
AN034901-0813
Abstract

Many applications cannot use an interrupt-driven UART due to critical timing requirements
within their interrupt routines, yet they may still require the functions of a UART. For exam-
ple, if a system is monitoring the charging of a battery with a timer interrupt every 100 ms, a
UART interrupt can cause these timer interrupts to become lost, consequently impacting the
monitor timing of the battery-charging operation. Previous solutions would typically require
the main function to contain all noncritical code, such as user input or output through the
UART. However, if checking for user input/output is blocking in function, then no other non-
critical code will be executed within the main function until user input is received.

This document contains sample code files for initializing the UART and to manage a noninter-
rupt UART for nonblocking transmit and receive functionality. Both circular and linear buffer
implementations are also introduced to facilitate the buffering of UART data streams.

The source code file associated with this application note, AN0349-SC01.zip, is available
free for download from the Zilog website. This source code has been tested with version
5.0.0 of ZDS II for Z8 Encore! XP MCUs. Subsequent releases of ZDS II may require you
to modify the code supplied with this application note.

Features

This application offers the following features:

• Noninterrupt-driven UART configuration

• Nonblocking receive and transmit functions

• UART linear buffer handling with notification flag

• Circular buffer handing with state flag

• Z8F1680 MCU

Discussion

A Universal Asynchronous Receiver/Transmitter (UART) is a full-duplex communication
channel capable of performing asynchronous data transfers. The UART uses a single 8-bit
data mode with selectable parity. Features of the UART include:

• 8-bit asynchronous data transfer

• Selectable even/odd parity generation and checking

• Option of one or two stop bits

Note:
AN034901-0813
Application Note
A Nonblocking UART for Z8
Encore! MCUs
 Page 1 of 30

http://www.zilog.com/docs/appnotes/an0349-sc01.zip

A Nonblocking UART for Z8 Encore! MCUs
Application Note
• Separate transmit and receive interrupts

• Separate transmit and receive enables

• Framing, parity, overrun and break detection

• 16-bit baud rate generators (BRG)

• Selectable MULTIPROCESSOR (9-Bit) Mode with three configurable interrupt
schemes

• Baud Rate Generator Timer Mode

• Driver enable output for external bus transceivers UART

The UART consists of three primary functional blocks: transmitter, receiver, and baud rate
generator. The UART’s transmitter and receiver each function independently but use the
same baud rate and data format. Figure 1 shows the UART architecture.

Figure 1. The UART Architecture of the Z8F1680 Series MCU
AN034901-0813 Page 2 of 30

A Nonblocking UART for Z8 Encore! MCUs
Application Note
The Z8F1680 MCU’s UART function is a full-duplex communication channel capable of
handling asynchronous data transfers. A reliable UART communication is affected by two
factors: system clock speed, and desired baud rate. Ensure that the UART baud rate errors
never exceed 5%.

To learn more about calculating UART baud rates for the Z8F1680 MCU, refer to the LIN-
UART chapter of the Z8F1680 Product Specification (PS0250).

Noninterrupt and Nonblocking Functions
Noninterrupt functions are functions that do not use Interrupt Service Routines (ISR) and
do not affect other routines’ processing times. Nonblocking functions are functions that
will execute if a flag is set but will otherwise exit.

A noninterrupting, nonblocking routine must be called repeatedly inside a function or
loop. To implement a noninterrupting, nonblocking UART, both the receive and transmit
functions are called at every iteration of the loop, or called at a specific time interval, to
process the data in both the RX and TX buffers.

For this application, a time interval between 38 µs (minimum) to 250 µs (maximum) was
observed during testing to cause this noninterrupting and nonblocking UART method to
function properly with a baud rate of 115200 bps and 255-character buffer size settings. A
different time interval will exist under a different baud rate and buffer size.

In a circular buffer implementation, a time interval must be implemented to ensure that
incoming data will not overwrite existing data when the buffer is full. Conversely, in a lin-
ear buffer implementation, a time interval must be implemented to ensure that incoming
data will not be discarded when the buffer is full.

