

ZiLOG Worldwide Headquarters

•

532 Race Street

•

San Jose, CA

95126

Telephone: 408.558.8500

•

Fax: 408.558.8300

•

www.ZiLOG.com

Application Note

Setting Interrupts with

the eZ80

®

 CPU

AN017001-0903

http://www.zilog.com

AN017001-0903

Application Note

Setting Interrupts with the eZ80

®

 CPU

This publication is subject to replacement by a later edition.

T

o determine whether a later edition

exists, or to request copies of publications, contact:

ZiLOG W

orldwide Headquarters

532 Race Street

San Jose, CA

95126

T

elephone: 408.558.8500

Fax: 408.558.8300

www

.zilog.com

ZiLOG is a registered trademark of ZiLOG Inc. in the United States and in other countries.

All other

products and/or service names mentioned herein may be trademarks of the companies with which

they are associated.

Information Integrity

The information contained within this document has been verified according to the general

principles of electrical and mechanical engineering.

Any applicable source code illustrated in the

document was either written by an authorized ZiLOG employee or licensed consultant. Permission

to use these codes in any form, besides the intended application, must be approved through a

license agreement between both parties. ZiLOG will not be responsible for any code(s) used

beyond the intended application. Contact the local ZiLOG Sales Of

fice to obtain necessary license

agreements.

Document Disclaimer

©

2003

 by ZiLOG, Inc.

All rights reserved. Information in this publication concerning the devices,

applications, or technology described is intended to suggest possible uses and may be

superseded. ZiLOG, INC. DOES NOT

ASSUME LIABILITY

 FOR OR PROVIDE

A

REPRESENT

A

TION OF

ACCURACY

 OF

THE INFORMA

TION, DEVICES, OR

TECHNOLOGY

DESCRIBED IN

THIS DOCUMENT

. ZiLOG

ALSO DOES NOT

ASSUME LIABILITY

 FOR

INTELLECTUAL

 PROPER

TY

 INFRINGEMENT

 RELA

TED IN

ANY

 MANNER

T

O USE OF

INFORMA

TION, DEVICES, OR

TECHNOLOGY

 DESCRIBED HEREIN OR OTHER

WISE. Except

with the express written approval ZiLOG, use of information, devices, or technology as critical

components of life support systems is not authorized. No licenses or other rights are conveyed,

implicitly or otherwise, by this document under any intellectual property rights.

http://www.zilog.com

AN017001-0903

Table of Content

s

iii

Application Note

Setting Interrupts with the eZ80

®

 CPU

T

able of Contents

L

ist of Tables

.

iii

Abstract

.

1

eZ80

®

 CPU, Memory Modes, and Interrupts

.

1

eZ80

®

 CPU

 .

1

Memory Modes

 .

1

eZ80

®

 CPU Response to a Maskable Interrupt

.

2

eZ80F91 vs. Other eZ80

®

 Processors’ Interrupt Registers

.

2

Setting Interrupts in ADL Mode

.

4

Relocating the Interrupt Vector Table

 .

4

Mapping the ISR Location in the Interrupt Vector Table

.

10

Writing the Interrupt Service Routine

.

11

Setting Interrupts in Z80 Mode

 .

14

Relocating the Interrupt Vector Table

 .

14

Mapping the ISR location in the Interrupt Vector Table

.

16

Writing the Interrupt Service Routine

.

17

Appendix A

—

References

 .

18

List of Figures

Figure 1.

 Interrupt Vector Table Boundaries for Relocation in eZ80F91 MCU

4

Figure 2.

Memory Map Relocating Interrupt Vector Address with Jump Table

 7

List of Tables

Table 1. Interrupt Vector Address for eZ80® Devices in ADL Mode 2

Table 2. Interrupt Vector Address for eZ80® Devices in Z80 Mode 3

Table 3. List of References . 18

1

Application Note
Setting Interrupts with the eZ80® CPU
Abstract

This Application Note describes how to set maskable interrupts for the each of the
devices comprising ZiLOG’s eZ80® and eZ80Acclaim!™ product lines in the ADL
and Z80 memory modes. The document discusses how to relocate the interrupt
vector table, map interrupt service routines in the interrupt vector table, and create
interrupt service routines for processors operating in different memory modes.

