
AN032501-0411
Abstract

This Application Note describes a boot loader program for the on-chip memory functions of
Zilog’s Z16F Series of Microcontrollers based on the ZNEO CPU architecture. The boot
loader is loaded using Zilog’s ZDS II IDE and provides the functionality to program an Intel
HEX 32-format file to ZNEO-based MCU Flash memory using the RS-232 port. It is designed
to provide an alternative to using USB communication via Zilog’s XTools firmware.

The source code associated with this application note, AN0325-SC01, has been tested
with ZDS II version 4.11.1.

ZNEO-Based MCUs: A Flash Memory Overview
The products in Zilog’s Z16F Series of Microcontrollers feature up to 128 KB of nonvola-
tile Flash memory with read/write/erase capability. The Flash memory array is arranged in
2 KB pages, the minimum Flash block size that is erased. Flash memory is also divided into
eight sectors and is protected from programming and erase operations on a per-sector basis.

Figure 1 illustrates the Flash memory arrangement of the Z16F2811 MCU.

Figure 1. Flash Memory Arrangement of Z16F2811 MCU

Note:

128KB Flash
Program Memory

64 Pages
2KB per Page

Address
01FFFFh
01F800h
01F7FFh
01F000h
01EFFFh
01E800h

0017FFh
001000h
000FFFh
000800h
0007FFh
000000h
AN032501-0411
Application Note
Boot Loader for ZNEO-Based MCUs
 Page 1 of 44

Boot Loader for ZNEO-Based MCUs
Application Note
For additional information regarding the Flash memory functions of the of Z16F2811
MCU, please see the ZNEO Z16F Series Product Specification (PS0220).

Discussion

A boot loader is typically a program that permanently resides in the nonvolatile memory
area of the target processor and is the first block of code to execute at Power-On Reset
(POR).

A typical boot loader possesses the following functional characteristics:

• The reset address of the target CPU points to the start address of the boot loader code.

• The boot loader polls the UART port to receive a specific character.

• When a specific character input is received on the polled UART port, the boot loader
is invoked to load Flash memory, then to program new user code into Flash memory.
When the boot loader is executing in Flash loading mode, it typically receives data
through a COM port to program user data into Flash memory. In the absence of any
other indications, the boot loader code branches to the existing user application pro-
gram and begins execution.

• The boot loader performs an error check on the received data using the checksum
method.

• The boot loader issues commands to the Flash controller to program the data into
Flash memory.

• The boot loader checks the destination address of the user code to prevent any inad-
vertent programming of the user code into its own memory space.

Developing the ZNEO Boot Loader Application
A ZNEO CPU-based MCU can write to its own program memory space. It features an on-
chip Flash controller that erases and programs on-chip Flash memory. Figure 2 shows a
block diagram of the boot loader.
AN032501-0411 Page 2 of 44

http://www.zilog.com/docs/zneo/PS0220.pdf

Boot Loader for ZNEO-Based MCUs
Application Note
The boot loader program uses the Reset pin, the Flash controller and the on-chip UART to
function; each is described below.

Reset Pin. The Reset pin is used to restart the Boot Loader firmware. If character 0x20 is
received, the program counter redirects the program to the Flash Loader function; other-
wise it routes directly to the application code.

UART. The UART0 is used to communicate with the HyperTerminal emulation program
running on a PC; it is initialized to a required baud rate by writing appropriate values to
the UART baud rate registers (these values are provided in the Software Implementation
section on page 5).

Flash Controller. The Flash Controller provides the appropriate Flash controls and timing
for the byte programming, Page Erase, and Mass Erase of Flash memory. The Flash con-

Figure 2. Block Diagram of the ZNEO Boot Loader
AN032501-0411 Page 3 of 44

Boot Loader for ZNEO-Based MCUs
Application Note
troller contains a protection mechanism, via the Flash Control register (FCTL), to prevent
accidental programming or erasure. Before performing either a programming or erase
operation on Flash memory, the Flash Frequency High and Low Byte registers must be
configured. These Flash Frequency registers allow the programming and erasure of Flash
with system clock frequencies that can range from32 KHz to 20 MHz.

For complete details about the on-chip Flash memory and Flash controller functions of the
Z16F2811 MCU, refer to the ZNEO Z16F Series Product Specification (PS0220).

ZNEO Boot Loader Features and Application
The boot loader program operates in the following sequence; refer to Figure 3 for corre-
sponding address ranges in the Flash memory space.

1. Flash loading mode is invoked upon polling the serial port for a specific character
within a specified period of time. After this invocation, the boot loader program trans-
fers control to the user application, which then begins to execute. The address of the
application code can be found in the range 0x00008h–0x1F7FFh.

2. The boot loader program selectively erases Flash memory before programming user
code; the portion of memory in which the boot loader code resides remains
unchanged.

3. The boot loader program receives the user application code via the RS-232 port
(HyperTerminal). It calculates and verifies a checksum for error detection. If the
loaded hex file contains checksum errors, it displays Error: checksum in
HyperTerminal and terminates execution.

4. The boot loader program loads data in the Intel HEX 32 format into Flash memory
one line at a time.

A brief description of the Intel Hex File Format is provided in the Appendix B. Intel Hex
32 Format section on page 43.

5. The boot loader program displays a progress indicator in HyperTerminal to indicate
the status of data being loaded into Flash; it displays COMPLETED in HyperTerminal
after programming is completed.

6. The boot loader program protects its own memory space by preventing the user code
from being programmed into the area occupied by the boot loader. If the loaded hex
file contains the same address range as the boot loader code, it displays:

Error: Address: Change Constant Data(ROM) = 0000-7FFF and
Program(EROM) = 08000-1F7FF.

If this error is received, Data(ROM) addressing must be changed to 0x0000–
0x7FFF and Program(EROM) addressing must be changed to 0x08000–0x1F7FF

Note:
AN032501-0411 Page 4 of 44

http://www.zilog.com/docs/zneo/PS0220.pdf

Boot Loader for ZNEO-Based MCUs
Application Note
because the boot loader code already occupies addresses in the range 0x1F800–
0x1FFFF.

Theory of Operation

Generally, a boot loader’s sole function is to download a hex file created in ZDS II to
MCU Flash memory. This application is designed to provide this hex file via the UART
function, which is an alternative to using Zilog’s XTools firmware (which communicates
via a USB port). The advantage of using the UART is that the user can update firmware
via the RS-232 serial interface.

Software Implementation
The hierarchy of the Main Function is diagrammed below; each line of this code is
described in this section.

MAIN FUNCTION
Main Function Hierarchy
1. Boot Loader Code

Figure 3. Flash Memory Address of Application Code and Boot Loader Code
Legend: Green represents user-rewritable addresses; blue represents reserved addresses

Address Data

1FFFFh
...

