
AN027801-0808
Abstract
This application note describes the initialization of
the peripherals of the Z8 Encore! XP® 8-Pin Devices
(Z8F082A and Z8F0823 family of devices). The ini-
tialization covered in this Application Note include
the following components:

• Stack Pointer

• System Clock and IPO

• General Purpose Input/Output (GPIO) Port A

• Universal Asynchronous Receiver Transmitter
(UART)

• Timer1

• Analog-to-Digital Converter (ADC)

• Temperature Sensor

• Watchdog Timer

• Comparator

Initialization
To ensure that the Z8 Encore! XP® is powered up to
a known and desirable state, the device’s peripheral
must be properly initialized. Initialization is achieved
by running the initialization codes. Either the Assem-
bly version or the C version of the code can be run to
initialize the peripheral.

In this Application Note, for each peripheral, one
example each of Assembly code and C code is given
to illustrate the initialization process. Reference to
the control register section of the peripherals in the
Product Specifications is also given.

Stack Pointer
The stack pointer holds the current stack address and is used for all stack operations of the CPU. It must be set
to point to a section of the Register File that does not cause user data program to be overwritten.

Stack Pointer Assembly Code Initialization Example
;Stack starting address

NEAR_STACK EQU %00FF ; Define Stack at RAM Address 00FF hex

; Startup and Stack Pointer Initialization code

; Startup code

startup:

 DI ; Prevent interruption

 SRP #%00 ; Working registers 00-0f

 LDX SPL, #LOW(NEAR_STACK) ; Initialize stack pointer

 LDX SPH, #HIGH(NEAR_STACK)
Application Note
Initializing Peripherals in Z8 Encore! XP®
8-Pin Devices
Copyright ©2007 by Zilog®, Inc. All rights reserved.
www.zilog.com

http://www.ZiLOG.com

Initializing Peripherals in Z8 Encore! XP® 8-Pin Devices
Stack Pointer C Code Initialization Example
// Initialize Stack Pointer

DI();

SPL = NEAR_STACK & 0x00FF; // Initialize stack pointer

SPH = NEAR_STACK >> 8;

System Clock
The system clock drives the CPU and all the peripherals. The source of the system clock is user-selectable and
can be one of the following:

• On-chip Internal Precision Oscillator (IPO)

• On-chip low power Watchdog Timer (WDT) Oscillator

• External clock drive

Selection of the clock source for system clock is made during initialization of the system clock. For 8-pin pack-
ages, most applications configures the Internal Precision Oscillator (IPO) as the system clock source because
the IPO requires no external components.

System Clock Assembly Code Initialization Example with IPO selected as system clock
; Initialize system clock with Internal Precision Oscillator (IPO)

; In this example IPO, WDT, SOFEN and WDFEN are enabled

LDX OSCCTL, #%E7 ;Unlock sequence

 LDX OSCCTL, #%18 ;Unlock sequence

LDX OSCCTL, #%B8 ;Selecting IPO as system clock at 5.53 MHz with

 ;WDT, SOFEN and WDFEN enabled.

System Clock C Code Initialization Example
// Initialize system clock with Internal Precision Oscillator (IPO)

// In this example IPO, WDT, SOFEN and WDFEN are enabled

OSCCTL = 0xE7; //Unlock Sequence;

OSCCTL = 0x18; //Unlock Sequence

OSCCTL = 0xB8; //Selecting IPO as system clock at 5.53 MHz with

 //WDT, SOFEN and WDFEN enabled

General Purpose Input/Output (GPIO)
The Z8 Encore! XP® products support a maximum of 25 port pins in four ports (Port A, B, C and D) for gen-
eral-purpose input/output (GPIO) operations. For 8-pin packages, only Port A is available.
AN027801-0808 page 2 of 12

Initializing Peripherals in Z8 Encore! XP® 8-Pin Devices
To initialize the GPIO, run the example Assembly code or the C code below.

GPIO Assembly Code Initialization Example
; Initializes General Purpose IO

;In the example below, Port A pins are configured as follows:

init_gpio:

 ; Port A initialization

 LDX PAOUT, #%02 ; Load Port A Output Data Register bit PA1 with

 ; value 1.