The eZ80® product line includes the eZ80190 and eZ80L92 general-purpose
microprocessors. The eZ80Acclaim!™ product line includes the eZ80F91,
eZ80F92, and eZ80F93 Flash microcontrollers.

eZ80® CPU, Memory Modes, and Interrupts

This section presents a brief background on the eZ80® CPU, focusing on its
memory modes and interrupts.

eZ80® CPU
The eZ80® CPU is ZiLOG's next-generation Z80 processor core. It is the basis of
the new family of integrated microcontrollers, and includes the following features:

• Upward code-compatible from Z80 and Z180 products

• Several address-generation modes, including 24-bit linear addressing

• 24-bit registers and ALU

• 8-bit data path

• Single-cycle instruction fetch

• Pipelined fetch, decode, and execute

Memory Modes
The eZ80® CPU is capable of operating in two memory modes:

• Z80 Memory mode

• Address and Data Long mode

A description of each of these modes follows.

Z80 Memory mode. for backward compatibility with Z80 programs; the CPU
operates in Z80 Memory mode with 16-bit addresses and 16-bit CPU registers.
Z80 Memory mode is also called Z80 mode.

Address and Data Long mode. In ADL mode, the eZ80® CPU operates with 24-
bit linear addressing and 24-bit CPU registers.
AN017001-0903 Abstract

2

Application Note
Setting Interrupts with the eZ80® CPU
An ADL bit (0 for Z80 mode; 1 for ADL mode) controls memory mode selection.

eZ80® CPU Response to a Maskable Interrupt
The eZ80® CPU is capable of servicing a maskable interrupt using one of three
interrupt modes: Interrupt Mode 0, Interrupt Mode 1, or Interrupt Mode 2. These
modes are set by the IM0, IM1, or IM2 instructions, respectively. These interrupt
modes provide backward compatibility with Z80 processors. However, not all
products within the eZ80® family support all three interrupt modes.

The eZ80® line of microprocessors also supports vectored interrupts for on-chip
peripherals. With vectored interrupts, the CPU fetches the low-order interrupt vec-
tor address from an internal vectored bus, IVECT [8:0]. The internal vectored bus
is used exclusively for on-chip peripherals.

This Application Note focuses on setting maskable interrupts using Interrupt Mode
2. For detailed descriptions of interrupt modes and vectored interrupts, refer to the
eZ80® CPU User Manual (UM0077).

The next section details the differences between the eZ80F91 device and the
remainder of the devices in the eZ80® family, with respect to the I Registers and
the IVECT Registers.

eZ80F91 vs. Other eZ80® Processors’ Interrupt Registers
For all eZ80® processors, the interrupt controller routes interrupt request signals
from the internal peripherals, the external devices (via the internal port I/O), and
the nonmaskable interrupt (NMI) pin to the CPU.

On the eZ80F91 device, all maskable interrupts use the CPU’s vectored interrupt
function. The size of the Interrupt Page Address Register, or I Register, is 16 bits
in the eZ80F91 device, differing from the other versions of the eZ80® CPU, to
allow for a 16 MB range of interrupt vector table placement. Additionally, the size
of the IVECT Register in the eZ80F91 device is 9 bits (8 bits in the other eZ80®
devices), to provide an interrupt vector table that can be expanded and is more
easily integrated with other interrupts. Table 1 lists the interrupt vector addresses
in ADL mode for each of the eZ80® devices.

Table 1. Interrupt Vector Address for eZ80® Devices in ADL Mode

eZ80®
Device

Size of I
Register

Size of
IVECT

Register
ISR Address
(ADL Mode)

eZ80F91 16 bits 9 bits {I[15:1], IVECT[8:0]}*

eZ80F92 8 bits 8 bits {I[7:0], IVECT[7:0]}

Note: Only 15 bits of the I Register are used. The 16th bit is overwritten by
the msb of the IVECT Register.
AN017001-0903 eZ80® CPU Response to a Maskable Interrupt

3

Application Note
Setting Interrupts with the eZ80® CPU
Table 2 describes the interrupt vector address for the eZ80® devices in Z80 mode.

The vectors are 4 bytes (32 bits) apart, even though only 3 bytes (24 bits) are
required. The fourth byte is reserved for programmability and expansion pur-
poses. Starting the interrupt vectors at address location 40h allows for easy imple-
mentation of the interrupt controller vectors with the Reset (RST) vectors.

In ADL mode, the full 24-bit interrupt vector is located at starting address {I[15:1],
IVECT[8:0]}, where I[15:0] is the CPU’s Interrupt Page Address Register (see
Table 1).

In contrast to the eZ80F91 MCU, the other devices in the eZ80® family support an
8-bit I Register and an 8-bit IVECT Register, making the interrupt vectors 16 bits
long (see Table 2).

