
AN036001-0513
MultiMotor

Series
MultiMotor

Series
Abstract

This application note shows how to implement a data logger to record persistence data for
future analysis.

The purpose of a data logger is to automatically collect data toward providing a compre-
hensive review of conditions upon recording. As an example, the black box used in most
aircraft records data containing the sequence of events occurring immediately preceding a
crash event. By the same token, a weather data logger maintains a record of environmental
changes for tracking storms and weather-related conditions.

To see real-world implementations of this data logger application, refer to the MultiMotor
Series application notes listed in Table 1.

The source code file associated with this application note, AN0360-SC01.zip, is available
for download from the Zilog website. This source code has been tested with version 5.0.1
of ZDS II for ZNEO MCUs. Subsequent releases of ZDS II may require you to modify the
code supplied with this application note.

Features

This data logger application offers the following features:

• Data packets stored on SPI Flash use a circular buffer approach

• Provides capability to retrieve data packets in either forward or reverse direction

Table 1. MultiMotor Series Application Notes that apply a Data Logger

Document
Number Document Title

AN0353 3-Phase Sensorless Brushless DC Motor Control Application Note

AN0355 Hall Sensor Sinusoidal PWM Modulation Brushless DC Motor Control

AN0356 3-Phase Hall-Sensor Brushless DC Motor Control

Note:
AN036001-0513
Application Note
Implementing a Data Logger with
Spansion SPI Flash
 Page 1 of 10

http://www.zilog.com/docs/appnotes/an0353.pdf
http://www.zilog.com/docs/appnotes/an0355.pdf
http://www.zilog.com/docs/appnotes/an0356.pdf
http://www.zilog.com/docs/appnotes/an0360-sc01.zip

Implementing a Data Logger with Spansion SPI Flash
Application Note
Discussion

To implement a data logger, there must be a way to keep track of all of the data and to
replace old data with new data while maintaining a history. To accomplish this require-
ment suggests the use of a Circular Buffer.

A circular buffer tracks beginning and ending records; therefore, the starting point may
appear anywhere within the blocks. Again, for simplicity, a Beginning Record will always
point to the start of a sector because erases only occur sector by sector. An Ending Record
will point to the location of the next record to write to. To dump the records is a matter of
reading the Beginning Record and each subsequent record in sequence (wrapping from the
top to the bottom). To present it in reverse order, start at Ending Record – 1 and read each
subsequent previous record.

To add the datalogger to any project, add the data logger files to the project, then add the
initialization of the Flash memory, a timer variable to track intervals, a command to dump
the data, and a routine to pass record information to be written.

Hardware

The datalogger code is written specifically for the Spansion SPI Flash device and Zilog’s
ZNEO family of microcontrollers. These two devices are the only required hardware
items.

SPI Flash
Flash data is written to the Spansion SPI Flash device, part number S25FL032P. This
device consists of 64 uniform 64 KB sectors with its two (top or bottom) 64 KB sectors fur-
ther segmented into thirty-two 4 KB subsectors. This arrangement provides for the ability
to erase all data in Flash memory, erase a 64 KB sector, erase a 4 KB subsector, or erase an
8 KB subsector. The addressing method is to use a 24-bit address in Big Endian format in
the 0x00000000 to 0x003FFFFF address range.

The SPI Flash device is controlled through commands as an SPI slave device, using
Mode0 or Mode3 of the SPI protocols. This device receives data through a page write
command; each page is between 1 and 256 bytes in length. A page will remain within the
sector of a requested address (i.e., it wraps on its current sector). For example, if you write
256 bytes at address 0x0001FFF0, the first 16 bytes will be written within the
0x0001FFF0–0x0001FFFF address range, and the remainder will be written at address
0x00010000.

The device can read any/all bytes by specific address and continue to read data. As long as
the Chip Select pin is Low, every read will return the next byte. This methodology allows
a user to read between 1 and 4 MB (the entire contents of Flash memory) in one command.

There are a number of other features that are included on the Spansion SPI Flash unit that
we have not incorporated into this application, for various reasons. These features include:

• Dual Output and Quad Output SPI protocols

• 16 bytes of One-Time Programmable (OTP) area for permanent, secure identification,
as well as 490 bytes of OTP for other permanent information
AN036001-0513 Page 2 of 10

Implementing a Data Logger with Spansion SPI Flash
Application Note
• Fast reads, up to 104 MHz

• Data block protection

• Deep Power Mode

Firmware Implementation

The datalogger firmware only implements datalogger functionality. The interface portions
that must be added to your project are discussed below but are not part of the firmware
files.

The data logger consists of four files:

• SPIFlash.c and SPIFlash.h provide a low-level interface to the SPI Flash device,
and datalogger.c

• datalogger.h provide the data logger implementation

This document only discusses the data logger implementation and the code modifications
necessary to implement the data logger. To learn more about a real-world implementation
of the data logger, see the 3-Phase Sensorless Brushless DC Motor Control Application
Note (AN0353).