1F800h

Boot Loader Code
(Restricted Address)

00007h
...

00004h

Boot Loader
Start Address
(0001–F800h)

00003h
...

00000h

Flash Option Bit
(FFFFh)

1F7FFh
...

1F7F8h

Application Code
Start Address

1F7F7h
...

00008h
User Application Code
AN032501-0411 Page 5 of 44

Boot Loader for ZNEO-Based MCUs
Application Note
1.1. Initialize Flash Memory
1.2. Erase Flash Memory

1.2.1. Page Unlock
1.2.2. Page Erase

1.3. Write Boot Loader Application Address
1.3.1. Page Unlock
1.3.2. Write 0001 F800h to Address 0004h-0007h
1.3.3. Lock Flash

1.4. Get Hex File
1.4.1. Receive Character
1.4.2. ASCII to INTEL HEX 32 Converter

1.4.2.1 Receive Character
1.4.3. Page Write

1.4.3.1 ASCII to INTEL HEX 32 Converter
1.4.3.2 Page Unlock
1.4.3.3 Write Data Byte to Address Byte

1.5. Lock Flash
2. User Application Code

Figure 4 shows the typical flow of a boot loader execution, which comprises UART ini-
tialization, the transfer of boot loader code and the transfer of user application code.
UART0 communication parameters are set to the following values in HyperTerminal (or
similar terminal emulation program):

• 57600 baud rate

• No parity

• 8 data bits

• 1 stop bit

• No flow control

The Main Function program enters the boot loader code when the space bar (ASCII char-
acter code 0x20) and the MCU’s reset button are simultaneously pressed. The boot loader
code then downloads the hex file to the MCU’s Flash memory (for details about this func-
tion, see the next section). The program then jumps to the start address of the user’s down-
loaded application code, which executes in Flash memory.
AN032501-0411 Page 6 of 44

Boot Loader for ZNEO-Based MCUs
Application Note
Boot Loader Code

The boot loader code is responsible for reading the hex file coming from the UART and
downloading it to Flash memory in the user application code memory address range
00008h to 1F7FFh. The remaining portion of the memory, in the 1F800h to 1FFFFh
address range, is boot loader code memory in which the boot loader program resides.

When the boot loader code starts, it displays ZNEO Boot Loader in the HyperTerminal
window, followed by a sequence of tasks, as noted below and illustrated in Figure 5.

1. Flash memory initialization, during which the clock frequency is set for correct opera-
tion of MCU Flash memory.

2. Flash memory erasure, in which Flash memory is reset within the address range
00008h to 1F7FFFh. This address range contains the user’s application code and
the start address of the boot loader (00000h–00007h). Flash memory is erased so
that new data can be written to Flash memory.

Assembly Code
ld sp,#%FFC000 ; stack pointer

; initialized UART
ld R1,#0 ; R1 = UART0
ld R2,#_SYS_CLK_FREQ ; R2=Clk Freq.
ld R3,#57600 ; Baud Rate = 57600

ld R0,R3 ; UART0 initialize
sll R0,#3
add R0,R2
sll R3,#4
udiv R0,R3
ld.w U0BR,R0
ld R0,#%30 ; UART GPIO init.
or.b PAAFL,R0 ; PAAFL = 0x30
clr.b U0CTL1 ; U0CTL1= 0x00
ld R0,#%C0
ld.b U0CTL0,R0 ; U0CTL0= 0xC0

ld.b R0,U0RXD ; Read U0RXD buff reg
cp R0,#%20 ; if (U0RXD=0x20)
jp z,bootloadercode ; go boot loader; else
; APPLICATION CODE
ld R4,%1F7FC
call delay
call delay
jp (R4) ; go to
application_code();

Figure 4. ZNEO Boot Loader Main Function: Flow Diagram and Assembly Code

Receive
char = 0x20 ?

UART initialization
UART0, 57600-8-N-1

Boot Loader Code

User Application Code

No

Yes
AN032501-0411 Page 7 of 44

Boot Loader for ZNEO-Based MCUs
Application Note
3. Boot loader address rewrite, in which the start of the boot loader program is restored
to the start address of Flash memory. The data string FFFF 0001 F800 is written to
addresses in the range 00000h to 00007h.

4. LOAD HEX FILE is displayed in the HyperTerminal window to indicate that the
MCU is ready to load the application code.

5. When the hex file is sent, the get hex file function writes the data to Flash
memory.

6. After the data is completely written into Flash memory, Flash memory is locked to
prevent the MCU from overwriting existing application code.

7. HyperTerminal displays COMPLETED!, as shown in Figure 5, to indicate that the
application code hex file has successfully downloaded to the MCU.

8. Finally, the program counter shifts to the start address of the user application code to
execute the downloaded application code see Figure 6.

Figure 5. HyperTerminal Displays the Loaded Application Code
AN032501-0411 Page 8 of 44

Boot Loader for ZNEO-Based MCUs
Application Note
Initialize Flash Memory

The Initialize Flash Memory function, exemplified in the following assembly code, is used
to initialize the settings for Flash memory.

init_flash:
ld R1,#_SYS_CLK_FREQ ; initialized clock frequency
ld R0,#%3E8
udiv R1,R0
ld.w FFREQ,R1

Assembly Code
bootloadercode:
ld R1,#print_Bootloader
call puts
call init_flash
ld R1,#print_pleasewait
call puts

clr R2
ld R3,#%1F800
call erase_flash_address
call write_bootloader_start_address

ld R1,#print_Load_HEX_file
call puts

clr R12; init. extended address

call get_hex_line
call lock_flash

call delay
ld R1,#print_completed
call puts

ld R4,%1F7FC
call delay
call delay
jp (R4) ; Go to Application
code
ret

Figure 6. ZNEO Boot Loader Code: Flow Diagram and Assembly Code

Print: “COMPLETED”

Lock Flash

Get hex file

Print: “LOAD HEX FILE”

Rewrite Boot Loader
Start Address

(FFFF 0001 F800h
at 00h–07h)

Erase Flash Memory at
Address 0000h–1F7FFh

Initialize Flash Memory

Print: “ZNEO
Bootloader”

Boot Loader Code
(flashload function)

User Application Code
AN032501-0411 Page 9 of 44

Boot Loader for ZNEO-Based MCUs
Application Note
ret

Erase Flash Memory

The Erase Flash Memory function, shown in Figure 7, is responsible for erasing the user
application code in the address range 0000h–1F7FFh, excluding the boot loader code in
the address range (1F800h–1FFFFh). Register R2 is the start address, while R3 is the
end address of the Flash memory to be erased.

