
AN033902-0512
Abstract

This application note describes the two types of memory modes offered by the eZ80 CPU
and provides a simple application to demonstrate how to properly configure the eZ80 CPU
for a mixed memory mode of operation. As a result, you will be able to run blocks of leg-
acy Z80 code from within the eZ80 CPU environment.

The source code file associated with this application note, AN0339-SC01.zip, is available
free for download on zilog.com. This source code has been tested with version 5.2.0 of
ZDS II for eZ80Acclaim! MCUs. Subsequent releases of ZDS II may require you to mod-
ify the code supplied with this application note.

Discussion

The eZ80 CPU offers two types of memory modes: Z80 Mode and Address Data Long
(ADL) Mode. Z80 Mode offers backward compatibility with legacy Z80 applications,
while ADL Mode offers 24-bit linear addressing and 24-bit CPU registers. These multiple
memory modes of the eZ80 processor allow developers to easily migrate older Z80 or
Z180 codes to the new ADL Mode codes.

The eZ80 CPU’s architecture is briefly discussed in this document to highlight the differ-
ences in each memory mode. For a more detailed discussion, however, please refer to the
eZ80 CPU User Manual (UM0077).

An Overview of the eZ80 CPU Architecture
The eZ80 CPU is an 8-bit microcontroller that performs either 16- or 24-bit operations. In
the block diagram shown in Figure 1, the separation of the data and control blocks is nec-
essary toward understanding the eZ80 CPU’s Z80 and ADL memory modes.

Note:
AN033902-0512
Application Note
Implementing Mixed Memory
Modes on the eZ80 CPU
 Page 1 of 18

http://www.zilog.com/docs/um0077.pdf
http://www.zilog.com/docs/appnotes/an0339-sc01.zip

Implementing Mixed Memory Modes on the eZ80 CPU
Application Note
The control block is responsible for handling the overall operation of the CPU. Generally,
it acquires which code to execute and manages how data moves in and out of the CPU. It
consists of the instruction fetch block, the mode control block and the op code decoder.
The instruction fetch block controls the reading of op codes from memory, as well as dis-
carding prefetched instructions when any control transfer events occur. The mode control
block administers the current processor mode (halt, sleep, interrupt, debug and ADL
modes). The op code decoder block is where op codes are interpreted.

The data block acts as CPU memory. The CPU registers stores relevant values, plus it
stores the program counter, stack pointer and flags. The arithmetic logic unit (ALU) per-
forms arithmetic and logic operations on the addresses and data passed over from the con-
trol block. The address generator creates addresses for all CPU memory read and write
operations; it also contains the MBASE registers for handling address translations in Z80
Mode operation. The data selector controls the data path based on the instruction currently
being executed.

Memory Modes
The eZ80 CPU is capable of operating in two modes: Z80 Mode and ADL Mode. Z80
Mode is provided to maintain backward compatibility with legacy Z80 codes, and uses 16-
bit linear addressing and 16-bit CPU registers. ADL Mode is offered to provide code exe-
cution time that is four times faster than that of a standard Z80 CPU operating at the same
clock speed. ADL Mode uses 24-bit linear addressing and 24-bit CPU registers.

Z80 Memory Mode

The Z80 CPU’s memory mode is sometimes referred to as a non-ADL mode. It has Z80-
compatible addressing and CPU registers. Upon reset, Z80 Mode is the default operating

Figure 1. eZ80 CPU Block Diagram
AN033902-0512 Page 2 of 18

Implementing Mixed Memory Modes on the eZ80 CPU
Application Note
mode of the eZ80 CPU. When operating in Z80 Mode, all registers are 16 bits, including
the stack pointer and the program counter. In Z80 Mode, the 8-bit MBASE address regis-
ter is always appended at the start of the 16-bit address to allow the Z80 code to access any
code located within the 16 MB address space of the eZ80 CPU. Also, using this kind of
placement allows 256 unique code blocks within the 16 MB address space. When MBASE
is set to zero, the eZ80 CPU operates in similar fashion to a classic Z80 CPU, with 16-bit
addressing from 0000h to FFFFh. When set to another value, the 16-bit Z80-style
addresses are offset to another page defined by MBASE. By maximizing MBASE func-
tionality, multiple Z80 tasks can be placed in their own individual Z80 partitions.

