
AN031402-0712
Abstract

The Z16F Series of MCUs are based on Zilog’s ZNEO CPU architecture and features a 4-
channel DMA controller that supports internal and external data transfers, namely: mem-
ory-to-memory, memory-to-peripheral, peripheral-to-memory, and peripheral-to-periph-
eral data transfers. This application note demonstrates how to set up and use the DMA
controller featured in the ZNEO Z16F microcontroller. The use of DMA is beneficial in
most systems in such manner that it frees up more CPU bandwidth that can be used in ser-
vicing more important tasks than mere data transfers.

The source code files associated with this application note, AN0314-SC01, have been
tested with ZDS II version 5.0.1.

Features

The prominent Direct Memory Access features of the ZNEO CPU are:

• Four independent DMA channels

• Supports memory to memory, memory to peripheral, peripheral to memory, and
peripheral to peripheral data transfers

• Operates in either direct or linked list mode

• Byte, word, or quad data transfer length

• DMA and CPU bandwidth sharing control

• Up to 64K transfers (64 KBytes, 64 KWord, or 64 KQual)

• External DMA request and DMA acknowledge signals

Discussion

The ZNEO DMA is used to offload the processor from performing repetitive tasks. It
transfers data from one memory address to another memory address, or from one periph-
eral to another peripheral. These tasks require a read and/or write cycle that is generated
by the DMA controller. Each DMA transfer requires a minimum of 2 system clock cycles
to execute. Figure 1 shows a block diagram of the DMA Controller for the Z16F MCU,
which is based on the ZNEO architecture.

Note:
AN031402-0712
Application Note
Using the DMA Controller on the
ZNEO CPU
 Page 1 of 17

Using the DMA Controller on the ZNEO CPU
Application Note
Figure 1. DMA Block Diagram

Channel
MUX

Channel 0

Memory Bus

Channel 1

Channel 2

Channel 3
(Internal Only)

Request0
Request EOF0

Acknowledge0

Interrupt0

Request1
Request EOF1

Acknowledge1

Interrupt1

Request2
Request EOF2

Acknowledge2

Interrupt2

Request3
Request EOF3

Acknowledge3

Interrupt3

CMDVLD
EOFSYNC
RDSTAT
CMDBUS
STATBUS

DMA Bus
Controller
AN031402-0712 Page 2 of 17

Using the DMA Controller on the ZNEO CPU
Application Note
DMA Register Description
Each DMA channel consists of the following elements:

DMA Control Register
The DMA Control Register (DMAxCTL) enables and controls the DMA transfer. Each bit
in this register, described in Table 1, defines how the DMA transfer should behave.

DMA Control Register (DMAxCTL) 16 bits

Transfer Length (DMAxTXLN) 16 bits

Destination Address (DMAxDAR) 24 bits

Source Address (DMAxSAR) 24 bits

List Address (DMAxLAR) 24 bits

Table 1. DMA Control Register (DMAxCTL)

Bits 15 14 13 12 11 10 9 8

Field DMAxEN LOOP TXSIZE DSTCTL SRCCTL

Reset 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

Bits 7 6 5 4 3 2 1 0

Field IEOB TXFR EOF HALT CMDSTAT

Reset 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

15 DMAxEN (DMA x Enable)
Enables/disables the DMA

14 LOOP (Loop Mode)
If enabled, this bit prevents the DMA from updating the descriptor when the buffer is closed.
This bit is essential when DMA is operating in linked list mode to allow the list to loop by itself
without software intervention. This bit is used only when DMA is in linked list mode. Thus, it is
mandatory that this bit is reset to zero when running in direct mode.

13:12 TXSIZE (Transfer Size)
This field defines the width of the data to be transferred. Data transfer width can either be in
byte, word, or quad. This field affects the behavior of the destination and source address
registers (DMAxDAR, DMAxSAR) in such manner that increments and/or decrements on these
registers will vary depending on transfer size. For an 8-bit data transfer, the address registers
will increment/decrement by one for each DMA transfer. A 16-bit data transfer will increment/
decrement the address registers by two per DMA transfer. While in a 32-bit data transfer, the
address registers will increment/decrement by four per DMA transfer.
AN031402-0712 Page 3 of 17

Using the DMA Controller on the ZNEO CPU
Application Note
DMA Transfer Length Register
The DMA Transfer Length Register (DMAxTXLN) specifies how many transfers are
required for a given buffer. It is equivalent to the size of the buffer pointed to by SAR. See
Tables 2 and 3.