Page Erase

The Page Erase function, shown in Figure 8, is used to erase a page of Flash memory at a
given address. ZNEO Flash memory contains 64 pages, each of which contains 2 KB
(800h). The boot loader can only erase the lower 63 pages (in the address range
00000h–1F7FFh) because the final page is allotted to boot loader code (in the address
range 1F800h–1FFFFh). Register R1 is used as the page address of the portion of Flash
memory to be erased.

Assembly Code
erase_flash_address:

ld R1,#%2E ; print progress
call putch

ld R1,R2 ; start address to
; be erase to R1

callpage_erase ; erase content
; of page address

add R2,#%800 ; inc. page erase
; 1page = 0x800 bytes

cp R2,R3 ; if current erase
; page = end address page

jp c, erase_flash_address ; repeat
;if current erase < end address

ld R1,#%0A ; print prog.new line
call putch

ret

Figure 7. Erase Flash Memory: Flow Diagram and Assembly Code
AN032501-0411 Page 10 of 44

Boot Loader for ZNEO-Based MCUs
Application Note
Page Unlock

The Page Unlock function, exemplified in the following assembly code, is used to unlock
Flash memory for a specified address page. This function is necessary for writing and
erasing Flash memory to and from this specified address page. Register R1 is used as the
Flash memory page address to be unlocked.

Assembly Code
page_unlock:

srl R1,#%B
sll R1,#%3

ld.w FPAGE,R1
ld R0,#%73
ld.b FCMD,R0
ld R0,#%8C
ld.b FCMD,R0
ret

Lock Flash

The Lock Flash function, exemplified in the following assembly code, is used to protect
Flash memory from its contents being overwritten or erased.

Assembly Code

Assembly Code
page_erase:

call page_unlock
ld R0,#%95
ld.b FCMD,R0
flash_stat:; while FSTAT is busy
ld R0,#%10

tm.b FSTAT,R0
jp nz,flash_stat

ret

Figure 8. Page Erase: Flow Diagram and Assembly Code
AN032501-0411 Page 11 of 44

Boot Loader for ZNEO-Based MCUs
Application Note
lock_flash:
clr.b FCMD
ret

Write Boot Loader Start Address

The Write Boot Loader Start Address function, exemplified in the following assembly
code, is used to rewrite the reset address of the boot loader code. This rewrite occurs
because after the Erase Flash Memory function is implemented, the value of the address
range 00000h–1F7FFh is reset to FFh. As a result, the reset vector, in the address range
0004h–0007h, is reset to the values (FF FF FF FFh).

Assembly Code
write_bootloader_start_address:

ld R1,#%00 ; R1 = unlock page address (0x00)
call page_unlock ; unlock Flash memory
ld R1,#%0004
ld.w (R1++),#%0001 ; R1 = load data (00 01) to

address (0x0004-0x0005)
ld.w (R1),#%FC00 ; R1 = load data (F8 00) to

address (0x0006-0x0007)
call lock_flash ; lock Flash memory
ret

Get Hex File

The Get Hex File function, shown in Figure 9, is responsible for reading the hex file and
storing it in Flash memory pertinent to the following sequence.

1. The received data is checked. If the received character is ':', the starting line of the
hex file is indicated.

2. All ASCII characters are converted to the Intel Hex file format. Essentially, ASCII
characters A to F (41h–46h) are converted to the numbers 10–15 (Ah–Fh) while
ASCII characters 0–9 are converted to the numbers 0 to 9 (30h–39h) remain the
same.

3. The first byte indicates the amount of data in a line; this amount is stored as a value in
register 6.

4. The second byte indicates the MSB of the address and the third byte is the LSB of the
address; both are stored as values in register 7. The address indicates the location of
the data to be stored in Flash memory.

5. The fourth byte indicates the record byte of the data. The record byte is used to deter-
mine whether the data should be stored at a normal address, at an extended address, or
at an end-of-file address.

– Normal addressing is represented by the value 00h, while extended addressing is
indicated by the value 04h. If extended addressing is detected, 1000h is the next
address to be read.
AN032501-0411 Page 12 of 44

Boot Loader for ZNEO-Based MCUs
Application Note
– End-of-file addressing is represented by 01h. If end-of-file addressing is detected,
the function defaults to the Return command.

6. The fifth to (N–1) byte indicates the data to be stored in Flash memory. For example,
if the data size stored in R6 is X, then there are X number of data bytes in a line.

7. The Page Write function is called to write the data bytes to its specified address.

8. The final byte (N) indicates a checksum which is used to check for errors during com-
munication. The checksum byte must be equal to the two’s complement of the total
value of the 1st byte to the (N–1) byte (see the equation below). Failure to satisfy this
condition will result in program termination and will print error: checksum in
HyperTerminal.

Checksum = FFh and [(FFh – (1st byte + 2nd Byte + … + (N–
1) byte)) + 1] or [00h – (1st byte + 2nd byte + … + (N-1)
byte)]
AN032501-0411 Page 13 of 44

Boot Loader for ZNEO-Based MCUs
Application Note
Assembly Code
get_hex_line:
call receive_char ; start line
ld R0,R5 ; R5 = received data
cp R0,#%3A ; check for ':' or 0x34 ASCII
jp nz,get_hex_line

clr R11 ; initialized checksum = 0x00
;--------------DATA SIZE-------------------
call ascii_to_intelhex; data size
ld R6,R0 ; R6 = data size

;--------------ADDRESS---------------------
call ascii_to_intelhex
sll R0,#8 ; high byte address
ld R7,R0 ; R7 = high byte address

call ascii_to_intelhex;low byte address = R0
add R7,R0 ;R7=add high and low add. byte
;--------------RECORD BYTE------------------
call ascii_to_intelhex; record byte
ld R8,R0 ; R8 = record byte
cp R8,#%01 ; check rec. type if EOF
jp z,get_line_end

cp R8,#%04 ; check rec. type if ext. add.
jp nz,write_data_byte
ld R12,#%10000
jp get_hex_line
;--------------DATA BYTE--------------------
write_data_byte:
ld R2,R7 ; R2 = start add.(R7)
add R2,R12 ; R2 = start add.(R7) +
ext.

; add.(R12)
ld R3,R6 ; R3 = data size(R6)
add R3,R2 ; R3= data size(R6) + start
 ; address(R2) = terminal address
call page_write ; write the data to memo.
;--------------CHECKSUM-------------------
ld R2,R11 ; (R2) sum of all = data
size

; + byte_address
; + record_byte + data byte

call ascii_to_intelhex; checksum
and R0,#%000000FF
ld R10,R0

and R2,#%000000FF ; checksum = 0xFFFFFFFF
; - sum of all + 0x01

ld R0,#%FFFFFFFF
sub R0,R2
add R0,#%01
and R0,#%000000FF

cp R0,R10
jp nz,print_error_check_sum
ld R1,#%2E ; print progress
call putch

jp get_hex_line
get_line_end:
ret

Figure 9. Get Hex File: Flow Diagram and Assembly Code

Get hex file
(get line function)

Receive
char = ‘:’ ?