The ZDS II C Compiler supports only ADL mode; as a consequence,
locating the interrupt vector table and creating the interrupt service
routines can only be performed in the C coding language. In Z80
mode, these tasks are performed in the Assembly language.

To set interrupts in all eZ80® devices, the user must perform the following tasks:

• Locate the interrupt vector table

eZ80F93 8 bits 8 bits {I[7:0], IVECT[7:0]}

eZ80L92 8 bits 8 bits {I[7:0], IVECT[7:0]}

eZ80190 8 bits 8 bits {I[7:0], IVECT[7:0]}

Table 2. Interrupt Vector Address for eZ80® Devices in Z80 Mode

eZ80®
Device

Size of
MBASE
Register

Size of I
Register

Size of
IVECT

Register ISR Address (Z80 Mode)

eZ80F91 8 bits 8 bits 8 bits {MBASE[7:0], I[7:0], IVECT[7:0]}

eZ80F92 8 bits 8 bits 8 bits {MBASE[7:0], I[7:0], IVECT[7:0]}

eZ80F93 8 bits 8 bits 8 bits {MBASE[7:0], I[7:0], IVECT[7:0]}

eZ80L92 8 bits 8 bits 8 bits {MBASE[7:0], I[7:0], IVECT[7:0]}

eZ80190 8 bits 8 bits 8 bits {MBASE[7:0], I[7:0], IVECT[7:0]}

Table 1. Interrupt Vector Address for eZ80® Devices in ADL Mode (Continued)

eZ80®
Device

Size of I
Register

Size of
IVECT

Register
ISR Address
(ADL Mode)

Note: Only 15 bits of the I Register are used. The 16th bit is overwritten by
the msb of the IVECT Register.

Note:
AN017001-0903 eZ80F91 vs. Other eZ80® Processors’ Interrupt Registers

4

Application Note
Setting Interrupts with the eZ80® CPU
• Map the ISR location to the interrupt vector table

• Write an interrupt service routine or interrupt handler

The following sections describe how to perform these tasks in ADL and Z80
modes, including examples.

Setting Interrupts in ADL Mode

All maskable interrupts for the eZ80® family of devices use the eZ80® CPU’s vec-
tored interrupt function. The eZ80F91-based interrupt vector locations have a 24-bit
address. The remainder of the eZ80® devices have a 16-bit address (see Table 1).

Relocating the Interrupt Vector Table

For the eZ80F91 Device. the interrupt vector table is constrained to start at the
boundary of 512 bytes. For the eZ80F91 MCU, using the 15 bits of the I Register
[15:1], the interrupt vector table can be mapped onto any of the 32,768 pages
(16 MB divided into pages of 512 bytes).

Figure 1 illustrates the boundaries where the interrupt vector table can be located.
While relocating the interrupt vector table, the vector starting address must be
placed at the beginning of the page address and not in the middle of the page.
Examples of a starting address are 000000h, 000200h, and 000400h.

Figure 1. Interrupt Vector Table Boundaries for Relocation in eZ80F91 MCU

000000h

000001h

0001FFh

000200h

000201h

0003FFh

FFFFFFh

Page 1: 512 bytes

Page 2: 512 bytes

Page n: 512 bytes
AN017001-0903 Setting Interrupts in ADL Mode

5

Application Note
Setting Interrupts with the eZ80® CPU
The following start-up code is an illustration of the kind of code that must be
added to the user’s existing startup.asm file when relocating the interrupt vector
table for the eZ80F91 MCU.

In this example, the interrupt vector table is relocated to address location FFE000h
within on-chip SRAM.

;***
The start-up code presented below defines an interrupt vector table for
the eZ80F91 MCU. It must be aligned to the 512-byte boundary of RAM.
;***
.assume ADL =1 ;This is an assembler directive
 NUM_VECTORS EQU 64 ;Initialize all of the interrupt vector
 ;location
.def __vector table ;
define __vectab, space=RAM, align= 512
.sect "__vectab"
ORG %FFE000 ;Base address of the Interrupt vector.
 ;The interrupt vector table is to be
 ;relocated to ADDRESS 204800. This
 ;address must be a multiple of 512.
 ;The ORG directive is used to locate
 ;the base address
__vector_table:
ds NUM_VECTORS*4 ;Each vector is a 4-byte address
 ;pointing to the __vectptr segment.
 ;The number of interrupts is 64 and
 ;hence 256 bytes of memory is defined
 ;Each vector takes up four bytes of
 ;memory location.
;**
; The following start-up code sets the eZ80 CPU in interrupt mode 2 and
; loads the base address (FFE0 in this example) to the 16-bit I Register.
; Relocates the vector table.
;**
im 2 ; Interrupt mode 2
ld hl, __vector_table >> 8 & 0ffffh ;
ld i,hl
;***
;***

In the following sample code, the interrupt vector table is relocated to address
location 003E00h on the on-chip Flash.

