
AP95KEY0200 1

Z8602/14/15/C15/E23 KEYBOARD MICROCONTROLLERS
CONTROL A 101/102 PC/KEYBOARD – APPLICATION NOTEZILOG

can codes, line status modes, key bounce, make/break status, scan timing...
the Microcontroller does all this and much more.S

Z8602/14/15/C15/E23 MICROCONTROLLERS
CONTROL A 101/102 PC/KEYBOARD

INTRODUCTION

Zilog has continuously provided cost-effective solutions
for the keyboard controller market. Design time to
production is dramatically shortened by Zilog's easy-to-
use development tools, source code availability, and steady
relationships with major manufacturers that assist in defining
the product line feature set.

Zilog provides the following microcontrollers dedicated to
keyboard operation: Z8602, Z8614, Z8615, Z86C15, and
the Z86E23. The Z86E23 provides prototyping capability

for the 101/102 keyboard environment; the Z8614,
compared to the Z8602, provides additional ROM space
for an expanded feature set; and the Z8615/C15 provides
integration of external componentry.

These microcontrollers are designed into a PC keyboard to
control all scan codes, line status modes, scan timing, and
communications between the keyboard and PC. This
application note depicts a typical method of interfacing a
standard keyboard to an PC XT/AT.

KEYBOARD OVERVIEW

The 101/102 PC/Keyboard includes the following: 101/102
keypads, Zilog microcontroller, 3 LED indicators (for Num,
Caps, and Scroll) for lock status, selection switch for
PC/XT, and a cable between PC and keyboard. The cable

Figure 1. PC Keyboard 101/102 and 5-Pin Cable Connector

1
4

2
5

3

DIN Signal Signal
Pins Name Type

1 +KBD CLK I/O

2 +KBD Data I/O

3

4 GND Power

5 +5.0 V
DC

Power
SHIELD Frame GND

provides a 5V power supply, common ground, and bi-
directional Data and Clock lines for serial data
communications (see Figure 1).

Gayle Gamble
AN008701-0301

2 AP95KEY0200

Z8602/14/15/C15/E23 KEYBOARD MICROCONTROLLERS
CONTROL A 101/102 PC/KEYBOARD – APPLICATION NOTEZILOG

KEYBOARD OVERVIEW (Continued)

PC/Keyboard Overall Flow Chart

The overall flow chart in Figure 2 shows three different
diagrams involving the main program loop, keyboard scan
and make/break code generation, and the PC/Keyboard
communication. The following text explains the basic
program flow.

Main Program Loop
Upon reset, a Basic Assurance Test on the RAM, Keyboard,
and ROM is enabled. The parameters start, and test data
transfers between the CPU and RAM, Keyboard and ROM.
If there is no error detection, RAM receives the default
values and the initialization testing is complete.

Keyboard Scan and Make/Break Code Generation
This program executes every 4.17 milliseconds (ms). If
there is a current communication, the flow bypasses and
returns to the main program. If there is no current
communication and Key Scan (KEY_IRQ) is enabled, the
main process for six buffering bounce elimination in make
or break setup, goes active.

Lock Status indicators are monitored and then Make/
Break case examined. A decision determines which case
is active. The active case tests for six keys. If it is the Make
case and is Typematic, the Make Code Generation
parameters execute. If it is a Break case, the flow returns
to the main program.

Communication Between PC and Keyboard
Communication between the PC and the keyboard executes
every 250 microseconds (µs). When there is an active
COM_IRQ but a positive Communication Inhibit, the flow
returns to the main program. If there is an active COM_IRQ
and no Communication Inhibit and there is a request from
the PC, the Receive Data/Command activates. Depending
upon whether it is a new command, optional data, or send
Resend, the pertinent logic goes active and the flow
returns to the main program.

When there is no request from the PC, but there is current
communication, the flow jumps to the Resend Mode. If the
Resend Mode is active, the last data is sent and then flow
returns to the main program. If the Resend Mode is
inactive, the flow jumps to Transmit Data/Ack. If there is no
more communication, the flow returns to the main program.
If there is more communication, the remaining commands
execute and the flow returns to the main program.

When there is a COM_IRQ but no communication inhibit or
request from the PC, and not during communication, the
FIFO Key Buffer is checked. If it is empty, the flow returns
to the main program. If not empty, one byte is sent from the
FIFO Key Buffer and one byte shifts. The flow then returns
to the main program.

Scratch Pad RAM Map

Table 1 describes the RAM map. The table shows the
function name, RAM address, bit position, bit name, and
descriptions for all map functions.