Record byte
= ?

Converts ASCII
to

Intel Hex 32

Add 10000h for
extended
address

1st byte = data size
stored at R6

2nd & 3rd byte = address
stored at R7

4th byte = record
stored at R8

5th to (N–1) byte =
Data Byte

Last byte = checksum
stored at R10

Checksum
error?

Print: “Error: Checksum”

01h04h

00h

No

No

Return
function

Print:
“Error: Address”

Yes

Yes

Yes
AN032501-0411 Page 14 of 44

Boot Loader for ZNEO-Based MCUs
Application Note
Receive Character

The Receive Character function, exemplified in the following assembly code, is used to
get a character from the U0RXD registers buffer to the R5 register. The U0STAT Register
is used to indicate if the character is received from the U0RXD register buffer.

Assembly Code
receive_char:

ld R0,#%80
tm.b U0STAT0,R0 ; Read the UART0 status register
jp z,receive_char ; Check if any character is

received
ld.b R5,U0RXD ; R5 = Store the data from receive

register (U0RXD)
ret

ASCII to INTEL HEX 32

The ASCII to INTEL HEX 32 function, shown in Figure 10, is used to convert ASCII
characters to INTEL 32 data byte format.
AN032501-0411 Page 15 of 44

Boot Loader for ZNEO-Based MCUs
Application Note
Page Write

The Page Write function, shown in Figure 11, is responsible in writing the data bytes to the
specified Flash address. Thus the following steps below are done to be able to write the
correct data bytes to the Flash address.

1. The register R2 is used to store the start address value and the register R3 is used to
store the end address.

2. The R2 start address (current address) is checked to determine it exceeds the restricted
address, which is the boot loader address range 1F800h-1FFFFh. Failure to satisfy
this condition will result in program termination and will display the following error
message in HyperTerminal:

Assembly Code
ascii_to_intelhex:
call receive_char
ld R0,R5 ; R5 = received data
add R0,#%FFFFFFBF

; check if received char > 0x40
jp c,ascii_to_intelhex_H
add R0,#%07

ascii_to_intelhex_H:
; converts ASCII char to
; Intel Hex High Byte

add R0,#%0A
sll R0,#4 ; shifted to the high
byte
and R0,#%000000F0
ld R1,R0 ; load the high byte
data

call receive_char
ld R0,R5 ; R5 = received data
add R0,#%FFFFFFBF
jp c,ascii_to_intelhex_L
add R0,#%07
ascii_to_intelhex_L: ; converts ASCII char
to

;Intel Hex Low Byte
add R0,#%0A
and R0,#%0000000F
or R0,R1;R0 = converted Intel Hex 32

add R11,R0 ; checksum addition
ret

Figure 10. ASCII to INTEL HEX 32: Flow Diagram and Assembly Code
AN032501-0411 Page 16 of 44

Boot Loader for ZNEO-Based MCUs
Application Note
Error: Address: Change Constant Data (ROM) = 00000-XXXXX
and Program(EROM) = (XXXXX+1)-1F7FF

3. The data byte received from the UART0 is converted from ASCII to INTEL HEX 32
format.

4. The current address of Flash memory is unlocked.

5. The data byte is written to the specified Flash address. If the current address is equal to
the boot loader start address then the value of the current address is diverted to the
application code start address.

6. Flash memory is checked to determine if it actually wrote the value of the data byte it
received. This error-checking condition also prevents a corrupted program from being
programmed in Flash memory. Failure to satisfy this condition will result in program
termination and will display the following error message in HyperTerminal:

Error: Flash Write

7. Finally, if it has reached the end of the hex file data, the current address is compared to
the end address. If the end of the hex file has been reached, HyperTerminal will dis-
play:

COMPLETED!
AN032501-0411 Page 17 of 44

Boot Loader for ZNEO-Based MCUs
Application Note
Assembly Code
page_write:
sub R3,#%01
jp write_end
write_continue:
call ascii_to_intelhex
sll R0,#8
ld R4,R0
call ascii_to_intelhex
add R4,R0
cp R2,#%1F800
jp nc,print_error_write_address
ld R0,#%06
cp R0,R2
jp c,write_continue_data
cp R2,#%04
jp c,write_continue_data
add R2,#%1F7F8
ld R1,R2
call page_unlock
ld.w (R2),R4
ld.w R0,(R2++)
cp R0,R4
jp nz,print_error_write_flash
sub R2,#%1F7F8
jp write_end

write_continue_data:
ld R1,R2
call page_unlock
ld.w (R2),R4
ld.w R0,(R2++)
cp R0,R4
jp nz,print_error_write_flash

write_end:
cp R2,R3
jp c,write_continue
ld R1,R6
and R1,#%01
cp R1,#%00
jp z,page_write_end
call ascii_to_intelhex
sll R0,#8
ld R4,R0
add R4,#%00FF
ld R1,R2
call page_unlock
ld.w (R2),R4
page_write_end:
ret

Figure 11. Page Write: Flow Diagram and Assembly Code
AN032501-0411 Page 18 of 44

Boot Loader for ZNEO-Based MCUs
Application Note
User Application Code

The user application space, exemplified in the following assembly code, contains the
downloaded application code which resides in the address range 0000h–1F7FFh.
Within this range, the application start vector resides at address 1F7FCh.

Assembly Code
ld R4,%1F7FC ; R4 = Application Code Start Address
(0x1F7FC)
call delay
call delay
jp (R4) ; go to application_code();

Puts Function

The Puts function, exemplified in the following assembly code, is used to print a string of
characters, starting with the address stored in Register R1.

Assembly Code
puts:

ld R2,R1 ;R2 = address of the string
cp R2,#0 ;ifaddress is 0 return
jp eq,lputs3
jp lputs1

lputs2:
ld.ub R1,(R2) ; R1 = character from string pointed by R2
call putch ; Call _putch with R1 containing character
add R2,#1 ; Increment pointer R2

lputs1:
cpz.b (R2) ; if character pointed by R2 is 0 return
jp ne,lputs2 ; else go back to loop

lputs3:
ld R0,#0
ret

Putch Function

The Putch function, exemplified in the following assembly code, is used to print a charac-
ter stored in Register R1.

Assembly Code
putch:

ld R0,R1
ext.ub R5,R0
cp R5,#10
jp ne,lputch1 ; If (character == \n)
ld R1,#13
call send ; Call _send with character

lputch1:
ld R1,R0
call send ; Call _send with character
ld R0,#0 ; Return R0 = 0
AN032501-0411 Page 19 of 44

Boot Loader for ZNEO-Based MCUs
Application Note
ret ; Return

Send Function

The Send function, exemplified in the following assembly code, is used to transmit the
data byte stored in Register R0 using the U0TXD Register Buffer.

