
AN017303-0908
Abstract
This Application Note demonstrates a method for
creating a file system that can be stored within the
external Flash memory space connected to Zilog’s
eZ80® microprocessors. This file system is used
with the Zilog TCP/IP (ZTP) Software Suite that
runs on the XINU operating system. The Applica-
tions Programming Interface (API) functions
developed for this file system can be used to
develop applications with minimum effort. An
eZ80 Development Module features 1 MB of Flash
Memory, which is large enough to accommodate
the application data and Flash file system storage.

The file system proposed in this Application Note
cannot be used for HTTP implementation. HTTP
uses sequentially stored files and does not support
the file system API discussed in this Application
Note.

The source code file associated with
this application note, AN0173-
SC01.zip is available for down-
load at www.zilog.com.

Product Overview
The Application Note supports the eZ80 family of
microprocessing devices, which includes eZ80
microprocessors and eZ80Acclaim!® Flash micro-
controllers unit (MCU). Both product lines are
briefly described in this section.

eZ80Acclaim! Flash MCU
eZ80Acclaim! on-chip Flash MCU are an excep-
tional value for designing high performance, 8-bit
MCU-based systems. With speeds up to 50 MHz
and an on-chip Ethernet MAC (for eZ80F91 only),

you have the performance necessary to execute
complex applications quickly and efficiently. Com-
bining Flash and SRAM, eZ80Acclaim! devices
provide the memory required to implement com-
munication protocol stacks and achieve flexibility
when performing in-system updates of application
firmware.

The eZ80Acclaim! Flash MCU can operate in full
24-bit linear mode addressing 16 MB without a
Memory Management Unit (MMU). Additionally,
support for the Z80®-compatible mode allows Z80/
Z180 legacy code execution within multiple 64 KB
memory blocks with minimum modification. With
an external bus supporting eZ80, Z80, Intel, and
Motorola bus modes and a rich set of serial com-
munications peripherals, you have several options
when interfacing to external devices.

Some of the applications suitable for
eZ80Acclaim! devices include vending machines,
point-of-sale (POS) terminals, security systems,
automation, communications, industrial control
and facility monitoring, and remote control.

eZ80® General-Purpose
Microprocessors
The eZ80 has revolutionized the communication
industry. It executes Zilog’s Z80 code four times
faster at the same clock speed of traditional Z80s
and can operate at frequencies up to 50 MHz.
Unlike most 8-bit microprocessors, which can only
address 64 KB, the eZ80 can address 16 MB
without a MMU.

Designed with over 25 years of experience with the
Z80, this microprocessor is best suited for embed-
ded internet appliances, industrial control, automa-
tion, web management, modem controller,

Note:
Application Note
Using an eZ80® Flash Memory File System
Copyright ©2008 by Zilog®, Inc. All rights reserved.
www.zilog.com

http://www.ZiLOG.com
http://www.zilog.com

Using an eZ80® Flash Memory File System
electronic games, and personal digital assistant
(PDA) applications.

Discussion
File systems offer a common way to store data of
any type, often over an extended period of time.
They are useful for accumulating and transferring
data between different types of operating environ-
ments and devices. This section discusses the con-
siderations for designing a file system for an
embedded environment.

File System Overview
Widely-known examples of file systems include:

• Disk Operating System (DOS) featuring the
FAT12 and FAT16 methods of file allocation

• 32-bit WinNT file system

• Compact Disk File System (CDFS)

• Compact Flash file system.

Each of these file systems is built for a particular
hardware environment and is based on a particular
operating system. Typically, data is stored within a
long-term storage device and loaded into short-
term operating storage for processing and manipu-
lation. Whenever data is processed, it is stored
within long-term storage.

The file system discussed in this Application Note
is built for the embedded hardware environment
based on Zilog’s eZ80 development modules,
which feature external Flash and RAM memory
spaces. Flash Memory is used for long-term stor-
age purposes, and RAM is used as operating stor-
age for data processing.

There are strict standards that govern how data is
stored. Though storage media are offered in differ-
ent types, such as magnetic media, Flash Memory,
and so on, storage organization must suit media
requirements and must be optimized for the work-
ing environment. Despite these differing media

types, there are certain specific terms used when
describing nearly all file systems. First, the term
file is used to define a file system unit, which is
considered to be a sequence of records with the
same structure or type. Second, the term disk is
used to define a storage unit that contains a set of
files.

In the evolution of file systems, APIs are gaining
acceptance relatively recently as a standard for
adding modular functionality to file systems. Such
an API provides a set of C language functions to
perform file create, open, read, write, and close
operations for file manipulation.

