standard
	Guidelines for Writing Robust and Efficient Code
	Integer Type Promotions

	Memory Models and Call Frames
	Volatile
	Large Local Arrays
	Floating-Point Library
	Sprintf

	Benchmarking Code
	Project Settings and Configuration
	Optimization Settings
	Standard setup
	Header Files and Project Organization

	Using the ZiLOG Xtools Z8 Encore!® C Compiler

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