Assembly Code
send:

pushmlo <R0> ; Save register
lsend1:

ld R0,#4 ; Send on UART0
tm.b U0STAT0,R0
jp eq,lsend1 ; while (!(U0STAT0 & %4))
ld.b U0TXD,R1 ; U0TXD = R1 (character)
popmlo <R0> ; Restore registers
ret ; Return

Delay Function

The Delay function, exemplified in the following assembly code, is used to delay the next
instruction.

Assembly Code
delay:

ld R2,#%FF
loop2:

ld R1,#%FF
loop1:

dec R1
ld R0,R1
jp nz,loop1
dec R2
ld R0,R2
jp nz,loop2
ret

Test the Application
Testing this application involves downloading the boot loader program and loading the
boot loader hex code pertinent to the following requirements and procedures.

Equipment Used

• ZNEO Series Development Kit, including development board, power supply, USB
interface and Zilog XTools

• RS-232 cable
AN032501-0411 Page 20 of 44

Boot Loader for ZNEO-Based MCUs
Application Note
Download the Boot Loader Program

Observe the following procedure to download the boot loader code to the Z16F Series
MCU.

1. Extract the AN0325-SC01.zip file to a convenient location on your PC’s hard drive.

2. Connect the power, USB Smart Cable and serial cable to the ZNEO Series Develop-
ment Board.

3. Launch ZDS II 4.11.1 – ZNEO.

4. From the File menu in ZDS II, click Open and select the ZNEO_bootloader project
file to display the Boot Loader dialog box.

5. From the Project menu in the Boot Loader dialog box, choose Settings to open the
Project Settings dialog box. The address settings in this dialog must be the same as
those shown in Figure 12.

6. Compile and download the program to the ZNEO development board.

Figure 12. Project Setting (Address Space) of the ZNEO Boot Loader
AN032501-0411 Page 21 of 44

Boot Loader for ZNEO-Based MCUs
Application Note
Load Hex Code

Observe the following procedure to establish serial communication and load the boot
loader hex code to the Z16F Series MCU.

1. Unplug the ZDS II IDE from the MCU and connect the RS-232 cable to your PC and
to the development board.

2. Double-click the BAUD_57600 file included in the AN0325-SC01.zip source code
file (available on www.zilog.com) to Launch HyperTerminal; the Port Settings
parameters should already be configured as shown in Figure 13.

3. Press the space bar on your keyboard and, at the same time, press the reset button on
the development board to reset the MCU.

4. Release the space bar of the PC, then release the reset button to start the user program.
HyperTerminal should present a display similar to the result shown in Figure 14.

Figure 13. Port Settings in HyperTerminal
AN032501-0411 Page 22 of 44

http://www.zilog.com/

Boot Loader for ZNEO-Based MCUs
Application Note
5. When you are prompted by the LOAD HEX FILE statement, click Transfer, then
choose Send Text File. Search for and open the file labeled
application_code.hex.

6. The HyperTerminal application should present the following information:


CONGRATULATIONS! You have loaded the application code suc-
cessfully!

Visit us at www.zilog.com for more information on Zilog
Products

After a few seconds, the HyperTerminal screen will scroll to slowly show:

I ♥ ZILOG

followed by the LED light sequence.

Figure 14. HyperTerminal Displays the Boot Loader Initialization
AN032501-0411 Page 23 of 44

Boot Loader for ZNEO-Based MCUs
Application Note
Configure Application Code Address Space

Before compiling the user application code to create the user application hex file, the user
should configure the address space for user application code by observing the following
procedure.

1. In ZDSII, navigate to the Project Settings dialog box.

2. In the left pane, click Linker, then Address Spaces. The Address Spaces panel will
appear, as shown in Figure 15.

3. In the Constant Data (ROM) field of the Address Spaces panel, enter an address
range of 0x00000–0x07FFF.

4. In the Program Space (EROM) field, enter an address range of 0x08000–1F7FF.

Summary

This boot loader program for ZNEO CPU-based MCUs is designed to be used as a serial
communication alternative to Zilog’s XTools firmware downloader, which communicates
via a USB port. One limitation observed is that the Flash memory settings located in the
address range 00000h–00003h are permanent and cannot be changed when using this
serial boot loader. Another limitation is that Flash memory can only handle 63 pages
(126 KB) because the last page of memory must be reserved for boot loader code.

Figure 15. Address Space for Application Code
AN032501-0411 Page 24 of 44

Boot Loader for ZNEO-Based MCUs
Application Note
References

• ZNEO Z16F Series Product Specification (PS0220)

• ZNEO CPU User Manual (UM0188)
AN032501-0411 Page 25 of 44

http://www.zilog.com/docs/zneo/UM0188.pdf
http://www.zilog.com/docs/zneo/PS0220.pdf

Boot Loader for ZNEO-Based MCUs
Application Note
Appendix A. Assembly Code for a ZNEO-Based Boot Loader

This appendix describes each of the assembly code functions of the Flash boot loader for
MCUs based on the ZNEO CPU architecture.

Function Main

Description Contains the backbone of the program.

Included
Functions

• Boot loader code

• Application code

Registers R0, R1, R2, R3 and R4 are used as variable registers.

Code

main:

ld sp,#%FFC000 ; stack pointer = 0xFFC000

; initialized UART

ld R1,#0

ld R2,#_SYS_CLK_FREQ

ld R3,#57600

ld R0,R3 ; UART0 initialization

sll R0,#3

add R0,R2

sll R3,#4

udiv R0,R3

ld.w U0BR,R0 ; UART Baud Rate

ld R0,#%30 ; UART GPIO initialization

or.b PAAFL,R0 ; PAAFL = 0x30

clr.b U0CTL1 ; U0CTL1= 0x00

ld R0,#%C0

ld.b U0CTL0,R0 ; U0CTL0= 0xC0

; delay function

call delay

call delay

ld.b R0,U0RXD ; Read the data from data receive register

cp R0,#%20 ; if (U0RXD=0x20)

jp z,bootloadercode ; bootloadercode();

; else

; application_code();
AN032501-0411 Page 26 of 44

Boot Loader for ZNEO-Based MCUs
Application Note
ld R4,%1F7FC ; R4 = Application Code Start Address
(0x1F7FC)

call delay

call delay

jp (R4) ; go to application_code();

Function Bootloadercode

Description Contains the initialization code for Flash memory, including the unlock
Flash, lock Flash, erase Flash, write Flash and get hex line functions; this
latter function is used to read the application code hex file.

Included
Functions

• Init_flash

• Puts

• Erase_flash_address

• Write_bootloader_start_address

• Get_hex_line

• Lock_flash

Registers R0, R1, R2, R3 and R4 are used as variable registers.

