

T

echnical Note

Setting Interrupts in ADL Mode

on eZ80190, eZ80L92, eZ80F92,

and eZ80F93 Devices

TN002102-1203
General Overview

This Technical Note describes how to set maskable interrupts for the eZ80190, eZ80L92,
eZ80F92, and eZ80F93 devices in ADL mode. The document discusses how to relocate the
interrupt vector table and map interrupt service routines in the interrupt vector table.

A broader discussion about this topic covers the entire family of eZ80® devices in both ADL
and Z80 modes. Please refer to the ZiLOG Application Note titled Setting Interrupts with the
eZ80® CPU (AN0170).

Discussion

All maskable interrupts for the eZ80® family of devices use the eZ80® CPU’s vectored inter-
rupt function. The eZ80F91-based interrupt vector locations have a 24-bit address. The
remainder of the eZ80® devices, which are discussed in this Technical Note, have a 16-bit
address. See Table 1, which lists the interrupt vector addresses in ADL mode for each of
these eZ80® devices.

Relocating the Interrupt Vector Table

TIMER0 (PRT 0) ISR starts at the three-byte address location 204800h. The
default TIMER0 interrupt vector location resides at 0Ah for the eZ80F92 MCU.
Assuming that the interrupt vector table is relocated to start at address E000h, this
start location points to location E114h, which contains a jump instruction to the
TIMER0 ISR address. Figure 1 illustrates the default and relocated jump tables for
the TIMER0 ISR location.

Table 1. Interrupt Vector Address for eZ80® Devices in ADL Mode

eZ80®
Device

Size of I
Register

Size of
IVECT

Register
ISR Address
(ADL Mode)

eZ80F91 16 bits 9 bits {I[15:1], IVECT[8:0]}*

eZ80F92 8 bits 8 bits {I[7:0], IVECT[7:0]}

eZ80F93 8 bits 8 bits {I[7:0], IVECT[7:0]}

eZ80L92 8 bits 8 bits {I[7:0], IVECT[7:0]}

eZ80190 8 bits 8 bits {I[7:0], IVECT[7:0]}

Note: Only 15 bits of the I Register are used. The 16th bit is overwritten by
the msb of the IVECT Register.
Technical Note 1

Setting Interrupts in

ADL

 Mode on eZ80190,

eZ80L92, eZ80F92, and eZ80F93 Devices

The following start-up code illustrates the type of code that must be added to the user’s
existing startup.asm file, when relocating the interrupt vector table using eZ80® devices
other than the eZ80F91 MCU, with the 8-bit I Register and the 8-bit IVECT Register.

In this example, the interrupt vector table is relocated to address location E000h within on-
chip SRAM.

;***
;Each interrupt vector is a 16-bit address pointing into the __vecptr
;segment. This segment must be aligned on a 256 byte boundary of RAM ;
;and must reside in the lower 64KB of memory.
;***
.assume ADL=1 ;This is an assembler

;directive

RELOCATED_VECTOR_TABLE EQU E000h
NUM_VECTORS EQU 128
. def __vector_table
define __vectab, space=RAM, align=256
. sect "__vectab"
ORG RELOCATED_VECTOR_TABLE
__vector_table:
ds NUM_VECTORS*2 ;Each vector is a 2-byte

;address pointing into the
;__vectptr segment

Figure 1. Memory Map Relocating Interrupt Vector Address with Jump Table

Default Interrupt Vector Table
starting at 0000h; I[7:0] = 00h

0000h

0002h

0004h

0006h

0008h

000Ah

000Ch

000Eh

0010h

TIMER0

Relocated Interrupt Vector Table
starting at E000h; I[7:0] = E0h

E000h

E002h

E004h

E006h

E008h

E00Ah

E00Ch

E00Eh

E010h

TIMER0

 Jump Table starting at E100
mapped to Vector Table at E0h

E000h

E002h

E004h

E006h

E008h

E00Ah

E00Ch

E00Eh

E010h

E100

E104

E108

E10C

E110

E114

E118

E11C

E120

Jump Table with instruction to the
TIMER0 ISR located at 204800h

E100h

E102h

E103h

........

.........

.........

