

P

ed

or

T

echnical

Article

Configuring an Optimal

TCP/IP Stack

T

A000205-0404
Introduction
The ZiLOG TCP/IP Software Suite (ZTP) supports a large number of Internet protocols. Many applica-
tions do not require all of these protocols. This Technical Article explains how to generate an appropriate
ZTP configuration for ZiLOG’s eZ80® family of microprocessors by means of selecting applicable ZT
libraries.

The results show that each configuration fits within the eZ80F91 MCU’s internal Flash memory. The docu-
ment is structured into the following sections:

• Introduction

• ZTP Protocols and Libraries

• Code and Data Sizes

• Application Protocols

ZTP Protocols and Libraries
The ZiLOG TCP/IP Software Suite includes multiple libraries that can be linked to a project. These librar-
ies correspond to protocols in the TCP/IP stack. When creating a custom project, the user is only requir
to include the libraries specific to a particular application. However, some of the TCP/IP protocol libraries
are dependent upon other protocol layers. If a dependent library is not linked to a project, it is necessary in
some cases to include a stub file for the project to build properly.

Other libraries are completely independent of lower-level protocol libraries and can either be included in
excluded from a project without requiring the addition of a stub file1. The stub files are located in the
..\ztp\conf directory and can be used in place of the corresponding full protocol library. These stub
files and their corresponding library files are listed in Table 1.

1Many drivers can be omitted from ZTP by including a driver stub instead of the driver library itself.

Table 1. Stub and Library File Association

Stub Files Corresponding Library Files

icmp_stub.o ICMP.lib

igmp_stub.o IGMP.lib

net_stub.o NET.lib

tcp_stub.o TCP.lib

tty_stub.o TTY.lib

udp_stub.o UDP.lib

Note: *For PPP only.
ZiLOG Worldwide Headquarters • 532 Race Street • San Jose, CA 95126
Telephone: 408.558.8500 • Fax: 408.558.8300 • www.ZiLOG.com

http://www.ZiLOG.com

2

Configuring an Optimal TCP/IP Stack

Technical Article

s—

 a

Available L
P only
/ PPP

ARP.lib _stub.o

debug.lib

DGRAM.l AM.lib

ez80190.l F91.lib

ez80L92.l

ez80F91.l

ez80F92.l

ez80F93.l

HTTP.lib

ICMP.lib _stub.o

IGMP.lib _stub.o

IP.lib P.lib

NET.lib ET.lib

Note: *This included
by the eZ8
Some higher-level application layers depend on the TCP or UDP layer; this topic is discussed in the
ZiLOG TCP/IP Software Suite Programmer’s Guide (RM0008). Whenever stub files are used to configure
the ZTP stack without TCP or UDP, any of the associated TCP or UDP application libraries must be
excluded.

Table 2 shows the minimum linker configuration (libraries and stubs) required for a set of basic project
OS only, OS with shell, UDP only, TCP only, or both TCP and UDP. Each of these basic projects can be
configured to operate over PPP or Ethernet (or both). When using Ethernet, it is also necessary to include
library specific to the Ethernet NIC used in the hardware platform.

Table 2 also lists the libraries and object stubs that are included when developing a project using an eZ80®
Development Platform equipped with an eZ80F91 Module. For each project, the indicated libraries and
object stubs (shown in shaded cells) must be included2.

arp_stub.o* ARP.lib

pppsnmp_stub.o* SNMP.lib

2Not applicable to the application-level protocols (such as HTTP, TELNET, and SNMP).