When receiving data, the application monitors if the receive flag is set, gets the data from
the receive register, and saves it in the incoming buffer. If the flag is not set, the applica-
tion will exit the receive function and continue other routines. When transmitting data, the
application checks to determine if the transmit flag is clear, after which data is placed onto
the output register. If a transmission is currently ongoing, or if the transmit flag is set, the
application exits the transmit function and executes other routines.

Circular and Linear Buffer Implementations
A buffer is generally used as temporary data storage, usually for streaming data. A circular
buffer (or ring buffer) is a temporary data storage method with a memory allocation
scheme in which the buffer can be of a fixed size, and each memory location can be reused
when the index pointer has returned to its starting location. This circular buffer method is
widely used and exists in several versions, depending on application requirements. While
data is being written to the buffer, the write pointer increments, and the data counter also
increments. Similarly, while data is being read from the buffer, the read pointer incre-
ments and the data counter decrements.

Another form of buffer is the linear buffer, which is similar to circular buffer with the
exception that the index pointer does not return to the starting location. When the index

Note:
AN034901-0813 Page 3 of 30

hrrp://zilog.com/docs/appnotes/PS0250.pdf

A Nonblocking UART for Z8 Encore! MCUs
Application Note
pointer reaches its buffer size, the buffer discards the incoming data and waits for the buf-
fer to be read. If the buffer is read, the read pointer starts to increment until it reached the
write pointer. When the read pointer is equal to the write pointer, the buffer is empty and
ready to accept data.

Software Implementation

This section discusses a number of factors important to the implementation of the UART,
including its initialization, receive, and transmit and main routines.

UART Initialization
The following routine demonstrates how to configure a nonblocking, noninterrupting
UART using the 8-N-1 format. The BAUDRATE value in this routine is set to 115.2 Kbps
using a 11.05920 M Hz system clock.

void UART_Init(void)
{
 PADD |= 0x30;// Setup ports for alternate function
 PAAF |= 0x30;
 PAAFS1 &= ~0x30;
 U0BRH = (UINT8)((BAUDRATE & 0xFF00) >> 8); // Set up baud rate at
 U0BRL = (UINT8)(BAUDRATE & 0x00FF); // 115Kbps
 U0CTL0 = 0xC0; // Receive enable, no parity, 1 stop bit
}

UART Receive Routine
The following routine demonstrates how to handle data received from the UART Receive
Data Register. It does not use any ISR, and is nonblocking in function. The data received
from this register is transferred to the input buffer. This function is called at every pass
through the main routine. As a result, the user can get and interpret the data from the
RBUF_InBuff input buffer.

void UART0_Rx(void)
{
 if((U0STAT0 & 0x80) == 0x80)

 UINT8 uctemp = U0RXD;

 RBUF_AddByteToInBuffer(uctemp); // add Rx data to input buffer

}

UART Transmit Routine
The following routine demonstrates how to use the output buffer for handling data to be
transmitted via the UART Transmit Data Register. This function does not use interrupts,
AN034901-0813 Page 4 of 30

A Nonblocking UART for Z8 Encore! MCUs
Application Note
and is also nonblocking. This function is called at every pass through the main routine.
Data must be present in the buffer before starting the transmission.

void UART_Tx0(void)
{
 // If there is data to transmit
 if((U0STAT0 & 0x06) && (ucRBUF_GetLengthOutBuffer() > 0))
 {
 U0TXD = ucRBUF_GetByteFromOutBuffer(); // get Tx data from
 // output buffer
 }
}

There are two build options available for this source code: a circular buffer option and a
linear buffer option. The selection is implemented in the RBUF.h file, as shown below.

#define CIRCULAR 1 // Uncomment if circular buffer, otherwise
 // linear

The option to use a circular or linear buffer is a matter of user preference. To implement a
circular buffer, simply uncomment the #define statement shown above, and comment
out the line for linear buffer implementation.

Adding a Byte to the Buffer
Figure 2 shows the initial state of an empty buffer, and indicates the location of the read
and write pointers.

Figure 2. Initial State of an Empty Buffer
AN034901-0813 Page 5 of 30

A Nonblocking UART for Z8 Encore! MCUs
Application Note
As bytes are added to a buffer, its buffer write pointer will increment until it reaches the
end of the buffer, indicating that the buffer is full; see Figure 3.

