
AN033201-0711
Abstract

This application note illustrates a solution for placing code into the RAM, ROM or Flash
memory spaces of the eZ80Acclaim! MCU using the general-purpose computer program-
ming language known as C.

The source code file associated with this application note, AN0332-SC01.zip, has been
tested with ZDS II – eZ80Acclaim! version 5.1.1.

Introduction

In certain applications, particularly those that use more than 1 type of physical memory, code
and variable placement is sometimes required to manage memory better. Other firmware
developers use such placement tricks to gain control over memory allocation. The Assembly
language does this very well, but the C Compiler only supports variable placement.

This paper aims to demonstrate a quick solution to placing code segments onto user-speci-
fied portions of memory when using the C language. This solution includes code segments
for functions, variable declarations and nonvolatile variable initializations which are
stored in RAM, ROM or Flash.

Code Memory Placement

One method for allocating code segments into specific portions of memory uses the
pragma asm directive to insert assembly language syntax into a C source file. The
pragma asm directive consists of the following syntax:

#pragma asm "<assembly line>"

As a general guideline, a segment name must be declared first with the following syntax:

#pragma asm "define <segment_name>, space=<space_id>,
org=<address>"

Another pragma asm directive is required to actually place the following routines into the
appropriate address segment.

#pragma asm "segment <segment_name>"

Note:
AN033201-0711
Application Note
ZDS II for eZ80Acclaim!: Explicit
Code Memory Placement in C
 Page 1 of 6

http://www.zilog.com/docs/appnotes/an0332-sc01.zip

ZDS II for eZ80Acclaim!: Explicit Code Memory Placement in C
Application Note
All routines (within the same C file) following this directive will be allocated in subse-
quent addresses starting from the specified segment address. The default memory alloca-
tion scheme resumes at the next C file processed by the compiler, which starts at the first
available address in the range specified in the Address Settings.

The sections that follow provide examples of code segment placement into ROM and
RAM. Each example includes a portion of the map file produced to confirm that the code
is actually placed into its proper memory locations.

When using the pragma asm directive, make sure that the assembly line to be inserted
follows standard assembly language syntax. The compiler does not process the assembly
line; instead, the assembly line is passed through the compiler to the assembler as-is.
Therefore, no error checking occurs during the compile. Although the assembler reports
whether an error has been encountered, it may be difficult to locate which portion of the
C source file will need to be corrected.

Function Code Stored in Flash Memory or ROM
Flash memory is a nonvolatile type of memory in which both program code and data code
are stored. It contains the flash option bits, reset vector address, interrupts and program
code. Program code, such as the main function code, can be placed into any address within
Flash. The function code named factorial is stored in a ROM space which starts at
0x3048; sample code for this type of declaration is listed below.

//C code
#pragma asm "define application1, space=rom, org=%3048"
#pragma asm "segment application1"
unsigned int factorial_code(unsigned int x)
{

if (x==1){
return (1);

}
else{

return (x*factorial_code(x-1));
}

}

MAP FILE:
 Name Base Top Size

 Segment: application_code1 C:003048 C:00307A 33h

Function Code Stored in RAM

The function code can also be stored in a specified RAM address; this address in RAM can
be found in the map file. A function named swap is stored in a RAM space which starts at
address 0xB7E200; an example code segment for this type of declaration is listed below.

Caution:
AN033201-0711 Page 2 of 6

ZDS II for eZ80Acclaim!: Explicit Code Memory Placement in C
Application Note
//C code
#pragma asm "define application_code2, space=ram, org=%B7E200"
#pragma asm "segment application_code2"
void swap(unsigned int a, unsigned int b)
{

a = a+b;
b = a-b;
a = a-b;

}

MAP FILE:
 Name Base Top Size

 Segment: application_code2 D:B7E200 D:B7E223 24h

Variable Memory Placement

Another method for allocating variables into specific portions of RAM memory differs
from the code placement method, and is also much easier. The eZ80Acclaim! C Compiler
provides a language extension for variable code placement: the _At directive, which con-
sists of the following syntax:

<variable declaration> _At <address, in hex>;

The sections that follow provide examples for placing a variable into the ROM space and
include a portion of the map file produced to confirm that the variable is actually placed
into its proper memory locations.

Variable Declaration in a Specified Address
Variables can be declared for a specific address space using the prefix _At and when spec-
ifying the address space. The variable name specific_address_0xB7E400 is stored in
RAM at the 0xB7E400 address location; sample code for this type of declaration is listed
below.