The file system described in this Application Note
is an embedded file system for the eZ80 family of
microprocessors that includes standard set of C-
language API functions, such as fcreate(),
fopen(), fread(), fwrite(), fclose(),
and others. For more details of the File System API
functions, see Appendix B—File System APIs on
page 13.

Using the Embedded Flash-
Based File System
This section contains guidelines to be followed
when using the embedded Flash-based file system
to develop an application. To follow the guidelines,
the section first discusses the software implementa-
tion for the embedded Flash-based file system.

Software Implementation
Figure 1 on page 3 displays the functional blocks
of the embedded Flash-based file system. The
functional blocks comprise a File System Configu-
ration Component, File System Manipulation
Functions, and the Flash Memory Interface.
AN017303-0908 Page 2 of 23

Using an eZ80® Flash Memory File System
File System Configuration Component
In Figure 1, the File System Configuration Compo-
nent block represents the configuration file,
fileconf.h. It contains a set of configuration
parameters that you can modify to suit the applica-
tion. Table 1 lists the maximum allowable size of
the file system and the capacity of its entities as
defined by the configuration parameters.

The file system configuration parameters consist of
several entities, few are discussed below:

File Table—The file table contains the names of
the files represented in the current file system,
along with their sizes and pointers to the data con-
tained in each file. The maximum number of files
in the file system is defined by the constant,
FTABLESIZE.

Sector List—The sector list is the array of 16-bit
values containing the sector addresses. The array
maintains a size equal to the number of sectors on
the disk, NSECTORS, to be able to address each of
the physical sectors.

Sector Data Area—The sector data area is the
space used by the file data. This space is logically
divided to NSECTORS blocks, called sectors. Each
of the sectors maintains a size of SECTORSIZE
bytes.

The init_file_system() function creates or
restores the file system according to the configura-
tion parameters’ values. An example of the
init_file_system() function can be found
in the fileinit.c file available in the
AN0173-SC01.zip file associated with this
Application Note.

File Access and Manipulation Functions
In Figure 1, the File Access and Manipulation
Functions block represent the functions that are
used to manage the files, after the file system is
created and implemented. These functions are:
fcreate(), fopen(), fread(), fwrite(),
fclose(), fexists(), and ferase(), and
together they form the file system API.

Flash Memory Interface
The Flash Memory Interface stores the volume of
data (created as a result of operations in the file
system and files contained in it) into Flash Mem-
ory. The Flash Memory Interface allows permanent
data storage and enables you to continue working

Figure 1. Functional Blocks of the
Embedded Flash-Based File System

Table 1. File System Configuration
Parameters (fileconf.h)

Parameter Description
Default
Value

NFHANDLES The number of opened
files

10

FTABLESIZE The number of file
entries in the file system

32

NSECTORS The number of sectors
in the disk

1000

SECTORSIZE The size of a sector in
the disk

128

VHDRSIZE Volume header size 128

File System Configuration

Component

File Access and

Manipulation Functions

Flash Memory Interface

API
AN017303-0908 Page 3 of 23

Using an eZ80® Flash Memory File System
with the file system after cycling power to the stor-
age device.

Any Flash Library1 can be used as a Flash Memory
Interface. The Flash Loader application available
with the ZDS II–IDE is an example that uses a
Flash Memory Interface. Yet another example is
the eZ80® Remote Access Application Note
(AN0134) available on the www.zilog.com.

File System Data Structure
This section discusses the file_entry data
structure used for each structural units that com-
pose the embedded Flash-based file system.

The file_entry structure used to maintain the
file table entries has the following structure:

typedef struct
{
 char name[11]; // Name of the file
 unsigned short start;// Starting

//sector of the file
 unsigned int size;// Size of file in

//bytes
} file_entry;

The start variable contains the ordinal number
of the first sector owned by the file. The value
stored in the sector number cell is the number of
the next sector of the file. Therefore, the sectors
that pertain to the file form a chain, which is dis-
played in Figure 2. The final sector cell contains an
end-of-file (EOF) condition.

The size of the file_entry structure, repre-
sented by sizeof(file_entry), is 16 bytes.
The size of a sector number is 2 bytes (of type
unsigned short). A volume header, which contains
the volume parameters, must also be included in
the structure.

Table 2 lists the embedded Flash-based file system
representation with a 16-byte file_entry struc-
ture and a 2-byte sector number.

1 The Flash Library API Reference Manual (RM0013)
describes APIs that can be used to program data into the
Micron Flash device located on the target processor
module.