Circular and linear buffer implementations differ from one another when a write pointer
reaches the end of a buffer. In a circular buffer, buffer write pointers will automatically
loop to the beginning of the buffer when full; see Figure 4.

Figure 3. Buffer Write Implementation
AN034901-0813 Page 6 of 30

A Nonblocking UART for Z8 Encore! MCUs
Application Note
In a linear buffer, if the buffer write pointer reaches the end of the buffer, the buffer
becomes full and will discard any incoming data.

The following routines add a byte to the output buffer, and checks for an available buffer
before writing.

#ifdef CIRCULAR // for circular buffer
void RBUF_AddByteToOutBuffer(UINT8 ucdata)
{

 if((((ucRBUF_OutWrPtr + 1) % RBUF_OUT_BUFFERSIZE) !=
ucRBUF_OutRdPtr) && (ucRBUF_Flag & OUTBUFF_FULL) !=
OUTBUFF_FULL))
 {
 ucRBUF_OutBuff[ucRBUF_OutWrPtr] = ucdata;
 ucRBUF_OutWrPtr = (ucRBUF_OutWrPtr + 1) % RBUF_OUT_BUFFERSIZE;
 ucRBUF_OutLength++;
 ucRBUF_Flag |= OUTBUFF_HASDATA; //outbuffer has data
 }

 if(ucRBUF_OutLength == RBUF_OUT_BUFFERSIZE)
 {
 ucRBUF_Flag |= OUTBUFF_FULL; //outbuffer full
 }
}
#else // for linear buffer
void RBUF_AddByteToOutBuffer(UINT8 ucdata)
{

Figure 4. Buffer Write Implementation
AN034901-0813 Page 7 of 30

A Nonblocking UART for Z8 Encore! MCUs
Application Note
 if((ucRBUF_OutLength != RBUF_OUT_BUFFERSIZE) &&
 ((ucRBUF_Flag & OUTBUFF_FULL) != OUTBUFF_FULL))
 {
 ucRBUF_OutBuff[ucRBUF_OutWrPtr] = ucdata;
 ucRBUF_OutWrPtr = ucRBUF_OutLength;
 ucRBUF_OutLength++;
 ucRBUF_Flag |= OUTBUFF_HASDATA;//outbuffer has data
 }

if(ucRBUF_OutLength == RBUF_OUT_BUFFERSIZE)
 {
 ucRBUF_Flag |= OUTBUFF_FULL; //outbuffer full
 }
}
#endif

The following routine adds a byte to the input buffer.

#ifdef CIRCULAR // for circular buffer
void RBUF_AddByteToInBuffer(UINT8 ucdata)
{
 if((((ucRBUF_InWrPtr + 1) % RBUF_IN_BUFFERSIZE) != ucRBUF_InRdPtr
) &&
 ((ucRBUF_Flag & INBUFF_FULL) != INBUFF_FULL))
 {
 ucRBUF_InBuff[ucRBUF_InWrPtr] = ucdata;
 ucRBUF_InWrPtr = (ucRBUF_InWrPtr + 1) % RBUF_IN_BUFFERSIZE;
 ucRBUF_InLength++;
 ucRBUF_Flag |= INBUFF_HASDATA;//inbuffer has data
 }

 if(ucRBUF_InLength == RBUF_IN_BUFFERSIZE)
 {
 ucRBUF_Flag |= INBUFF_FULL; //inbuffer is full
 }
}
#else // for linear buffer
void RBUF_AddByteToInBuffer(UINT8 ucdata)
{
 if((ucRBUF_InLength != RBUF_IN_BUFFERSIZE) &&
 ((ucRBUF_Flag & INBUFF_FULL) != INBUFF_FULL))
 {
 ucRBUF_InBuff[ucRBUF_InWrPtr] = ucdata;
 ucRBUF_InWrPtr = ucRBUF_InLength;
 ucRBUF_InLength++;
 ucRBUF_Flag |= INBUFF_HASDATA;//inbuffer has data
 }

 if(ucRBUF_InLength == RBUF_IN_BUFFERSIZE)
AN034901-0813 Page 8 of 30

A Nonblocking UART for Z8 Encore! MCUs
Application Note
 {
 ucRBUF_Flag |= INBUFF_FULL; //inbuffer is full
 }
}

Getting a Byte from the Buffer
Figure 5 shows the initial state of an unread buffer and indicates the location of the read
and write pointers.

