
AN041601-0418
Abstract

This application note demonstrates the creation of a USB HID keyboard application using
the Z8F6482 Development Kit.

The source code file associated with this application note, AN0416-SC01.zip, is available
free for download from the Zilog website. The source code in these files has been tested
with ZDS II version 5.2.2 for the Encore! XP Series of MCUs. Subsequent releases of ZDS
II may require you to modify the code supplied with this application note.

Features

The Z8F6482 MCU’s USB module provides USB full-speed device functionality with
eight USB endpoints. Features include:

• Full-speed (12 Mbps) USB device

• IN endpoint 0 and OUT endpoint 0 control endpoints

• IN endpoints 1–3 and OUT endpoints 1–3 capable of bulk and interrupt transfers

• USB Suspend, host-initiated Resume, and device-initiated Resume (remote wake-up)

• USB clock of 48 MHz from internal PLL or external clock source

• 512 bytes of dedicated USB endpoint buffer memory; each endpoint buffer memory
can be configured as 8, 16, 32, or 64 bytes

• Integrated full-speed USB PHY with integrated pull-up resistor

• Support for two DMA channels

Note:
AN041601-0418
Application Note
USB HID Keyboard Using the
Z8F6482 MCU
 Page 1 of 14

http://www.zilog.com/docs/appnotes/AN0416-SC01.zip

USB HID Keyboard Using the Z8F6482 MCU
Application Note
Discussion

This application note modifies the Z8F6482 MCU USB Peripheral Application Note
(AN0411) to create an HID keyboard application. To learn more about setting up and
enabling use of the Z8F6482 MCU’s USB peripheral, refer to AN0411.

Endpoints
This application uses four USB endpoints – IN0, OUT0, IN3, and OUT3. Endpoint0 is
used for standard USB request processing, while Endpoint3 is used to send/receive USB
key code information. Figure 1 illustrates the endpoint buffer memory arrangement set in
this application note.

Figure 1. Example Endpoint Buffer Memory Allocation
AN041601-0418 Page 2 of 14

�http://www.zilog.com/docs/appnotes/AN0411.pdf
�http://www.zilog.com/docs/appnotes/AN0411.pdf
�http://www.zilog.com/docs/appnotes/AN0411.pdf

USB HID Keyboard Using the Z8F6482 MCU
Application Note
HID Class Configuration Descriptor
Similar to other USB devices, the HID class requires a set of information (descriptors) to
describe general information about the device. Additionally, the HID class includes infor-
mation to describe the exact type of device and its features. Figure 2 shows the structure
and organization of the configuration descriptors used in this application note.

In defining these descriptors, HID specifications require that the HID descriptor must be
inserted between the interface and endpoint descriptors. Therefore, the order should be:
Configuration Descriptor
 Interface Descriptor
 HID Descriptor
 Endpoint Descriptor (Interrupt IN)
 Endpoint Descriptor (Interrupt OUT)

Figure 2. Human Interface Device Class Configuration
AN041601-0418 Page 3 of 14

USB HID Keyboard Using the Z8F6482 MCU
Application Note
HID Descriptor and HID Report Descriptor

The HID descriptor provides an overview of the number and type of descriptors included
in the device’s configuration. This keyboard application note includes the report descrip-
tor in the device’s configuration. The HID report descriptor defines the device’s data
packets that will be exchanged to/from the host during communication. It includes the
number of bytes in a data packet, bit assignments, and byte arrangement.

There are two types of reports:

Input Reports. Input reports are used to send data packets from the device to the host

Output Reports. Output reports are used to send data from the host to the device

Figures 3 and 4 describe the format for Input and Output reports respectively.

Figure 3. Input Report Format

Figure 4. Output Report Format
AN041601-0418 Page 4 of 14

USB HID Keyboard Using the Z8F6482 MCU
Application Note
Hardware Design

A 4 x 5 keypad matrix is used to simulate the alphanumeric keys in a keyboard, in addition
to the switches and LEDs provided in the Z8F6482 development board.

Figure 5 illustrates how the keypad is connected to the Z8F6482 development board. Each
button on this keypad is assigned a specific key code to be sent to the host when pressed.