Address Data Long Memory Mode

In Address Data Long (ADL) Mode, all addresses and data are 24 bits in length, including
the stack pointer and the program counter. When in ADL Mode, the user application can
take advantage of the CPU’s 16 MB linear addressing space, 24-bit CPU registers and
enhanced instruction set. All read/write operations pass 3 bytes of data to/from the CPU.
Thus, instructions operating in ADL Mode can require more clock cycles to complete than
in Z80 Mode. As opposed to Z80 Mode, ADL Mode does not employ memory partitions;
thus no pages are required.

To further illustrate these two memory modes, the sections that follow discuss how the
registers and the memory addressing operations function when both memory modes oper-
ate concurrently.

CPU Registers
The eZ80 CPU’s registers can be grouped into two types: working registers and control
registers. The working registers can generally be used by the main application to store data
for processing, while the control registers are used by the CPU to control CPU operations.

eZ80 CPU Working Registers

The BC, DE and HL registers are 24 bits long in ADL Mode; the most significant byte is
denoted with a U to indicate the upper byte. These registers become 16 bits long when in
Z80 Mode, making the upper bytes (denoted with a U) inaccessible. Figure 2 shows how
the eZ80 CPU’s working registers differ in Z80 and ADL modes.
AN033902-0512 Page 3 of 18

Implementing Mixed Memory Modes on the eZ80 CPU
Application Note
The accumulator (A) and flag (F) registers each remain 8 bits long regardless of the CPU’s
memory mode.

eZ80 CPU Control Registers

The program counter (PC) is 24 bits long in ADL Mode; it becomes 16 bits long when in
Z80 Mode. To access memory while operating in Z80 Mode, the MBASE is used by the
CPU in conjunction with the program counter, resulting in a 24-bit address compatible
with the eZ80 CPU’s memory addressing denoted by {MBASE, PC[15:0]}. The MBASE
Register is not used for address generation in ADL Mode, but this register can only be
modified while in ADL Mode. This register becomes useful when in Z80 Mode.

In ADL Mode, the active stack pointer is the 24-bit Stack Pointer Long (SPL), which
becomes inactive when memory mode switches to Z80 Mode, where the active stack
pointer is the 16-bit Stack Pointer Short (SPS). Similar to the program counter, the SPS

Figure 2. Z80 and ADL Mode Working Registers

Figure 3. Z80 and ADL Mode Control Registers
AN033902-0512 Page 4 of 18

Implementing Mixed Memory Modes on the eZ80 CPU
Application Note
can be allocated anywhere within memory and can be accessed using the MBASE Regis-
ter, effectively yielding the address {MBASE, SPS}.

The IX and IY registers, much like the working registers, are 24 bits long in ADL Mode,
with the most significant byte denoted by U. In Z80 Mode, the most significant byte
becomes inaccessible; these registers become 16 bits long.

The Address Data Long (ADL) bit indicates the current memory mode of the CPU. If this
bit is reset to 0, the CPU will operate in Z80 Mode; if it is set to 1, this bit indicates that the
CPU is running in ADL Mode. Upon reset, this bit is cleared to 0, which means that the
default memory mode of the CPU is Z80 Mode. The ADL bit cannot be modified directly.
To change the value of this bit, the user application must execute special control instruc-
tions such as CALL, JP, RST, RET, RETI and RETN.

The Mixed ADL (MADL) bit is used to configure the CPU to execute programs contain-
ing code that uses both ADL and Z80 memory modes. This bit can be set to 1 using the
STMIX instruction, and can be cleared to 0 using the RSMIX instruction.

Memory Map

In ADL Mode, the user application can maximize use of the CPU’s 16-bit linear address-
ing space, yielding a valid range of addresses from 000000h to FFFFFFh, as shown in the
right half of Figure 4.