Table 2. Available Libraries and their Project Configurations

ibraries

ZTP Configuration

OS Only
OS with

Shell
TCP only

w/ Ethernet
TCP only
w/ PPP

TCP/UDP w/
Ethernet

TCP/UDP
w/ PPP

UDP only
w/ Ethernet

UD
w

ARP.lib arp_stub.o ARP.lib arp_stub.o ARP.lib arp

ib DGRAM.lib DGRAM.lib DGRAM.lib DGRAM.lib DGRAM.lib DGR

ib ez80F91.lib ez80F91.lib ez80F91.lib ez80F91.lib ez80F91.lib ez80F91.lib ez80F91.lib ez80

ib

ib

ib

ib

icmp_stub.o icmp_stub.o icmp_stub.o icmp_stub.o icmp_stub.o icmp

igmp_stub.o igmp_stub.o igmp_stub.o igmp_stub.o igmp_stub.o igmp

IP.lib IP.lib IP.lib IP.lib IP.lib I

net_stub.o net_stub.o NET.lib NET.lib NET.lib NET.lib NET.lib N

 library resides in the eZ80® Compiler Library directory. The crtd.lib file is the debug version. The fdumy.lib file (1 byte) is also
0® compiler when the floating point library is not checked.

Table 1. Stub and Library File Association

Stub Files Corresponding Library Files

Note: *For PPP only.
TA000205-0404 ZTP Protocols and Libraries

3Configuring an Optimal TCP/IP Stack
Technical Article

netapp.lib

shell.lib

SNMP.lib p_stub.o

SYS.lib S.lib

TCP.lib stub.o

TCPD.lib

TTY.lib stub.o

UDP.lib DP.lib

XC.lib C.lib

crt.lib* rt.lib

eZ80_Web

Acclaim_W

CS8900A.l

RT8019AS

F91_EMAC

emac.lib

PPP.lib PP.lib

Available L
P only
/ PPP

Note: *This included
by the eZ8
ZTP includes libraries to support the EMAC devices listed in Table 3. Custom Ethernet drivers can be cre-
ated for NIC that use the Device Driver Kit (DDK), available with the emac.lib library.

ZiLOG no longer supports the RT8019AS driver, and currently does not ship eZ80® Devel-
opment Platforms using the RT8019AS controller. It is provided strictly for reference.

The ZiLOG TCP/IP Software Suite also includes libraries that support the eZ80® devices listed in Table 4.
It is necessary to include the library specific to the MCU that is used.

shell.lib

pppsnmp_stub.o pppsnmp_stub.o pppsnm

SYS.lib SYS.lib SYS.lib SYS.lib SYS.lib SYS.lib SYS.lib SY

tcp_stub.o tcp_stub.o TCP.lib TCP.lib TCP.lib TCP.lib tcp_stub.o tcp_

TCPD.lib TCPD.lib TCPD.lib TCPD.lib

tty_stub.o TTY.lib tty_stub.o tty_stub.o tty_stub.o tty_stub.o tty_stub.o tty_

udp_stub.o udp_stub.o udp_stub.o udp_stub.o UDP.lib UDP.lib UDP.lib U

XC.lib XC.lib XC.lib XC.lib XC.lib XC.lib XC.lib X

crt.lib crt.lib crt.lib crt.lib crt.lib crt.lib crt.lib c

site.lib

ebsite.lib

ib F91_EMAC.lib F91_EMAC.lib F91_EMAC.lib

.lib

.lib

PPP.lib PPP.lib P

Table 3. Network Interface Cards (NICs) and their Libraries

NIC Library

eZ80F91 w/ on-chip EMAC FP1_EMAC.lib

Cirrus Logic CS8900A Crystal EMAC CS8900A.lib

RealTek RTL8019AS EMAC RT8019AS.lib

Other EMAC using DDK emac.lib

Table 2. Available Libraries and their Project Configurations (Continued)

ibraries

ZTP Configuration

OS Only
OS with

Shell
TCP only

w/ Ethernet
TCP only
w/ PPP

TCP/UDP w/
Ethernet

TCP/UDP
w/ PPP

UDP only
w/ Ethernet

UD
w

 library resides in the eZ80® Compiler Library directory. The crtd.lib file is the debug version. The fdumy.lib file (1 byte) is also
0® compiler when the floating point library is not checked.

Note:
TA000205-0404 ZTP Protocols and Libraries

http://www.zilog.com/docs/ez80/software/ddkipworks.zip

4Configuring an Optimal TCP/IP Stack
Technical Article

uired to
Additionally, the sample website library can be used for each of the two eZ80® families, as shown in Table 5.