 LDX PAADDR, #%07 ; Set Address Pointer to AFS1 Register

 LDX PACTL, #%2C ;Set Port A pin configuration as follows:

;PA0 as Input

;PA1 as Output

;PA2 as Timer1 output

;PA3 as Analog Input

;PA4 as UART 0 Receive

;PA5 as Comparator Input (CINP)

 LDX PAADDR, #%08 ; Set Address Pointer to AFS2 register

 LDX PACTL, #%28 ; Set Port A pin Configuration as follows:

;PA0 as Input

;PA1 as Output

;PA2 as Timer1 output

;PA3 as Analog Input

;PA4 as UART 0 Receive

;PA5 as Comparator Input (CINP)

 LDX PAADDR,#%02 ;Set Address Pointer to AF register

 LDX PACTL, #%3C; Set Port A Pin Configuration

;PA0 as Input

;PA1 as Output

;PA2 as Timer1 output

;PA3 as Analog Input

;PA4 as UART 0 Receive
AN027801-0808 page 3 of 12

Initializing Peripherals in Z8 Encore! XP® 8-Pin Devices
;PA5 as Comparator Input (CINP)

 LDX PAADDR #%01 ;Set Address Pointer to Data Direction (DD)Register

 LDX PACTL, #%FD ;Set Port A PA1 to output mode and rest of pins to

 ;Input Mode

 LDX PAADDR,#%00 ;Lock Port A Control Register

GPIO C Code Initialization Example
//Initialize GPIO

 PAOUT = 0x02; //Load Port A Output Data Register bit PA1 with value

 1.

 PAADDR = 0x07;//Set Address Pointer to AFS1 Register

 PACTL = 0x2C; /* Set Port A pin configuration as follows:

PA0 as Input

PA1 as Output

PA2 as Timer1 output

PA3 as Analog Input

PA4 as UART 0 Receive

PA5 as Comparator Input (CINP)*/

 PAADDR =0x08; //Set Address Pointer to AFS2 register

 PACTL = 0x28; /* Set Port A pin Configuration as follows:

PA0 as Input

PA1 as Output

PA2 as Timer1 output

PA3 as Analog Input

PA4 as UART 0 Receive

PA5 as Comparator Input (CINP) */

 PAADDR = 0x02; //Set Address Pointer to AF register

 PACTL = 0x3C; /* Set Port A Pin Configuration as follows:

PA0 as Input

PA1 as Output

PA2 as Timer1 output

PA3 as Analog Input

PA4 as UART 0 Receive
AN027801-0808 page 4 of 12

Initializing Peripherals in Z8 Encore! XP® 8-Pin Devices
PA5 as Comparator Input (CINP) */

 PAADDR = 0x01; //Set Address Pointer to Data Direction (DD)Register

 PACTL = 0xFD; /*Set Port A PA1 to output mode and rest of pins to

 Input Mode */

 PAADDR = 0x00; //Lock Port A Control Register

Further References
For detailed definition of the GPIO Control Registers, please refer to GPIO Control Register Definitions Sec-
tion of either the Z8 Encore! XP® F082A Series Product Specifications (PS0228) or Z8 Encore! XP® F0823
Series Product Specifications (PS0243) as applicable.

Universal Asynchronous Receiver/Transmitter (UART)
The universal asynchronous receiver/transmitter (UART) is a full-duplex communication channel capable of
handling asynchronous data transfers. The UART supports 8- and 9-bit data modes and selectable parity. The
UART also supports multi-drop address processing in hardware. The UART baud rate generator (BRG) can be
configured and used as a basic 16-bit timer.

UART0 Assembly Code Initialization Example
; Initialize UART0

init_uart:

 LDX U0BRH, #HIGH(UART_BRG);Load High Byte value of UART_BRG

 LDX U0BRL, #LOW(UART_BRG); Load Low Byte value of UART_BRG

 LDX U0CTL0, #%40 ; Transmit disable, Receive Enable,No Parity,1 stop

 LDX U0CTL1, #%00 ; clear for normal non-Multiprocessor operation,

 ; DE Signal is active low if enabled

RET

; End of Code

To configure PA4 as UART0, please refer to GPIO Assembly Code Initialization Example.

UART0 C Code Initialization Example
//Initialize UART0

 U0BRH = (UART_BRG >> 8);//Load High Byte value of UART_BRG

 U0BRL = (UART_BRG & 0x00FF); //Load Low Byte value of UART_BRG

 U0CTL0 = 0x40; //Transmit disable, Receive Enable,No Parity,1 stop

 U0CTL1 = 0x00; //clear for normal non-Multiprocessor operation

Note:
AN027801-0808 page 5 of 12

Initializing Peripherals in Z8 Encore! XP® 8-Pin Devices
 //DE Signal is active low if enabled

//End of code

To configure PA4 as UART0, please refer to GPIO C Code Initialization Example.