Figure 4. Z80 and ADL Mode Memory Map
AN033902-0512 Page 5 of 18

Implementing Mixed Memory Modes on the eZ80 CPU
Application Note
In Z80 Mode, however, the eZ80 CPU employs a 16-bit linear addressing space. Because
of this difference, memory access is limited only to the valid address space, which ranges
from 0000h to FFFFh. Nevertheless, the eZ80 CPU employs an 8-bit MBASE address
register, which can be used to enable access to other areas of memory. The MBASE
Address Register is always prepended to the 16-bit Z80 Mode address, thereby effectively
producing a 24-bit address. This strategy also breaks the eZ80 CPU’s memory into 256
pages, allowing for 256 unique Z80 code blocks to be placed anywhere within the 16 MB
addressing space. The left side of Figure 4 shows the memory map for Z80 Mode.

Memory Mode Switching
The eZ80 CPU offers two types of mode changes: Persistent and Single Instruction. Per-
sistent Mode switches allow the CPU to operate indefinitely in ADL Mode, then switch to
Z80 Mode to run a section of Z80 code, and then return to ADL Mode. This methodology
is often used when executing a block of Z80 code from within a higher-level ADL Mode
program. The CPU can only make Persistent Mode switches between the ADL and Z80
modes as part of such special control transfer instructions as CALL, JP, RST, RET, RETI
and RETN, or as part of an interrupt or trap operation.

Single Instruction Mode changes allow certain instructions to operate using either address-
ing mode without making a persistent change to the mode. This methodology is only use-
ful when the CPU must perform a single operation using the memory mode not currently
set.

The sections that follow discuss some of the important instructions and compiler direc-
tives required by the CPU to properly execute blocks of Z80 code using the eZ80 CPU.
For a more thorough understanding, however, please refer to the eZ80 CPU User Manual
(UM0077) and the Zilog Developer Studio II – eZ80Acclaim! User Manual (UM0144).

The .ASSUME Compiler Directive

In the ZDS II assembler, the application code is assembled for a given state of the ADL
Mode bit. This assembly is performed by issuing the .ASSUME compiler directive at the
top of the code. This directive tells the compiler that either ADL or Z80 Mode is the mem-
ory mode that must be used for the code that is currently being compiled. The .ASSUME
directive becomes effective from the moment the compiler encounters this directive until
it encounters the next .ASSUME directive that changes the current memory mode, or until
it encounters an end of file statement.

To set the current set of instructions to ADL Mode, place the following compiler directive
at the top of the code bock:

.ASSUME ADL=1 ; switch to ADL Mode

To set the current set of instructions to Z80 Mode, place the following compiler directive
at the top of the code block:

.ASSUME ADL=0 ; switch to Z80 Mode
AN033902-0512 Page 6 of 18

http://www.zilog.com/docs/um0077.pdf
http://www.zilog.com/docs/um0077.pdf
http://www.zilog.com/docs/devtools/um0144.pdf

Implementing Mixed Memory Modes on the eZ80 CPU
Application Note
The code developer is responsible for ensuring that this source file setting matches the
state of the ADL Mode bit when the code is executed.

Special Op Code Suffixes for Memory Mode Control

In addition to the compiler directives, special op code suffixes are added to the instruction
set to assist with memory mode switching operations. The code developer is required to
use these suffixes to allow exceptions to the default memory mode. This requirement is
important toward correctly facilitating control and data block cross-references, and can be
very useful when an ADL Mode code must fetch a 16-bit address generated from a section
of Z80 Mode code (and vice versa).

The four individual suffixes that can be used are .SIS, .SIL, .LIS, and .LIL. These suf-
fixes can be appended to a number of instructions to indicate that a memory mode change
or an exception to standard memory mode operation is being requested. Table 1 summa-
rizes these op code suffixes necessary for memory mode switching operations.

As a general rule, the suffixes for memory mode control are composed of two parts that
define the operation in the control block and the data block within the CPU.

Short or Long (.S/.L). Directs operations within the data block of the CPU. These suf-
fixes control whether the overall operation of the instruction and the internal registers
should use 16 or 24 bits. It also indicates if MBASE is used to define the 24-bit address.

Instruction Stream Short or Instruction Stream Long (.IS/.IL). Directs the control
block within the CPU. These suffixes control whether a multibyte immediate data or
address value fetched during instruction execution is 2 or 3 bytes long. In short, these suf-

Table 1. Op Code Suffixes

S L

IS

.SIS
The CPU data block operates in Z80 Mode
using 16-bit registers. All addresses use
MBASE.