EMAC Library Files

The F91_EMAC.lib and ez80cs.lib library files support the eZ80F91 EMAC and the Crystal EMAC.
One of these libraries must be added to an Ethernet-based project. Neither of these libraries is req
be included in a PPP-only project. The added library must correspond to the proper EMAC on the eZ80®
Development Platform. The library can be added via either the Settings Options dialog in ZDS II or to the
source files by using the Add to Project command from the ZDS II Project menu.

Follow the brief sequence below to add a library.

1. Choose Settings… from the Project menu of ZDS II . The Settings Options dialog box appears.

2. Click the Linker tab and select the General category.

3. Enter the appropriate changes in the Object/Library modules: field or click the … button to select an
object/library file from an appropriate path.

Source Files For Any Project

At a minimum, all ZTP projects should include the source files boot.asm, EZ80_HW_Config.c,
ipw_ez80.c, and main.c. Samples of these files can be found in any of the ZTP project directories (for
example, ..\ztp\demo or ..\ztp\PPPDemo). When using an eZ80® Development Platform under nor-
mal circumstances, the EZ80_HW_Config.c file does not require modification3.

Table 4. ZTP-Supported eZ80® MCUs

ZiLOG Microcontroller Library

eZ80190 eZ80190.lib

eZ80L92 eZ80L92.lib

eZ80F91 eZ80F91.lib

eZ80F92 eZ80F92.lib

eZ80F93 eZ80F93.lib

Table 5. eZ80® Website Libraries

eZ80® Family Website Library

eZ80® MPU eZ80_Website.lib

eZ80Acclaim!™ MCU Acclaim_Website.lib

3EZ80_HW_Config.c may require modification for a custom hardware platform that utilizes an eZ80® micropro-
cessor.
TA000205-0404 ZTP Protocols and Libraries

5Configuring an Optimal TCP/IP Stack
Technical Article

et
The contents of main.c are dependent on the TCP/IP protocol layers required in the user’s application. At
minimum, main.c must include the following:

void
main
(
 void
)
{
}

The main routine above performs no function. When code is added to main.c to interface with TCP or
UDP, or to possibly start an optional protocol layer in ZTP, it is necessary to include header files from the
..\ztp\includes directory. The required list of header files is specific to the user’s application. For the
projects defined in Table 2, the following set of header files is a good starting point.

#include <kernel.h>
#include <bootinfo.h>

Source Files For PPP Projects

For projects utilizing the Point-to-Point Protocol (PPP), the user must explicitly initialize PPP by calling
the ppp_init function. The ppp_init function should be called just after the Ethernet driver is initialized (if
Ethernet is required in the user’s application). The main.c file in the ..\ztp\PPPDemo directory pro-
vides an example. This main.c file includes a netconfig function near the top of the file. The netconfig
function, shown below, can be found in the main.c file in the ..\ztp\pppdemo directory.

/*
 *--
 * netconfig - set network configuration parms using BOOTP
 *--
 */
void netconfig()
{
 init_ether(&Bootrecord, b_use_dhcp);
 ppp_init(SERIAL1, &ppp);
}

If the project uses both Ethernet and PPP, then the netconfig function shown above is appro-
priate. If the project does not require Ethernet, then the call to init_ether can be omitted.

Code and Data Sizes
For each configuration in Table 2, a ZDS II project was created and compiled using ZDS II–eZ80Acclaim!
version 4.6.0. Application code for the TCP and UDP projects include Open and Control functions to s
up a connection, Read and Write functions to echo a packet to the client, and the Close function to termi-
nate the connection. The C Compiler was set to perform size optimization.

