Application Note

Performing Data Conversions
Using Z8F64xx Series MCUs

ANO035201-1212

Abstract

This application note demonstrates four methods for converting data from one format to
another, and provides an API for each type of conversion. These APIs are subsequently
ready to use in application-level programming. The four conversion methods are:

» Unsigned char/int/long to hexadecimal string, and vice versa
» Unsigned char/int/long to decimal string, and vice versa
» Signed char/int/long to decimal string, and vice versa

» Unsigned char/int/long to BCD, and vice versa

} Note: The source code file associated with this application note, AN0352-SC01.zip, is available
for download on zilog.com. This source code has been tested with version 5.0.0 of ZDSI|I
for Z8 Encore! MCUs. Subsequent releases of ZDSII may require you to modify the code
supplied with this application note.

Discussion

Data conversion refers to the process of translating data from one format to another. It is
one of the common routines that are typically required in any application development
scenario. For example, temperature data taken from a sensor must be shown in a display
module such as an LCD panel or HyperTerminal. If this data is not converted, the dis-
played data will be unreadable because the raw data has not been converted to alphanu-
meric, human-readable characters; this crucial step in the scenario is where data
conversion fits in.

The remainder of this section discusses the four data conversion methods. All data conver-
sion APIs are described in Table 1 on page 4.

Unsigned to Hexadecimal String Conversion and Vice Versa

Displaying data in hexadecimal notation makes for an easy representation of binary num-
bers. To convert a numbered value to its hexadecimal string equivalent, observe the fol-
lowing procedure.

1. Divide the number by 16.
2. Get the remainder.
3. Convert the remainder to ASCII.

AN035201-1212 Page 1 of 5

http://www.zilog.com/docs/appnotes/an0352-sc01.zip

Performing Data Conversions Using Z8F64xx Series MCUs
Application Note

4.
5.

a. If the remainder is less than 10, add 0x30. Otherwise, subtract 10, then add 0x41.
b. Store the converted value into an array.

Repeat steps 1 through 3 until the number becomes zero.

Reverse the resulting array.

In hexadecimal string representation, two characters represent one hexadecimal value. To
convert a hexadecimal string to its equivalent value, observe the following procedure.

1.

4,

Convert the first character to unsigned value. This value will become the upper nibble
of the unsigned value.

a. If the character is a digit (i.e., a value from 0 to 9), subtract 0x30.
b. Otherwise (i.e., if the character is a letter), subtract 0x41, then add 10.

Convert the second character to an unsigned value. This value will become the lower
nibble of the unsigned value.

Join the upper and lower nibbles; then append the acquired value as the LSB of the
output value.

Repeat steps 1 through 3 for every succeeding two characters.

Unsigned to Decimal String Conversion and Vice Versa

Displaying data in decimal notation provides an easy-to-read mathematical value as a
result of an operation or a reading taken from a sensor. Observe the following steps when
converting data to its decimal string equivalent.

1.
2.
3.

Divide the number by 10.
Get the remainder.

Convert the remainder to ASCII.
a. Add 0x30 to the remainder.
b. Store the converted value into an array.

Repeat steps 1 through 3 using the quotient from step 1 until the number becomes
zero.

Reverse the resulting array.

To convert a decimal string back to its numerical value, perform the following steps:

1.
2.

Start at the last character in the string.

Initialize a factor to 1 to represent the current place value of the character being con-
verted.

Get the lower nibble of the current character in the string and multiply it by the current
value of the factor.

Add this acquired value to the output value.

AN035201-1212

Page 2 of 5

Performing Data Conversions Using Z8F64xx Series MCUs
Application Note

5.
6.

Increase the value of the factor by a multiple of 10.

Repeat steps 3 through 5 for each succeeding character until the start of the array is
reached.

Signed to Decimal String Conversion and Vice Versa

To convert a signed value to its decimal string equivalent, observe the following steps:

1.
2.

If the value to convert is negative, get its positive equivalent by multiplying it by 1.

Convert the value as unsigned data.

To convert a signed decimal string to its equivalent signed value, observe the following
steps:

1.
2.

Take note of the sign of the value, which is the first character in the string.

Convert the value as an unsigned decimal string, using the string beginning at the sec-
ond character.

If the sign acquired in step 1 is negative, multiply the result in step 2 by -1.

Unsigned to Binary Coded Decimal Conversion and Vice Versa

Observe the following procedure to convert an unsigned integer to its BCD equivalent.

1.

2
3.
4

.

Take note of the place value; start at the ones digit.
Divide the number by 10.
Get the remainder.

Shift the remainder by the place value and multiply by 8 (which is the number of bits
per place value).

Add the result to the output value.

Repeat steps 2 through 5 until the number becomes zero.