Further References
For detailed definitions of the UART Control Registers, please refer to the UART Control Register Section of
either the Z8 Encore! XP® F082A Series Product Specifications (PS0228) or Z8 Encore! XP® F0823 Series
Product Specifications (PS0243) as applicable.

Timers
The Z8 Encore! XP® 8K and 4K Series products contain two 16-bit reloadable timers (Timer 0 and
Timer 1) that can be used for timing, event counting, motor control operations or generation of pulse-width
modulated (PWM) signals. These timers provide a 16-bit programmable reload counter and operate in ONE-
SHOT, CONTINUOUS, GATED, CAPTURE, CAPTURE RESTART, COMPARE, CAPTURE and COM-
PARE, PWM SINGLE OUTPUT AND PWM DUAL OUTPUT modes.

To initialize Timer1, run the example Assembly code or C code below.

Timer1 Assembly Code Initialization Example
; Initialize Timer1

init_timer1:

 LDX T1CTL0, #0 ; Timer1 interrupts on all defined Reloads, compares

 ; and Input Events and PWM has no delays

 LDX T1H, #HIGH(TIMER_RR);Load High Byte value of TIMER_RR to High

 Byte of Timer1;

 LDX T1L, #LOW(TIMER_RR); Load Low Byte value of TIMER_RR to Low Byte

 of Timer1;

 LDX T1RH, #HIGH(TIMER_RR);Load High Byte value of TIMER_RR to High

 Byte of Timer1 Reload Register

 LDX T1RL, #LOW(TIMER_RR); Load Low Byte value of TIMER_RR to Low

 Byte of Timer1 Reload Register

 LDX T1CTL1, #(%C1 | (TIMER_PRES << 3)); Enable Timer1, set Timer to

 ; continuous counting mode, set

 ; TPOL = 1 for initial T1Out = 1,

 ; and T1Out is complemented upon

 ; timer reload; Load value of

 ; TIMER_PRES after shifting left

Note:
AN027801-0808 page 6 of 12

Initializing Peripherals in Z8 Encore! XP® 8-Pin Devices
 ; 3 spaces.

 ; End of Code

To configure PA2 as Timer1 Output (T1OUT), please refer to GPIO Assembly Code Initial-
ization Example.

Timer1 C Code Initialization Example
//Initialize Timer1

 T0CTL1 = 0; /* Timer1 interrupts on all defined

 Reloads, compares and Input Events

 and PWM has no delays */

 T1H = HIGH(TIMER_RR >> 8); /*Load High Byte value of TIMER_RR to

 High Byte of Timer1 */

 T1L = LOW(TIMER_RR & 0x00FF); /*Load Low Byte value of TIMER_RR to Low

 Byte of Timer1 */

 T1RH = HIGH(TIMER_RR >> 8); /*Load High Byte value of TIMER_RR to

 High Byte of Timer1 Reload Register */

 T1RL = LOW(TIMER_RR & 0x00FF);/*Load Low Byte value of TIMER_RR to

 Low Byte of Timer1 Reload Register*/

 T1CTL1 = (0xC1 | (TIMER_PRES << 3)); /* Enable Timer1, set Timer to

 continuous counting mode, set

 TPOL = 1 for initial T1Out = 1,

 and T1Out is complemented upon

 timer reload; Load value of

 TIMER_PRES after shifting left

 3 spaces.*/

//End of Code

To configure PA2 as Timer1 Output (T1OUT), please refer to GPIO C Code Initialization
Example

Further References

For detailed definition of the Timer Control Register, see Timer Control Register Definitions Section of either
the Z8 Encore! XP® F082A Series Product Specifications (PS0228) or Z8 Encore! XP® F0823 Series Product
Specifications (PS0243) as applicable.