Figure 2. File Sector Chain

Table 2. Structural Unit Sizes

Structural
Unit Formula

Size
(bytes)

File table FTABLESIZE *
sizeof(file_entry)

512

Sector
table

NSECTORS * 2 2000

Sector
data

NSECTORS * SECTOR-
SIZE

128000

Total The total size of the file
system

130512

Volume
header

VHDRSIZE 128

NAME SIZE START

SECTOR 1 SECTOR 2

SECTOR n END OF FILE

FILE STRUCTURE

SECTOR TABLE
AN017303-0908 Page 4 of 23

http://www.zilog.com

Using an eZ80® Flash Memory File System
The NSECTORS value is set to 1000, which results
in a disk size of 127.5 KB. This disk size allows
accommodating the file system within one block of
the Flash Memory integrated circuit (such as the
Micron MT28F008B3 example in the table). The
size of the disk header is added to the total volume
listed in Table 2.

Working with Files
Before working with the embedded Flash-based
file system, the file system must be placed into
RAM. This is because all the file manipulation
functions work with the file images in RAM. Two
possible scenarios are described below.

1. Creating a New File System—In this case, a
ne w f i l e sy s t em i s c r ea t ed u s ing t he
init_file_system() function. The
init_file_system() function allocates
memory for the file system in RAM and initial-
izes it for work—file tables are empty and all
sectors are unused.

2. Working with a File System from an Existing
Volume—In this scenario, it is assumed that a
file system was previously created in RAM
and stored in Flash. The file system must be
mounted—its data must be copied into RAM
and the parameters from the volume must be
taken into account. The mount() API is used
to mount a previously-created file system from
Flash to RAM.

The embedded Flash-based file system APIs
are listed in Appendix B—File System APIs
on page 13, and the XINU OS shell commands

are listed in Appendix C—XINU OS Shell
Commands on page 19.

Using an Application with the
Embedded Flash-Based File System
The embedded Flash-based file system must be
configured before the user application can use it.
Upon setup, the user application can use the File
System APIs directly or access them via an addi-
tional OS command shell interface (see Appendix
C—XINU OS Shell Commands on page 19).

The File System APIs (includes the File Access
and Manipulation Functions) are used to read,
write, and control the data contained in the files.
The File Access Library uses the Flash Memory
Interface APIs to store file system data within the
Flash Memory as volume. The File Access Library
includes APIs and other functions to initialize,
install, and configure the embedded Flash-based
file system according to your specifications.
Figure 3 on page 6 is a block diagram displaying
how the user application utilizes the embedded
Flash-based file system.

Flash
block

Micron MT28F008B3 spec 131072

Note: Sizes are for a 16-byte file_entry structure and a
2-byte sector number.

Table 2. Structural Unit Sizes (Continued)

Structural
Unit Formula

Size
(bytes)
AN017303-0908 Page 5 of 23

Using an eZ80® Flash Memory File System
.

When developing an application to be used with
the embedded Flash-based file system, you must
include the file.lib file2 in your project. The
file.lib file contains basic XINU OS shell
commands like rename, chkdsk, and list, in
addition to the file system APIs. You can also
develop XINU OS shell commands based on the
APIs documented in this Application Note for spe-
cific file usage.

1. The fread() function is inde-
pendent of the Flash device that is
read; it does not require any pre-

scribed command sequence as the
fwrite() function does.

2. The file.lib file is not capa-
b l e o f s to r i ng d a t a in t o t h e
EEPROM-based Flash Memory. To
create an EEPROM-based Flash
Memory, an application-specific
access library must be developed.

3. The user application can include
demo-specific configuration infor-
mation in the fileconf.h file
such that the configuration parame-
ters are passed to the file.lib
file.

Figure 3. Structure of Software Usage

File System Configuration

Flash Type-Specific Library

Write access

Read access

Flash
Memory

File Access Library

OS Shell Commands
user-specified + basic commands

File System API

User Application

file.libfileconf.h

User-specified OS shell commands

Basic OS shell commands

file.lib + other functions

2 The file.lib file is built using the
filelib.pro project file available in AN0173-
SC01.zip file, which is available for download at
www.zilog.com.

Notes:
AN017303-0908 Page 6 of 23

http://www.zilog.com

Using an eZ80® Flash Memory File System
Software Metrics
This section addresses the performance results
related to the working of the embedded Flash-
based file system.

To describe how fast the file system can operate,
measurements were taken while testing this appli-
cation. XINU shell commands were used to con-
duct the test, which was performed on an eZ80L92
Module containing an eZ80 CPU with an operating
frequency of 50 MHz.