//C code
unsigned int specific_address_0xB7E400 _At 0xB7E400; //is
 //assigned at address 0xB7E400

MAP FILE:
 Name Base Top Size

 Segment: ___specific_address_0xB7E400_s D:B7E400 D:B7E402 3h
AN033201-0711 Page 3 of 6

ZDS II for eZ80Acclaim!: Explicit Code Memory Placement in C
Application Note
Map File

As a result of compiling the code, a portion of the map file labeled space allocation lists
the variable and function names used in the project, along with the memory address to
which these names are allocated.

From this section of the map file, and as is shown in the following code segment, the vari-
ables specific_address_0xB7E400 and function swap_code are stored in RAM,
while the function factorial code is stored in ROM. The code shows that the functions and
variable names are allocated as expected within memory.
AN033201-0711 Page 4 of 6

ZDS II for eZ80Acclaim!: Explicit Code Memory Placement in C
Application Note
SPACE ALLOCATION:
=================
Space Base Top Size
------------------ ----------- ----------- ---------
RAM D:B7E000 D:B7E402 403h
ROM C:000000 C:00307A 307bh

SEGMENTS WITHIN THIS SPACE:
======================
RAM Type Base Top Size
------------------- ------------- ---------- --------- ----
.IVECTS normal data D:B7E000 D:B7E0FF 100h
___specific_address absolute data D:B7E400 D:B7E402 3h
application_code2 absolute data D:B7E200 D:B7E223 24h
DATA normal data D:B7E100 D:B7E102 3h

ROM Type Base Top Size
------------------- ------------- ---------- --------- ----
.RESET normal data C:000000 C:00006A 6bh
.STARTUP normal data C:00006B C:00024F 1e5h
application_code1 absolute data C:003048 C:00307A 33h
CODE normal data C:000250 C:0002A6 57h
DATA *segment copy* C:0002A7 C:0002A9 3h

Configuration

The following tools were used to develop this application note.

• ZDS II – eZ80Acclaim! version 5.1.1

• eZ80F91 Development Kit (eZ80F910x00ZCOG)

References

The following documents describe the functional specifications and toolsets for the
eZ80Acclaim! MCU. Each is available for download from the Zilog website.

eZ80F91 MCU Product Specification (PS0192)

eZ80 CPU User Manual (UM0077)

Zilog Developer Studio II – eZ80Acclaim! User Manual (UM0144)
AN033201-0711 Page 5 of 6

http://www.zilog.com/docs/devtools/um0144.pdf
http://www.zilog.com/docs/um0077.pdf
http://www.zilog.com/docs/ez80acclaim/ps0192.pdf

ZDS II for eZ80Acclaim!: Explicit Code Memory Placement in C
Application Note
Customer Support

To share comments, get your technical questions answered, or report issues you may be
experiencing with our products, please visit Zilog’s Technical Support page at 
http://support.zilog.com.

To learn more about this product, find additional documentation, or to discover other fac-
ets about Zilog product offerings, please visit the Zilog Knowledge Base at http://
zilog.com/kb or consider participating in the Zilog Forum at http://zilog.com/forum.

This publication is subject to replacement by a later edition. To determine whether a later
edition exists, please visit the Zilog website at http://www.zilog.com.

DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.

LIFE SUPPORT POLICY

ZILOG’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)
support or sustain life and whose failure to perform when properly used in accordance with instructions for
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A
critical component is any component in a life support device or system whose failure to perform can be
reasonably expected to cause the failure of the life support device or system or to affect its safety or
effectiveness.

Document Disclaimer

©2011 Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications,
or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES
NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO
DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED
IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED
HEREIN OR OTHERWISE. The information contained within this document has been verified according
to the general principles of electrical and mechanical engineering.

Z8, Z8 Encore!, Z8 Encore! XP and eZ80Acclaim! are trademarks or registered trademarks of Zilog, Inc.
All other product or service names are the property of their respective owners.

Warning:
AN033201-0711 Page 6 of 6

http://support.zilog.com
http://www.zilog.com
http://zilog.com/kb
http://zilog.com/kb
http://zilog.com/forum

	Application Note:
ZDS II for eZ80Acclaim!: Explicit Code Memory Placement in C
	Abstract
	Introduction
	Code Memory Placement
	Function Code Stored in Flash Memory or ROM
	Function Code Stored in RAM

	Variable Memory Placement
	Variable Declaration in a Specified Address
	Map File

	Configuration
	References
	Customer Support