Data Packets to Store
The data packet that is to be stored in the circular buffer will typically be in the form of a
structure. This structure must always be an even divisor of the Flash memory page size;
for the Spansion part, this page size is 256 bytes.

A structure in the datalogger.h file called RUNNINGDATA defines a 16-byte data
packet for storage and retrieval. A discussion of this structure is strictly a demonstration of
a specific implementation for clarity, and is beyond the scope of this document.

The RUNNINGDATA structure is defined as follows:

struct RUNNINGDATA {
 unsigned char state; // State of the motor
 unsigned char temperature; // Temperature
 unsigned char voltage; // Voltage
 unsigned short int speed; // Speed of the motor
 struct TIMESTAMP stamp; // Time stamp variable for tracking

// records
 struct TIMESTAMP motorlife; // Time stamp for tracking motor run

// time
 unsigned char reserve; // Add padding for even divisible of

// 256 (16 bytes)
};

Note:
AN036001-0513 Page 3 of 10

http://www.zilog.com/docs/appnotes/an0353.pdf
http://www.zilog.com/docs/appnotes/an0353.pdf

Implementing a Data Logger with Spansion SPI Flash
Application Note
The datalogger assumes no actual real-time clock, and therefore uses a variable to mimic
the RTC. This variable is named clock, and it is up to the main application to update it
every second. The clock variable is initialized to the time stamp of the last record in
Flash memory at startup in the InitDataLogger() initialization routine.

To conserve space, a time stamp structure (i.e., struct TIMESTAMP) is used to maintain
the time in a five-byte structure that will extend up to 256 years. This structure allows both
a time stamp for a log entry and a time stamp for the total run time of the motor; it also
maintains total time information down to 10 bytes, allowing 6 bytes for other motor con-
trol information.

An additional normalize function acts to normalize the time stamp to keep it valid. For
example, if you were to add one second to the time stamp, this normalize function will
accordingly adjust to account for the change in hours and years. By using this normalize
function in the TIMESTAMP structure, the time stamp can be replaced with any structure,
and only the normalize function would need to change to accommodate.

Circular Buffer
The data logger uses a circular buffer (also known as a ring buffer) approach to saving
records to Flash memory. This circular buffer allows the current data to replace older data
after Flash memory is full. The result is that the most recent data is always stored.

A circular buffer has no absolute beginning or ending addresses. The physical buffer does,
of course, but the code wraps from the last physical address to the beginning physical
address. Due to the circular nature of this type of buffer, the beginning address of the data
could be anywhere within the physical buffer. The ending address of the data in the circu-
lar buffer could be less than or greater than the physical beginning address. When the cir-
cular buffer ending address equals the circular buffer beginning address, the beginning
address is incremented and the new data replaces the old data.

Flash memory only allows erasure on a sector-by-sector basis; therefore the implementa-
tion will occur by sectors. This implementation will provide 63 sectors of valid data at any
time (assuming Flash memory has been filled). The 64th sector is where the current data is
being written.

The circular buffer implementation has two global variables: EndDataAddress and
BegDataAddress. The EndDataAddress variable always points to the next record to be
written. The BegDataAddress variable always points to the start of a filled sector. The
addresses are physical addresses and, as they are modified, they are wrapped to the begin-
ning if the end has been reached.

Given that the SPI Flash function can perform a subsector erase of two sectors, two macro
values would be added to specify the physical addresses of the beginning and ending of
Flash memory (i.e., DATAADDRESSSTART, DATAADDRESSEND, respectively). These
macro values allow a developer to change the physical address of the beginning address to
0x00010000 and thereby use the first sector for other data yet continue with the data log-
ger in the remainder of Flash memory.
AN036001-0513 Page 4 of 10

Implementing a Data Logger with Spansion SPI Flash
Application Note
Initialization
The initialization of the circular buffer is critical to set BegDataAddress to the correct
sector of the beginning data and EndDataAddress to the next unused record. Because the
beginning data could be in any sector (remember that it is circular and therefore contains
no absolute start value), the last valid record must be determined before a position can be
determined from which to start looking for the beginning record location. Erases can only
occur sector by sector; therefore, BegDataAddress will always point to the beginning of
the sector.

The cycle begins by retrieving the last record of each sector. The first occurrence of an
invalid record (i.e., data that was erased) is the current sector to write to. To find the actual
record to write to, the algorithm goes back through the records to find the first record with
valid data. The EndDataAddress will be set to point to the address of the next record.

After the EndDataAddress has been found, the BegDataAddress can be located. The
search starts at the beginning of the next sector and cycles through the first record of every
sector until a valid record is found. This record is the address of the BegDataAddress.