File system operating performance was measured
in kilobytes per second (KBps) while executing
open–write–close cycles for each operation. The
benchmark was performed on a block size of 1byte
and on a block size of 128 bytes, where the latter
corresponds to a sector size = 1.

The resulting performance yields the following
system speeds:

• On a 1-byte block, open–read–write cycles occur
at 0.3 KBps

• On a 128-byte block, open–read–write cycles
occur in 21.6 KBps

• On a full disk, chkdsk command execution
time is 8 seconds

Demonstrating the Embedded
Flash-based File System
To demonstrate the embedded Flash-based file sys-
tem, three projects—filedemo_ez80.pro,
filedemo_Acclaim.pro, and
filemore_Acclaim.pro—were developed.
These demo projects were developed using the File
System APIs.

Figure 4 displays the setup for the Flash-based File
System Demo. This setup displays the connections
between the PC, ZPAK II, LAN/WAN/Internet,
and the eZ80L92 Development Kit.

Equipment Required for the eZ80L92-
Based Demo
The following equipment are required to execute
the Flash-based File System demo on the eZ80L92
target platform:

• eZ80L92 Development Kit (eZ80L920210ZCO)
that features the following:
– eZ80 Development Platform
– eZ80L92 Module
– ZPAK II Debug Interface Module
– ZDS II with C-Compiler Software and

Documentation (CD-ROM)
– Ethernet Hub
– Power Supply (110/220 V)
– Cables

• ZTP version 1.1

• filedemo.pro demo file, available in
AN0173-SC01.zip on www.zilog.com.

Figure 4. Setup for the Embedded Flash-
based File System Demo

RS-232

Ethernet

J3

P1

J4 ZDIP2 Ethernet

Ethernet

Ethernet

PC

eZ80

Development

Platform

®

eZ80L92 Development Kit

(eZ80L920210ZC0)

LAN/WAN/INTERNET

ZPAKII

4 Port HUB

RS-232
AN017303-0908 Page 7 of 23

http://www.zilog.com

Using an eZ80® Flash Memory File System
The XINU OS libraries are a part of ZTP v1.13.
The project is set up to allow rebuilding when
placed in a subdirectory of the ZTP installation
directory. The settings and the steps to modify,
build, and execute the demo project on the eZ80
Development Platform are provided in the follow-
ing sections.

Settings
HyperTerminal Settings
Set HyperTerminal to 57.6 Kbps and 8–N–1, with
no flow control

Jumper Settings
Following are the jumper settings for the eZ80
Development Platform:

• J11, J7, J2 are ON

• J3, J20, J21, J22 are OFF

• For J14, connect 2 and 3

• For J19, MEM_CEN1 is ON, and CS_EX_IN,
MEM_CEN2, and MEM_CEN3 are OFF

For the eZ80L92 Module JP3 is ON

Modifying Demo-Specific Files in
ZTP
To demonstrate the Flash File System described in
this Application Note, the eZ80 Development Plat-
form with the eZ80L92 Module and the ZTP stack
are required along with the source code for the
Flash File System. To execute this demo, the
\Filedemo folder extracted from the
AN0173-SC01.zip file is copied into the ZTP
installation directory.

The ZTP stack is available on www.zilog.com and
can be downloaded to a PC with a user registration

key. ZTP can be installed in any location as speci-
fied by you; its default location is C:\Program
Files\ZiLOG.

Before modifying the demo-specific
files to ZTP, ensure that all the set-
tings for the ZTP stack are at their
default values.

Perform the following steps to add and integrate
the Demo files to the ZTP stack:

1. Download ZTP and browse to the location
where ZTP is downloaded.

2. Download the AN0178-SC01.zip file and
extract its contents to a folder on your PC.
Notice there is a single \Filedemo folder
in the extracted folder. The \Filedemo
folder contains the following demo files4:

3. Copy the \Filedemo folder to the <ZTP
installed dir>\ directory.

4. Launch ZDS II and open the filedemo.pro
file, which is available in the path:
..\ZTP\Filedemo.

5. Open the main0.c file and observe the fol-
lowing BootInfo structure definition:

3At the time of publishing, ZTP 1.2.1 is available on
Zilog.com. The XINU OS libraries of this release can
also be used as they are unaltered from the earlier ZTP
release.

filedemo_Acclaim.pro For the eZ80F91
MCU; only external
Flash available for
the File System.

filedemo_ez80.pro For the eZ80L92
MPU; only external
Flash available for
the File System.

filemore_Acclaim.pro For the eZ80F91
MCU; internal and
external Flash
available for the
File System.

