
AN033001-0511
Abstract

This application note demonstrates the implementation of an interrupt-driven UART, an
on-chip peripheral block featured in Zilog’s Z8 Encore! XP and Z8 Encore! MC families
of microcontrollers. This document contains sample codes to initialize the UART and to
manage UART interrupts for devices in each of these two MCU families. A circular buffer
implementation is also introduced to facilitate the buffering of UART data streams.

For ease of discussion, the terms Z8 Encore! and Z8 Encore! devices will be used in this
document to refer to both Z8 Encore! XP and Z8 Encore! MC devices.

The source code file associated with this application note, AN0330-SC01.zip, is available
for download on zilog.com. This source code has been tested with version 5.0.0 of ZDS II
for Z8 Encore! XP- and Z8 Encore! MC-powered MCUs. Subsequent releases of ZDS II
may require you to modify the code supplied with this application note.

Overview of the UART Peripheral in Z8 Encore! Devices

The Universal Asynchronous Receiver/Transmitter (UART) is a full-duplex communica-
tion channel capable of handling asynchronous data transfers. The UART uses a single 8-
bit data mode with selectable parity. Features of the UART include:

• 8-bit asynchronous data transfer

• Selectable even- or odd-parity generation and checking

• Option of one or two stop bits

• Separate transmit and receive interrupts

• Separate transmit and receive enables

• Framing, parity, overrun and break detection

• 16-bit Baud Rate Generators (BRG)

• Selectable MULTIPROCESSOR (9-bit) mode with three configurable interrupt
schemes

• Baud Rate Generator timer mode

• Driver enable output for external bus transceivers

Note:
AN033001-0511
Application Note
An Interrupt-Driven UART for Z8
Encore! XP® and Z8 Encore! MC™
MCUs
 Page 1 of 15

http://www.zilog.com/docs/appnotes/an0330-sc01.zip

An Interrupt-Driven UART for Z8 Encore! XP® and Z8 Encore! MC™ MCUs
Application Note
The UART consists of three primary functional blocks: transmitter, receiver, and baud rate
generator. The UART’s transmitter and receiver each function independently but use the
same baud rate and data format. Figure 1 shows the UART architecture.

Figure 1. Diagram of the Z8 Encore! XP UART Block
AN033001-0511 Page 2 of 15

An Interrupt-Driven UART for Z8 Encore! XP® and Z8 Encore! MC™ MCUs
Application Note
Z8 Encore! UART Register Description

The Z8 Encore! UART registers are briefly discussed in this section.

UART Control Registers
The UART Control 0 and 1 registers configure the properties of the UART’s transmit and
receive operations. These registers must not be written to while the UART is enabled. See
Tables 1 and 2.

Table 1. UART Control 0 Register (UxCTL0)

Bits 7 6 5 4 3 2 1 0

Field TEN REN CTSE PEN PSEL SBRK STOP LBEN

Reset 0

R/W R/W

ADDR F42H and F4AH

Bit
Position Description

[7]
TEN

Transmit Enable
Enables or disables the transmitter. Transmit enable may also be used in conjunction with
CTS signal and CTSE bit.

[6]
REN

Receive Enable
Enables or disables the receiver.

[5]
CTSE

CTS Enable
Defines if CTS signal has no effect on the transmitter or if UART recognizes the CTS signal
as an enable control for the transmitter.

[4]
PEN

Parity Enable
Enables or disables the parity bit.

[3]
PSEL

Parity Select
If parity is enabled, this bit specifies if odd- or even-parity will be used.

[2]
SBRK

Send Break
Pauses or breaks data transmission.

[1]
STOP

Stop Bit Select
Defines the number of stop bits (1 or 2 stop bits) the transmitter should sent.

[0]
LBEN

Loop Back Enable
Determines if the transmitted data should be looped back to the receiver or not.
AN033001-0511 Page 3 of 15

An Interrupt-Driven UART for Z8 Encore! XP® and Z8 Encore! MC™ MCUs
Application Note
Table 2. UART Control 1 Register (UxCTL1)

Bits 7 6 5 4 3 2 1 0

Field MPMD[1] MPEN MPMD[0] MPBT DEPOL BRGCTL RDAIRQ IREN

Reset 0

R/W R/W

ADDR F43H and F4BH

Bit
Position Description

[7,5]
MPMD[1:0]

Multiprocessor Mode
If multiprocessor mode (MPEN) is enabled, these bits selects the interrupt scheme to be
used.