1. The keypad switches are a sample of the keys that appear on a full QWERTY
keyboard and are used to simulate key press events on the keyboard’s
alphanumeric keys.

2. PJ3-PJ0 goes to row0-row3, in this order.

3. PG7-PG3 goes to col0-col4, in this order.

Figure 5. 4 x 5 Keypad Matrix Interface

Notes:
AN041601-0418 Page 5 of 14

USB HID Keyboard Using the Z8F6482 MCU
Application Note
Table 1 lists the key code assignments for each switch in the keypad matrix.

The switches provided with the development board are used to simulate key press events
on the keyboard’s modifier keys. The modifier keys are the Shift, Ctrl, and Alt keys. For
this demonstration, only the Shift and Ctrl keys are assigned. Table 2 lists key assignments
for the on-board switches.

The LEDs are used to display the LED states sent by the host. Table 3 lists the LED
assignments.

Table 1. Keypad Row-Column Key Code Assignment

Column 0 Column 1 Column 2 Column 3 Column 4

Row 0 CAPS Lock SCROLL Lock NUM Lock ENTER Backspace

Row 1 A B C D E

Row 2 F G H I J

Row 3 K L M N O

Table 2. Modifier Keys Switch Assignment

Label Port Key Assigned

SW 2 PA6 Shift Key

SW 3 PA7 Ctrl Key

Table 3. LED Assignments

Label Port LED Assigned

D4 PB7 Caps Lock

D5 PC4 Scroll Lock

D6 PC5 Num Lock
AN041601-0418 Page 6 of 14

USB HID Keyboard Using the Z8F6482 MCU
Application Note
Firmware Design

This application note uses the source code from the Z8F6482 MCU USB Peripheral
Application Note (AN0411) as its base code. In AN0411, the USB firmware is divided
into two modules – USB driver and Device Class Driver. The same USB driver module is
used in this application note; to learn more about it, refer to AN0411. The device class
driver is modified such that the USB device will work as an HID device instead of a CDC
device. The following sections describe this HID Device Class Driver.

The routines included in the HID device class driver module can be found in the hid.c
file. The HID device descriptor, HID configuration descriptor, and HID report descriptor
functions can be found in the hid_conf.c file.

HID Device Class Driver
The HID device class driver module includes basic endpoint handler routines to imple-
ment an HID keyboard application. Table 4 lists routines included in this module.

Device Descriptor

Similar to the CDC application, the device descriptor provides general information about
the USB device, including the product ID, vendor ID, USB specification release number,
and device class code. The host requests this information during the enumeration process
when it sends a GET_DESCRIPTOR request with a DEVICE descriptor type.

The device descriptor used in this application note specifies HID as the device class.
const USBDVC_DESCR DeviceDescr =
{
 sizeof(USBDVC_DESCR), // bLength
 USBDESCR_DEVICE, // bDescriptorType = 0x01
 SWAP(USB_SPECIFICATION), // bcdUSB = 0x0200
 HID_DEVICE_CLASS, // bDeviceClass = 0x03
 HID_SUBCLASS_BOOT, // bDeviceSubClass = 0x01
 HID_PROTOCOL_KEYBOARD, // bDeviceProtocol = 0x01
 EP0_PACKETSIZE, // bMaxPacketSize0 = 0x20
 SWAP(USB_VENDOR_ID), // idVendor = 0xFFFF
 SWAP(USB_PRODUCT_ID), // idProduct = 0xFFFF
 SWAP(USB_RELEASE_NUMBER), // bcdDevice = 0x0001

Table 4. HID APIs

Function Name Returns Description

HID_StdRequest void Handles HID-specific USB standard requests

HID_ClassRequest void Handles HID class-specific requests

HID_SetConfig void Handles application-specific endpoint configuration

HID_Out3Hdlr void Processes received data

Note:
AN041601-0418 Page 7 of 14

http://www.zilog.com/docs/appnotes/AN0411.pdf
http://www.zilog.com/docs/appnotes/AN0411.pdf

USB HID Keyboard Using the Z8F6482 MCU
Application Note
 USB_MANUFACTURER_IDX, // iManufacturer
 USB_PRODUCT_IDX, // iProduct
 USB_SERIALNUMBER_IDX, // iSerialNumber
 1 // bNumConfigurations
};

Configuration Descriptor

The configuration descriptor provides information about the device’s configuration and
interface settings, plus alternate settings and their endpoints. The host requests this infor-
mation during the enumeration process when it sends a GET_DESCRIPTOR request with a
CONFIGURATION descriptor type.