4 The fourth project file is filelib.pro, which
when built generates the Flash File API library,
file.lib, that can be used with other ZTP
applications.

Note:
AN017303-0908 Page 8 of 23

http://www.zilog.com

Using an eZ80® Flash Memory File System
struct BootInfo Bootrecord = {
 "192.168.1.1",//Default

//IP address//
 "192.168.1.4",//Default

//Gateway//
 "192.168.1.5",//Default

//Timer Server//
 "192.168.1.6",// Default

//file Server//
 "",
 "192.168.1.7",// Default

//Name Server//
 "",
 0xffffff00UL// Default

//Subnet Mask//
 };

By default, the Bootrecord variable con-
tains the network parameters and settings (in
the four-octet dotted decimal format) that are
specific to the LAN at Zilog®. Modify the
above structure definition with appropriate IP
addresses within your LAN.

6. Open the eZ80_HW_Config.c file and
change the default MAC address (provided by
ZTP) such that each eZ80 Development Plat-
form on the LAN contains a unique MAC
address. For example:
const BYTE f91_mac_addr
[EP_ALEN] = {0x00, 0x90, 0x23,
0x00, 0x0F, 0x91};

In the 6-byte MAC address described above,
the first three bytes must not be modified; the
last three bytes can be used to assign a unique
MAC address to the eZ80 Development
Platform.

7. Open the ipw_ez80.c file. For this applica-
tion, Dynamic Host Configuration Protocol
(DHCP) is disabled; therefore, ensure the
following:
b_use_dhcp = FALSE

8. Save the files and close the filedemo.pro
project.

Procedure to Build and Execute the
Demo
The procedure to build and execute the file-
demo.pro file, which demonstrates the use of the
embedded Flash-based file system, is described in
this section.

Zilog recommends that you first
build the project available in
AN0173-SC01.zip file to get
familiar with the file system’s default
configuration parameters and APIs
before writing your own application
and modifying the configuration
parameters to suit it.

1. Connect the ZPAK II debug interface tool and
the PC to one network, and attach the ZPAK II
unit to the debug port on the eZ80 Develop-
ment Platform (see Figure 4 on page 7).

2. Power-up ZPAK II and the eZ80 Development
Platform.

3. Connect the serial port of the eZ80 Develop-
ment Platform to the serial communication
port on the PC with a serial cable.

4. Launch a terminal emulation program such as
Windows’ HyperTerminal to examine the out-
put of the board—this terminal serves as the
XINU console.

For details about obtaining an IP
address for ZPAK II, refer to ZPAKII
Product User Guide (PUG0015),
available for download at
www.zilog.com.

5. Launch ZDS II and open the file-
demo.pro project file located in the path:
..\ZTP\Filedemo.

6. Navigate to Build → Set Active Configura-
tion and ensure that the active project configu-
ration selected in the Select Configuration
dialog box is eZ80L92–RAM.

Note:

Note:
AN017303-0908 Page 9 of 23

http://www.zilog.com

Using an eZ80® Flash Memory File System
When using your own application,
modify the parameters in the file-
conf.h header file, if required, to
set up the end-user file system.

7. Navigate to Build → Rebuild All to rebuild
the filedemo.pro project.

8. In the case of warnings or errors that may
result, check the Compiler settings and ensure
that the settings for the include files are prop-
erly indicated. Also check the Linker settings
and ensure that the ZTP v.1.1 libraries are
properly addressed. Repeat Step 6 until no
compiler or linker warnings appear.

9. Navigate to Build → Debug → Go (alterna-
tively, hit the F5 key). The program downloads
the project to the RAM on the eZ80L92 MCU.

When using your own application,
the Flash file API library
(file.lib file) must be rebuilt
each time changes are made to it.
This Application Note is based on
the file system volume requires one
entire Flash sector comprising
128 KB. If more file system storage
is required, appropriate changes
must be made.

Executing the Demo
Upon executing a Rebuild All, the project files
rebuild to form the filedemo.lod executable
file for the RAM configuration, or the file-
demo.hex executable file for the Flash configura-
tion of the project.

When the resulting .lod/.hex file is obtained
and successfully downloaded onto the eZ80L92
Module, perform the following steps to execute the
demo:

1. In the HyperTerminal window, observe the
XINU command prompt:

eth%

2. At the command prompt, type test, as
follows:

eth% test

and, observe the output:

Performing test...
Done.