If the system is shut down during an update, the last record of the sector may possibly
have been written, but quite possibly the next sector may have not been erased. This situa-
tion prevents finding an open record to start a search from. To account for this issue, the
last record of every sector must be checked to find the earliest time stamp. This time stamp
will indicate the sector to erase, thereby identifying an EndDataAddress location. The
BegDataAddress will then be the beginning of the next sector.

Update Record
To update a record in the circular buffer, write the data packet to the address pointed to by
EndDataAddress. Next, increase the EndDataAddress by one data packet to point to
the next data packet to write to.

However, because this methodology can result in exceeding the buffer’s physical bound-
aries, check to ensure that EndDataAddress has not exceeded the maximum Flash
address. If it has, reset EndDataAddress to the beginning of Flash memory.

Noting when EndDataAddress equals BegDataAddress must also be considered.
When these two address are the same value, the buffer will be full; therefore the sector that
the EndDataAddress is pointing to must be erased, and BegDataAddress must be
moved to the next sector. If this next sector should come after the ending physical sector,
the BegDataAddress is set to the beginning physical address.

Output
This application uses the console to output the data from Flash memory to the console.
Start at the EndDataAddress, and implement a loop to perform the following procedure.

1. Specify the next previous record. If this record is greater than or equal to DATAAD-
DRESSSTART, set the record to DATAADDRESSEND minus one record.

2. Read the record. If the record is not valid, exit the loop.
AN036001-0513 Page 5 of 10

Implementing a Data Logger with Spansion SPI Flash
Application Note
3. Print the record to the screen. Check for a Ctrl-C to see if this print task should be
stopped. If there is a Ctrl-C, exit the loop.

4. Call LogData so that the log update can continue to furnish information to the the
motor at appropriate intervals.

5. If the record equals BegDataAddress, the end of the valid data has been reached;
therefore, exit the loop.

6. After exiting the loop, return.

Reading and Writing Flash
To read Flash memory, first wait until Flash memory is ready, then read the status register
until the busy flag is no longer set or until there are write/erase errors.

If there is a write or erase error, the error will specify that the SPI Flash is either bad or is
going bad; the busy flag will not be cleared. In this case, an error code will be returned;
this error will never be cleared and Flash memory will be marked as bad.

After the busy flag is cleared, send the READ command followed by the 24-bit address,
then read data until the number of bytes requested are read.

To write Flash memory, wait until Flash memory is ready (as was done previously), then
place Flash memory into write mode by sending a Write Enable command. Next send a
Page Write command followed by a 24-bit address, then send the data, one byte at a time,
until all bytes requested have been sent.

To erase Flash memory, wait until Flash memory is ready, then place Flash memory into
write mode. Next, either send a Bulk Erase (BE) command to erase all Flash memory, or
send a Sector Erase (SE) command to erase just a single sector.

Datalogger Implementation
To implement the datalogger into an existing application, observe the following proce-
dure.

1. Include the four datalogger files in the existing project (hereafter referred to as the
project).

2. In the main function, place the initialization routine, InitDataLogger(), after any
other initialization required for your project. In the unlikely event that the Flash ini-
tialization fails, the Flash should be disabled. For example, an external unsigned char
variable isFlashValid can be used to ensure that reads or writes do not occur on a
Flash unit that has failed.

3. If the RTC is being emulated, add a timer to update the external variable clock every
second.

Note:
AN036001-0513 Page 6 of 10

Implementing a Data Logger with Spansion SPI Flash
Application Note
4. Add a function to create a data packet to write to Flash, with the data to populate the
packet. The actual write operation to the datalogger will typically be written at spe-
cific intervals. This function would be required to verify the interval had passed.

5. In the main infinite while loop, add a call to the function to record data to the datalog-
ger.

6. If there is a requirement to output the data to the console, modify the function in the
datalogger.c file called OutputDataLogger() to present the data from the
record in a meaningful way.

The following code snippet provides an example of the requirements for implementing the
datalogger:

// Create local file variable for seconds
static unsigned char second=0;
// Create local file variable to keep track of Flash status
static unsigned char isValidFlash = TRUE;

// In the timer interrupt service routine, update the second
variable used by logdata() function

 if (count == second)
 ++second;

// Function to write current state record to the datalogger at
specific intervals

void LogData(void)
{
 struct RUNNINGDATA curState; // Local variable to populate for

// writing record

 if (seconds >= INTERVALTOWRITERECORD) // Controls how often data
// is recorded

 {
 if (isValidFlash) // Make sure Flash is valid
 {
 clock.seconds += seconds; // Emulate RTC
 seconds = 0;
 NormalizeTimeStamp(&clock);// Normalize stamp to account for

// new second
 // Add data to curState variable here

 if (UpdateRecord(&curState) != SPI_SUCCESS)
 {
 isValidFlash = FALSE; // If we fail, there is something

// wrong with the Flash part
 }
AN036001-0513 Page 7 of 10

Implementing a Data Logger with Spansion SPI Flash
Application Note
 }
 }
}

void main(void)
{

 // Initializations
 if (InitDataLogger()) != SPI_SUCCESS)
 {
 isValidFlash = FALSE;
 }

 // Continue with other code

 while(1) // Infinite while loop
 {
 LogData();

 // Continue with other code to execute in while loop
 }
}

The OutputDataLogger Function
An OutputDataLogger function is included in the datalogger.c file for convenience.
This function handles the retrieval and printing of each data packet to the console.