A buffer read pointer will increment after each read until it reaches the buffer write
pointer, indicating that the buffer is empty, as shown in Figure 6.

Figure 5. Initial State of the Buffer to be Read
AN034901-0813 Page 9 of 30

A Nonblocking UART for Z8 Encore! MCUs
Application Note
Circular and linear buffer implementations differ from one another when the read pointer
reaches the write pointer. In a circular buffer, a buffer read pointer will not loop to the
beginning of the buffer when empty.

In a linear buffer, if the buffer read pointer reaches the buffer write pointer, the buffer is
empty, and the read and write pointers are both reset to 0.

The following routine gets a byte from the output buffer and checks for available data in
the buffer before reading.

#ifdef CIRCULAR //for circular buffer UINT8
ucRBUF_GetByteFromOutBuffer(void)
{

Figure 6. Buffer Read Implementation
AN034901-0813 Page 10 of 30

A Nonblocking UART for Z8 Encore! MCUs
Application Note
 if((ucRBUF_GetLengthOutBuffer()) &&
 (((ucRBUF_Flag & OUTBUFF_HASDATA) == OUTBUFF_HASDATA)||
 ((ucRBUF_Flag & OUTBUFF_FULL) == OUTBUFF_FULL)))
 {
 UINT8 ucdata = ucRBUF_OutBuff[ucRBUF_OutRdPtr];
 ucRBUF_OutRdPtr = (ucRBUF_OutRdPtr + 1) % RBUF_OUT_BUFFERSIZE;
 ucRBUF_OutLength--;
 return ucdata;
 }

if(ucRBUF_GetLengthOutBuffer() == 0)
 {
 //outbuffer is empty, no data available
 ucRBUF_Flag &= ~(OUTBUFF_FULL|OUTBUFF_HASDATA);;
 }

 return 0;
}
#else // for linear buffer
UINT8 ucRBUF_GetByteFromOutBuffer(void)
{
 if((ucRBUF_GetLengthOutBuffer()) &&
 (((ucRBUF_Flag & OUTBUFF_HASDATA) == OUTBUFF_HASDATA)||
 ((ucRBUF_Flag & OUTBUFF_FULL) == OUTBUFF_FULL)))
 {
 UINT8 ucdata = ucRBUF_OutBuff[ucRBUF_OutRdPtr];
 ucRBUF_OutLength--;

 if(ucRBUF_OutLength == 0)
 {
 ucRBUF_OutRdPtr = 0;
 }
 else
 {
 ucRBUF_OutRdPtr++;
 }

 if(ucRBUF_OutRdPtr==ucRBUF_OutWrPtr)
 {
 //outbuffer is empty, no data available
 ucRBUF_Flag &= ~(OUTBUFF_FULL|OUTBUFF_HASDATA);;
 ucRBUF_OutLength = 0;
 ucRBUF_OutRdPtr = 0;
 }

 return ucdata;
 }

return 0;
}
#endif
AN034901-0813 Page 11 of 30

A Nonblocking UART for Z8 Encore! MCUs
Application Note
The following routine retrieves a byte from the input buffer.