3. Next, enter the following command at the
command prompt:

eth% list

The following directory listing appears:

Name Size
test.log 004E19
file1.test 007CE0
file2.test 007C08
file3.test 007C98
01C399 bytes, 0019E7 free

The simple test procedure described above creates
three files and writes several patterns to them,
opening one file after another. During the execu-
tion of the procedure, a log file, test.log, is cre-
ated and the process workflow is entered in the log
file. The contents of each file can then be accessed
using the type <filename> command.

To thoroughly test the file system, the big test pro-
cedure was performed. The big test performs con-
tinuous runs, writing pattern strings to the three
files created previously, while opening and closing
them one after another. When the three files
occupy the entire disk space, one of them is deleted
and recreated with 0 size, and the procedure con-
tinues. After a specified number of runs, this proce-
dure ends.

To make the embedded Flash-based
file system available for use as a
module with other ZTP-based

Note:

Note:

Note:
AN017303-0908 Page 10 of 23

Using an eZ80® Flash Memory File System
projects, another project file,
filelib.pro is provided. This is
part of the AN0173-SC01.zip
located within the \Filedemo
folder. This project file is used to
build the file.lib file.

Results
Upon executing the procedure, test files were gen-
erated. The type command was used on the test
files to observe the test patterns written to the files
using the file system API.

The chkdsk and list commands were used to
view the results of the test. Erase operations did not
fail and therefore no sectors were lost; all Write
operations were successful and therefore no cross-
linked files were created.

Summary
The absence of a file system is a limitation of the
XINU OS available with eZ80 devices. With this
Application Note, you can implement a file system,
organize data in the form of files, and store the
entire file system within the 1 MB Flash Memory
space on eZ80 modules and the eZ80 Development
Platform.

The eZ80 file system described in this Application
Note can be used in a variety of ways. It can be
used to store permanent information. Further, the
file system APIs and commands can be used to cre-
ate advanced applications, such as FTP applica-
tions or additional XINU command shell
extensions.

Reference
The documents associated with eZ80®,
eZ80Acclaim!®, eZ80F91, eZ80F92, ZDS II, and
ZPAK II available on www.zilog.com are provided
below:

• eZ80L92 External Flash Loader Product User
Guide (PUG0013)

• Flash Library APIs for eZ80Acclaim!® MCUs
(RM0013)

• eZ80® Remote Access Application Note
(AN0134)

• eZ80® CPU User Manual (UM0077)

• eZ80L92 MCU Product Specification (PS0130)

• eZ80L92 Development Kit User Manual
(UM0129)

• eZ80F91 Module Product Specification
(PS0193)

• eZ80F91 Development Kit User Manual
(UM0142)

• Zilog Developer Studio II–eZ80Acclaim!® User
Manual (UM0144)

• ZPAK II Debug Interface Tool Product User
Guide (PUG0015)
AN017303-0908 Page 11 of 23

http://www.zilog.com

http://www.zilog.com

http://www.zilog.com
http://www.zilog.com
http://www.zilog.com

http://www.zilog.com
http://www.zilog.com

AN017303-0908 Page 12 of 23

Using an eZ80® Flash Memory File System

Appendix A—Glossary
Table 3 lists definitions for terms and abbreviations relevant to the Embedded Flash-based File System
Application Note.

Table 3. Glossary

Term/Abbreviation Definition

API Application Programming Interface

CDFS Compact Disk File System

CPU Central Processing Unit

FAT File Allocation Table

File A sequence of components of one type – binary data or text records

FTP File Transfer Protocol

HTTP HyperText Transfer Protocol

IP Internet Protocol

MCU MicroController Unit

MMU Memory Management Unit

OS Operating system

RTOS Real Time Operating System

Sector In a file system – the logical unit containing a portion of file data

TCP Transaction Control Protocol

UDP User Datagram Protocol

XINU RTOS provided along with ZTP

ZDS Zilog Developer Studio, an integrated development environment

ZTP Zilog TCP/IP Protocol software suite

Using an eZ80® Flash Memory File System
Appendix B—File System APIs
Table 4 lists Flash File System APIs for quick reference. Details are provided in this section.

Table 4. File Manipulation Routines

init_file_system() Creates a new file system or restores an existing file system.

fcreate () Creates a file.

fexists() Checks if the file exists.

ferase() Deletes a file.

fopen() Opens a file.

fwrite() Writes data to a file.

fread() Reads data from a file.

fseek() Sets a file position indicator.

fclose() Closes a file.
AN017303-0908 Page 13 of 23

Using an eZ80® Flash Memory File System
init_file_system()

Description
The init_file_system() function creates a new file system or restores an existing file
system according to the configuration parameter values set in the fileconf.h file.