The CPU control block operates in Z80 Mode.
Indicates that only 2 bytes of immediate data or
address must be fetched.

.LIS
The CPU data block operates in ADL Mode
using 24-bit registers. Addresses do not use
MBASE.

The CPU control block operates in Z80 Mode.
Indicates that only 2 bytes of immediate data or
address must be fetched.

IL

.SIL
The CPU data block operates in Z80 Mode
using 16-bit registers. All addresses use
MBASE.

The CPU control block operates in ADL Mode.
Indicates that 3 bytes of immediate data or
address must be fetched.

.LIL
The CPU data block operates in ADL Mode
using 24-bit registers. Addresses do not use
MBASE.

The CPU control block operates in ADL Mode.
Indicates that 3 bytes of immediate data or
address must be fetched.

Caution:
AN033902-0512 Page 7 of 18

Implementing Mixed Memory Modes on the eZ80 CPU
Application Note
fixes indicate the length of the instruction to fetch to the CPU. If the length of the instruc-
tion is unambiguous, these suffixes yield no effect.

Guidelines for Implementing Mixed Memory Mode Applications

When programming mixed memory mode applications, it is important to take note of the
default values of certain registers and flags, as the following points show.

• The CPU’s default memory mode is Z80 Mode (ADL = 0). The compiler directive
.ASSUME ADL = 0/1 will change the CPU’s current memory mode.

• The CPU’s default mixed ADL Mode control bit is disabled (MADL = 0). The RSMIX
instruction disables mixed memory mode, while the STMIX instruction enables the
CPU to run in mixed memory mode.

• Because of the first point above, the program can run exclusively in ADL Mode. How-
ever, the code can be set to permanently run in ADL Mode at startup. If a single
JP.LIL instruction is used at or near the beginning of the code to permanently change
to ADL Mode, the program is considered to operate exclusively in ADL Mode.

To be able to run legacy Z80 code on the eZ80 CPU, the eZ80 CPU must be configured to
run in mixed memory mode. To configure the eZ80 CPU to run in mixed memory mode,
the following procedure must be observed.

1. Execute an STMIX instruction at device initialization to ensure that interrupt service
routines will begin in a consistent memory mode.

2. All interrupt service routines and code blocks that can be called from either Z80 Mode
or ADL Mode must end with a RETI.L or RETN.L instruction to ensure that the inter-
rupted code’s memory is popped from the SPL stack correctly (and not the SPS stack).

3. When calling routines or code blocks, make sure to use a suffixed CALL instruction to
force the CPU to access each code block in the correct memory mode into which it
was assembled or compiled. This type of instruction is also important to allow the
CPU to save the calling code’s memory mode on the SPL stack. A suffixed JP instruc-
tion can also be used; however, a suffixed CALL instruction is recommended to avoid
run-time errors caused by wrong assumptions as to which memory mode the CPU is
currently running. The CALL instruction promotes modularity of the application
code; i.e., the code developer can better monitor the memory mode for each block of
code.

4. If a calling code operating in one mode must pass stack-based operands/arguments to
a routine compiled or assembled for a different mode, it must use suffixed instructions
to set up the operands/arguments. For PUSH, the .S and .L suffixes control whether
SPS or SPL is used, and whether the operands/arguments are stored as 2- or 3-byte
values.
AN033902-0512 Page 8 of 18

Implementing Mixed Memory Modes on the eZ80 CPU
Application Note
Software Implementation

This application note provides a very simple UART application to demonstrate how to
configure the eZ80F91 MCU for mixed memory mode applications. The application
prompts the user to enter characters into HyperTerminal, and it will display these charac-
ters for the user in HyperTerminal. The sequence of this application is charted in Appen-
dix A. Flowcharts on page 17.

The software is divided into two eminent blocks: the main application and the UART rou-
tines. The main application is compiled using ADL Mode, while the UART routines are
compiled using Z80 Mode. At startup, the UART routines are copied to RAM so that
when the CPU’s control transfers to Z80 Mode, the program counter {MBASE, PC[15:0]}
and the stack pointer {MBASE, SPS} will be located in one memory page. Figure 5 shows
how the application is allocated within eZ80F91 memory.