[6]
MPEN

Multiprocessor Enable
Enables or disables the multiprocessor (9-bit) mode.

[4]
MPBT

Multiprocessor Bit Transmit
If multiprocessor mode (MPEN) is enabled, this bit determines what data to send at the
multiprocessor bit location (9th bit) of the data stream.

[3]
DEPOL

Driver Enable Polarity
Determines if DE signal is active low or active high.

[2]
BRGCTL

Baud Rate Control
This bit causes different UART behavior depending on whether UART receiver is enabled or
disabled. Generally, this bit defines whether the BRG generates an interrupt or not.

[1]
RDAIRQ

Receive Data Interrupt Enable
Determines whether the receiver generates an interrupt on (1) data receive and/or receiver
errors, or (2) receiver errors only.

[0]
IREN

Infrared Encoder/Decoder Enable
Enables or disables infrared encoder/decoder.
AN033001-0511 Page 4 of 15

An Interrupt-Driven UART for Z8 Encore! XP® and Z8 Encore! MC™ MCUs
Application Note
UART Status Registers
The UART Status 0 and 1 registers identify the current UART operating configuration and
status. See Tables 3 and 4.

Table 3. UART Status 0 Register (UxSTAT0)

Bits 7 6 5 4 3 2 1 0

Field RDA PE OE FE BRKD TDRE TXE CTS

Reset 0 1 1 X

R/W R

ADDR F41H and F49H

Bit
Position Description

[7]
RDA

Receive Data Available
Indicates if new data is received. Reading the UART Receive Data Register clears this bit.

[6]
PE

Parity Error
Indicates that a parity error has occurred. Reading the UART Receive Data Register clears
this bit.

[5]
OE

Overrun Error
Indicates that an overrun error has occurred. Reading the UART Receive Data Register
clears this bit.

[4]
FE

Framing Error
Indicates that a framing error occurred (no stop bit following data reception was detected).
Reading the UART Receive Data Register clears this bit.

[3]
BRKD

Break Detect
Indicates that a break occurred.

[2]
TDRE

Transmit Data Register Empty
Indicates that the UART Transmit Data Register is empty and is ready for additional data.
Writing to the UART Transmit Data Register clears this bit.

[1]
TXE

Transmitter Empty
Indicates that the Transmit Shift Register is empty and that character transmission is
finished.

[0]
CTS

CTS Signal
Reading this bit returns the level of the CTS signal.
AN033001-0511 Page 5 of 15

An Interrupt-Driven UART for Z8 Encore! XP® and Z8 Encore! MC™ MCUs
Application Note
UART Baud Rate High and Low Byte Registers
The UART Baud Rate High and Low Byte registers combine to create a 16-bit baud rate
divisor, BRG[15:0], that sets the baud rate of the UART. The 16-bit baud rate divisor
value is {BRH[7:0], BRL[7:0]}. See Tables 5 and 6.

Table 4. UART Status 1 Register (UxSTAT1)

Bits 7 6 5 4 3 2 1 0

Field Reserved NEWFRM MPRX

Reset 0

R/W R R/W R

ADDR F44H and F4CH

Bit
Position Description

[7:2] Reserved.

[1]
NEWFRM

New Frame
Indicates if the current byte is the first data byte of a new frame.

[0]
MPRX

Multiprocessor Receive
Returns the value of the last multiprocessor bit received.

Table 5. UART Baud Rate High Byte Register (UxBRH)

Bits 7 6 5 4 3 2 1 0

Field BRH

Reset 1

R/W R/W

ADDR F46H and F4EH

Bit
Position Description

[7:0]
BRH

Baud Rate High Byte
Sets the high byte of the UART baud rate.
AN033001-0511 Page 6 of 15

An Interrupt-Driven UART for Z8 Encore! XP® and Z8 Encore! MC™ MCUs
Application Note
The baud rate divisor for a given UART data rate can be calculated using the following
equation:

The baud rate error relative to the desired baud rate is calculated using the equation below.
To ensure a reliable communication, the UART baud rate must never exceed 5%.