Argument(s)

Return Value(s)

Example
void init_file_system();

fcreate ()

Description
This function creates a new file in the current file system.

Argument(s)

Return Value(s)

Example
int fcreate(char* name);

None.

None.

name The name of the file

OK On Success

SYSERR On Failure (error)
AN017303-0908 Page 14 of 23

Using an eZ80® Flash Memory File System
fexists()

Description
This function looks up the filename in the file table. It returns the table index for that filename,
if the filename exists in the table.

Argument(s)

Return Value(s)

Example
int fexists(char* name);

ferase()

Description
This function deletes an existing file from the current file system.

Argument(s)

Return Value(s)

Example
int ferase(char* name);

name The name of the file

The index of the file entry in the file table On Success (file name found)

SYSERR (–1) On Failure (no such file name found)

name The name of the file

OK On Success

SYSERR On Failure (error)
AN017303-0908 Page 15 of 23

Using an eZ80® Flash Memory File System
fopen()
Description
This function opens an existing file for processing.

Argument(s)

Return Value(s)

Example
FILE* fopen(char* name, char mode);

fwrite()
Description
This function writes data to an opened file.

Argument(s)

Return Value(s)

Example
int fwrite(const void *ptr, size_t size, int n, FILE *stream);

name The name of the file

mode The mode of opening the file. The two modes are:

FM_APPEND Open for write and append data at the end of the file

FM_RDWR Read or write at the beginning of the file

The FM_RDWR mode is the default

File handle pointer On Success

NULL On Failure (error)

ptr Pointer to the data records to be written to the file

size Size of one data record in an array to be written to the file

n The number of records of specified size to be written to the file

stream The handle of the open file

OK On Success

SYSERR On Failure (error)
AN017303-0908 Page 16 of 23

Using an eZ80® Flash Memory File System
fread()
Description
This function reads data from an opened file sector by sector, and copies the data to a memory
buffer pointed to by the ptr parameter.

Argument(s)

Return Value(s)

Example
int fread(const void *ptr, size_t size, int n, FILE *stream);

fseek()
Description
The fseek() function sets the file position indicator for the stream pointed to by the stream
parameter. The new position, measured in bytes, is obtained by adding offset bytes to the posi-
tion specified by the origin parameter. If origin is set to SEEK_SET, SEEK_CUR, or
SEEK_END, the offset is relative to the start of the file, the current position indicator, or the
end-of-file, respectively. A successful call to the fseek() function clears the end-of-file indi-
cator for the stream parameter.

Argument(s)

Return Value(s)

ptr Pointer to the memory destination where file data records are read into

size Size of one data record in an array to be read from the file

n The number of records of specified size to be read from the file

stream The handle of the open file

OK On Success

SYSERR On Failure (error)

stream The handle of the open file

offset The offset to where the file pointer must be moved

origin The origin from which the offset is counted

OK On Success

SYSERR On Failure (error)
AN017303-0908 Page 17 of 23

Using an eZ80® Flash Memory File System
Example
int fseek(FILE * stream, long offset, int origin);

fclose()

Description
This function closes a previously-opened file.

Argument(s)

Return Value(s)

Example
int fclose(FILE* f);

f The handle of the open file

OK On Success

SYSERR On Failure (error)
AN017303-0908 Page 18 of 23

Using an eZ80® Flash Memory File System
Appendix C—XINU OS Shell Commands
The ZTP suite runs on the XINU operating system. For easy file system evaluation and use, a set of operat-
ing system shell commands was developed. These commands allow performing certain user-level opera-
tions on existing files within the file system.

The XINU OS contains a shell module that must be initialized at system startup.The initialization must
include the shell command extensions as presented in the code below.

struct cmdent file_cmds[] =
{
 { "mount", TRUE, (void*)sh_mount, NULL },
 { "store", TRUE, (void*)sh_store, NULL },
 { "list", TRUE, (void*)sh_list, NULL },
 { "type", TRUE, (void*)sh_type, NULL },
 { "copy", TRUE, (void*)sh_copy, NULL },
 { "rename",TRUE, (void*)sh_ren, NULL },
 { "chkdsk",TRUE, (void*)sh_chkdsk, NULL },
};

. . .

 init_file_system();

 // add shell extensions
 shell_add_commands(file_cmds, 7);

 // start the shell on serial interface
 open(SERIAL0, 0,0);
 if ((fd=open(TTY, (char *)SERIAL0,0)) == SYSERR)
 {
kprintf("Can't open tty for SERIAL0\n");
return SYSERR;

 }
 shell_init(fd);

Table 5 lists XINU file system extension commands for quick reference.