11:8 DSTCTL/SRCCTL (Destination/Source Control Register)
These fields define the behavior of the destination and source address registers (DMAxDAR,
DMAxSAR) after every DMA transfer. These behaviors can be fixed, increment, or decrement.
When set to FIXED, the address register will not be modified on each DMA transfer. When set
to INCREMENT, the address register increments after each DMA transfer. When set to
DECREMENT, the address register decrements after every DMA transfer. Increment or
decrement value depends on TXSIZE.

7 IEOB (Interrupt on End Of Buffer)
This bit forces the DMA channel to generate an interrupt when the buffer is closed. If the DMA
is running in direct mode, an interrupt will also be generated when the TXLN reaches the
watermark value.

6 TXFR (Transfer to New List Address)
This bit determines how the DMA will iterate through the linked list. If set to 1, the DMA will use
the LAR in the descriptor as the next descriptor to be loaded. This setup enables looping thru
the linked lists. If reset to zero, the DMA will increment the current LAR by 16 and use it as the
next descriptor address to be loaded. This bit is used only when DMA is running in linked list
mode, and must be reset to zero when operating in direct mode.

5 EOF (End of Frame)
This bit determines if the current buffer is an end of frame or not. If set to 1, an EOF signal is
sent to the peripheral on the last transfer in the buffer to signal the peripheral to close this
frame. This is only used for on-chip peripherals, and may also be set if a peripheral requests
an end of frame before the buffer transfer is completed.

4 HALT (Halt after this Buffer)
This bit determines if the next descriptor should be loaded or if the DMA should stop at the end
of the current buffer. If set to 1, the DMA will stop after the current buffer is closed. Otherwise,
the DMA will load the next descriptor based from the LAR. This bit is used only when DMA is
running in linked list mode, and must be reset to zero when operating in direct mode.

3:0 CMDSTAT (Command Status Field)
This field is exported to the requesting device on the first transfer of a new buffer. It can either
be set by a software write or from the DMA reading the descriptor. If EOF is set, this field will
contain status information from the peripheral at the end of a buffer. Some peripherals require
the use of this field, others do not; see the ZNEO Z16F Series Product Specification (PS0220)
for more information.

Table 2. DMA Transfer Length High Register (DMAxTXLNH)

Bits 7 6 5 4 3 2 1 0

Field DMAxTXLNH

Reset 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W
AN031402-0712 Page 4 of 17

http://www.zilog.com/docs/zneo/PS0220.pdf

Using the DMA Controller on the ZNEO CPU
Application Note
Each time a transfer occurs, this register is decremented by 1. Upon reaching 0, the DMA
concludes that the buffer is already complete and DMA will either stop or load a new
descriptor. This register is not affected by TXSIZE, thus it always decrements by 1 regard-
less of data transfer size. In essence, if TXSIZE defines an 8-bit data transfer, this register
will decrement by 1. It will also decrement by 1 if TXSIZE denotes a 16-bit or 32-bit data
transfer.

DMA Destination Address Register
The DMA Destination Address Register (DMAxDAR) points to the memory locations in
which to store the data transferred from the address pointed to by SAR. See Tables 4
through 6.

Table 3. DMA Transfer Length Low Register (DMAxTXLNL)

Bits 7 6 5 4 3 2 1 0

Field DMAxTXLNL

Reset 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

Table 4. DMA X Destination Address Upper Register (DMAxDARU)

Bits 7 6 5 4 3 2 1 0

Field DMAxDARU

Reset 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

Table 5. DMA X Destination Address High Register (DMAxDARH)

Bits 7 6 5 4 3 2 1 0

Field DMAxDARH

Reset 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

Table 6. DMA X Destination Address Low Register (DMAxDARL)

Bits 7 6 5 4 3 2 1 0

Field DMAxDARL

Reset 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W
AN031402-0712 Page 5 of 17

Using the DMA Controller on the ZNEO CPU
Application Note
Each time a transfer occurs, the DAR value will stay fixed, increment, or decrement
depending on DSTCTL settings. When set to stay fixed, this register will not change its
value regardless of the number of transfers that occurred. When set to increment or decre-
ment, this register will increment/decrement by the size of the transfer defined by
TXSIZE. That is, if TXSIZE defines an 8-bit data transfer, this register will increment/
decrement by 1. If TXSIZE defines a 16-bit transfer, this register will increment/decre-
ment by 2. This register will increment/decrement by 4 if TXSIZE denotes a 32-bit trans-
fer.