Tables 6 and 7 summarize information from the map file generated as a result of building these projects.
Table 6 shows the number of bytes of code generated for the different segments within the projects. All

Note:
TA000205-0404 Code and Data Sizes

6Configuring an Optimal TCP/IP Stack
Technical Article

n

e

 that
an

e OS,

C
S

.b

.s

C

D
C

S

T

T

D
S

.I

D

B

T

segments within Table 6 can be located in ROM or Flash because their contents do not require alteratio
during run-time. After each project was built, it was downloaded to internal eZ80F91 Flash memory and
tested.. Table 7 shows the static RAM requirements (in bytes) for the various sections of each project. The
sections shown in Table 7 cannot be placed in ROM or Flash because their contents change during execu-
tion of the project. In all cases, the numbers in the table are Base 10 (decimal) values.

The contents of Tables 6 and 7 do not account for the dynamic memory requirements of th
ZTP stack.

Tables 8 and 9 provide summaries of the memory requirements (in bytes) for each of the ZTP libraries
can be included in a project. The tables are separated to denote those libraries that are mandatory in y
given project, and those libraries that are optional. In addition, Table 8 shows an approximation of the total
amount of dynamic RAM the various protocol layers can require.

Please be aware that the figures represented in Table 8 are dependent on many factors,
such as the functions called by the application, the number of threads running in th

Table 6. ROM Code and Data Sizes for each Project Configuration

ode
egment OS Only

OS with
Shell

TCP only
w/ Ethernet

TCP only
w/ PPP

TCP/UDP
w/

Ethernet
TCP/UDP
w/ PPP

UDP only
w/

Ethernet
UDP only
w/ PPP

ootstrap 110 110 110 110 110 110 110 110

tartup 376 376 376 376 376 376 376 376

ODE 23353 39215 91988 99626 96176 103814 69574 77136

ATA
OPY

5327 6144 5979 6696 6035 6752 5928 6645

TRSECT 1477 2603 3184 6070 3411 6302 3110 5974

EXT 61 61 67 64 67 64 64 61

otal ROM 30704 48509 101704 112942 106175 117418 79162 90302

Table 7. RAM Data Sizes for each Project Configuration

ata
egment OS Only

OS with
Shell

TCP only
w/ Ethernet

TCP only
w/ PPP

TCP/UDP
w/

Ethernet
TCP/UDP
w/ PPP

UDP only
w/

Ethernet
UDP only
w/ PPP

RQVect 256 256 256 256 256 256 256 256

ATA 5327 6144 5979 6696 6035 6752 5928 6645

SS 6231 8502 12228 11751 16626 16149 15322 14845

otal RAM 11814 14902 18463 18703 22917 23157 21506 21746

Note:

Caution:
TA000205-0404 Code and Data Sizes

7Configuring an Optimal TCP/IP Stack
Technical Article

ry re

Lib

eZ

D

3

Tot 7

No
1. .
2. ot
the amount of data currently being transferred, etc., and may not match the memo-
quirements of a custom application. It is possible that different versions of ZTP and
ZDS II will provide different numbers. Also, the linker in ZDS II only extracts the code
from the library that supports the function called. These figures should not be interpreted
as absolute maximum values; they should only be used as guidelines for considering
which protocol layers to include within the custom application.

Table 8. Mandatory Code and Data Sizes Along Protocol Boundaries

Compile Time Memory Requirements Run Time Heap Allocations1

rary Protocol

Fixed
Code

(CODE,
TEXT)

Uninitialized
Data
(BSS)

Initialized
Data

(DATA,
STRSECT)

of
Threads

Stack
Size BPOOL Misc.2 ROM RAM

crt C
Runtime

3662 3662

XC C
Runtime

5120 3 237 5357 240

SYS OS 15739 2837 509 1 2048 16248 6384

80F91 Hardware
Config.,
Serial

10584 47 6070 16654 6117

ARP ARP 3243 156 376 3619 532

GRAM TCP/UDP 1907 222 162 2069 384

NET BOOTP,
DHCP,
DNS,

HDLC,
RARP,
SMTP,
TFTP

29477 1150 4561 7 14336 81536 34038 10158

IP IP 10137 155 207 725 10344 1087

al 79869 5560 12122 8 16384 82261 0 91991 11632

tes:
 These values correspond to an inactive stack. When the stack starts processing data, the memory requirements increase
 The MISC heap memory allotment represents the 4.5% of dynamic memory usage spread throughout the stack that cann
be attributed to either stack or BPOOL allocations.
TA000205-0404 Code and Data Sizes