Figure 5. Application Memory Allocation in the eZ80F91 MCU
AN033902-0512 Page 9 of 18

Implementing Mixed Memory Modes on the eZ80 CPU
Application Note
The memory setup, linker directives and start-up code (discussed below) result in the
memory allocation for the UART segment in RAM shown in Figure 6.

Memory Setup
Prior to developing an application, it is important that the code developer should have an
idea of how the memory looks like. This application uses the eZ80F91 MCU’s 256 KB
internal Flash and 8 KB general-purpose RAM memories. Essentially, Flash is mapped to
addresses in the range 000000h to 003FFFh, and RAM is mapped to addresses in the
range B7E000h to B7FFFFh. External RAM and Flash are disabled for this application.

The ADL stack pointer (SPL) starts at B80000h, and the Z80 stack pointer (SPS) starts at
F000h. The program counter (PC) remains set to its default value at address 000000h.

The source code (AN0339-SC01.zip) includes a custom target file that includes these set-
tings; it can be used with ZDS II by navigating via the ZDS II menu to Project Settings →

Debugger → Target Name and selecting AN0339, as shown in Figure 7.

Figure 6. UART Segment in RAM
AN033902-0512 Page 10 of 18

http://www.zilog.com/docs/appnotes/an0339-sc01.zip

Implementing Mixed Memory Modes on the eZ80 CPU
Application Note
Additional Linker Directives
This section discusses linker directives and their significance in the overall functionality
of the application. For more information about linker directives, please refer to the Zilog
Developer Studio II – eZ80Acclaim! User Manual (UM0144).

The following linker directive ensures that the .RESET code segment will be the first code
segment to be allocated in memory, followed by the .STARTUP code segment and the
MAIN_APP code segment:

ORDER .RESET,.STARTUP,MAIN_APP

The sequence of this directive ensures that the application will start at the .RESET seg-
ment, which is the segment that initiates setting up of the eZ80F91 MCU memory and
peripherals.

The next directive, below, creates a user-defined symbol named __stack to be used by
the .STARTUP code when initializing the stack pointer:

Figure 7. Selecting Target Settings
AN033902-0512 Page 11 of 18

http://www.zilog.com/docs/devtools/um0144.pdf
http://www.zilog.com/docs/devtools/um0144.pdf

Implementing Mixed Memory Modes on the eZ80 CPU
Application Note
DEFINE __stack = highaddr of RAM+1

Although the stack pointer can be set directly from the user code, it is advisable to define it
through the linker to provide flexibility when increasing RAM space or when changing
RAM addresses.

The following three linker directives create user-defined symbols to be used by the
.STARTUP code when it copies the UART segment from ROM to RAM:

DEFINE __low_ramuart = base of RAM
DEFINE __len_uart = length of UART_SEG
DEFINE __low_romuart = base of UART_SEG

The __low_ramuart points to the base of the RAM address which, in this application,
points to the address B7E000h. The __low_romuart points to the base of the UART seg-
ment in ROM which is defined in this application to be located at address 00E000h. The
__len_uart symbol simply identifies the actual length of the code occupied by the
UART segment.

The Start-Up Code

The start-up code includes basic initialization of the eZ80F91 MCU and the copying of the
UART segment from ROM to RAM. The following code segment shows how to copy the
UART segment to RAM:

ld hl, __low_romuart ; setup register values required by the
 ld de, __low_ramuart ; ldir instruction
 ld bc, __len_uart
 ldir ; initiate a copy instruction

Prior to calling the routines included in the UART segment, the MBASE Register must be
updated to reflect the memory allocation shown in Figure 6 on page 10.

Running the Application
With the eZ80F91 Modular Development Kit already loaded with the source code pro-
vided with this document (AN0339-SC01.zip), observe the following steps to run the
application.

1. Connect the serial port interface (P2) of the eZ80F91 Modular Development Kit to the
PC using a serial port cable or a USB-to-Serial cable.

2. On the PC, open the HyperTerminal emulation program and configure it to reflect the
settings shown in Figure 8.
AN033902-0512 Page 12 of 18

http://www.zilog.com/docs/appnotes/an0339-sc01.zip

Implementing Mixed Memory Modes on the eZ80 CPU
Application Note
3. Apply power to the eZ80F91 Modular Development Kit. A welcome message should
appear in the HyperTerminal, as shown in Figure 9.