#ifdef CIRCULAR // for circular buffer
UINT8 ucRBUF_GetByteFromInBuffer(void)
{
 if((ucRBUF_GetLengthInBuffer()) &&
 (((ucRBUF_Flag & INBUFF_HASDATA) == INBUFF_HASDATA)||
 ((ucRBUF_Flag & INBUFF_FULL) == INBUFF_FULL)))
 {
 UINT8 ucdata = ucRBUF_InBuff[ucRBUF_InRdPtr];
 ucRBUF_InRdPtr = (ucRBUF_InRdPtr + 1) % RBUF_IN_BUFFERSIZE;
 ucRBUF_InLength--;
 return ucdata;
 }

 if(ucRBUF_GetLengthInBuffer() == 0)
 {
 //inbuffer is empty, no data available
 ucRBUF_Flag &= ~(INBUFF_FULL|INBUFF_HASDATA);
 }

 return NULL;
}
#else // for linear buffer
UINT8 ucRBUF_GetByteFromInBuffer(void)
{
 if((ucRBUF_GetLengthInBuffer()) &&
 (((ucRBUF_Flag & INBUFF_HASDATA) == INBUFF_HASDATA)||
 ((ucRBUF_Flag & INBUFF_FULL) == INBUFF_FULL)))
 {
 UINT8 ucdata = ucRBUF_InBuff[ucRBUF_InRdPtr];
 ucRBUF_InLength--;

 if(ucRBUF_InLength == 0)
 {
 ucRBUF_InRdPtr = 0;
 }
 else
 {
 ucRBUF_InRdPtr++;
 }

 if(ucRBUF_InRdPtr == ucRBUF_InWrPtr)
 {
 //inbuffer is empty, no data available
 ucRBUF_Flag &= ~(INBUFF_FULL|INBUFF_HASDATA);
 ucRBUF_InLength = 0;
 ucRBUF_InRdPtr = 0;
 }
AN034901-0813 Page 12 of 30

A Nonblocking UART for Z8 Encore! MCUs
Application Note
 return ucdata;
 }

 return 0;
}
#endif

The Timer Function
In this application, a timer function is used to track the run time of the system, the average
speed of input, and the period of time since the last input. Timer 0 is set to a continuous
mode that ticks every millisecond. The following routine, which sets Timer 0 initializa-
tion, is contained in the uart.h file of the AN0349-SC01 source code.

///
// Peripheral Configuration Defines
///
#define T0RH_VAL 0x02 // Timer 0 reload value high for 1ms

// time out
#define T0RL_VAL 0xB3 // Timer 0 reload value low for 1ms time

// out

#define T0CTL0_VAL 0x00 // Timer 0 Control 0 Register value
// Timer Interrupt occurs on all defined
// Reload, Compare and Input Events
// Reset Input Capture Event

#define T0CTL1_VAL 0xA1 // Timer 0 Control 1 Register value
// Enabled Timer, Prescal=16, CONTINUOUS
// Mode

The following code is contained in the timer.c file of the AN0349-SC01 source code.

void TIMER_Init(void)
{
 T0H = 0x00; // Timer 0 High Byte Register
 T0L = 0x01; // Timer 0 Low Byte Register
 T0RH = T0RH_VAL; // Reload High Byte Register
 T0RL = T0RL_VAL; // Reload Low Byte Register
 T0CTL0 = T0CTL0_VAL; // Load T0 Config0
 T0CTL1 = T0CTL1_VAL; // Load T0 Config1
 IRQ0ENH |= 0x20; // T0 interrupt and priority - Medium
 IRQ0ENL &= ~0x20; // T0 interrupt and priority - Medium

}

For every tick of Timer 0, ulTIMER_TimeCounter and ulTIMER_MinuteCounter are
incremented by 1. These two timer counters are represented in milliseconds, wherein the
AN034901-0813 Page 13 of 30

http://www.zilog.com/docs/appnotes/an0349-sc01.zip
http://www.zilog.com/docs/appnotes/an0349-sc01.zip

A Nonblocking UART for Z8 Encore! MCUs
Application Note
values in the code that follows are equivalent to twenty-four hours and one minute, respec-
tively.

void interrupt isrTIMER0(void)
{
 ulTIMER_TimeCounter++; //increment hour counter

 //if counter for time monitoring reaches 24hrs
 if(ulTIMER_TimeCounter > HRS24)
 {
 ulTIMER_TimeCounter = RESET; //counter reset and start again
 }

 ulTIMER_MinuteCounter++; //increment minute counter

 if(ulTIMER_MinuteCounter == MINUTE) //if minute counter reaches
 //60000mS
 {
 ulTIMER_MinuteCounter = RESET; //reset counter
 ucTIMER_Flag |= ENABLED; //0x01 minute flag to display time
 }
}

The Main Function
The main loop test starts with the user entering a string of characters in a terminal emula-
tor (in this application, HyperTerminal is used). When the user presses the Enter key, the
entered string will be displayed in the HyperTerminal window and include timing details
such as the system time, the elapsed time, and the rate of input if display details are
enabled; a command set is provided in this application to turn these timing details on or
off.