DMA Source Address Register
The DMA Source Address Register (DMAxSAR) points to the memory locations in which
to obtain (GET) the data to be transferred. See Tables 7 through 9.

Each time a transfer occurs, the SAR value will stay fixed, increment, or decrement
depending on SRCCTL settings. When set to stay fixed, this register will not change its
value regardless of the number of transfers that occurred. When set to increment or decre-
ment, this register will increment/decrement by the size of the transfer defined by
TXSIZE.

Table 7. DMA X Source Address Upper Register (DMAxSARU)

Bits 7 6 5 4 3 2 1 0

Field DMAxSARU

Reset 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

Table 8. DMA X Source Address High Register (DMAxSARH)

Bits 7 6 5 4 3 2 1 0

Field DMAxSARH

Reset 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

Table 9. DMA X Source Address Low Register (DMAxSARL)

Bits 7 6 5 4 3 2 1 0

Field DMAxSARL

Reset 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W
AN031402-0712 Page 6 of 17

Using the DMA Controller on the ZNEO CPU
Application Note
DMA List Address Register
The DMA List Address Register (DMAxLAR) points to the memory locations in which
the descriptor lists are located. See Tables 10 through 12.

The DMA List Address Register is accessed only in linked list mode. For direct mode,
however, the upper byte of this register, DMAxLARU, is used to set a watermark inter-
rupt.

DMA Request Select Register
The DMA Request Select Register (DMAxREQSEL) describes the request source of the
DMA transfer. Typically, the request source is the peripheral that will initiate a DMA
transfer. See Table 13.

Table 10. DMA X Source Address Upper Register (DMAxLARU)

Bits 7 6 5 4 3 2 1 0

Field DMAxLARU

Reset 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

Table 11. DMA X Source Address High Register (DMAxLARH)

Bits 7 6 5 4 3 2 1 0

Field DMAxLARH

Reset 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

Table 12. DMA X Source Address Low Register (DMAxLARL)

Bits 7 6 5 4 3 2 1 0

Field DMAxLARL

Reset 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

Table 13. DMA Select Register (DMAxREQSEL)

Bits 7 6 5 4 3 2 1 0

Field CHANSTATE REQSEL

Reset 0 0 0 0 0 0 0 0

R/W R R R R R/W R/W R/W R/W
AN031402-0712 Page 7 of 17

Using the DMA Controller on the ZNEO CPU
Application Note
The DMA Request Select Register also reflects the current state of the DMA channel.

Buffers and Frames
A buffer is an allocation of contiguous memory bytes where the DMA can store or get the
transferred data. Buffers must be allocated by software prior to enabling the DMA. A
frame can be a single buffer or a collection of buffers.

DMA Watermark
The watermark allows the DMA to generate an interrupt prior to the buffer becoming
empty. When operating in direct mode, the upper byte of the DMAxLAR is used as a
watermark. If these bits are set to any value greater than zero, the DMAxLARU is com-
pared to the low byte of the decremented transfer length (DMAxTXLN) during a transfer.
An interrupt is generated if IEOB = 1 and DMAxTXLNH = 0 and DMAxTXLNL =
DMAxLARU.

DMA Bandwidth Selection
The ZNEO CPU provides a way to control access to the busses thru the DMA bandwidth
selection. Up to four levels of DMA controller bus bandwidth can be configured thru the
CPUCTL register. See Table 14.