Note:

Note:
AN027801-0808 page 7 of 12

Initializing Peripherals in Z8 Encore! XP® 8-Pin Devices
Analog-to-Digital Converter (ADC)
The Analog-to-Digital converter (ADC) converts an analog input signal to a 10-bit binary number. The ADC
Control Register 0 (ADCCTL0) selects the analog input channel and initiates the analog-to-digital conversion.
It also selects the voltage reference configuration. The ADC Control/Status Register 1 (ADCCTL1)configures
the input buffer stage, enables the threshold interrupts and contains the status of both threshold triggers. It is
also used to select the voltage reference configurations.

To initialize the ADC, run the example Assembly code or C code below.

ADC Assembly Code Initialization Example
;initialize ADC

 ANDX PWRCTL0, #%FB ;Power on the ADC Peripheral

 LDX ADCCTL1, #%80 ;Internal Reference set to 2.0v, single-ended,

 ;unbuffered input

 LDX ADCCTL0, #%92 ; Enable conversion, Internal Reference set to

 ;2.0v, Reference Buffer disabled, ANA2 is input,

 ; and continuous conversion mode.

; End of Code

To configure PA3 as ANA2 Input, please refer to GPIO Assembly Code Initialization Exam-
ple.

ADC C Code Initialization Example
//Initialize ADC

 PWRCTL0 &= 0xFB; //Power on the ADC Peripheral

 ADCCTL1 = 0x80; /*Internal Reference set to 2.0v, single-ended,

 unbuffered input */

 ADCCTL0 = 0x92; /* Enable conversion, Internal Reference set to

 2.0v, Reference Buffer disabled, ANA2 is input,

 and continuous conversion mode.*/

//End of Code

To configure PA3 as ANA2 Input, please refer to GPIO C Code Initialization Example.

Further References
For detailed definition of the ADC Control Registers, see ADC Control Register Definition section of either the
Z8 Encore! XP® F082A Series Product Specifications (PS0228) or Z8 Encore! XP® F0823 Series Product
Specifications (PS0243) as applicable.

Note:

Note:
AN027801-0808 page 8 of 12

Initializing Peripherals in Z8 Encore! XP® 8-Pin Devices
Temperature Sensor
The on-chip Temperature Sensor measures temperature on the die by producing an analog output signal propor-
tional to the device temperature. This signal can be sent to either the ADC or the analog comparator. The Tem-
perature Sensor is factory calibrated for in-circuit software correction. Uncalibrated accuracy is significantly
worse, therefore the Temperature Sensor is not recommended for uncalibrated use.

Please note that the Temperature Sensor is only applicable to the Z8 Encore! XP® F082A
series of device only.

Temperature Sensor Assembly Code Initialization Example
;Temperature Sensor Initialization

 ANDX PWRCTL0, #%F3 ;Power On Temperature Sensor, Peripheral and ADC

 LDX ADCCTL1, #%81 ;Internal Reference set to 2.0v, Single-ended,

 ; buffered input with unity gain

 LDX ADCCTL0, #%9E ; Enable Conversion, Internal Reference set to

 ; 2.0v, Reference Buffer disabled, temperature

 ; sensor is input

;End of Code

Temperature Sensor C Code Initialization Example
// Temperature Sensor Initialization

 PWRCTL0 &= 0xF3; /*Power On Temperature Sensor, Peripheral and ADC*/

 ADCCTL1 = 0x81 /*Internal Reference set to 2.0v, Single-ended,

 buffered input with unity gain */

 ADCCTL0 = 0x9E /*Enable Conversion, Internal Reference set to

 2.0v, Reference Buffer disabled, temperature

 sensor is input */

//End of Code

Further Reference
See the Temperature Sensor section of the Z8 Encore! XP® F082A Series Product Specifications (PS0228) for
detailed operation of the Temperature Sensor.

Comparator
The Comparator is a general-purpose comparator that compares two analog input signals. These analog signals
may be external stimulus from a pin (CINP and/or CINN) or internally generated signals. Both a programmable
voltage reference and the temperature sensor output voltage are available internally for comparison. The output

Note:
AN027801-0808 page 9 of 12

Initializing Peripherals in Z8 Encore! XP® 8-Pin Devices
of the Comparator is available as an interrupt source (to Interrupt Controller) or can be routed to an external pin
(COUT).

Comparator Assembly Code Initialization Example
; Comparator Initialization

 ANDX PWRCT0, #%FD ;Power up Comparator

 LDX CMP0, #%52 ;CINP used as positive comparator input,

 ;internal reference enabled as negative

 ;comparator Input, internal reference voltage

 ;level set to 0.90v.