However, if the user-entered string is a command, a notification will be displayed in the
HyperTerminal window. Refer to Appendix B. Nonblocking UART Flowchart on page
29.

Table 1 list simple commands used to test the functionality of this application. To enable
usage of this command set, press the Tab key, as indicated in Table 1.

Table 1. Nonblocking UART Application Commands

Command Description

[TAB][MINUTEON][ENTER] This command turns on the running display in one-minute intervals.

[TAB][MINUTEOF][ENTER] This command turns off the running display.

[TAB][DETAILON][ENTER] This command turns on the details display each time the user enters a
string or character.

[TAB][DETAILOF][ENTER] This command turns off the details display.

Note: Commands are case-sensitive.
AN034901-0813 Page 14 of 30

A Nonblocking UART for Z8 Encore! MCUs
Application Note
Equipment Used

The tools used to build and test this application are:

• ZDS II – Z8 Encore! v5.0.0

• Z8F1680 MCU

• 5 V DC power supply

• Serial cable

• The HyperTerminal terminal emulation program

Setup

This nonblocking UART application is implemented using a Z8 Encore! XP F1680 Series
(28-Pin) Development Kit (Z8F16800128ZCOG). Contained in this Kit is the Z8 Encore!
XP F1680 Series Development Board, to which a serial cable is connected, as shown in
Figures 7 and 8. The serial cable connects the Board to a PC running HyperTerminal.

Figure 7. Hardware Setup
AN034901-0813 Page 15 of 30

A Nonblocking UART for Z8 Encore! MCUs
Application Note
Figure 8 illustrates the hardware setup.

Testing Procedure
Observe the following procedure to configure and test the Nonblocking UART applica-
tion.

1. Launch the HyperTerminal application on your PC. The Connection Description dia-
log box will appear. Enter an appropriate name in the Name: field of this dialog and
click OK.

2. The COM Port Properties dialog box appears next. Configure the fields in this dialog
to be the same as those shown in Figure 9, then click OK.

Figure 8. Block Diagram

Figure 9. HyperTerminal Setup
AN034901-0813 Page 16 of 30

A Nonblocking UART for Z8 Encore! MCUs
Application Note
3. Download ZDS II – Z8 Encore! v5.0.0 and install it on your PC’s hard drive.

4. Download AN0349-SC01.zip from the Zilog website and unzip it to a convenient
location on your PC.

5. Launch ZDS II. In the ZDS II menu bar, choose Open Project... from the File menu to
display the Open dialog box. Browse to the AN0349-SC01 folder you created in Step
4, locate the .zdsproj file, and click Open.

6. When the project is open, navigate via the Project menu to Settings; the Project Set-
tings dialog will appear. In the Code Generation pane, ensure that the Limit Optimiza-
tion checkbox is selected, and that Memory Model is set to Large.

7. In the Target pane of the Settings dialog’s Debugger panel, select
AN0349_Z8F1680, and click Setup to open the Configure Target dialog. In this dia-
log’s Clock pane, ensure that Source is set to Internal and that Frequency (MHz) is set
to 11.05920. Click OK.

8. A dialog box will appear, displaying the following message:

The project settings have changed since the last build. Would
you like to rebuild the affected files?

Click YES to build the project.

9. In the ZDS II toolbar, click GO.

Ensure that both the 5V power supply and the USB SmartCable are connected to the Z8
Encore! XP F1680 Series Development Board. The other end of USB SmartCable must be
properly connected to the PC’s USB port. To learn more about these connections, refer to
the Z8 Encore! XP F1680 Series (28-Pin) Development Kit User Manual (UM0203) and
to the USB SmartCable User Manual (UM0181).