8Configuring an Optimal TCP/IP Stack
Technical Article

TP
a
f

L

F91

I

T

H

S 6

n

6

6

Not
1.
2. be
Application Protocols
Adding code to main.c may require the inclusion of optional protocol layers and/or features of the Z
stack. For example, to create a TCP-level application that transmits temperature control information to
monitoring station, the user might decide that it is helpful to also create an embedded website that acili-
tates remote viewing of the monitoring station data via a web browser. A project providing this feature
would necessitate adding the optional HTTP service (or daemon). This section shows the optional compo-
nents of ZTP that can be added to a project and the steps that must be taken to enable the feature. In most
cases, the application must call a specific API to enable or use the feature.

Table 9. Optional Code and Data Sizes Along Protocol Boundaries

Compile Time Memory Requirements Run Time Heap Allocations

ibrary Protocol

Fixed
Code

(CODE,
TEXT)

Uninitialized
Data
(BSS)

Initialized
Data

(DATA,
STRSECT)

of
Threads

Stack
Size BPOOL Misc. ROM RAM

_EMAC EMAC 6297 180 477 6774 657

PPP LCP, PAP,
IPCP

16641 55 3541 1 2048 20182 5644

ICMP ICMP 3899 104 42 3941 146

GMP IGMP 3167 163 31 1 2048 3198 2242

UDP UDP 1948 160 54 2002 214

TCP 20345 77 479 20824 556

CPD TCP 6100 1283 105 6025 1388

TTP HTTP 7281 755 1 2500 8036 3255

NMP SNMP 26130 307 15169 41299 1547

etapp SNMP,
TELNET,

TIME

1237 289 2 4096 1526 4385

shell Command
Interpreter

23292 264 6910 1 3072 30202 1024

TTY Terminal
Emulation

3809 2265 102 3911 2367

Total 120146 4858 27954 6 13764 148100 4657

es:
 These values correspond to an inactive stack. When the stack starts processing data, the memory requirements increase.
 The MISC heap memory allotment represents the 4.5% of dynamic memory usage spread throughout the stack that cannot
attributed to either stack or BPOOL allocations.
TA000205-0404 Application Protocols

9Configuring an Optimal TCP/IP Stack
Technical Article

e is
m

ding
If a function such as the above example is implemented in a library already included in the project, ther
no more effort required to use the function. Where appropriate, the library containing these optional co-
ponents has been identified to ensure that the user links all of the appropriate libraries.

Launch A TELNET Daemon

A TELNET daemon can be launched using the following sequence.

1. Call telnet_init()

2. Link in netapp.lib

Launch A Time Client

1. Call timed_738_init()

2. Link in netapp.lib

Start A Shell On A Serial Port

A shell can be started on a serial port using the following sequence:

1. Include shell.h

2. Link in shell.lib and tty.lib

3. Open a TTY device on the appropriate serial port (typically SERIAL0). Ensure that the correspon
variable b_xinu_uses_uart0 or b_xinu_uses_uart1 is set to TRUE in the file ipw_ez80.c.

4. Call shell_init() and pass the device ID of the TTY driver to be used as a parameter.

The following code fragment provides an example of how to start a shell.

if ((fd=open(TTY, (char *)SERIAL0,0)) == SYSERR) {
 kprintf(“Can‘t open tty for SERIAL0\n”);
 return SYSERR;
 }
kprintf(“Starting up a shell on device %d\n”, fd);
shell_init(fd);

Add Network-Related Shell Commands

The user can add custom commands to the shell from the previous section by calling:

shell_add_commands(netcmds, nnetcmds);

For example, the following code fragment shows how to add a mail and a tftp command to the default
shell.