Figure 8. HyperTerminal Settings
AN033902-0512 Page 13 of 18

Implementing Mixed Memory Modes on the eZ80 CPU
Application Note
4. With your keyboard, enter any character string into HyperTerminal. The verbatim
string should display in (i.e., be echoed back to) the HyperTerminal window, as indi-
cated in Figure 10.

Figure 9. Welcome Message
AN033902-0512 Page 14 of 18

Implementing Mixed Memory Modes on the eZ80 CPU
Application Note
If you see two instances of each character that you entered, navigate via the HyperTermi-
nal menu to File → Properties → Settings → ASCII Setup, and ensure that the selection
labeled Echo typed characters locally is unchecked.

Result

With the main application code configured to run in ADL Mode and the UART code con-
figured to run in Z80 Mode, the user-entered characters are echoed back on screen to dem-
onstrate that the UART code is properly accessed by the main application code.

Figure 10. User Input in HyperTerminal

Note:
AN033902-0512 Page 15 of 18

Implementing Mixed Memory Modes on the eZ80 CPU
Application Note
Summary

This application note demonstrates the proper configuration of Zilog’s eZ80-based MCUs
to easily integrate older Z80-based code blocks in these newer eZ80 devices. The demo
serves as a guide to users who wish to maintain legacy Z80 codes while developing new
applications with the eZ80 CPU.

References

The documents associated with the eZ80F91 MCU available on www.zilog.com are pro-
vided below:

• eZ80 CPU User Manual (UM0077)

• eZ80F91 ASSP Product Specification (PS0270)

• eZ80F91 Modular Development Kit User Manual (UM0170)

• Zilog Developer Studio II – eZ80Acclaim! User Manual (UM0144)
AN033902-0512 Page 16 of 18

http://www.zilog.com/docs/um0077.pdf
http://www.zilog.com/docs/ez80acclaimplus/PS0270.pdf
http://www.zilog.com/docs/ez80acclaim/devtools/um0170.pdf
http://www.zilog.com/docs/devtools/um0144.pdf

Implementing Mixed Memory Modes on the eZ80 CPU
Application Note
Appendix A. Flowcharts

Figure 11 shows the flow of the main application.

Figure 11. Application Flowchart
AN033902-0512 Page 17 of 18

Implementing Mixed Memory Modes on the eZ80 CPU
Application Note
Customer Support

To share comments, get your technical questions answered, or report issues you may be
experiencing with our products, please visit Zilog’s Technical Support page at 
http://support.zilog.com.

To learn more about this product, find additional documentation, or to discover other fac-
ets about Zilog product offerings, please visit the Zilog Knowledge Base at http://
zilog.com/kb or consider participating in the Zilog Forum at http://zilog.com/forum.

This publication is subject to replacement by a later edition. To determine whether a later
edition exists, please visit the Zilog website at http://www.zilog.com.

DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.

LIFE SUPPORT POLICY

ZILOG’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)
support or sustain life and whose failure to perform when properly used in accordance with instructions for
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A
critical component is any component in a life support device or system whose failure to perform can be
reasonably expected to cause the failure of the life support device or system or to affect its safety or
effectiveness.

Document Disclaimer

©2012 Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications,
or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES
NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO
DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED
IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED
HEREIN OR OTHERWISE. The information contained within this document has been verified according
to the general principles of electrical and mechanical engineering.

eZ80 and eZ80Acclaim! are trademarks or registered trademarks of Zilog, Inc. All other product or service
names are the property of their respective owners.

Warning:
AN033902-0512 Page 18 of 18

http://support.zilog.com
http://www.zilog.com
http://zilog.com/kb
http://zilog.com/kb
http://zilog.com/forum

	Application Notes:
Implementing Mixed Memory Modes on the eZ80 CPU
	Abstract
	Discussion
	An Overview of the eZ80 CPU Architecture
	Memory Modes
	CPU Registers
	Memory Mode Switching

	Software Implementation
	Memory Setup
	Additional Linker Directives
	Running the Application

	Result
	Summary
	References
	Appendix A. Flowcharts
	Customer Support

