
AN039601-1216
Abstract

This application note discusses the use of Zilog’s single-chip Digital Universal Asynchro-
nous Receiver/Transmitter (DUART) device as an additional serial communication device
with the Z8F6423 microcontroller, a member of Zilog’s Z8 Encore! XP F64xx Series of
MCUs, as host.

The source code file associated with this application note, AN0396-SC01, is available free
for download from the Zilog website. This source code has been tested with ZDS II –
Encore! version 5.2.2. Subsequent releases of ZDS II may require you to modify the code
supplied with this application note.

Discussion

Zilog’s Digital UART is suitable for use in applications where the host requires an addi-
tional asynchronous serial communication peripheral. This DUART chip can be included
in a system and controlled via I2C protocol (Two Wire Interface).

Communication

I2C

DUART is an I2C slave device using a 7-bit address and can support a maximum bus
speed of 400 KHz. This device has up to eight possible addresses, allowing up to 8 devices
on a single bus. The I2C uses two bi-directional open-drain lines, pulled up to VDD with
resistors. All I2C transactions must be separated by a wait period of at least four microsec-
onds. Figure 1 shows the I2C protocol.

Note:
AN039601-1216
Application Note
Using Digital UART with the
Z8F6423 MCU as Host
 Page 1 of 17

http://www.zilog.com/docs/appnotes/an0396-sc01.zip

Using Digital UART with the Z8F6423 MCU as Host
Application Note
I2C Addressing

The DUART chip responds to the following addresses:

• 1010XXXb, where XXX is the address configured using the I2CADDR pins.
To be used to access the EEPROM through de facto standard interface

• 1011XXXb, where XXX is the address configured using the I2CADDR pins.
To be used to access the commands through standard I2C protocol

Commands

Commands are sent to communicate with the DUART. Table 1 list the commands and
their description. The higher 3 bits of the command byte identify the peripheral. The
EEPROM/GPIO peripheral uses 000b, UART0 uses 001b, UART1 uses 010b, and SYS-
TEM uses 111b. The command is the lower 5 bits of the command byte.

Table 1 lists the commands.

Figure 1. I2C Protocol
AN039601-1216 Page 2 of 17

Using Digital UART with the Z8F6423 MCU as Host
Application Note
Table 1. Commands

Command Byte Data Size (Bytes) Direction Peripheral Description

0x00 1 Write EEPROM Write EEPROM

0x01 1 Read EEPROM Read EEPROM

0x02 2 Write EEPROM Write Current Location Register

0x03 2 Read EEPROM Read Current Location Register

0x04 1 Write EEPROM Erase Requested Page

0x06 2(4)1 Write GPIO Setting GPIO OUT Register

0x07 1(2)1 Read GPIO Reading GPIO IN Register

0x08 3(5)2 Write GPIO Write GPIO Configuration

0x09 3(5)2 Read GPIO Read GPIO Configuration

0x0F 1 Read GPIO Read GPIO Interrupt Status Register

0x21 1 Read UART0 Read UART Status Register

0x22 1 Write UART0 Enable Interrupts

0x23 1 Read UART0 Interrupt Status Register

0x24 1 Write UART0 Write Data to TX FIFO

0x25 1 Read UART0 Read RX FIFO

0x26 2 Write UART0 Write Baud Rate Register

0x27 2 Read UART0 Read Actual Baud Rate Register

0x28 2 Write UART0 Write Configuration

0x29 2 Read UART0 Read Configuration

0x2A 1 Write UART0 Write Transmit Watermark Register

0x2B 1 Read UART0 Read Transmit Watermark Register

0x2C 1 Write UART0 Write Receive Watermark Register

0x2D 1 Read UART0 Read Receive Watermark Register

0x2E 1 Write UART0 Enable UART

0x31
2

Read
UART0 Read Receive and Transmit FIFO

Level Registers

0x41 1 Read UART1 Read UART Status Register

0x42 1 Write UART1 Enable Interrupts

0x43 1 Read UART1 Interrupt Status Register

0x44 1 Write UART1 Write Data to TX FIFO3

0x45 1 Read UART1 Read RX FIFO Data

0x46 2 Write UART1 Write Baud Rate Register

0x47 2 Read UART1 Read Actual Baud Rate Register

0x48 2 Write UART1 Write Configuration

0x49 2 Read UART1 Read Configuration
AN039601-1216 Page 3 of 17

Using Digital UART with the Z8F6423 MCU as Host
Application Note
1. 1 ZDU0110QUX device uses 4 bytes; other devices use 2 bytes.

2. A command consists of a sub-command and data. The ZDU0110QUX device
uses 5 bytes while other devices use 3 bytes. Sub-command 0x0A uses only 1
byte.