char * mail_name = "mail"; // The string of characters you will type on the
console to execute the command
char * tftpdemo_name = "tftpdemo";
TA000205-0404 Application Protocols

10Configuring an Optimal TCP/IP Stack
Technical Article
struct cmdent *mycmds;

/*
 * In this example memory is dynamically allocated at run time to store
 * the command structure.
 */
mycmds = getmem(sizeof(struct cmdent) * 1);
mycmds[0].cmdnam = mail_name;
mycmds[0].cbuiltin = TRUE;
mycmds[0].cproc = x_mail;
mycmds[0].cnext=NULL;

mycmds[1].cmdnam = tftpdemo_name;
mycmds[1].cbuiltin = TRUE;
mycmds[1].cproc = x_tftpdemo;
mycmds[1].cnext=NULL;

shell_add_commands(mycmds, 2);

Initialize HTTP

To initialize a webserver, call http_init(). A few parameters must be passed into the call, but the
default values shown below should suffice for a typical webserver.

1. http_init(http_defmethods,httpdefheaders,website,80);

2. Include http.h

3. Link in to HTTP.lib

Initialize An SNMP Daemon

Network management protocols can be utilized by initializing an SNMP daemon. Follow the sequence
below.

1. Include snmp.h

2. Call snmp_init();

3. Link in SNMP.lib

Initialize A DHCP Client

Use of the DHCP client is controlled by a parameter on the call to init_ether. The first parameter to the
init_ether call is the boot record (see the next section). The second parameter is a boolean expression. If
this expression is TRUE, the DHCP client tries to obtain an IP configuration dynamically. If this expres-
sion is FALSE, the ZTP stack uses the static IP parameters specified in the boot record.

To enable DHCP, add the following code to main.c.

void
netconfig
(
 void
TA000205-0404 Application Protocols

11Configuring an Optimal TCP/IP Stack
Technical Article
)
{
 init_ether(&Bootrecord, TRUE);
}

A simpler way to enable or disable DHCP is to set the b_use_dhcp variable in the ipw_ez80.c file to
either TRUE (enable) or FALSE (disable).

Configure A Network

To modify the structure of the boot record, change the structure accordingly in the main.c file. The record
is included at the top of main.c. See the main.c files in any sample project.

struct BootInfo Bootrecord = {
 "192.168.1.1", /* Default IP address */
 "192.168.1.4", /* Default Gateway */
 "192.168.1.5", /* Default Timer Server */
 "192.168.1.6", /* Default File Server - Not currently Used */
 "",
 "192.168.1.7", /* Default Name Server */
 "",
 0xffffff00UL /* Default Subnet Mask */
 };
TA000205-0404 Application Protocols

12Configuring an Optimal TCP/IP Stack
Technical Article

ES NO

ort
r

This publication is subject to replacement by a later edition. To determine whether a later edition exists, or
to request copies of publications, contact:

ZiLOG Worldwide Headquarters
532 Race Street
San Jose, CA 95126
Telephone: 408.558.8500
Fax: 408.558.8300
www.ZiLOG.com

Document Disclaimer

ZiLOG is a registered trademark of ZiLOG Inc. in the United States and in other countries. All other products and/or
service names mentioned herein may be trademarks of the companies with which they are associated.

ZiLOG is a registered trademark of ZiLOG Inc. in the United States and in other countries. All other products and/or
service names mentioned herein may be trademarks of the companies with which they are associated.

©2004 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices, applications, or
technology described is intended to suggest possible uses and may be superseded. ZiLOG, INC. DOT
ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION,
DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZiLOG ALSO DOES NOT ASSUME LIA-
BILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Except with the
express written approval ZiLOG, use of information, devices, or technology as critical components of life supp
systems is not authorized. No licenses or other rights are conveyed, implicitly or otherwise, by this document unde
any intellectual property rights.
TA000205-0404 Application Protocols

http://www.ZiLOG.com

	Configuring an Optimal TCP/IP Stack Technical Article
	Introduction
	ZTP Protocols and Libraries
	Code and Data Sizes
	Application Protocols