Observe the following procedure to convert a BCD value to its equivalent unsigned inte-
ger value.

1.

o gk~ w DN

Initialize a factor to 1 to represent the current place value of the BCD data being con-
verted.

Get the LSB and multiply it by the current factor value.
Add the result to the output value.

Increase the value of the factor by a multiple of 10.
Shift the BCD value to the right by 8.

Repeat steps 2 through 5 until the BCD value becomes zero.

AN035201-1212

Page 3 of 5

Performing Data Conversions Using Z8F64xx Series MCUs
Application Note

Appendix A. APIs

Table 1 describes the APIs for each of the four data conversion methods.

Table 1. Data Conversion APls

Unsigned to Hexadecimal String Conversion and Vice Versa

Function Name Description

ultoha Converts an unsigned long value to its hexadecimal string equivalent and returns the
number of characters written in the array, excluding the null terminating character.

uitoha Converts an unsigned int value to its hexadecimal string equivalent and returns the
number of characters written in the array, excluding the null terminating character.

uctoha Converts an unsigned char value to its hexadecimal string equivalent and returns the
number of characters written in the array excluding the null terminating character.

hatoul Returns the unsigned long equivalent of the given hexadecimal string.

hatoui Returns the unsigned int equivalent of the given hexadecimal string.

hatouc Returns the unsigned char equivalent of the given hexadecimal string.

Unsigned to Decimal String Conversion and Vice Versa

ultoda Converts an unsigned long value to its decimal string equivalent and returns the
number of characters written in the array, excluding the null terminating character.

uitoda Converts an unsigned int value to its decimal string equivalent and returns the number
of characters written in the array, excluding the null terminating character.

uctoda Converts an unsigned char value to its decimal string equivalent and returns the
number of characters written in the array, excluding the null terminating character.

datoul Returns the unsigned long equivalent of the given decimal string.

datoui Returns the unsigned int equivalent of the given decimal string.

datouc Returns the unsigned char equivalent of the given decimal string.

Signed to Hexadecimal String Conversion and Vice Versa

ltoda Converts a signed long value to its signed decimal string equivalent and returns the
number of characters written in the array, excluding the null terminating character.

itoda Converts a signed int value to its signed decimal string equivalent and returns the
number of characters written in the array, excluding the null terminating character.

ctoda Converts a signed char value to its signed decimal string equivalent and returns the
number of characters written in the array, excluding the null terminating character.

datosl Returns the signed long equivalent of the given decimal string.

datosi Returns the signed int equivalent of the given decimal string.

datosc Returns the signed char equivalent of the given decimal string.

Unsigned to BCD Conversion and Vice Versa

uitobcd Returns an unsigned long BCD equivalent of the given unsigned int value.

bcdtoui Returns an unsigned int equivalent of the given BCD value.

AN035201-1212 Page 4 of 5

Performing Data Conversions Using Z8F64xx Series MCUs
Application Note

Customer Support

To share comments, get your technical questions answered, or report issues you may be
experiencing with our products, please visit Zilog’s Technical Support page at
http://support.zilog.com.

To learn more about this product, find additional documentation, or to discover other fac-
ets about Zilog product offerings, please visit the Zilog Knowledge Base at http://
zilog.com/kb or consider participating in the Zilog Forum at http://zilog.com/forum.

This publication is subject to replacement by a later edition. To determine whether a later
edition exists, please visit the Zilog website at http://www.zilog.com.

A Warning: DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.

LIFE SUPPORT POLICY

ZILOG’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)
support or sustain life and whose failure to perform when properly used in accordance with instructions for
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A
critical component is any component in a life support device or system whose failure to perform can be
reasonably expected to cause the failure of the life support device or system or to affect its safety or
effectiveness.

Document Disclaimer

©2012 Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications,
or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES
NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO
DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED
IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED
HEREIN OR OTHERWISE. The information contained within this document has been verified according
to the general principles of electrical and mechanical engineering.

Z8, Z8 Encore! and Z8 Encore! XP are trademarks or registered trademarks of Zilog, Inc. All other product
or service names are the property of their respective owners.

AN035201-1212 Page 5 of 5

http://support.zilog.com
http://www.zilog.com
http://zilog.com/kb
http://zilog.com/kb
http://zilog.com/forum

	Application Note:
Performing Data Conversions Using Z8F64xx Series MCUs
	Abstract
	Discussion
	Unsigned to Hexadecimal String Conversion and Vice Versa
	Unsigned to Decimal String Conversion and Vice Versa
	Signed to Decimal String Conversion and Vice Versa
	Unsigned to Binary Coded Decimal Conversion and Vice Versa

	Appendix A. APIs
	Customer Support