The USB specification defines a set of standard configuration descriptors whereas the HID
specification defines additional class-specific descriptors. Figure 2 shows the sequence of
a configuration descriptor for an HID keyboard device. This configuration descriptor is a
combination of the USB and HID specifications.
// Configuration Descriptor
const USBDVC_CONFDESCR ConfigDescr =
{
 sizeof(USBDVC_CONFDESCR), // bLength
 USBDESCR_CONFIG, // bDescriptorType
 SWAP(CONFIG_TOTAL_LEN), // wTotalLength
 1, // bNumInterfaces
 1, // bConfigurationValue
 0, // iConfiguration
 0x80 | (USB_SELF_POWER << 6) | (USB_REMOTE_WU << 5), 

// bmAttributes
 50 // bMaxPower
};

// Interface Descriptor
const USBDVC_IFDESCR InterfaceDescr =
{
 sizeof(USBDVC_IFDESCR), // bLength
 USBDESCR_INTERFACE, // bDescriptorType
 HID_KEYBOARD_INTERFACE, // bInterfaceNumber
 0, // bAlternateSetting
 2, // bNumEndpoints
 HID_DEVICE_CLASS, // bInterfaceClass
 HID_SUBCLASS_BOOT, // bInterfaceSubClass
 HID_PROTOCOL_KEYBOARD, // bInterfaceProtocol
 0 // iInterface
};

// Functional Descriptors
const UINT8 HidKeyboardDescr[] =
{
 9, // bLength
 HID_DESCRTYPE_HID, // bDescriptorType
 GET_HIGHBYTE(HID_VERSION), // bcdHID
AN041601-0418 Page 8 of 14

USB HID Keyboard Using the Z8F6482 MCU
Application Note
 GET_LOWBYTE(HID_VERSION),
 0, // bCountryCode
 1, // bNumDescriptors
 HID_DESCRTYPE_REPORT, // bDescriptorType
 GET_HIGHBYTE(0x003F), // wDescriptorLength
 GET_LOWBYTE(0x003F)
};

// Endpoint Descriptor
const USBDVC_EPDESCR EpIn3Descr =
{

sizeof(USBDVC_EPDESCR), // bLength
 USBDESCR_ENDPOINT, // bDescriptorType
 0x83, // bEndpointAddress

0x03,.............................. // bmAttributes (0x03=intr)
 SWAP(EP3_PACKETSIZE), // wMaxPacketSize
 100 // bInterval
};

// Endpoint Descriptor
const USBDVC_EPDESCR EpOut3Descr =
{
 sizeof(USBDVC_EPDESCR), // bLength
 USBDESCR_ENDPOINT, // bDescriptorType
 0x03, // bEndpointAddress
 0x03, // bmAttributes (0x03=intr)
 SWAP(EP3_PACKETSIZE), // wMaxPacketSize
 100 // bInterval
};
AN041601-0418 Page 9 of 14

USB HID Keyboard Using the Z8F6482 MCU
Application Note
HID Report Descriptor

Input and output report formats vary widely across HID applications. The host is able to
identify these formats through the HID report descriptor. The input and output report for-
mats shown in Figures 3 and 4 are a result of the HID report descriptor below.
// Keyboard Protocol 1, HID 1.11 spec, Appendix B, page 59-60
const UINT8 HidKeyboardReportDescr[HID_KYBRD_REPORTDESCR_SIZE] = {
 0x05, 0x01, // Usage Page (Generic Desktop),
 0x09, 0x06, // Usage (Keyboard),
 0xA1, 0x01, // Collection (Application),
 0x75, 0x01, // Report Size (1),
 0x95, 0x08, // Report Count (8),