;***
The start-up code presented below defines an interrupt vector table for
the eZ80F91 MCU. It must be aligned to the 512-byte boundary of ROM.
AN017001-0903 Relocating the Interrupt Vector Table

6

Application Note
Setting Interrupts with the eZ80® CPU
;***
. assume ADL =1 ;This is an assembler directive
 NUM_VECTORS EQU 64 ;Initialize all of the interrupt vector
 ;location
. def __vector table ;
define __vectab, space=ROM, align= 512
.sect "__vectab"
ORG %003E00 ;Base address of the Interrupt vector.
 ;The interrupt vector table is to be
 ;relocated to ADDRESS 003E00h This
 ;address must be a multiple of 512.
 ;The ORG directive is used to locate
 ;the base address

__vector_table: ;base address + the timer 0 interrupt
ORG %003E00+%54 ;vector address
dl_ISR_timer0 ;The address of the timer0_isr is
XREF _ISR_timer0 ;mapped at the relocated vector table

;***
;The set_vector function cannot be used when mapping the interrupt
;service routines to the corresponding vector address.
;**
; The following start-up code sets the eZ80 CPU in interrupt mode 2 and
; loads the base address (003E in this example) to the 16-bit I Register.
; Relocates the vector table.
;**
im 2 ; Interrupt mode 2
ld hl, __vector_table >> 8 & 0ffffh ;
ld i,hl
;**
*;***
**

For eZ80F92, eZ80F93, eZ80190, and eZ80L92 Devices. The relocation pro-
cess noted above differs slightly for the remainder of the eZ80® family. For exam-
ple, consider the TIMER0 (PRT 0) ISR, starting at the three-byte address location
204800h. The default TIMER0 interrupt vector location resides at 0Ah for the
eZ80F92 MCU. Assuming that the interrupt vector table is relocated to start at
address E000h, this start location points to location E114h, which contains a jump
instruction to the TIMER0 ISR address. Figure 2 illustrates the default and relo-
cated jump tables for the TIMER0 ISR location.
AN017001-0903 Relocating the Interrupt Vector Table

7

Application Note
Setting Interrupts with the eZ80® CPU
The following start-up code illustrates the type of code that must be added to the
user’s existing startup.asm file, when relocating the interrupt vector table using
eZ80® devices other than the eZ80F91, with the 8-bit I Register and the 8-bit
IVECT Register.

In this example, the interrupt vector table is relocated to address location E000h
within on-chip SRAM.

;***
;Each interrupt vector is a 16-bit address pointing into the __vecptr
;segment. This segment must be aligned on a 256 byte boundary of RAM ;
;and must reside in the lower 64KB of memory.
;***
.assume ADL=1 ;This is an assembler
;directive

RELOCATED_VECTOR_TABLE EQU E000h
NUM_VECTORS EQU 128
. def __vector_table
define __vectab, space=RAM, align=256
. sect "__vectab"
ORG RELOCATED_VECTOR_TABLE
__vector_table:

Figure 2. Memory Map Relocating Interrupt Vector Address with Jump Table

Default Interrupt Vector Table
starting at 0000h; I[7:0] = 00h

0000h

0002h

0004h

0006h

0008h

000Ah

000Ch

000Eh

0010h

TIMER0

Relocated Interrupt Vector Table
starting at E000h; I[7:0] = E0h

E000h

E002h

E004h

E006h

E008h

E00Ah

E00Ch

E00Eh

E010h

TIMER0

 Jump Table starting at E100
mapped to Vector Table at E0h

E000h

E002h

E004h

E006h

E008h

E00Ah

E00Ch

E00Eh

E010h

E100

E104

E108

E10C

E110

E114

E118

E11C

E120

Jump Table with instruction to the
TIMER0 ISR located at 204800h

E100h

E102h

E103h

........

.........

.........