DMA bus bandwidth selection is governed by the following stipulations:

• The DMA function must use 100% of its bandwidth

• The DMA function is allowed one transfer for each CPU operation

• The DMA function is allowed one transfer for every two CPU operations

• The DMA function is allowed one transfer for every three CPU operations

DMA Modes
The DMA can operate in one of two modes - direct or linked list mode. Both modes are
almost the same, but differ in the way they are loaded. In direct mode, the user code is
responsible for loading the setup parameters into the DMA channel registers. While in
linked list mode, the user code only needs to create a setup list which will be automatically
loaded onto the DMA registers from the memory.

Table 14. CPU Control Register

Bits 7 6 5 4 3 2 1 0

Field CHANSTATE REQSEL

Reset 0 0 0 0 0 0 0 0

R/W R R R R R/W R/W R/W R/W
AN031402-0712 Page 8 of 17

Using the DMA Controller on the ZNEO CPU
Application Note
Direct Mode
Direct mode only uses the registers in the DMA for operation. The software writes these
registers directly to setup and enable the DMA. Direct mode is entered by directly setting
the appropriate bit in the DMAxCTL0 register. The figure below displays the DMA regis-
ters and how they point to the buffers allocated in memory.

Linked List Mode
Linked list mode requires the software to allocate buffers and setup a list of descriptors for
each buffer. Once this is done, the software writes to the DMAxLAR with the address of
the first descriptor. Then the DMA reads the first descriptor into the DMA control and
address registers with the exception of the LAR data. It executes the transfers as specified
by the descriptor data in the DMA. When the transfers are complete, the DMA reads in the
next descriptor in the list and continues executing transfers.

Descriptors

A descriptor is a 16-byte field stored within memory that describes the DMA settings
which will be used for linked list operation. It must be aligned on the 16-byte boundaries.
Each descriptor follows the format indicated in Table 15.

Software Implementation
This reference design utilizes the ZNEO Z16F2800100ZCOG development kit. It makes
use of the ZNEO CPU’s DMA controller, particularly, channel 0 of the DMA, for demon-
stration purposes. The application also uses the UART0 to provide a menu-driven console
that allows the user to test out the different modes of operation of the DMA controller.
Additionally, peripherals such as the ADC, Timer2, and the UART1 are used to support
DMA demonstration. See Appendix A for description on peripheral initialization.

CPU Bandwidth Selection

Prior to any DMA initialization, make sure that CPU busses are set to allocate the desired/
required bandwidth for DMA use. If this is not set, the reset value will be used; that is,
DMA is allowed one transfer for every three CPU operations. In this application note, dif-
ferent bandwidth selections are used to provide examples for the different values of
CPUCTL. The table below itemizes the CPU bandwidth used for each transfer type. The
same CPU bandwidth will be used for both direct mode and linked list mode.

Table 15. Linked List Descriptor

Address Even

LAR CONTROL

LAR + 02H TXLN

LAR + 04H DAR High

LAR + 08H SAR High

LAR + 0CH LAR High
AN031402-0712 Page 9 of 17

Using the DMA Controller on the ZNEO CPU
Application Note
Direct Mode Operation

For direct mode operation, DMA registers are set directly by software. The code that fol-
lows demonstrates the steps upon initializing the DMA for direct mode operation.

/**
* Function Name: DMA0_InitDirectMode
* Parameters: sDMA_Descriptor arg
* Return Type: -none-
* Description: Initiates DMA transfer by setting up its registers
* directly.
**/
void DMA0_InitDirectMode(sDMA_Descriptor arg)
{

// 1. Select the request source
DMA0REQSEL = mucDMA_ReqSel;

// 2. Set the destination address
DMA0DAR = msDMA_Settings.DAR;

// 3. Set the source address
DMA0SAR = msDMA_Settings.SAR;

// 4. Set the transfer length (number of bytes/words/quads to tx)
DMA0TXLN = msDMA_Settings.TXLN;

// 5. Set water mark, if required otherwise, write to zero
DMA0LARU = 0x00;

// 6. Enable DMA0 interrupt, if required
if(msDMA_Settings.CtrlStat & DMAFLAGS_IEOB)
DMA0_EnableInterrupt();

// 7. Write to DMAxCTL. Ensure direct mode before enabling DMA.
DMA0CTL = msDMA_Settings.CtrlStat & DMA_MASK_DIRECTMODE;

}
/**/

Table 16. CPU Bandwidth Selection For Each DMA Transfer Type

Transfer Type CPU Bandwidth

ADC to RAM DMA uses 100% of CPU bandwidth.