R12 used for extended addressing

Code

bootloadercode:

ld R1,#print_Bootloader ; printf("ZNEO Boot Loader");

call puts

call init_flash ; initialized Flash memory

ld R1,#print_pleasewait ; printf("Please wait...");

call puts

clr R2 ; R2 = start address of flash to
be erase

ld R3,#%1F800 ; R3 = end address to flash be
erase

call erase_flash_address ; erase address (0x0000-
0x1F7FF)

call write_bootloader_start_address ; rewrite boot loader code
address (0x04-0x07)

ld R1,#print_Load_HEX_file ; print "LOAD HEX FILE"

call puts

clr R12 ; initialized extended address
AN032501-0411 Page 27 of 44

Boot Loader for ZNEO-Based MCUs
Application Note
call get_hex_line ; read the hex file of the appli-
cation code

call lock_flash

call delay

ld R1,#print_completed ; print "COMPLETED!"

call puts

ld R4,%1F7FC ; R4 = Application Code Start
Address (0x1F7FC)

call delay

call delay

jp (R4) ; Go to Application code

ret

Function init_flash

Description Used to initialize the clock in Flash memory.

Included
Functions

None.

Registers R0 and R1 are temporary variables.

Code

init_flash:

ld R1,#_SYS_CLK_FREQ ; initialized clock frequency

ld R0,#%3E8

udiv R1,R0

ld.w FFREQ,R1

ret

Function erase_flash_address

Description Erase the Flash address range specified by R2 (the start address) to R3
(the end address).

Registers R2 = Start address of the Flash memory space to be erased.

R3 = End address of the Flash memory space to be erased.

Code

erase_flash_address:

ld R1,#%2E ; print progress "...."

call putch
AN032501-0411 Page 28 of 44

Boot Loader for ZNEO-Based MCUs
Application Note
ld R1,R2 ; loads the start address to be erase
to R1

call page_erase

add R2,#%800 ; increment page erase since 1 page
= 0x800 bytes

cp R2,R3 ; compare if current erase page =
end address page

jp c, erase_flash_address ; repeat if current erase page < end
address page

ld R1,#%0A ; print progress new line

call putch

ret

Function Page_erase

Description Erase the page within Flash memory at an address specified by register
R1.

Included
Functions

• Page_unlock

Registers R1 = Address of Flash memory to be erased.

Code

page_erase:

call page_unlock

ld R0,#%95

ld.b FCMD,R0

flash_stat: ; wait until status register is clear

ld R0,#%10

tm.b FSTAT,R0

jp nz,flash_stat

ret

Function Page_unlock

Description Unlock the page within Flash memory at an address specified by register
R1.

Included
Functions

None.

Registers R1 = Address of the Flash memory space to be unlocked.

Code
AN032501-0411 Page 29 of 44

Boot Loader for ZNEO-Based MCUs
Application Note
page_unlock:

srl R1,#%B

sll R1,#%3

ld.w FPAGE,R1

ld R0,#%73

ld.b FCMD,R0

ld R0,#%8C

ld.b FCMD,R0

ret

Function lock_flash

Description Lock the contents of Flash memory to protect them from being overwritten.

Included
Functions

None.

Registers N/A

Code

lock_flash:

clr.b FCMD ; FCM = 0x00;

ret

Function write_bootloader_start_address

Description Rewrite the start address of the boot loader code.

Included
Functions

• Page_unlock

• Lock_flash

Registers R1 = Start address of the boot loader code.

Write (0001 F800) to address (0x0004-0x0007).

Code

write_bootloader_start_address:

ld R1,#%00 ; R1 = unlock page address (0x00)

call page_unlock ; unlock Flash memory.

ld R1,#%0004

ld.w (R1++),#%0001 ; R1 = load data (00 01) to address (0x0004-
0x0005)

ld.w (R1),#%FC00 ; R1 = load data (F8 00) to address (0x0006-
0x0007)
AN032501-0411 Page 30 of 44

Boot Loader for ZNEO-Based MCUs
Application Note
call lock_flash ; lock Flash memory

ret

Function get_hex_line

Description Reads a line in a hex file. The following steps are involved in reading a hex
file:

1. Check if (R5) receive char is ':' or char (0x34)

2. Store 1st Hex Byte to Data size (R6)

3. Store 2nd Hex Byte to High Byte Address (R7)

4. Store 3rd Hex Byte to Low Byte Address

5. Write 4th to (N-1) Hex Byte to the Address specified (depends on the
data size)

6. Store Last (Nth) Hex Byte Data Size(R6)

Notes:
• In the write byte, if the address = (0x00000-0x00007), then divert to

(0x1F7F8-1F7FF).
• If the address = (0x00008-0x1F7FF), go directly to the address.
• If address = (0x1F800-0x1FFFF), an illegal hex line can overlap the boot

loader.

Included
Functions

• Receive_char

• Ascii_to_hex_line

• Page_write

• Putch

Registers R5 = Hex byte.

R6 = Data size.

R7 = Address byte.

R8 = Record byte.

R9 = Data byte = # of byte (R6) is equal to data size store in address (R7).

R10= Checksum = hex byte(R6) + hexbyte_H(R7) + hexbyte_L(R7) + hex-
byte(Nth) = R11.

Code

get_hex_line:

call receive_char ; start line

ld R0,R5 ; R5 = received data

cp R0,#%3A ; check for ':' or 0x34 ASCII

jp nz,get_hex_line

clr R11 ; initialized checksum = 0x00

;---------------------------------DATA SIZE--

call ascii_to_intelhex ; data size
AN032501-0411 Page 31 of 44

Boot Loader for ZNEO-Based MCUs
Application Note
ld R6,R0 ; R6 = data size

;---------------------------------ADDRESS---

call ascii_to_intelhex

sll R0,#8 ; high byte address

ld R7,R0 ; R7 = high byte address

call ascii_to_intelhex ; low byte address = R0

add R7,R0 ; R7 = add high and low address byte

;---------------------------------RECORD BYTE--

call ascii_to_intelhex ; record byte

ld R8,R0 ; R8 = record byte

cp R8,#%01 ; check record type if end of file

jp z,get_line_end

cp R8,#%04 ; check record type if extended address

jp nz,write_data_byt
e

ld R12,#%10000

jp get_hex_line

;---------------------------------DATA BYTE--

write_data_byte:

ld R2,R7 ; R2 = start address(R7)

add R2,R12 ; R2 = start address(R7) + extended
address(R12)

ld R3,R6 ; R3 = data size(R6)

add R3,R2 ; R3= data size(R6) + start address(R2) = ter-
minal address

call page_write ; write the data_bytes to memory

;---------------------------------CHECKSUM---

ld R2,R11 ; (R2) sum of all = data size + byte_address +

; record_byte + data byte

call ascii_to_intelhex ; checksum

and R0,#%000000FF

ld R10,R0
AN032501-0411 Page 32 of 44

Boot Loader for ZNEO-Based MCUs
Application Note
and R2,#%000000FF ; checksum = 0xFFFFFFFF - sum of all +
0x01

ld R0,#%FFFFFFFF

sub R0,R2

add R0,#%01

and R0,#%000000FF

cp R0,R10

jp nz,print_error_ch
eck_sum

ld R1,#%2E ; print progress

call putch

jp get_hex_line

get_line_end:

ret

Function receive_char

Description Get a character from U0RXD and store it to R5.