E114h

E115h

E116h

xxh

C3h

00h

48h

E117h 20h

xxh

xxh

xxh

xxh

xxh

Opcode for Jump
 Instruction
AN017001-0903 Relocating the Interrupt Vector Table

8

Application Note
Setting Interrupts with the eZ80® CPU
ds NUM_VECTORS*2 ;Each vector is a 2-byte
;address pointing into the
;__vectptr segment
;***
; This start-up code relocates the vector table from absolute 0000h
; location to E000h location. It loads I Registers with the value E0h.
;***
im 2 ; Interrupt mode 2
ld, __vector_table >> 8 & 0ffh
ld i, a ; Load interrupt vector base
;**
*;***

The following code is an illustration of the kind of code that can be added to the
user’s existing startup.asm file to locate the jump table within the 64 KB memory
space, when using eZ80® devices other than the eZ80F91 MCU.

In the following sample code, the jump table is relocated to address location
E100h within on-chip SRAM.

;***
;Define jump table. Each entry is a JP.LIL to an interrupt handler.
;This segment must reside in the lower 64KB of RAM.
;***
RELOCATED_JUMP_TABLE EQU E100h
define __jumptab,space=RAM
.sect "__jumptab" ; __vectors is predefined
ORG RELOCATED_JUMP_TABLE
__jump_table:
ds NUM_VECTORS*4 ; Each entry is a JP.LIL to a handler
;**
*;***

The following lines of code illustrate how to map the jump table to the relocated
vector table.This start-up code must be added to the user’s existing startup.asm
file.

;**
ld hl,__vector_table
ld b,NUM_VECTORS
ld iy,__jump_table
$1:
ld.sis (hl),iy ; store vector
inc hl
inc hl ; next vector address
lea iy,iy+4 ; next jp.lil address
AN017001-0903 Relocating the Interrupt Vector Table

9

Application Note
Setting Interrupts with the eZ80® CPU
dec b
jr nz,$1
;**
*;***

The following start-up code illustrates the type of code that must be added to the
user’s existing startup.asm file when relocating the interrupt vector table and
using the 8-bit I Register and the 8-bit IVECT Register on eZ80® devices other
than eZ80F91.

In the following sample code, the interrupt vector table is relocated to address
location 3E00h in on-chip Flash memory.

;***
; Each interrupt vector is a 16-bit address pointing into the __vecptr
; segment. This segment must be aligned on a 256 byte boundary of ROM ;
;and must reside in the lower 64KB of memory.
;***
.assume ADL=1 ; This is an assembler directive

RELOCATED_VECTOR_TABLE EQU 3E00h
NUM_VECTORS EQU 128
. def __vector_table
define __vectab, space=ROM, align=256
. sect "__vectab"
ORG RELOCATED_VECTOR_TABLE
__vector_table:

dw __jump_table, __jump_table+2,------------- __jump_table+254

;***
; This start-up code relocates the vector table from absolute 0000h
; location to E000h location. It loads I Registers with the value E0h.
;***
im 2 ; Interrupt mode 2
ld, __vector_table >> 8 & 0ffh
ld i, a ; Load interrupt vector base
;**
*;***

The following code is an illustration of the kind of code that can be added to the
user’s existing startup.asm file to locate the jump table within the 64 KB memory
space, when using the eZ80® devices other than the eZ80F91 MCU.

In the following sample code, the jump table is relocated to address location
3F00h in on-chip Flash memory.
AN017001-0903 Relocating the Interrupt Vector Table

10

Application Note
Setting Interrupts with the eZ80® CPU
;**
;Define jump table. Each entry is a JP.LIL to an interrupt handler.
;This segment must reside in the lower 64KB of ROM.
;***
RELOCATED_JUMP_TABLE EQU E100h
define __jumptab,space=ROM
.sect "__jumptab" ; __vectors is predefined
ORG RELOCATED_JUMP_TABLE
__jump_table:

ORG RELOACATED_JUMP_TABLE+%0A ;%0A is the address of the
;timer0 interrupt vector

Db %C3;Op Code for jump
.trio _ISR_timer0 ;maps the address of the

;timer0_isr
XREF _ISR_timer0 ;to relocated jump table
;**
*;***

Mapping the ISR Location in the Interrupt Vector Table
The maximum addressable capacity of eZ80® devices is 16 MB.

ZiLOG recommends that the I Register value for eZ80® devices be changed from its
default value of 00h to avoid conflict between the NMI, RST instruction addresses,
and the maskable interrupt vectors.

For the eZ80F91 Device. All of the interrupt vector addresses can be located
anywhere in the 16 MB address space, barring the locations where the non-
maskable interrupt (NMI) is located (066h) and the locations between RST0 to
RST8 and RST38, which are all absolute addresses. The user’s program must
store the ISR’s starting address in a four-byte interrupt vector location.