E114h

E115h

E116h

xxh

C3h

00h

48h

E117h 20h

xxh

xxh

xxh

xxh

xxh

Opcode for Jump
 Instruction
Technical Note TN002102-1203 2

Setting Interrupts in ADL Mode on eZ80190,
eZ80L92, eZ80F92, and eZ80F93 Devices
;***
; This start-up code relocates the vector table from absolute 0000h
; location to E000h location. It loads I Registers with the value E0h.
;***
im 2 ; Interrupt mode 2
ld, __vector_table >> 8 & 0ffh
ld i, a ; Load interrupt vector base
;**
*;***

The following code is an illustration of the kind of code that can be added to the user’s exist-
ing startup.asm file to locate the jump table within the 64 KB memory space, when using
eZ80® devices other than the eZ80F91 MCU.

In the following sample code, the jump table is relocated to address location E100h within
on-chip SRAM.

;***
;Define jump table. Each entry is a JP.LIL to an interrupt handler.
;This segment must reside in the lower 64KB of RAM.
;***
RELOCATED_JUMP_TABLE EQU E100h
define __jumptab,space=RAM
.sect "__jumptab" ; __vectors is predefined
ORG RELOCATED_JUMP_TABLE
__jump_table:
ds NUM_VECTORS*4 ; Each entry is a JP.LIL to a handler
;**
*;***

The following lines of code illustrate how to map the jump table to the relocated vector
table.This start-up code must be added to the user’s existing startup.asm file.

;**
ld hl,__vector_table
ld b,NUM_VECTORS
ld iy,__jump_table
$1:
ld.sis (hl),iy ; store vector
inc hl
inc hl ; next vector address
lea iy,iy+4 ; next jp.lil address
dec b
jr nz,$1
;**
*;***
Technical Note TN002102-1203 3

Setting Interrupts in ADL Mode on eZ80190,
eZ80L92, eZ80F92, and eZ80F93 Devices
The following start-up code illustrates the type of code that must be added to the user’s
existing startup.asm file when relocating the interrupt vector table and using the 8-bit I
Register and the 8-bit IVECT Register on eZ80® devices other than eZ80F91.

In the following sample code, the interrupt vector table is relocated to address location
3E00h in on-chip Flash memory.

;***
; Each interrupt vector is a 16-bit address pointing into the __vecptr
; segment. This segment must be aligned on a 256 byte boundary of ROM ;
;and must reside in the lower 64KB of memory.
;***
.assume ADL=1 ; This is an assembler directive

RELOCATED_VECTOR_TABLE EQU 3E00h
NUM_VECTORS EQU 128
. def __vector_table
define __vectab, space=ROM, align=256
. sect "__vectab"
ORG RELOCATED_VECTOR_TABLE
__vector_table:

dw __jump_table, __jump_table+2,------------- __jump_table+254

;***
; This start-up code relocates the vector table from absolute 0000h
; location to E000h location. It loads I Registers with the value E0h.
;***
im 2 ; Interrupt mode 2
ld, __vector_table >> 8 & 0ffh
ld i, a ; Load interrupt vector base
;**
*;***

The following code is an illustration of the kind of code that can be added to the user’s exist-
ing startup.asm file to locate the jump table within the 64 KB memory space, when using
the eZ80® devices other than the eZ80F91 MCU.

In the following sample code, the jump table is relocated to address location 3F00h in on-
chip Flash memory.

;**
;Define jump table. Each entry is a JP.LIL to an interrupt handler.
;This segment must reside in the lower 64KB of ROM.
;***
RELOCATED_JUMP_TABLE EQU E100h
define __jumptab,space=ROM
.sect "__jumptab" ; __vectors is predefined
ORG RELOCATED_JUMP_TABLE
__jump_table:
Technical Note TN002102-1203 4

Setting Interrupts in ADL Mode on eZ80190,
eZ80L92, eZ80F92, and eZ80F93 Devices
ORG RELOACATED_JUMP_TABLE+%0A ;%0A is the address of the
;timer0 interrupt vector

Db %C3;Op Code for jump
.trio _ISR_timer0 ;maps the address of the

;timer0_isr
XREF _ISR_timer0 ;to relocated jump table
;**
*;***

Mapping the ISR Location in the Interrupt Vector Table

The maximum addressable capacity of eZ80® devices is 16 MB.

ZiLOG recommends that the I Register value for eZ80® devices be changed from
its default value of 00h to avoid conflict between the NMI, RST instruction
addresses, and the maskable interrupt vectors.

The interrupt vectors must be located within the 64 KB address space for eZ80® devices
other than the eZ80F91 MCU. Because the interrupt vector location can take only two-byte
addresses (see Table 1), the ISR must also be located within the same 64 KB address
space. However, by using a jump table, the ISR can be located anywhere in the 16 MB
address space. The jump table, however, must be located within the 64 KB memory space
where the interrupt vectors are also located.