3. Not allowed to be stacked.

0x4A 1 Write UART1 Write Transmit Watermark Register

0x4B 1 Read UART1 Read Transmit Watermark Register

0x4C 1 Write UART1 Write Receive Watermark Register

0x4D 1 Read UART1 Read Receive Watermark Register

0x4E 1 Write UART1 Enable UART

0x51 2 Read UART1
Read Receive and Transmit FIFO
Level Register

0xE1 1 Read SYSTEM Read System Status Register

0xE3 1 Read SYSTEM Read Last Operation Result Register

0xE5 3 Read SYSTEM Read System Version

0xEF 1 Read SYSTEM Read Interrupt Source Register

Table 1. Commands (Continued)

Command Byte Data Size (Bytes) Direction Peripheral Description

Notes:
AN039601-1216 Page 4 of 17

Using Digital UART with the Z8F6423 MCU as Host
Application Note
DUART Write

Figure 2 shows how to communicate with the DUART to write on certain registers.

Communication starts with the host sending a Start condition, followed by the DUART
address and write (0) bits. The host then sends the command byte and the required corre-
sponding data. To ensure that the DUART is responding, an ACK bit should be read from
the line after each byte is shifted. After sending all the information, the host issues a Stop
condition.

Figure 2. DUART Write
AN039601-1216 Page 5 of 17

Using Digital UART with the Z8F6423 MCU as Host
Application Note
DUART Read

Figure 3 displays the flow for reading data from the DUART.

Communication begins with the host sending a Start condition, which is followed by the
address and write bits. The DUART is then expected to reply with an ACK bit. It does so
each time a byte is shifted to the line. Next, the host sends the command byte. Instead of
issuing a Stop condition after the command byte, the host sends another Start condition
(repeated start) followed by the DUART address and a read (1) bit. This time, the DUART
sends the data for the host to receive. The host issues a NACK and the Stop condition after
it receives the necessary data.

Stacked Write Commands

The DUART supports stacked write requests for multiple commands at the same time (up
to a 64-byte packet). A stacked packet allows the Host to use one transaction to send mul-
tiple write commands, such as when configuring UART and/or GPIOs. If there is an error
in the packet, processing is stopped and the error condition is logged in the System Status
Register until the next request is processed.

Figure 3. DUART Read
AN039601-1216 Page 6 of 17

Using Digital UART with the Z8F6423 MCU as Host
Application Note
Software Details
The software for this application note is written in a modular way to allow users to easily
copy and use the routines in their own application without modification. Table 2 lists the
code files used in this application and a description of each file.

Figure 4. Stacked Write Commands

Table 2. Source Code Files

Source File Description

main.c Contains the main function of the software

i2c.c Handles the routines regarding the I2C peripheral

eeprom.c Handles all the routines that enable the host to access the EEPROM of the DUART

systems.c Contains the routines that read the system status of the DUART

uart.c Contains the routines regarding the UART functionality of the DUART

gpiox.c Contains the routines regarding the GPIO functionality of the DUART

demo.c This file contains the demo routines
AN039601-1216 Page 7 of 17

Using Digital UART with the Z8F6423 MCU as Host
Application Note
Functions

Table 3 lists the functions and a brief description categorized by source code file.

Table 3. Source Code Files – Functions

Function Name Source File Description

main main.c Entry point of the program

delay main.c Simple for-loop routine for delay

i2c_write i2c.c Write to I2C Slave (DUART)

i2c_read i2c.c Read from I2C Slave (DUART)

i2C_readack i2c.c Function that waits for ACK from the slave

i2c_init i2c.c Initializes I2C Peripheral

eeprom_write eeprom.c Write to DUART EEPROM (de facto)

eeprom_read eeprom.c Read from DUART EEPROM (de facto)

eeprom_currentread eeprom.c Read EEPROM location pointer (de facto)

eeprom_write_I2C eeprom.c Write to EEPROM location pointer (I2C)

eeprom_set_loc_I2C eeprom.c Set EEPROM location pointer (I2C)

eeprom_read_I2C eeprom.c Read from EEPROM location pointer (I2C)

eeprom_read_loc_I2C eeprom.c Checks if the location pointer is in the right place

eeprom_erase eeprom.c Erase EEPROM (I2C)