Included
Functions

Receive_char

Registers R5 = Hold the received character.

Code

receive_char:

ld R0,#%80

tm.b U0STAT0,R0 ; Read the UART0 status register.

jp z,receive_char ; Check if any character is received.

ld.b R5,U0RXD ; R5 = Store the data from data receive regis-
ter (U0RXD).

ret

Function ascii_to_intelhex

Description Get a character from U0RXD via R5 and convert it to INTEL HEX 32 format.

Included
Functions

• Receive_char

Registers R0 = Converted to Intel Hex 32 format.

R5 = Received ASCII character.

R11= Add the Intel Hex 32-converted character to the checksum.

Code
AN032501-0411 Page 33 of 44

Boot Loader for ZNEO-Based MCUs
Application Note
ascii_to_intelhex:

call receive_char

ld R0,R5 ; R5 = received data.

add R0,#%FFFFFFBF

jp c,ascii_to_intelhex_H ; check if received char > 0x40

add R0,#%07

ascii_to_intelhex_H: ; converts ASCII char to Intel Hex High
Byte

add R0,#%0A

sll R0,#4 ; shifted to the high byte

and R0,#%000000F0

ld R1,R0 ; load the high byte data

call receive_char

ld R0,R5 ; R5 = received data

add R0,#%FFFFFFBF

jp c,ascii_to_intelhex_L

add R0,#%07

ascii_to_intelhex_L: ; converts ASCII char to Intel Hex Low
Byte

add R0,#%0A

and R0,#%0000000F

or R0,R1 ; R0 = converted Intel Hex 32

add R11,R0 ; checksum addition

ret

Function page_write

Description Write the data to the specified address.

Included
Functions

• Ascii_to_intelhex

• Page_unlock

Registers R2 = Start write address of the page.

R3 = End write address of the page.

Code

page_write:

sub R3,#%01

jp write_end
AN032501-0411 Page 34 of 44

Boot Loader for ZNEO-Based MCUs
Application Note
write_continue:

call ascii_to_intelhex ; get the data byte

sll R0,#8 ; R0 = high data byte

ld R4,R0 ; R4 = high data byte

call ascii_to_intelhex ; R0 = low data byte

add R4,R0 ; R4 = add high and low data byte

cp R2,#%1F800

jp nc,print_error_write_address ; if address R2 > 0x1F7FF

ld R0,#%06

cp R0,R2 ; if R0 reset address (0x06) <
data_address (R2)

jp c,write_continue_data ; then write data to specified data
address

cp R2,#%04 ; if data_address (R2) < reset
address (0x06)

jp c,write_continue_data ; then write data to specified data
address

; else

add R2,#%1F7F8 ; divert the address to app. start
address (0x1F7FC)

ld R1,R2 ; page address to be unlock

call page_unlock ; unlock Flash memory at 0x10000

ld.w (R2),R4 ; write the data byte (R4) to
address (R13)

ld.w R0,(R2++) ; check the flash if the data is writ-
ten

cp R0,R4

jp nz,print_error_write_flash ;if data is not written then print
error write flash

sub R2,#%1F7F8

jp write_end

write_continue_data:

ld R1,R2

call page_unlock ; unlock Flash memory at 0x10000

ld.w (R2),R4 ; write the data byte (R4) to
address (R2)
AN032501-0411 Page 35 of 44

Boot Loader for ZNEO-Based MCUs
Application Note
ld.w R0,(R2++) ; check the flash if the data is writ-
ten

cp R0,R4

jp nz,print_error_write_flash ; if data is not written then print
error write flash

write_end:

cp R2,R3 ; check if start write address = end
write address

jp c,write_continue ; else write continue

ld R1,R6 ; R1 = data size (R6)

and R1,#%01 ; check for odd or even

cp R1,#%00 ; if even data byte

jp z,page_write_end ; then go to page write end

; else

call ascii_to_intelhex ; get the data byte

sll R0,#8 ; R0 = high data byte

ld R4,R0 ; R4 = high data byte

add R4,#%00FF ; initialized LSB

ld R1,R2

call page_unlock ; unlock Flash memory at
0x10000.

ld.w (R2),R4 ; write the data byte (R4) to
address (R2)

page_write_end:

ret

Function Puts

Description Print the string of character.

Included
Functions

• Putch

Registers R1 = Register used to hold the character.

Code

puts:

ld R2,R1 ;R2 = address of the string

cp R2,#0 ;if address is 0 return.
AN032501-0411 Page 36 of 44

Boot Loader for ZNEO-Based MCUs
Application Note
jp eq,lputs3

jp lputs1

lputs2:

ld.ub R1,(R2) ; R1 = character from string pointed by R2

call putch ; Call _putch with R1 containing character

add R2,#1 ; Increment pointer R2

lputs1:

cpz.b (R2) ; if character pointed by R2 is 0 return

jp ne,lputs2 ; else go back to loop

lputs3:

ld R0,#0

ret

Function Putch

Description Print the character.

Included
Functions

• send

Registers R1 = Register used to hold the character.

Code

putch:

ld R0,R1

ext.ub R5,R0

cp R5,#10

jp ne,lputch1 ; If (character == \n)

ld R1,#13

call send ; Call _send with character

lputch1:

ld R1,R0

call send ; Call _send with character

ld R0,#0 ; Return R0 = 0

ret ; Return

Function Send

Description Used to send the character.

Included
Functions

None.

Registers R1 = Register used to transmit the data to TXD register.

Code
AN032501-0411 Page 37 of 44

Boot Loader for ZNEO-Based MCUs
Application Note
send:

pushmlo <R0> ; Save register

lsend1:

ld R0,#4 ; Send on UART0

tm.b U0STAT0,R0

jp eq,lsend1 ; while (!(U0STAT0 & %4))

ld.b U0TXD,R1 ; U0TXD = R1 (character)

popmlo <R0> ; Restore registers

ret

Function Delay

Description Used to delay the next instruction.

Included
Functions

None.

Registers R0, R1 and R2 used as variable registers.

Code

delay:

ld R2,#%FF

loop2:

ld R1,#%FF

loop1:

dec R1

ld R0,R1

jp nz,loop1

dec R2

ld R0,R2

jp nz,loop2

ret

Function print_error_check_sum

Description Prints "error checksum" in HyperTerminal.