10. The HyperTerminal dialog will prompt for a user entry, as shown in Figure 10.

Note:
AN034901-0813 Page 17 of 30

http://www.zilog.com/docs/z8encorexp/devtools/UM0203.pdf
http://www.zilog.com/docs/devtools/UM0181.pdf
http://www.zilog.com/docs/appnotes/an0349-sc01.zip

A Nonblocking UART for Z8 Encore! MCUs
Application Note
Figure 10. The User is Prompted to Enter a String
AN034901-0813 Page 18 of 30

A Nonblocking UART for Z8 Encore! MCUs
Application Note
11. At the prompt, enter any character string, then press the Enter key. The string will dis-
play in the HyperTerminal window, as shown in Figure 11.

Figure 11. The Entry Screen
AN034901-0813 Page 19 of 30

A Nonblocking UART for Z8 Encore! MCUs
Application Note
12. Press the Tab key to enable the command set, then enter the DETAILON command and
press Enter. The HyperTerminal window will display Details On!, as shown in Fig-
ure 12.

Figure 12. The Details On Notification
AN034901-0813 Page 20 of 30

A Nonblocking UART for Z8 Encore! MCUs
Application Note
13. Next, enter a new character string, then press the Enter key. Timing details are now
included in the in HyperTerminal window, as shown in Figure 13.

Figure 13. Timing Details Enabled Using the DETAILON Command
AN034901-0813 Page 21 of 30

A Nonblocking UART for Z8 Encore! MCUs
Application Note
14. To turn off timing details, press the Tab key, then enter the DETAILOF command and
press Enter. The HyperTerminal window will display Details Off!, as shown in
Figure 14.

Figure 14. Showing Details Off notification
AN034901-0813 Page 22 of 30

A Nonblocking UART for Z8 Encore! MCUs
Application Note
15. Press the Tab key, then enter the MINUTEON command and press Enter. The HyperTer-
minal window will display Minute On!, as shown in Figure 15.

Figure 15. Showing Minute On notification
AN034901-0813 Page 23 of 30

A Nonblocking UART for Z8 Encore! MCUs
Application Note
16. Over the course of the next few minutes, the running time will appear in one-minute
intervals in the HyperTerminal window, as shown in Figure 16.

Figure 16. The Running Time at One-Minute Intervals
AN034901-0813 Page 24 of 30

A Nonblocking UART for Z8 Encore! MCUs
Application Note
17. To turn off the one-minute running time display, press the Tab key and enter the fol-
lowing string: MINUTEOF. The HyperTerminal window will display Minute Off!, as
shown in Figure 17.

18. Press the Tab key, then enter any alphabetic characters of any length and press Enter.
An Error Command! notification will appear in the HyperTerminal window, as
shown in Figure 18.

Figure 17. The Minute Off! Message
AN034901-0813 Page 25 of 30

A Nonblocking UART for Z8 Encore! MCUs
Application Note
The Error Command! notification will result if the command you enter at the HyperTer-
minal prompt is misspelled or is not a listed command. If such an error occurs, press the
Tab key, enter the correct command, and press Enter.

Results

The application firmware has been tested using ZDS II – Z8 Encore! v5.0.0 and the Z8
Encore! XP F1680 Series (28-Pin) Development Kit. Nonblocking and noninterrupt
UART functions were achieved based on testing results. UART transmission and recep-
tion were executed in a timely manner. A list of commands can be used to show the timing
details. The source code is modular and can be reused and implemented according to user
requirements.

Figure 18. The Error Command Message

Note:
AN034901-0813 Page 26 of 30

A Nonblocking UART for Z8 Encore! MCUs
Application Note
Summary

This application demonstrates the use of noninterrupt and nonblocking functionality with
a UART peripheral. The application can send any alphabetic/alphanumeric data to the
UART without being interrupted and blocked by other functions. To implement this
scheme, UART transmit and receive functions are called upon a strict time interval of
38 µs (minimum) to 250 µs (maximum) to ensure that the data is received and transmitted
correctly. A list of commands is provided in this application to turn the display of these
timing details on or off. Circular and linear buffer implementations are provided for the
user’s discretion.