For example, consider a TIMER0 interrupt service routine that starts at three-byte
address location 123456h. The default TIMER0 interrupt vector location for the
eZ80F91 MCU is at 054h and the TIMER0 interrupt service routine’s address is
therefore mapped as follows:

{I Register [15:1], 054h} ------------> 56h
{I Register [15:1], 055h} ------------> 34h
{I Register [15:1], 056h} ------------> 12h
{I Register [15:1], 057h} ------------> NOT USED

The address location {I Register [15:1], 057h} is not used. The least significant
byte is stored at the lower address per the Little Endian format.

Note:

Note:
AN017001-0903 Mapping the ISR Location in the Interrupt Vector Table

11

Application Note
Setting Interrupts with the eZ80® CPU
For eZ80F91 interrupts, the full 24-bit interrupt vector is located at starting
address {I [15:1], IVECT [8:0]; the lower bit of the I Register (bit 0) is overwritten
with the most significant bit (msb) of the IVECT Register. Setting bit 0 of the I Reg-
ister has no effect on the interrupt vector locations.

For eZ80F92/F93/190/L92 Devices. The interrupt vectors must be located within
the 64 KB address space for the remainder of the eZ80® family. Because the inter-
rupt vector location can take only two-byte addresses (see Table 1), the ISR must
also be located within the same 64 KB address space. However, by using a jump
table, the ISR can be located anywhere in the 16 MB address space. The jump
table, however, must be located within the 64 KB memory space where the inter-
rupt vectors are also located.

As an example, the default TIMER0 (PRT 0) interrupt vector for the eZ80190 MPU
is located at 06h. Therefore, the TIMER0 interrupt service routine’s address—
123456h, is mapped as follows:

{I Register [7:0], 06h} ------------> 56h
{I Register [7:0], 07h} ------------> 34h
{I Register [7:0], 08h} ------------> 12h
{I Register [7:0], 09h} ------------> NOT USED

Writing the Interrupt Service Routine
To create an interrupt service routine in ADL mode, the interrupt keyword is
used. This keyword is a storage class that is applicable only to functions. Alterna-
tively, a keyword combination of #pragma interrupt can be used.

For example, to write an interrupt service routine for TIMER0, use either of the two
code segments presented below.

interrupt void ISR_Timer0 (void)
{
unsigned char temp= 10;
....;
....;

}

or

#pragma interrupt
void ISR_Timer0 (void)
{
 unsigned char temp = 10;;
;
;
AN017001-0903 Writing the Interrupt Service Routine

12

Application Note
Setting Interrupts with the eZ80® CPU
}

The _set_vector function is used to attach an interrupt service routine (which is
a C function) to an interrupt vector. The _set_vector routine takes two argu-
ments—the first is an integer defining the interrupt number, and the second is the
name of the associated interrupt service routine.

For the eZ80F91 Device. The following code illustrates how the _set_vector
routine is called.

define VECTOR_TIMER0 0x54 // Vector offset value as mentioned in
// interrupt vector table for F91

include <ez80.h>

void ISR_TIMER0(); // Function prototype declaration
void Init_TIMER0 (void); // Function prototype declaration

void set_vector(unsigned short int, void(*handlr)(void);

main()
{
_di(); // disable interrupts
 Init_TIMER0; // Initialize timer0
_ei();1 // enable interrupts

}

Init_TIMER0 ()
{
_set_vector(VECTOR_TIMER0, ISR_Timer0);
Initialize timer0
...;
...;

}

The Init_TIMER0() function calls the _set_vector function. The TIMER0 inter-
rupt vector address is located at 054h. This address is passed to the
_set_vector function along with the address of the ISR, ISR_TIMER0. The
_set_vector function is written in assembly and is defined in the startup.asm
file. The code snippet provided below is for the _set_vector function.

The following start up code must be added in the existing startup.asm file.

;***
; The address of the interrupt handler (interrupt service routine) is
; copied into corresponding 3-byte vector address location.
AN017001-0903 Writing the Interrupt Service Routine

13

Application Note
Setting Interrupts with the eZ80® CPU
;
; void _set_vector (unsigned short vector, void (*hndlr)(void));
;**
* . def __set_vector
__set_vector:
ld iy,0
add iy, sp
ld hl,(iy+3)
ld bc,__vector_table
add hl,bc
ld bc, (iy+6)
ld (hl), bc
ret

;**
*;***

For the eZ80F92, eZ80F93, eZ80190, and eZ80L92 Devices. The following
sample code illustrates how the _set_vector function is called for the remainder
of the eZ80® devices.