ERAM to RAM DMA transfer occurs once every CPU operation.

ADC to UART1 DMA transfer occurs once every 2 CPU operations.

ROM to ERAM DMA transfer occurs once every 3 CPU operations.

RAM to PWM DMA uses 100% of CPU bandwidth.
AN031402-0712 Page 10 of 17

Using the DMA Controller on the ZNEO CPU
Application Note
When using direct mode, the DMA automatically disables at the end of buffer. DMA reg-
isters are also modified, thus, the user needs to re-initialize all DMA registers, if it needs
to be restarted. To avoid re-initializing the DMA, using linked list mode is highly sug-
gested.

The LOOP, TXFR and HALT bits of the DMA Control Register are not used in direct
mode and should always be reset to zero.

Linked List Mode Operation

For linked list mode operation, DMA registers are set thru the descriptors. The DMA will
be enabled upon writing to the LAR. The code below demonstrates the steps on initializ-
ing the DMA for linked list operation.

/**
* Function Name: DMA0_InitLinkedListMode
* Parameters: sDMA_Descriptor arg
* Return Type: -none-
* Description: Initiates DMA transfer via descriptors.
**/
void DMA0_InitLinkedListMode(sDMA_Descriptor arg)
{

// 1. Select the request source in the descriptor.
DMA0REQSEL = mucDMA_ReqSel;

// 2. Set the CONTROL field in the descriptor.
msDMA_LinkedList0.CtrlStat = arg.CtrlStat;

// 3. Set the source address in the descriptor.
msDMA_LinkedList0.SAR = arg.SAR;

// 4. Set the destination address in the descriptor.
msDMA_LinkedList0.DAR = arg.DAR;

// 5. Set the transfer length in the descriptor.
msDMA_LinkedList0.TXLN = arg.TXLN;

// 6. Set then the LAR address to point to the next descriptor.
msDMA_LinkedList0.LAR = (UINT32)&msDMA_LinkedList0;

// Make sure LOOP is set to one to prevent the DMA to update the
// descriptor when buffer is closed.
msDMA_LinkedList0.CtrlStat |= DMAFLAGS_LOOP;

// Make sure TXFR is set to allow DMA looping of linked list
msDMA_LinkedList0.CtrlStat |= DMAFLAGS_TXFR;

// 7.If there are additional descriptors in the list then set

Note:
AN031402-0712 Page 11 of 17

Using the DMA Controller on the ZNEO CPU
Application Note
// them up using the same procedure listed above.

// 8. Enable DMA0 interrupt, if required
if(msDMA_LinkedList0.CtrlStat & DMAFLAGS_IEOB)
DMA0_EnableInterrupt();

// 9. After the descriptor has been set up, the software must
// write the DMAxLAR in the appropriate DMA with the address of
// the descriptor.
DMA0LAR = (UINT32)&msDMA_LinkedList0;

}
/**/

In linked list mode, the DMA continuously runs until the buffer is full. Afterwards, the
DMA will load the next descriptor in the list and continues to run until a descriptor with
the HALT bit set is encountered.

Testing/Demonstrating the Application
The application console must be connected to the RS-232 interface of the development kit
(UART0 of the ZNEO MCU) using 57600 baud, no parity, 1 stop bit. A snapshot of the
menu is shown in Figure 2; a guide to console commands is shown in Table 17.

Figure 2. Linked List Diagram
AN031402-0712 Page 12 of 17

Using the DMA Controller on the ZNEO CPU
Application Note
When testing the DMA with an ADC, make sure that J1 on the development board is
installed to enable the analog ports on JP4 and R10. This task will, in turn, disable external
memory (ERAM and EROM).

Results

Direct mode was tested with IEOB and EOF bits of DMA0CTL set to 1 and no watermark
value set. That is, an interrupt will be generated only at the end of the current buffer.
While linked list mode was tested using the same settings as direct mode with HALT bit of
DMA0CTL set to 1.

Summary

This application note provides a brief discussion on the DMA controller of the ZNEO
MCU together with its setup and usage. The software implementation along with this doc-
ument is easy to customize for any DMA setup.