References

Documents that support this application are listed below. Each of these documents can be
obtained from the Zilog website by clicking the link associated with its document number.

• Z8 Encore! XP F1680 Series Product Specification (PS0250)

• Zilog Developer Studio II - Z8 Encore! User Manual (UM0130)

• eZ8 CPU User Manual (UM0128)

• An Interrupt-Driven UART for Z8 Encore! XP and Z8 Encore! MC MCUs Application
Note (AN0330)
AN034901-0813 Page 27 of 30

http://www.zilog.com/docs/z8encorexp/PS0250.pdf
http://www.zilog.com/docs/appnotes/AN0330.pdf
http://www.zilog.com/docs/appnotes/UM0128.pdf
http://www.zilog.com/docs/appnotes/UM0130.pdf

A Nonblocking UART for Z8 Encore! MCUs
Application Note
Appendix A. Nonblocking UART Functions

Table 2 lists the nonblocking functions developed for this application.

Table 2. Nonblocking UART Function and User (Receive and Transmit)

Function Name Description

UINT8 RBUF_GetLengthOutBuffer (void) Returns the current length of the OUTPUT buffer.

void RBUF_ AddByteToOutBuffer(UINT8 data) Writes 1 byte of data into the OUTPUT buffer.

void RBUF_AddStrToOutBuffer (UINT8 *data,
UINT8 len)

Writes a series or array of byte data into the OUTPUT
buffer.

UINT8 RBUF_GetByteFromOut Buffer(void) Reads 1 byte of data from the OUTPUT buffer.

void RBUF_GetStrFromOutBuffer (UINT8 *data,
UINT8 len)

Reads a series or array of byte data from the OUTPUT
buffer.

UINT8 RBUF_GetLengthInBuffer (void) Returns the current length of the INPUT buffer.

void RBUF_ AddByteToInBuffer(UINT8 data) Writes 1 byte of data into the INPUT buffer.

void RBUF_AddStrToInBuffer (UINT8 *data,
UINT8 len)

Writes a series or array of byte data into the INPUT
buffer.

UINT8 RBUF_GetByteFromInBuffer(void) Reads 1 byte of data from the INPUT buffer.

void RBUF_GetStrFromInBuffer (UINT8 *data,
UINT8 len)

Reads a series or array of byte data from the INPUT
buffer.
AN034901-0813 Page 28 of 30

A Nonblocking UART for Z8 Encore! MCUs
Application Note
Appendix B. Nonblocking UART Flowchart

Figure 19 presents the basic flow of the Nonblocking UART routine.

Note: *Refer to Table 1 on page 14 for a list of these commands.

Figure 19. Flow of the Nonblocking UART Routine
AN034901-0813 Page 29 of 30

A Nonblocking UART for Z8 Encore! MCUs
Application Note
DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.

LIFE SUPPORT POLICY

ZILOG’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)
support or sustain life and whose failure to perform when properly used in accordance with instructions for
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A
critical component is any component in a life support device or system whose failure to perform can be
reasonably expected to cause the failure of the life support device or system or to affect its safety or
effectiveness.

Document Disclaimer

©2013 Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications,
or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES
NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO
DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED
IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED
HEREIN OR OTHERWISE. The information contained within this document has been verified according
to the general principles of electrical and mechanical engineering.

Z8 Encore! and Z8 Encore! XP are trademarks or registered trademarks of Zilog, Inc. All other product or
service names are the property of their respective owners.

Warning:
AN034901-0813 Page 30 of 30

	Application Note:
A Nonblocking UART for Z8 Encore! MCUs
	Abstract
	Features
	Discussion
	Noninterrupt and Nonblocking Functions
	Circular and Linear Buffer Implementations

	Software Implementation
	UART Initialization
	UART Receive Routine
	UART Transmit Routine
	Adding a Byte to the Buffer
	Getting a Byte from the Buffer
	The Timer Function
	The Main Function

	Equipment Used
	Setup
	Testing Procedure

	Results
	Summary
	References
	Appendix A. Nonblocking UART Functions
	Appendix B. Nonblocking UART Flowchart