;End of Code

To configure PA5 as Comparator Input (CINP), please refer to GPIO Assembly Code Initial-
ization Example.

Comparator C Code Initialization Example
//Comparator Initialization

 PWRCT0 &= 0xFD; /* Power up Comparator*/

 CMP0 = 0x52; /* CINP used as positive comparator input,internal

 reference enabled as negative comparator Input,

 internal reference voltage level set to 0.90v.*/

//End of Code

To configure PA5 as Comparator Input (CINP), please refer to GPIO C Code Initialization
Example

Further Reference
For detailed operation of the Comparator and the definitions of the Comparator Control Register, please refer to
the Comparator section of either the Z8 Encore! XP® F082A Series Product Specifications (PS0228) or Z8
Encore! XP® F0823 Series Product Specifications (PS0243) as applicable.

Watchdog Timer
The Watchdog Timer (WDT) protects the device against corrupt or unreliable software, power faults, and other
system-level problems which may place the Z8 Encore! XP® 8K and 4K Series device into unsuitable operating
states. The WDT uses a dedicated on-chip RC oscillator as its clock source and generates an interrupt or system
reset signal when the countdown reaches its terminal value of 000000 Hex.

WDT Assembly Code Initialization Example
;WDT Initialization for 7456.5 msec WDT Timeout

Note:

Note:
AN027801-0808 page 10 of 12

Initializing Peripherals in Z8 Encore! XP® 8-Pin Devices
 LDX WDTCTL, #%55 ;write 55 Hex for unlock sequence

 LDX WDTCTL, #%AA ;write AA Hex for unlock sequence

 LDX WDTU, #%01 ;write WDT Reload Upper Byte Register

 LDX WDTH, #%23 ;write WDT Reload High Byte Register

 LDX WDTL, #%45 ;write WDT Reload Low Byte Register

;End of Code

WDT C Code Initialization Example
// WDT Initialization for 7456.5 msec WDT Timeout

 WDTCTL = 0x55; //write 55 Hex for unlock sequence

 WDTCTL = 0xAA; //write AA Hex for unlock sequence

 WDTU = 0x01; //write WDT Reload Upper Byte Register

 WDTH = 0x23; //write WDT Reload High Byte Register

 WDTL = 0x45; //write WDT Reload Low Byte Register

//End of Code

Further Reference
For detailed operation of the WDT and definitions of the WDT Control Registers, please refer to the Watchdog
Timer section of either the Z8 Encore! XP® F082A Series Product Specifications (PS0228) or Z8 Encore! XP®

F0823 Series Product Specifications (PS0243) as applicable.

Summary
This application note provides a clean example of how programmers can set up and initialize the Z8 Encore!
XP® 8-pin device in both the C and Assembly language environments. These are only simple examples and
can be embellished upon depending on the specific application needs. This application note is meant as a basis
to understand how the initialization process works for the stack, system clock, GPIOs, and some of the on-chip
peripherals like the UART, Timer1, ADC, Temperature Sensor (applicable to Z8 Encore! XP® F082A Series
only), WDT, and the Comparator.
AN027801-0808 page 11 of 12

AN027801-0808
12

Initializing Peripherals in Z8 Encore! XP® 8-Pin Devices

Page 12 of 12

DO NOT USE IN LIFE SUPPORT

LIFE SUPPORT POLICY
ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)
support or sustain life and whose failure to perform when properly used in accordance with instructions for
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A
critical component is any component in a life support device or system whose failure to perform can be
reasonably expected to cause the failure of the life support device or system or to affect its safety or
effectiveness.

Document Disclaimer
©2008 by Zilog, Inc. All rights reserved. Information in this publication concerning the devices,
applications, or technology described is intended to suggest possible uses and may be superseded. ZILOG,
INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY
OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT.
ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY
INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR
TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this
document has been verified according to the general principles of electrical and mechanical engineering.

Z8, Z8 Encore!, and Z8 Encore! XP are registered trademarks of Zilog, Inc. All other product or service
names are the property of their respective owners.

Warning:

	Abstract
	Initialization
	Stack Pointer
	System Clock
	General Purpose Input/Output (GPIO)
	Universal Asynchronous Receiver/Transmitter (UART)
	Timers
	Analog-to-Digital Converter (ADC)
	Temperature Sensor
	Comparator
	Watchdog Timer

	Summary
	Document Disclaimer