UART Transmit Data Register
Data bytes written to the UART Transmit Data Register (UxTXD) are shifted out on the
TXD pin. This register shares a register file address with the read-only UART Receive
Data Register. See Table 7.

Table 6. UART Baud Rate Low Byte Register (UxBRL)

Bits 7 6 5 4 3 2 1 0

Field BRL

Reset 1

R/W R/W

ADDR F47H and F4FH

Bit
Position Description

[7:0]
BRL

Baud Rate Low Byte
Sets the low byte of the UART baud rate.

Table 7. UART Transmit Data Register (UxTXD)

Bits 7 6 5 4 3 2 1 0

Field TXD

Reset X

R/W W

ADDR F40H and F48H

Bit
Position Description

[7:0]
TXD

Transmit Data
Data byte to be shifted out through the TXD pin.
AN033001-0511 Page 7 of 15

An Interrupt-Driven UART for Z8 Encore! XP® and Z8 Encore! MC™ MCUs
Application Note
UART Receive Data Register
Data bytes received through the RXD pin are stored in the UART Receive Data Register
(UxRXD). This register shares a register file with the write-only UART Transmit Data
Register. See Table 8.

UART Address Compare Register
The UART Address Compare Register (UxADDR) stores the multi-node network address
of the UART when multiprocessor mode is enabled. When the MPMD[1] bit of the UART
Control 0 Register is set, all incoming address bytes are compared to the value stored in
this register. Receive interrupts and RDA assertions only occur in the event of a match.
See Table 9.

Table 8. UART Receive Data Register (UxRXD)

Bits 7 6 5 4 3 2 1 0

Field RXD

Reset X

R/W R

ADDR F40H and F48H

Bit
Position Description

[7:0]
RXD

Receive Data
Data byte received from the RXD pin.

Table 9. UART Address Compare Register (UxADDR)

Bits 7 6 5 4 3 2 1 0

Field COMP_ADDR

Reset 0

R/W R/W

ADDR F45H and F4DH

Bit
Position Description

[7:0]
COMP_ADDR

Compare Address
Defines the 8-bit address value to which the incoming address bytes should be compared to.
AN033001-0511 Page 8 of 15

An Interrupt-Driven UART for Z8 Encore! XP® and Z8 Encore! MC™ MCUs
Application Note
Circular Buffer Implementation

This section describes the implementation of a circular buffer. The routines presented here
can be used in any queuing or buffering applications.

A buffer is generally used as temporary data storage, usually for streaming data. Similarly,
a circular buffer (or ring buffer) is a temporary data storage with a memory allocation
scheme where the buffer can be of a fixed size and each memory location can be reused
when the index pointer has returned back to the starting location. This buffering scheme is
widely used and has several existing versions, each of which varies depending on applica-
tion requirements. This section describes a simple buffering mechanism.

To initialize circular buffers, a memory segment or an array of predefined length is initial-
ized. This is where the buffered data will be stored.

#define RBUF_IN_BUFFERSIZE ((UINT8)64)
UINT8 RBUF_InBuff[RBUF_IN_BUFFERSIZE];

To facilitate how the circular buffer is managed, two index pointers and a data counter is
initialized.

UINT8 RBUF_InRdPtr; // Pointer to the next read location
UINT8 RBUF_InWrPtr; // Pointer to the next write location
UINT8 RBUF_InLength; // Buffer length

Upon initialization, the buffer does not contain anything and the pointers are at the begin-
ning of the buffer, as shown in Figure 2.

While data is being written to the buffer, the write pointer increments and the data counter
also increments. Similarly, while data is being read from the buffer, the read pointer incre-
ments and the data counter decrements. See Figure 3.

Figure 2. Initializing the Buffer
AN033001-0511 Page 9 of 15

An Interrupt-Driven UART for Z8 Encore! XP® and Z8 Encore! MC™ MCUs
Application Note
void RBUF_AddByteToInBuffer(UINT8 data)// Write
{

if(((RBUF_InWrPtr + 1) % RBUF_IN_BUFFERSIZE) != RBUF_InRdPtr)
{

RBUF_InBuff[RBUF_InWrPtr] = data;
RBUF_InWrPtr = (RBUF_InWrPtr + 1) % RBUF_IN_BUFFERSIZE;
RBUF_InLength++;

 }
}
UINT8 RBUF_GetByteFromInBuffer(void)// Read
{

UINT8 data = RBUF_InBuff[RBUF_InRdPtr];
RBUF_InRdPtr = (RBUF_InRdPtr + 1) % RBUF_IN_BUFFERSIZE;
RBUF_InLength--;

return data;
}

When the read or write pointer reaches the end of the buffer, it will jump back to the start,
causing a wrap-around effect. As a result, the data that has been previously fetched using
the read operation will be overwritten. See Figure 4.