Included
Functions

• puts

Registers R1, which stores the character array.

Code

print_error_check_sum: ; computed checksum(R11) !=
Hex Byte checksum(R10)

ld R1,#print_error ; print "error"
AN032501-0411 Page 38 of 44

Boot Loader for ZNEO-Based MCUs
Application Note
call puts

ld R1,#print_error_checksum ; print "checksum"

call puts

jp $; terminate program

Function print_error_write_address

Included
Functions

• puts

Description Prints "error address" in HyperTerminal.

Registers R1, which stores the character array.

Code

print_error_write_address: ; address > 0x1F7FF boot loader
code

ld R1,#print_error ; print "error"

call puts

ld R1,#print_error_address ; print "Address: Change Constant
Data(ROM)=0000-77FF..."

call puts

jp $; terminate program

Function print_error_write_flash

Included
Functions

• puts

Description Prints "error address" in HyperTerminal.

Registers R1, which stores the character array.

Code

print_error_write_flash:

ld R1,#print_error ; print "error"

call puts

ld R1,#print_write_fl
ash

; print "flash"

call puts

jp $; terminate program

Function print_Load_HEX_file

Included
Functions

None.

Description Prints "LOAD HEX FILE" in HyperTerminal.

Registers R1, which stores the character array.
AN032501-0411 Page 39 of 44

Boot Loader for ZNEO-Based MCUs
Application Note
Code

print_Load_HEX_file:

DB "LOAD HEX FILE"

DB 10,0

Function print_Bootloader

Included
Functions

None.

Description Prints "ZNEO Boot Loader!" in HyperTerminal.

Registers R1, which stores the character array.

Code

print_Bootloader:

DB "ZNEO Boot Loader!"

DB 10,0

Function print_error

Included
Functions

None.

Description Prints "Error:" in HyperTerminal.

Registers R1, which stores the character array.

Code

print_error:

DB "Error:"

DB 10,0

Function print_error_address

Included
Functions

None.

Description Prints "Address: Change Constant Data(ROM) = 0000-(XXXX-1) and Pro-
gram(EROM)=XXXX-1F7FB" in HyperTerminal.

Registers R1, which stores the character array.

Code

print_error_address:

DB "Address: Change Constant Data(ROM) = 0000-(XXXX-1) and Pro-
gram(EROM) = XXXX-1F7FB"

DB 10,0
AN032501-0411 Page 40 of 44

Boot Loader for ZNEO-Based MCUs
Application Note
Function print_error_checksum

Included
Functions

None.

Description Prints "checksum" in HyperTerminal.

Registers R1, which stores the character array.

Code

print_error_checksum:

DB "checksum"

DB 10,0

Function print_write_flash

Included
Functions

None.

Description Prints "flash" in HyperTerminal

Registers R1, which stores the character array.

Code

print_write_flash:

DB "flash write"

DB 10,0

Function print_pleasewait

Included
Functions

None.

Description Prints "Please wait" in HyperTerminal.

Registers R1, which stores the character array.

Code

print_pleasewait:

DB "Please wait"

DB 10,0

Function print_completed

Included
Functions

None.

Description Prints "COMPLETED!" in HyperTerminal.

Registers R1, which stores the character array.

Code

print_completed:
AN032501-0411 Page 41 of 44

Boot Loader for ZNEO-Based MCUs
Application Note
DB "COMPLETED!"

DB 10,0
AN032501-0411 Page 42 of 44

Boot Loader for ZNEO-Based MCUs
Application Note
Appendix B. Intel Hex 32 Format

The boot loader application can program a standard file format into the ZNEO-based
MCU’s Flash memory. The Intel Standard Hex32 file format is one of the popular and
commonly-used file formats. An Intel Standard Hex 32-formatted file is an ASCII file that
contains one record per line, as described below.

Record Mark. This field indicates the start of the hex line. It contains the char 3Ah or
":".

Data Size. This field indicates the size of the data in the hex line.

Address. This field indicates the address of the data to be stored in Flash memory which
follows the big endian.

Record Type. This field indicates the type of the data, including the following data types:

• Data Record or normal addressing (00)

• End Of File Record (01)

• Extended Linear Address Record

Data Byte. This field contains the information that is written to Flash memory. The num-
ber of bytes depends on the data size.

Checksum. This field is used to determine if the received data is correct. The checksum
must be equal to the two’s complement of the sum of data size, MSB address, LSB
address, record type and the data bytes.

Checksum = FFh and [FFh – (1st byte + 2nd Byte + …. + (N–1)
byte) + 01h]

Record
Mark

Data
Size

Address
MSB

Address
LSB

Record
Type

Data
Byte Checksum

1 Byte 1 Byte 1 Byte 1 Byte 1 Byte n- Byte 1-Byte
AN032501-0411 Page 43 of 44

Boot Loader for ZNEO-Based MCUs
Application Note
Customer Support

To share comments, get your technical questions answered, or report issues you may be
experiencing with our products, please visit Zilog’s Technical Support page at 
http://support.zilog.com.

To learn more about this product, find additional documentation, or to discover other fac-
ets about Zilog product offerings, please visit the Zilog Knowledge Base at http://
zilog.com/kb or consider participating in the Zilog Forum at http://zilog.com/forum.

This publication is subject to replacement by a later edition. To determine whether a later
edition exists, please visit the Zilog website at http://www.zilog.com.

DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.

LIFE SUPPORT POLICY

ZILOG’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)
support or sustain life and whose failure to perform when properly used in accordance with instructions for
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A
critical component is any component in a life support device or system whose failure to perform can be
reasonably expected to cause the failure of the life support device or system or to affect its safety or
effectiveness.

Document Disclaimer

©2011 Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications,
or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES
NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO
DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED
IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED
HEREIN OR OTHERWISE. The information contained within this document has been verified according
to the general principles of electrical and mechanical engineering.

Z8, Z8 Encore!, Z8 Encore! XP and ZNEO are registered trademarks of Zilog, Inc. All other product or
service names are the property of their respective owners.

Warning:
AN032501-0411 Page 44 of 44

http://zilog.com/kb
http://zilog.com/kb
http://zilog.com/forum
http://support.zilog.com

	Boot Loader for ZNEO-Based MCUs Application Note

	Abstract
	ZNEO-Based MCUs: A Flash Memory Overview
	Discussion
	Developing the ZNEO Boot Loader Application
	ZNEO Boot Loader Features and Application

	Theory of Operation
	Software Implementation
	Test the Application

	Summary
	References
	Appendix A. Assembly Code for a ZNEO-Based Boot Loader
	Appendix B. Intel Hex 32 Format
	Customer Support