For example, the default TIMER0 (PRT 0) interrupt vector for the eZ80190 MPU is located
at 06h. Therefore, the TIMER0 interrupt service routine’s address—123456h, is mapped
as follows:

{I Register [7:0], 06h} ------------> 56h
{I Register [7:0], 07h} ------------> 34h
{I Register [7:0], 08h} ------------> 12h
{I Register [7:0], 09h} ------------> NOT USED

Writing the Interrupt Service Routine

To create an interrupt service routine in ADL mode, the interrupt keyword is used. This
keyword is a storage class that is applicable only to functions. Alternatively, a keyword com-
bination of #pragma interrupt can be used.

For example, to write an interrupt service routine for TIMER0, use either of the two code
segments presented below.

interrupt void ISR_Timer0 (void)
{
unsigned char temp= 10;
....;
....;

}

Note:
Technical Note TN002102-1203 5

Setting Interrupts in ADL Mode on eZ80190,
eZ80L92, eZ80F92, and eZ80F93 Devices
or

#pragma interrupt
void ISR_Timer0 (void)
{
 unsigned char temp = 10;;
;
;
}

The _set_vector function is used to attach an interrupt service routine (which is a C func-
tion) to an interrupt vector. The _set_vector routine takes two arguments—the first is an
integer defining the interrupt number, and the second is the name of the associated interrupt
service routine.

The following sample code illustrates how the _set_vector function is called for the
remainder of the eZ80® devices.

define TIMER0 0x14 // Vector offset value for TIMER0
//(PRT 0)as mentioned in vector table
// for eZ80F92 * 2 (0Ah * 2)
// Vector offset for TIMER0 (PRT 0)
// for eZ80190 is 06h (06h * 2)

include <ez80.h>

void ISR_TIMER0(); // Function prototype declaration
void Init_TIMER0 (void); // Function prototype declaration

void set_vector(unsigned short int, void(*handlr)(void);

Init_TIMER0 ()
{
_set_vector(TIMER0, ISR_Timer0);
Initialize TIMER0;

....;

....;
}

The following start-up code must be added to the user’s existing startup.asm file.

;***
;Define __set_vector to install a user interrupt handler
;
;void _set_vector(unsigned short vector, void (*hndlr)(void));
;
;
;Argument1 - address of user interrupt handler
Technical Note TN002102-1203 6

Setting Interrupts in ADL Mode on eZ80190,
eZ80L92, eZ80F92, and eZ80F93 Devices
;Argument2 - define TIMER0 0x14 (for eZ80F92)
;
;***
.def __set_vector
__set_vector:
ld ix, 0

 add ix, sp
 ld hl,0 ; Clear UHL
 ld.sis hl, (ix+3) ; Vector offset
 ld bc, RELOCATED_JUMP_TABLE

 add hl, bc ; hl is address of jp
 ld (hl), %C3 ; Op Code for jump
 inc hl ; hl is address of handler
 ld bc, (ix+6) handler
 ld (hl), bc ; store new vector address
 ret

;**
*;**
Technical Note TN002102-1203 7

Setting Interrupts in ADL Mode on eZ80190,
eZ80L92, eZ80F92, and eZ80F93 Devices
This publication is subject to replacement by a later edition. To determine whether a later edition
exists, or to request copies of publications, contact:

ZiLOG Worldwide Headquarters
532 Race Street
San Jose, CA 95126
Telephone: 408.558.8500
Fax: 408.558.8300
www.zilog.com

ZiLOG is a registered trademark of ZiLOG Inc. in the United States and in other countries.
All other products and/or service names mentioned herein may be trademarks of the
companies with which they are associated.

Information Integrity

The information contained within this document has been verified according to the general
principles of electrical and mechanical engineering. Any applicable source code illustrated
in the document was either written by an authorized ZiLOG employee or licensed
consultant. Permission to use these codes in any form, besides the intended application,
must be approved through a license agreement between both parties. ZiLOG will not be
responsible for any code(s) used beyond the intended application. Contact the local
ZiLOG Sales Office to obtain necessary license agreements.

Document Disclaimer

©2003 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the
devices, applications, or technology described is intended to suggest possible uses and
may be superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A
REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR
TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZiLOG ALSO DOES NOT ASSUME
LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY
MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED
HEREIN OR OTHERWISE. Except with the express written approval ZiLOG, use of
information, devices, or technology as critical components of life support systems is not
authorized. No licenses or other rights are conveyed, implicitly or otherwise, by this
document under any intellectual property rights.
Technical Note TN002102-1203 8

http://www.zilog.com