The function starts with defining a temporary data packet variable, based on the structure
defined in the datalogger.h file, to allow the structure to change without having to
change the code. The function uses printf() calls to output messages to the console.

To retrieve data, first compare the values contained in the datalogger variables Beg-
DataAddr and EndDataAddr. If these two values are the same, there is no data; other-
wise, we can step through each record.

Start by initializing the loop address pointer to the associated pointer. To go in reverse
order (i.e., present the last record first), set the loop address pointer to EndDataAddr; oth-
erwise, set it to BegDataAddr. Next, step through each data packet by adding or subtract-
ing the size of the data packet to/from the loop address pointer (i.e., loop to the physical
beginning, when required) and reading the data packet at that address. Verify that the
record is valid. When the contents of Flash are erased, the values are set to all ones
(0xFF). By making sure a specific point in the record is always set, such as state, the
record can be verified as valid when it is not set to 0xFF.

Assuming the data packet is valid, then it is printed out to the console via a printf() call
with a formatted string.

After printing the data packet, check the UART for the Ctrl-C character (0x03). If this
character is found, exit the loop; otherwise, continue stepping through the data packets
until encountering an invalid packet, or return to the location of the beginning address.
AN036001-0513 Page 8 of 10

Implementing a Data Logger with Spansion SPI Flash
Application Note
This kind of output can take a long time. Because we do not want to stop logging data
while these packets are being displayed, call the LogData() function in the main applica-
tion to continue updating the data accordingly.

Summary

The application implements a data logger using a Spansion SPI Flash device. This data
logger keeps track of the motor state and logs onto Flash memory in a circular buffer type
implementation, and is segregated to allow it to be used elsewhere with minimal imple-
mentation requirements.

References

The documents associated with this application note are listed below and are available free
for download from the Zilog website unless otherwise noted.

• 3-Phase Sensorless Brushless DC Motor Control Application Note (AN0353)

• 32 Mbit CMOS 3.0 V Flash Memory with 104 MHz SPI Multi I/O Bus Data Sheet
(S25FL032P_00), available on the Spansion website
AN036001-0513 Page 9 of 10

http://www.spansion.com/Support/Datasheets/S25FL032P_00.pdf
http://www.spansion.com/Support/Datasheets/S25FL032P_00.pdf
http://www.zilog.com/docs/appnotes/an0353.pdf

Implementing a Data Logger with Spansion SPI Flash
Application Note
Customer Support

To share comments, get your technical questions answered, or report issues you may be
experiencing with our products, please visit Zilog’s Technical Support page at
http://support.zilog.com.

To learn more about this product, find additional documentation, or to discover other fac-
ets about Zilog product offerings, please visit the Zilog Knowledge Base at http://
zilog.com/kb or consider participating in the Zilog Forum at http://zilog.com/forum.

This publication is subject to replacement by a later edition. To determine whether a later
edition exists, please visit the Zilog website at http://www.zilog.com.

DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.

LIFE SUPPORT POLICY

ZILOG’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)
support or sustain life and whose failure to perform when properly used in accordance with instructions for
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A
critical component is any component in a life support device or system whose failure to perform can be
reasonably expected to cause the failure of the life support device or system or to affect its safety or
effectiveness.

Document Disclaimer

©2013 Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications,
or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES
NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO
DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED
IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED
HEREIN OR OTHERWISE. The information contained within this document has been verified according
to the general principles of electrical and mechanical engineering.

Z8, Z8 Encore! and Z8 Encore! XP are trademarks or registered trademarks of Zilog, Inc. All other product
or service names are the property of their respective owners.

Warning:
AN036001-0513 Page 10 of 10

http://support.zilog.com
http://www.zilog.com
http://zilog.com/kb
http://zilog.com/kb
http://zilog.com/forum

	Application Note:Implementing a Data Logger with Spansion SPI Flash
	Abstract
	Features
	Discussion
	Hardware
	SPI Flash

	Firmware Implementation
	Data Packets to Store
	Circular Buffer
	Initialization
	Update Record
	Output
	Reading and Writing Flash
	Datalogger Implementation
	The OutputDataLogger Function

	Summary
	References
	Customer Support