Other DMA transfers can also be implemented using SPI and I2C transfers, as well as in
UART TXD/RXD transfers, but are not presented in this document.

References

The following documents supported the development of this application note; all are avail-
able on www.zilog.com.

• ZNEO Z16F Series Product Specification (PS0220)

• ZNEO CPU User Manual (UM0188)

• ZNEO Z16F Series of Microcontrollers Development Kit User Manual (UM0202)

Table 17. Console Commands

Command Description

D/L Changes the DMA mode to use on the next transfer
operation. If not set, the previous mode will be used.
At startup, the default operation is linked list mode.

H Displays a list of all commands.

1 Displays the current DMA settings.

2 ~ 6 Select and start DMA transfer.

Note:
AN031402-0712 Page 13 of 17

http://www.zilog.com/docs/zneo/PS0220.pdf
http://www.zilog.com/docs/zneo/UM0188.pdf
http://www.zilog.com/docs/zneo/devtools/UM0202.pdf
http://www.zilog.com/

Using the DMA Controller on the ZNEO CPU
Application Note
Appendix A. Peripheral Initialization

This section describes the initialization procedure for the peripherals used in DMA trans-
fers.

ADC Initialization
The ADC block should be initialized as it would be for normal ADC conversion, with spe-
cial attention devoted to the ADC0CTL and ADC0MAX registers, which enable the ADC
for DMA transfer. These registers are listed in the code segment that follows; this code
demonstrates the ADC initialization routine used for this reference design.

/***
* Function Name: ADC_Init
* Parameters: -none-
* Return Type: -none-
* Description: Initializes ADC.
***/
void ADC_Init(void)
{

UINT8 ctr;
UINT8 mask = 0x01;// mask for Port B inputs
UINT8 mask2 = 0x01;// mask for Port H inputs

for(ctr = ADC_MAXCHANNELS; ctr > 0; ctr--)
{

if(ctr <= 7)
mask = (mask << 1) | 0x01;
else
mask2 = (mask << 1) | 0x01;

}

if(ADC_MAXCHANNELS <= 7)
mask2 = 0x00;

PBAFL |= mask;// initialize ports for ADC alternate function
PHAFL |= mask2;

ADCSST = 0x09;// set ADCSST to contain number of clocks
// required to meet at least 0.5usec

ADCST = 0x02;// set ADCST to contain number of clocks
// required to meet at least 1usec

ADCCP = 0x00;// ADC clock == system clock == 5.52960 MHz

ADC0CTL = 0x70 | ADC_STARTCHANNEL;// convert on read, internal vref
ADC0MAX = ADC_MAXCHANNELS;

ADC0CTL |= 0x80;// enable adc
}
/**/
AN031402-0712 Page 14 of 17

Using the DMA Controller on the ZNEO CPU
Application Note
ADC0 Control Register 0 (ADC0CTL)

Convert on Read (CVTRD0). This bit must be set to 1 to let the DMA control data trans-
fers from ADC0D (ADC0 Data) to memory. By definition, this bit enables continuous
ADC conversion wherein the ANAIN field increments until it reaches the value set in the
ADC0MAX register. Upon reaching the ADC0MAX value, ANAIN resets to its initial
value, i.e., the value that ANAIN was originally set to when the ADC started.

Analog Input Select (ANAIN). Upon initialization, this field must be set to the ADC
channel where conversion needs to start. If CVTRD0 is set, this field increments on every
conversion until it reaches the ADC0MAX value.

ADC0 Max Register (ADC0MAX)

The ADC0 Max Register determines the highest channel number that Convert On Read
(CVTRD0) increments to. This register needs to be greater than or equal to the initial
value set in ANAIN.

Timer2 Initialization
The timer must be initialized in the same manner as setting up a timer for normal opera-
tion. The code below demonstrates the Timer2 initialization routine used for this reference
design.