define TIMER0 0x14 // Vector offset value for TIMER0
//(PRT 0)as mentioned in vector table
// for eZ80F92 * 2 (0Ah * 2)
// Vector offset for TIMER0 (PRT 0)
// for eZ80190 is 06h (06h * 2)

include <ez80.h>

void ISR_TIMER0(); // Function prototype declaration
void Init_TIMER0 (void); // Function prototype declaration

void set_vector(unsigned short int, void(*handlr)(void);

Init_TIMER0 ()
{
_set_vector(TIMER0, ISR_Timer0);
Initialize TIMER0;

....;

....;
}

The following start-up code must be added to the user’s existing startup.asm
file.

;***
AN017001-0903 Writing the Interrupt Service Routine

14

Application Note
Setting Interrupts with the eZ80® CPU
;Define __set_vector to install a user interrupt handler
;
;void _set_vector(unsigned short vector, void (*hndlr)(void));
;
;
;Argument1 - address of user interrupt handler
;Argument2 - define TIMER0 0x14 (for eZ80F92)
;
;***
.def __set_vector
__set_vector:
ld ix, 0

 add ix, sp
 ld hl,0; Clear UHL
 ld.sis hl, (ix+3); Vector offset
 ld bc, RELOCATED_JUMP_TABLE

 add hl, bc; hl is address of jp
 ld (hl), %C3; Op Code for jump
 inc hl; hl is address of handler
 ld bc, (ix+6) handler
 ld (hl), bc; store new vector address
 ret

;**
*;**

Setting Interrupts in Z80 Mode

In eZ80F91-based applications that run exclusively in Z80 mode, the interrupt
vector address is {MBASE, I[7:1], IVECT[8:0]}. For other eZ80® CPU–based
applications, the interrupt vector address is {MBASE, I[7:0], IVECT[7:0]}. A 16-bit
word is fetched from the interrupt vector address and loaded into the lower two
bytes of the Program Counter, PC [15:0].

In Z80 mode, the upper byte of the I Register bits, [15:8], is not used.

Because the ZDS II C compiler does not support Z80 mode, locating the interrupt
vector table and writing the interrupt service routine must be performed in Assem-
bly language.

Relocating the Interrupt Vector Table

For the eZ80F91 Device. The start-up code presented below locates the inter-
rupt vector table for the eZ80F91 device, in Z80 mode. Each entry is a 16-bit
address pointing into the __vecptr segment. This segment must be aligned on
AN017001-0903 Setting Interrupts in Z80 Mode

15

Application Note
Setting Interrupts with the eZ80® CPU
the 512-byte page boundary of RAM and must reside in the lower 64 KB of mem-
ory.

;***
;***
. assume ADL = 0
NUM_VECTORS EQU 64 ; Initialize all of the interrupt

; vector location
. def __vector table ;
define __vectab, space=RAM, align= 512
.sect "__vectab"
ORG %0400 ;Base address of the

;Interrupt vectors
;
;***
; If the interrupt vector table is to be mapped at ADDRESS 2048, use the
; ORG directive as mentioned. However, this address should be a multiple
; of 512.
;***
; Set the interrupt to mode 2; load the interrupt base address to 8 bit I
; register. In this example, 04h is moved to I Register. At the beginning
; of the program, the user should take care of initializing MBASE
; register with an appropriate value.
;***
im 2 ;Interrupt mode 2
ld a, __vector_table >> 8 & 0ffh ;Difference to ADL mode is

;highlighted
ld i,a ;Load interrupt vector base
;***

For the eZ80F92, eZ80F93, eZ80190, and eZ80L92 Devices. The start-up code
presented below defines the interrupt vector table for the remainder of the eZ80®
devices, in Z80 mode. Each entry is a 16-bit address pointing into the __vector
segment. This segment must be aligned to the 256 byte boundary of RAM and
must reside in the lower 64 KB of memory.

;***
;***
. assume ADL = 0;
NUM_VECTORS EQU 64 ; Initialize all of the interrupt vector

; location
. def __vector table ;
define __vectab, space=RAM, align= 256
.sect "__vectab"
ORG %0300 ; Base address of the Interrupt
AN017001-0903 Relocating the Interrupt Vector Table

16

Application Note
Setting Interrupts with the eZ80® CPU
; vectors.
;***
;The interrupt vector table is mapped to ADDRESS 0300h; the ORG
;directive is used. However, this address should be the multiple of 256.
;***
;Set the interrupt to mode 2; load the interrupt base address to 8 bit I
;register. In this example, 03h is moved to I register. At the beginning
;of the program, the user should take care of initializing MBASE
;register with an appropriate value.
;***

im 2 ; Interrupt mode 2
ld a, __vector_table >> 8 & 0ffh ;
ld i,a ; Load interrtup vector base
;**
*;***

The jump table concept for relocating the interrupt vector table cannot be applied in
Z80 mode.