 0x05, 0x07, // Usage Page (Key Codes),
 0x19, 0xE0, // Usage Minimum (224),
 0x29, 0xE7, // Usage Maximum (231),
 0x15, 0x00, // Logical Minimum (0),
 0x25, 0x01, // Logical Maximum (1),

 0x81, 0x02, // Input (Data, Variable, Absolute),

;Modifier byte
 0x95, 0x01, // Report Count (1),
 0x75, 0x08, // Report Size (8),
 0x81, 0x03, // Input (Constant),

;Reserved byte
 0x95, 0x05, // Report Count (5),

 0x75, 0x01, // Report Size (1),
 0x05, 0x08, // Usage Page (LEDs),
 0x19, 0x01, // Usage Minimum (1),
 0x29, 0x05, // Usage Maximum (5),
 0x91, 0x02, // Output (Data, Variable, Absolute),

;LED report

 0x95, 0x01, // Report Count (1),
 0x75, 0x03, // Report Size (3),
 0x91, 0x03, // Output (Constant), ;LED report

// padding
0x95, 0x06,// Report Count (6),
 0x75, 0x08, // Report Size (8),

 0x15, 0x00, // Logical Minimum (0),
 0x25, 0x68, // Logical Maximum(104),
 0x05, 0x07, // Usage Page (Key Codes),
 0x19, 0x00, // Usage Minimum (0),
 0x29, 0x68, // Usage Maximum (104),

 0x81, 0x00, // Input (Data, Array),
 0xc0 // End Collection
};
AN041601-0418 Page 10 of 14

USB HID Keyboard Using the Z8F6482 MCU
Application Note
Equipment Used

The following equipment is used to build and test this application:

• Z8 Encore! XP Z8F6482 Development Board

• Zilog USB or Ethernet SmartCable

• USB A (Male) to Mini-B USB Cable

• 4 x 5 keypad matrix

• RS232 to 6-pin circuit adapter (optional)

Testing and Demonstrating the Application

This section describes the process of downloading and running this application.

When running this application, the USB vendor ID and product ID are used to identify
USB devices to a host. Each company is assigned a specific vendor ID. The IDs used in
this application note are typical values for generic USB devices. If multiple applications
with the same ID are run on a given device, the HID keyboard may not be automatically
detected by Windows. If this occurs, change the vendor ID/product ID value so that at
least one of the IDs is different per device. For example, in hid.c, change
#define USB_VENDOR_ID (0xFFFF)
to
#define USB_VENDOR_ID (0xFFFE)

Downloading Code to the Z8F6482 Development Board
1. Connect the USB SmartCable to the DBG terminal of the Development Board and

connect the USB side to the development PC’s USB port.

2. Connect the USB A (male) to Mini-B cable to P1 on the development board and con-
nect the other end to a PC’s USB port to apply power to the development board.

3. Download AN0416-SC01.zip from zilog.com and extract the source code files.

4. From the File menu, select Open Project… to open the ZDS II Z8 Encore v5.2.2 (or
later) IDE.

5. Navigate to the extracted folder, select the AN0416.zdsproj project and click Open
to open the project.

6. From the Build menu, select Rebuild All to rebuild the project.

7. From the Debug menu, select Download Code to load the program to the MCU.

8. After programming is complete, from the Debug menu, select Stop Debugging.

9. Remove the USB A (male) to Mini-B cable to remove power from the board.

Note:
AN041601-0418 Page 11 of 14

http://www.zilog.com/docs/appnotes/AN0416-SC01.zip
www.zilog.com

USB HID Keyboard Using the Z8F6482 MCU
Application Note
10. Disconnect the USB Smartcable from the DBG terminal of the development board.

Running the Application
1. Ensure that code is programmed onto the development board by following the steps in

the Downloading Code to the Z8F6482 Development Board section.

2. Connect a 4 x 5 keypad matrix to the development board as shown in Figure 5.

3. (Optional) Attach the RS232 to 6-pin circuit adapter to J20 of the development board
to connect the board to a PC via serial port.

– Open Realterm (or any other terminal application) and set its baud rate 57600 bps.

4. Connect the USB A (male) to Mini-B cable to P1 on the development board and con-
nect the other end to a PC’s USB port to apply power to the development board and
provide a USB connection to the PC.