/**
* Function Name: TMR2_InitPWMSingle
* Parameters: -none-
* Return Type: -none-
* Description: Initializes TIMER2 for PWM operation.
**/
void TMR2_InitPWMSingle(void)
{

T2CTL1 &= ~0x80; // 1. Disable the timer
T2CTL1 = 0x13; // 2. Configure timer for PWM mode, prescale=4
T2CTL0 = 0x00;
T2H = 0x00; // 3. Set the starting count value
T2L = 0x01;
T2R = RELOAD; // 4. Set the timer reload value
T2PWM = RELOAD / 2; // 5. Set PWM registers
PCAFH &= ~0x80; // 6. Set the timer input

// (and output port pin, if needed)
PCAFL |= 0x80;
T2CTL1 |= 0x80; // 7. Enable the timer

}
/**/

This timer is configured for PWM single output mode, without a delay in between asser-
tion and de-assertion of the two PWM output pins. A timer interrupt will occur only on a
AN031402-0712 Page 15 of 17

Using the DMA Controller on the ZNEO CPU
Application Note
reload event; however, timer interrupt is disabled (or not set) in the interrupt controller -
this is where DMA will interfere to update the PWM values. The same initialization
sequence may be used for the other timers - Timer0 and Timer1, if desired.

UART1 Initialization
The UART1 must be initialized in the same manner as it is for a normal operation. The
code below demonstrates the UART1 initialization routine used for this reference design.

/**
* Function Name: UART1_Init
* Parameters: -none-
* Return Type: -none-
* Description: Initializes UART1 (no parity, 1 stop bit).
**/
void UART1_Init(void)
{

PDDD |= 0x30; // Setup ports for alternate function
PDAFL |= 0x30;
PDAFH &= ~0x30;

U1BRH = (UINT8)((BAUDRATE & 0xFF00) >> 8);// Setup baud rate
U1BRL = (UINT8)((BAUDRATE & 0x00FF) & 0x00FF);

DI();
IRQ2 |= 0x40;
IRQ2ENH |= 0x40;
U1CTL1 = 0x20; // set RDAIRQ
U1CTL0 = 0xC0; // Receive Enable, No Parity, 1 Stop bit
EI();

}
/**/

DMA transfer to/from UART1 is configured separately - one for receive data, and another
for transmit data. If transmit data is to be moved via DMA, the transmit interrupt must be
disabled in the interrupt controller. If receive data is to be moved via DMA, the RDAIRQ
bit in the UART Control 1 register must be set. This disables receive data interrupts while
still enabling error interrupts. The receive interrupt must be enabled in the interrupt con-
troller only for processing error conditions received.
AN031402-0712 Page 16 of 17

Using the DMA Controller on the ZNEO CPU
Application Note
Customer Support

To share comments, get your technical questions answered, or report issues you may be experienc-
ing with our products, please visit Zilog’s Technical Support page at http://support.zilog.com.

To learn more about this product, find additional documentation, or to discover other facets about
Zilog product offerings, please visit the Zilog Knowledge Base at http://zilog.com/kb or consider
participating in the Zilog Forum at http://zilog.com/forum.

This publication is subject to replacement by a later edition. To determine whether a later edition
exists, please visit the Zilog website at http://www.zilog.com.

DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.

LIFE SUPPORT POLICY

ZILOG’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)
support or sustain life and whose failure to perform when properly used in accordance with instructions for
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A
critical component is any component in a life support device or system whose failure to perform can be
reasonably expected to cause the failure of the life support device or system or to affect its safety or
effectiveness.

Document Disclaimer

©2012 Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications,
or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES
NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO
DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED
IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED
HEREIN OR OTHERWISE. The information contained within this document has been verified according
to the general principles of electrical and mechanical engineering.

ZNEO is a trademark of Zilog, Inc. All other product or service names are the property of their respective
owners.

Warning:
AN031402-0712 Page 17 of 17

http://zilog.com/kb
http://zilog.com/forum

	Application Note:
Using the DMA Controller on the ZNEO CPU
	Abstract
	Features
	Discussion
	DMA Register Description
	DMA Control Register
	DMA Transfer Length Register
	DMA Destination Address Register
	DMA Source Address Register
	DMA List Address Register
	DMA Request Select Register
	Buffers and Frames
	DMA Watermark
	DMA Bandwidth Selection
	DMA Modes
	Direct Mode
	Linked List Mode
	Software Implementation
	Testing/Demonstrating the Application

	Results
	Summary
	References
	Appendix A. Peripheral Initialization
	ADC Initialization
	Timer2 Initialization
	UART1 Initialization

	Customer Support