Figure 3. Read/Write Operations of the Buffer
AN033001-0511 Page 10 of 15

An Interrupt-Driven UART for Z8 Encore! XP® and Z8 Encore! MC™ MCUs
Application Note
Interrupt-Driven UART Implementation

This section describes the methods for initializing, transmitting and receiving data via the
UART peripheral of the Z8 Encore! device.

The software implementation for UART presented in this document supports the basic for-
mat, which is 8 data bits, no parity, and 1 stop bit. The program waits to receive a string
(terminated by newline) and then echoes back the input string.

To facilitate a data input/output via UART, the circular buffer discussed in the previous
section is used for storing data. Separate buffers are used for handling the transmit and
receive data. The buffer size, RBUF_IN_BUFFERSIZE and RBUF_OUT_BUFFERSIZE,
can be changed as per user needs.

UINT8 RBUF_InBuff[RBUF_IN_BUFFERSIZE]; // Input buffer
UINT8 RBUF_OutBuff[RBUF_OUT_BUFFERSIZE];// Output buffer

Initialization
The Z8 Encore! UART is a full-duplex communication channel capable of handling asyn-
chronous data transfers. A reliable UART communication is affected by two factors - sys-
tem clock speed, and desired baud rate. The user should ensure that UART baud rate error
should never exceed 5%. For a given UART data rate, the integer BRG value can be calcu-
lated using the following equation:

The baud rate error relative to the desired baud rate is achieved using the following equa-
tion:

Figure 4. Wrap Around
AN033001-0511 Page 11 of 15

An Interrupt-Driven UART for Z8 Encore! XP® and Z8 Encore! MC™ MCUs
Application Note

The source code listed below demonstrates how to configure the UART using the 8-N-1
format. The value of BAUDRATE varies depending on processor type, and is provided in
the accompanied source code.

//
void UART_Init(void)
{

PADD |= 0x30; // Setup ports for alternate function
PAAF |= 0x30;
#ifdef _Z8ENCORE_F1680
PAAFS1 &= ~0x30;
#endif // _Z8ENCORE_F1680

U0BRH = (UINT8)((BAUDRATE & 0xFF00) >> 8); // Setup baud rate
U0BRL = (UINT8)((BAUDRATE & 0x00FF) & 0x00FF);
IRQ0ENH |= 0x18; // Enable UART Tx&Rx interrupts
IRQ0ENL |= 0x18;
IRQ0 &= ~0x18; // Clear any pending interrupts
U0CTL0 = 0xC0; // Receive En, No Parity, 1 Stop bit

}
//

UART Rx Data Handling
The code provided below demonstrates how to handle data received from the UART
Receive Data Register. The data received from this register is transferred to the buffer. It is
up to the user how to get and interpret the data from the input buffer, RBUF_InBuff.

//
void interrupt UART0_RxIsr(void) _At UART0_RX
{

UINT8 temp = U0RXD;
if((U0STAT0 & 0x78) == 0x78)

return; // ERROR detected!!!
// Data is read to clear this bit

RBUF_AddByteToInBuffer(temp);

#ifndef _Z8ENCORE_F1680
IRQ0 &= ~0x10; // Clear interrupt flag
#endif // _Z8ENCORE_F1680

}
//
AN033001-0511 Page 12 of 15

An Interrupt-Driven UART for Z8 Encore! XP® and Z8 Encore! MC™ MCUs
Application Note
UART Tx Data Handling
Similarly, the succeeding code demonstrates how to use the buffer for handling data to be
transmitted via the UART Transmit Data Register. Data needs to be placed into the buffer
before starting the transmission.