edelay eeprom.c Simple for-loop routine for delay

system_readstat systems.c Read system status

system_readlastop systems.c Read last operation register

system_readsysver systems.c Read system version

system_IntSource systems.c Read interrupt source register

uart_readstatreg uart.c Read UART Status Register

uart_eninterrupts uart.c Enable interrupts for UART

uart_readintstat uart.c Read interrupt status

uart_writetxfifo uart.c Write data to TX FIFO

uart_readrxfifo uart.c Read data from RX FIFO

uart_writebrg uart.c Write Baud Rate Register

uart_readbrg uart.c Read Actual Baud Rate Register

uart_writeconfig uart.c Write UART configuration

uart_readconfig uart.c Read UART configuration

uart_writewtrmrk uart.c Write Watermark Register

uart_readwtrmrk uart.c Read Watermark Register

uart_enable uart.c Enable UART

uart_disable uart.c Disable UART

uart_readfifolvl uart.c Read RX and TX FIFO level
AN039601-1216 Page 8 of 17

Using Digital UART with the Z8F6423 MCU as Host
Application Note
DUART Start-up Details
Upon power-up, the Digital UART device reads the I2C addresses for the correct configu-
ration and addressing. The system then asserts all interrupt pins, configures the I2C host
interfaces, configures all the peripherals to the default configurations, and then de-asserts
all interrupts, notifying the host that the initialization is completed. Communication is not
possible while the interface is being configured; however, after the host interface has been
configured, the system will respond to a system status command while the rest of the sys-
tem is being initialized.

Testing

This section discusses the procedure for testing the software and demonstrating this appli-
cation.

Hardware Setup
Figure 5 shows the application hardware connections.

uart_init uart.c Initialize UART

uart_printf uart.c DUART Data Out

uart_getstring uart.c Gets a definite number of characters and packs it as a string

udelay uart.c Simple for-loop routine for delay

gpio_setoutreg gpiox.c Request to set specific GPIO Out pins

gpio_readinreg gpiox.c Reads the current value on the GPIO pins for Input

gpio_writeconfig gpiox.c Sets GPIO configuration

gpio_readgpioconfig gpiox.c Read GPIO configuration

gpio_readgpioint gpiox.c Read GPIO interrupt

demo demo.c

demo_gpio demo.c GPIO demo routines

demo_eeprom demo.c EEPROM demo routines

demo_cnvrttoascii demo.c Converts a byte to ASCII

demo_cnvrfrmascii demo.c Converts an ASCII input to a byte

Table 3. Source Code Files – Functions (Continued)

Function Name Source File Description
AN039601-1216 Page 9 of 17

Using Digital UART with the Z8F6423 MCU as Host
Application Note
Figure 5. Hardware Setup
AN039601-1216 Page 10 of 17

Using Digital UART with the Z8F6423 MCU as Host
Application Note
Software Setup
To install, configure, and test the software for this application, observe the following pro-
cedure:

1. Download ZDSII- Z8 Encore! Version 5.2.2 (or newer) from the Zilog Store and
install it onto your PC.

2. Download the AN0396-SC01.zip source code file from the Zilog website and unzip it
to an appropriate location on your PC.

3. Launch ZDSII-Z8 Encore! From the File menu, select Open Project.

4. Browse to the directory on your PC into which you downloaded the AN0396-SC01
source code. Locate the AN0396_SC01.zdsproj file and double-click to open.

5. Power up the MCU by supplying the 5 V DC power required by the Z8F6423 Develop-
ment Kit.

6. Select Rebuild All from the Build menu to compile and flash the firmware to the
Z8F6423 Development Kit.

7. Select Debug → Download code to flash the code to the MCU.

8. Wait for the code to be downloaded and then select Debug → Stop Debugging. At
this point, the MCU is already loaded with the application firmware.

9. Power down the Z8F6423 Development Kit, and then disconnect the USB SmartCa-
ble.

Demonstration
Observe the following procedure for a demonstration of how this application works:

1. Power up the complete system.

2. Open HyperTerminal or any equivalent terminal emulation program. Configure it to
9600 baud, 8 bits data frame, no parity bits, and 1 stop bit.

3. In the HyperTerminal main menu, navigate to File → Properties → Settings. Click
ASCII Setup, then select the Echo typed characters locally checkbox. Click OK.

4. Reset the MCU by pressing the reset switch on the Development Board.

5. After the reset, HyperTerminal displays the start-up menu, as shown in Figure 6, indi-
cating that the MCU and the DUART are properly initialized.
AN039601-1216 Page 11 of 17

http://store.zilog.com/index.php?option=com_ixxocart&Itemid=1&p=catalog&parent=5&pg=1
http://www.zilog.com/docs/appnotes/an0396-sc01.zip

Using Digital UART with the Z8F6423 MCU as Host
Application Note
6. Enter the number corresponding to the functionality you want to use. Enter 1 for GPIO
or 2 for EEPROM functionality.

7. Figure 7 shows the HyperTerminal display when option 1 (GPIO) is selected. It offers
two choices – 1 to read GPIO input state (input) and 2 to set GPIO (output).