Table 5. XINU File System Extension Commands

mount Install an existing Flash disk.

store Save the contents of a file system.

list List the contents of a file system.

type <filename> Print file contents to a terminal.

chkdsk Check the file system.

copy <srcfile> <dstfile> Create a copy of a file.

rename <srcfile> <dstfile> Rename a file.
AN017303-0908 Page 19 of 23

Using an eZ80® Flash Memory File System
mount

Description
The mount command installs an existing Flash disk; it copies its data to RAM and makes it
available for the file system API.

Argument(s)
None.

store

Description
The store command permanently saves the contents of a complete file system from RAM into
Flash Memory.

Argument(s)
None.

list

Description
The list command lists the contents of the file system on a terminal.

Argument(s)
None.

type <filename>

Description
The type command displays the contents of a selected file on the terminal.

Argument(s)

filename The name of the file to be displayed
AN017303-0908 Page 20 of 23

Using an eZ80® Flash Memory File System
chkdsk

Description
The chkdsk command checks the file system for integrity. It reports the number of free
sectors, lost sectors, and cross-linked sectors in the file system.

Argument(s)
None.

copy <srcfile> <dstfile>

Description
The copy command creates a copy of the file.

Argument(s)

rename <srcfile> <dstfile>

Description
The rename command assigns a new name to an existing file.

Argument(s)

srcfile The name of the file to be copied

dstfile The name of the file containing the copy

srcfile The name of the file to be renamed

dstfile The new name assigned to the file
AN017303-0908 Page 21 of 23

AN017303-0908 Page 22 of 23

Using an eZ80® Flash Memory File System

Appendix D—API Usage
As an example of API usage, sample code is provided below. This code creates a file and writes some data
patterns into it. The code also creates a log file into which the status text strings on the progress of the test
are written.

FILE *hlog, *f;
char buffer[40];
int i;

 init_file_system();

 fcreate("file1.test");
 fcreate("test.log");
 hlog = fopen("test.log", 0);

 f_log("\nStarting file system test.\n", hlog);

 f_log("\nOpening 1st test file.", hlog);
 f = fopen("file1.test", 0);

 strcpy(buffer, "\n<><><> test sequence #nnnnnn <><><>");
 f_log("\nWriting 36*20 chars.", hlog);
 for(i=0; i<20; i++)
 {
 int2hex(i, buffer+23);
 fwrite(buffer, 36, 1, f);
 }
 f_log("\nClosing the test file.", hlog);
 fclose(f);

 f_log("\n=== TEST FINISHED ===", hlog);

 fclose(hlog);

AN017303-0908 Page 23 of 23
23

Using an eZ80® Flash Memory File System

DO NOT USE IN LIFE SUPPORT

LIFE SUPPORT POLICY
ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)
support or sustain life and whose failure to perform when properly used in accordance with instructions for
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A
critical component is any component in a life support device or system whose failure to perform can be
reasonably expected to cause the failure of the life support device or system or to affect its safety or
effectiveness.

Document Disclaimer
©2008 by Zilog, Inc. All rights reserved. Information in this publication concerning the devices,
applications, or technology described is intended to suggest possible uses and may be superseded. ZILOG,
INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY
OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT.
ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY
INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR
TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this
document has been verified according to the general principles of electrical and mechanical engineering.

Z80, eZ80, and eZ80Acclaim! are registered trademarks of Zilog, Inc. All other product or service names
are the property of their respective owners.

Warning:

	Using an eZ80® Flash Memory File System
	Abstract
	Product Overview
	eZ80Acclaim! Flash MCU
	eZ80® General-Purpose Microprocessors

	Discussion
	File System Overview

	Using the Embedded Flash- Based File System
	Software Implementation
	Using an Application with the Embedded Flash-Based File System

	Software Metrics
	Demonstrating the Embedded Flash-based File System
	Settings
	Modifying Demo-Specific Files in ZTP
	Procedure to Build and Execute the Demo
	Executing the Demo
	Results

	Summary
	Reference
	Appendix A-Glossary
	Appendix B-File System APIs
	init_file_system()
	fcreate ()
	fexists()
	ferase()
	fopen()
	fwrite()
	fread()
	fseek()
	fclose()

	Appendix C-XINU OS Shell Commands
	mount
	store
	list
	type <filename>
	chkdsk
	copy <srcfile> <dstfile>
	rename <srcfile> <dstfile>

	Appendix D-API Usage

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