Mapping the ISR location in the Interrupt Vector Table

For the eZ80F91 Device. Using TIMER0 as an example, let us assume that its
interrupt service routine resides at the two-byte address location 1234h. The
TIMER0 interrupt vector location for the eZ80F91 device is at 054h. The TIMER0
interrupt service routine’s address is stored as follows:

{MBASE, I Register [7:1], 054h} ------------> 34h
{MBASE, I Register [7:1], 055h} ------------> 12h
{MBASE, I Register [7:1], 056h} ------------> Not used
{MBASE, I Register [7:1], 057h} ------------> Not used

The address locations {MBASE, I Register [7:1], 056h} and {MBASE, I
Register [7:1], 057h} are not used.

For the eZ80F92, eZ80F93, eZ80190, and eZ80L92 Devices. The TIMER0
(PRT 0) interrupt vector location for the eZ80F92 device is at 0Ah. Assuming that
its interrupt service routine resides at the two-byte address location 1234h, the
TIMER0 interrupt service routine’s address for the eZ80F92 device is stored as
follows:

{MBASE, I Register [7:1], 0XXh} ------------> 34h
{MBASE, I Register [7:1], 0XXh} ------------> 12h

Note:
AN017001-0903 Mapping the ISR location in the Interrupt Vector Table

17

Application Note
Setting Interrupts with the eZ80® CPU
Writing the Interrupt Service Routine
The example code below illustrates how to write an interrupt service routine in
Z80 mode for all of the eZ80® devices.

_ISR_Timer0:
DI;
EXX
EX AF, AF’

EXX
EX AF, AF’
EI;
RETI

For the eZ80F91 Device. The following assembly code illustrates how to load the
ISR_Timer0 address at the TIMER0 interrupt vector location for the eZ80F91
device in Z80 mode. This code can be added to the user generated assembly pro-
gram.

VECTOR_TIMER0 EQU %054 // Vector offset for the
// TIMER0 ISR for eZ80F91 is
// 054h.

ld hl, VECTOR_TIMER0; Timer0
ld bc,__vector_table
add hl,bc
ld bc, _ISR_Timer0
ld (hl), bc

For the eZ80F92, eZ80F93, eZ80190, and eZ80L92 Devices. The following
code illustrates how to load the ISR_TIMER0 address at the eZ80F92 MCU’s
TIMER0 (PRT 0) interrupt vector location at 0Ah. This code can be added to the
user generated assembly program.

TIMER0 EQU %0A // Vector offset for TIMER0(PRT 0)
// for eZ80F92 is 0Ah

ld hl, VECTOR_TIMER0; Timer0
ld bc,__vector_table
add hl,bc
ld bc, _ISR_Timer0
ld (hl), bc
AN017001-0903 Writing the Interrupt Service Routine

AN017001-0903 Appendix A—References

18

Application Note
Setting Interrupts with the eZ80® CPU

Appendix A—References

Further details about the eZ80® family of products can be found in the references
listed in Table 1.

Table 1. List of References

Topic Document Name

eZ80® CPU eZ80® CPU User Manual (UM0077)

eZ80F91 MCU eZ80F91 Product Specification (PS0192)

eZ80F92 and eZ80F93 MCUs eZ80F92/eZ80F93 Product Specification (PS0153)

eZ80190 MPU eZ80190 Product Specification (PS0066)

eZ80L92 MPU eZ80L92 MPU Product Specification (PS0130)

	Setting Interrupts with the eZ80® CPU Application Note
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	eZ80® CPU, Memory Modes, and Interrupts
	eZ80® CPU
	Memory Modes
	eZ80® CPU Response to a Maskable Interrupt
	eZ80F91 vs. Other eZ80® Processors’ Interrupt Registers

	Setting Interrupts in ADL Mode
	Relocating the Interrupt Vector Table
	Mapping the ISR Location in the Interrupt Vector Table
	Writing the Interrupt Service Routine

	Setting Interrupts in Z80 Mode
	Relocating the Interrupt Vector Table
	Mapping the ISR location in the Interrupt Vector Table
	Writing the Interrupt Service Routine

	Appendix A
	References