After the Development Board with the USB cable is connected to the PC, wait for about
6–10 seconds before opening up the port in the RealTerm terminal.

5. Wait until Windows detects the new keyboard. If using Realterm, the message HID
keyboard ready! appears, indicating that Windows is ready to receive inputs from the
new keyboard.

6. Open a text-editing program such as Microsoft Notepad and begin typing by pressing
a switch from the keypad matrix.

7. Observe how each character is typed into Notepad.

To reset the application, prior to pressing the SW2 reset button on the Development
Board,ensure that you close the RealTerm terminal port first by clicking the Open button
on the Port tab and clearing the display. Then, press the SW2 reset button and wait 6–10
seconds before opening the RealTerm port again.

Note:

Note:
AN041601-0418 Page 12 of 14

USB HID Keyboard Using the Z8F6482 MCU
Application Note
Summary

By modifying the descriptors presented in the Z8F6482 MCU USB Peripheral Application
Note (AN0411), the Z8F6482 development board is able to function as an HID keyboard.

References

The following documents are associated with this Application Note:

• Z8 Encore XP F6482 Series Product Specification (PS0294)

• Z8 Encore XP F6482 Series Development Kit User Manual (UM0263)

• Universal Serial Bus Specification Rev 2.0 (http://www.usb.org/developers/docs/
usb20_docs/)

• Device Class Definition for Human Interface Devices (HID), version 1.11 (http://
www.usb.org/developers/hidpage/)

• HID Usage Tables version 1.12 (http://www.usb.org/developers/hidpage/)
AN041601-0418 Page 13 of 14

http://www.zilog.com/docs/devtools/um0263.pdf
http://www.usb.org/developers/hidpage/
http://www.usb.org/developers/hidpage/
http://www.usb.org/developers/hidpage/
http://www.zilog.com/docs/PS0294.pdf
http://www.usb.org/developers/docs/usb20_docs/#usb20spec
http://www.usb.org/developers/docs/usb20_docs/#usb20spec
http://www.zilog.com/docs/appnotes/AN0411.pdf
http://www.zilog.com/docs/appnotes/AN0411.pdf

USB HID Keyboard Using the Z8F6482 MCU
Application Note
Customer Support

To share comments, get your technical questions answered, or report issues you may be
experiencing with our products, please visit Zilog’s Technical Support page.

To learn more about this product, find additional documentation, or to discover other fac-
ets about Zilog product offerings, please visit the Zilog Knowledge Base at http://
zilog.com/kb or consider participating in the Zilog Forum at http://zilog.com/forum.

This publication is subject to replacement by a later edition. To determine whether a later
edition exists, please visit the Zilog website at http://www.zilog.com.

DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.

LIFE SUPPORT POLICY

ZILOG’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)
support or sustain life and whose failure to perform when properly used in accordance with instructions for
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A
critical component is any component in a life support device or system whose failure to perform can be
reasonably expected to cause the failure of the life support device or system or to affect its safety or
effectiveness.

Document Disclaimer

©2018 Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications,
or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES
NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO
DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED
IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED
HEREIN OR OTHERWISE. The information contained within this document has been verified according
to the general principles of electrical and mechanical engineering.

Z8 Encore! XP is a trademark or registered trademark of Zilog, Inc. All other product or service names are
the property of their respective owners.

Warning:
AN041601-0418 Page 14 of 14

http://www.zilog.com/docs/PS0325.pdf
https://www.zilog.com/index.php?option=com_product&task=tech_support&Itemid=88
http://zilog.com/kb
http://zilog.com/kb
http://zilog.com/forum
http://www.zilog.com

	Application Note: USB HID Keyboard Using the Z8F6482 MCU
	Abstract
	Features
	Discussion
	Endpoints
	HID Class Configuration Descriptor

	HID Descriptor and HID Report Descriptor
	Hardware Design
	Firmware Design
	HID Device Class Driver

	Equipment Used
	Testing and Demonstrating the Application
	Downloading Code to the Z8F6482 Development Board
	Running the Application

	Summary
	References
	Customer Support