RBUF_AddStrToOutBuffer(strData, len); // place data into buffer
UART_StartTx(); // start transmission

//
void interrupt UART0_TxIsr(void) _At UART0_TX
{

if(RBUF_GetLengthOutBuffer() > 0) // If there is data to tx
U0TXD = RBUF_GetByteFromOutBuffer();

#ifndef _Z8ENCORE_F1680
IRQ0 &= ~0x08; // Clear interrupt flag
#endif // _Z8ENCORE_F1680

}

void UART_StartTx(void)
{

if(RBUF_GetLengthOutBuffer()) // If there is data to be tx'ed
{

 // Trigger Tx interrupt to start loading buffer data
IRQ0 |= 0x08;

}
}
//

Hardware Setup

Figure 5 shows the hardware setup of Z8 Encore! development kit connected to a PC via
HyperTerminal. HyperTerminal setting is 8-N-1, with flow control set to none. The
default baud rate settings in the source code along with this document uses 115kbps.The
user can change this setting as desired.

Figure 5. Z8 Encore to PC Connection via the RS-232 Port
AN033001-0511 Page 13 of 15

An Interrupt-Driven UART for Z8 Encore! XP® and Z8 Encore! MC™ MCUs
Application Note
Summary

This application note describes a basic UART implementation, including how to configure
the Z8 Encore! MCU’s ports for an interrupt-driven UART application. A brief discussion
about the circular buffer is also introduced to develop an understanding of how to admin-
ister data input/output.

References

The following documents associated with the Z8 Encore! XP Series of MCUs are avail-
able on www.zilog.com.

• Z8 Encore! XP F1680 Series Product Specification (PS0250)

• Z8 Encore! XP F1680 28-Pin Series Development Kit User Manual (UM0203)

• Software UART for the Z8 Encore! XP MCU Application Note (AN0147)

• An OLED Interface Using Z8 Encore! XP Series MCUs Application Note (AN0329)
AN033001-0511 Page 14 of 15

http://www.zilog.com/
http://www.zilog.com/docs/z8encorexp/PS0250.pdf
http://www.zilog.com/docs/z8encore/appnotes/an0147.pdf
http://www.zilog.com/docs/z8encore/appnotes/an0329.pdf
http://www.zilog.com/docs/z8encorexp/devtools/UM0203.pdf

An Interrupt-Driven UART for Z8 Encore! XP® and Z8 Encore! MC™ MCUs
Application Note
Customer Support

To share comments, get your technical questions answered, or report issues you may be
experiencing with our products, please visit Zilog’s Technical Support page at 
http://support.zilog.com.

To learn more about this product, find additional documentation, or to discover other fac-
ets about Zilog product offerings, please visit the Zilog Knowledge Base at http://
zilog.com/kb or consider participating in the Zilog Forum at http://zilog.com/forum.

This publication is subject to replacement by a later edition. To determine whether a later
edition exists, please visit the Zilog website at http://www.zilog.com.

DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.

LIFE SUPPORT POLICY

ZILOG’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)
support or sustain life and whose failure to perform when properly used in accordance with instructions for
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A
critical component is any component in a life support device or system whose failure to perform can be
reasonably expected to cause the failure of the life support device or system or to affect its safety or
effectiveness.

Document Disclaimer

©2011 Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications,
or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES
NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO
DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED
IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED
HEREIN OR OTHERWISE. The information contained within this document has been verified according
to the general principles of electrical and mechanical engineering.

Z8, Z8 Encore!, Z8 Encore! XP and ZMOTION are trademarks or registered trademarks of Zilog, Inc. All
other product or service names are the property of their respective owners.

Warning:
AN033001-0511 Page 15 of 15

http://support.zilog.com
http://www.zilog.com
http://zilog.com/kb
http://zilog.com/kb
http://zilog.com/forum

	Application Note: An Interrupt-Driven UART for Z8 Encore! XP and Z8 Encore! MC MCUs
	Abstract
	Overview of the UART Peripheral in Z8 Encore! Devices
	Z8 Encore! UART Register Description
	UART Control Registers
	UART Status Registers
	UART Baud Rate High and Low Byte Registers
	UART Transmit Data Register
	UART Receive Data Register
	UART Address Compare Register

	Circular Buffer Implementation
	Interrupt-Driven UART Implementation
	Initialization
	UART Rx Data Handling
	UART Tx Data Handling

	Hardware Setup
	Summary
	References
	Customer Support