Figure 6. Terminal Display after Reset

Figure 7. DUART GPIO Function
AN039601-1216 Page 12 of 17

Using Digital UART with the Z8F6423 MCU as Host
Application Note
8. To read the GPIO state (input), enter 1. Figure 8 shows the HyperTerminal display
when this option is selected.

9. To set GPIO state (output), enter 2. Then select the GPIO bit (0 to 7) and level (High
(1) or Low (0)). Figure 9 shows the HyperTerminal display after making these selec-
tions.

Figure 8. DUART GPIO Read

Figure 9. DUART GPIO Write
AN039601-1216 Page 13 of 17

Using Digital UART with the Z8F6423 MCU as Host
Application Note
10. Enter 3 to exit the DUART GPIO function.

11. At the start-up menu, enter 2 to use the EEPROM functionality of the DUART. To
write data in the EEPROM, enter 2. Figure 10 shows the HyperTerminal display.

12. Enter 1 to read the EEPROM. Enter the address (for example, 0x0001) to display the
8-bit data stored in that location. Figure 11 shows the HyperTerminal display.

Figure 10. DUART EEPROM Write

Figure 11. DUART EEPROM Read
AN039601-1216 Page 14 of 17

Using Digital UART with the Z8F6423 MCU as Host
Application Note
Equipment Used

This section provides a complete list of the hardware and software requirements for this
application.

Hardware
Table 4 lists the hardware tools used to develop this application.

Software
The software tools used to develop this application are:

• ZDSII – Encore 5.2.2

• AN0396-SC01.zip, containing the project file and source code files

• HyperTerminal or any equivalent communication and terminal emulation program

Summary

This application note discusses a methodology to interface a host MCU with Zilog’s Digi-
tal UART chip through I2C. This document also describes the use of Zilog’s DUART as a
serial peripheral extender to a host without sufficient GPIO pins to offer UART function-
ality. Additionally, Zilog’s DUART provides extra GPIO pins and memory (EEPROM),
which users can utilize to add features to their applications.

References

Documents associated with this application note are listed below. Each of these docu-
ments can be obtained from the Zilog website by clicking the link associated with its doc-
ument number.

• Z8F6423 Development Kit User Manual (UM0151)

• Z8F64XX Product Specification (PS0199)

• Zilog DUART Product Specification (PS0389)

Table 4. Application Hardware

Description Quantity

Z8F64200100KITG 1

ZDU0210RJX DUART 1

Zilog USB SmartCable 1

RS-232 Cable 1

UART to USB Converter FTDI232RL 1

5 VDC Adapter 1
AN039601-1216 Page 15 of 17

http://www.zilog.com/docs/appnotes/an0396-sc01.zip
http://www.zilog.com/docs/z8encore/devtools/um0151.pdf
http://www.zilog.com/docs/z8encore/PS0199.pdf
http://www.zilog.com/docs/PS0389.pdf

Using Digital UART with the Z8F6423 MCU as Host
Application Note
Appendix A. Schematic Diagram

Figure 12 shows a schematic diagram of the 28-pin DUART device.

Figure 12. 28-Pin DUART Schematic Diagram
AN039601-1216 Page 16 of 17

Using Digital UART with the Z8F6423 MCU as Host
Application Note
Customer Support

To share comments, get your technical questions answered, or report issues you may be
experiencing with our products, please visit Zilog’s Technical Support page at
http://support.zilog.com.

To learn more about this product, find additional documentation, or to discover other fac-
ets about Zilog product offerings, please visit the Zilog Knowledge Base at http://
zilog.com/kb or consider participating in the Zilog Forum at http://zilog.com/forum.

This publication is subject to replacement by a later edition. To determine whether a later
edition exists, please visit the Zilog website at http://www.zilog.com.

DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.

LIFE SUPPORT POLICY

ZILOG’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)
support or sustain life and whose failure to perform when properly used in accordance with instructions for
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A
critical component is any component in a life support device or system whose failure to perform can be
reasonably expected to cause the failure of the life support device or system or to affect its safety or
effectiveness.

Document Disclaimer

©2016 Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications,
or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES
NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO
DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED
IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED
HEREIN OR OTHERWISE. The information contained within this document has been verified according
to the general principles of electrical and mechanical engineering.

Z8 Encore XP! is a registered trademark of Zilog, Inc. All other product or service names are the property
of their respective owners.

Warning:
AN039601-1216 Page 17 of 17

http://support.zilog.com
http://zilog.com/kb
http://zilog.com/kb
http://zilog.com/forum

	Application Note: Using Digital UART with the Z8F6423 MCU as Host
	Abstract
	Discussion
	Communication
	Software Details
	DUART Start-up Details

	Testing
	Hardware Setup
	Software Setup
	Demonstration

	Equipment Used
	Hardware
	Software

	Summary
	References
	Appendix A. Schematic Diagram
	Customer Support