Gayle Gamble
AN008701-0301

AP95KEY0200 3

Z8602/14/15/C15/E23 KEYBOARD MICROCONTROLLERS
CONTROL A 101/102 PC/KEYBOARD – APPLICATION NOTEZILOG

Figure 2. PC/Keyboard Program Flow Chart

(1) Main Program Loop

Reset

(2) Keyboard Scan and Make/Break
Code Generation
(executed every 4.17 millisecond)

While
Communication?

Delay Time Setting

Break Case?

Typematic Case?

Time to Generate?

(3) Communication Between
PC and Keyboard
(executed every 250 microsecond)

Communication
Inhibit?

While
Communication?

Return

Return

Transmit Data/Ack

Return

Execute each command

End of
Communication?

New Command?

Receive Data/Command

Return

Send RESEND command

Return

Receive Command/Data

Option data?

Transmit the last data

Shift one byte of FIFO
Key Buffer

Transmit one byte from
FIFO Key Buffer

FIFO Key Buffer
empty?

Request from
IBM?

Basic
Assurance

Test

RAM test &
Initialization

Keyboard
Input port test

ROM
Checksum test

Default value
Set in RAM

Z8 Parameter
Initialization

EI

Key Scan
Enable?

Keyboard Scan
6 keys buffering

Bounce Elimination
Make/Break Set-up

Lock Status
Indicator Outputs

Case Status Detection

Make_Code Generation

Case Status Detection

Break_Code Generation

6 Keys Tested?

Delay & Rate Counting

Make_Code Generation

Return

Make Case?

KEY_IRQ COM_IRQ

Resend
Mode?

yes

no

yes

no

no

no

yes

yes

yes

no

yes

no

yes

yes

yes

no

yes

yes

yes

no

no

yes

no

no

no

no

yes

Gayle Gamble
AN008701-0301

4 AP95KEY0200

Z8602/14/15/C15/E23 KEYBOARD MICROCONTROLLERS
CONTROL A 101/102 PC/KEYBOARD – APPLICATION NOTEZILOG

KEYBOARD OVERVIEW (Continued)

Table 1. Scratch Pad RAM Map

Gayle Gamble
AN008701-0301

AP95KEY0200 5

Z8602/14/15/C15/E23 KEYBOARD MICROCONTROLLERS
CONTROL A 101/102 PC/KEYBOARD – APPLICATION NOTEZILOG

Figure 3. Keyboard Scan Timing

The key bounce ends by detecting the key pressing two
times using the scanning method. The detected key
converts to a key matrix number through the row and
column data appearing in Figure 4a (Z8602/14/E23), Figure
4b (Z8615/C15), and Figure 5. (The key matrix number is
the index address of the Scan code, as shown in Table 2.)
This process repeats until all six keys fill the buffer. When
the key is detected twice, Make code status sets; when the
key releases twice, Break code status sets.

Key Detection
The converted key matrix number and the initial bounce
data store in one of the empty KEY_DATA and KEY_STATUS
registers, respectively, just after detecting the key. When
the key is detected once (bounce=2), it is decremented at
Make Detection to establish one bounce detection
(bounce=1). The loop continues until the key is detected
twice. When detected twice, the bounce bit is three
(bounce=3) until the generation of the Make scan code.
Then the bounce bits change to six (bounce = 6) in the
Make/Break scan code generation module.

The key detection loop continues (loop from bounce=5,
bounce=7, bounce=6) until two key release detections
(from bounce=6 to bounce=5). The bounce bit is set to four
(bounce=4) when the key release is detected two times.
The number is stored until generation of the Break scan
code, then it is reset to zero in the Make/Break module. The
first six keys generate the Make scan code and Break scan
code when multiple keys are pressed. Concurrently, the
rest of the keys are ignored. (Refer to Figure 6, which
illustrates the Make and Break scan code process.

KEYBOARD CODE GENERATION

The three program modules required to implement keyboard
code generation are Keyboard Scanning, Scan Code
Generation, and Make/Break/Typematic Timing Control.
The modules are serviced by the Timer 1 interrupt. Each of
these modules are briefly summarized below and are fully
explained in the subsections that follow.

Keyboard Scanning
The keyboard scanning module cuts key bounce for both
press and release, configures the First-In-First-Out (FIFO)
buffer for a maximum of six keys, and allows time to
generate both Make code and Break code.

Make/Break Scan Code Generation
The Make/Break scan code generation module transfers
Make scan code and Break scan code into the FIFO buffer
via several ROM tables.

Make/Break/Typematic Timing Control
The Make/Break Typematic timing control module checks
the current key status for up to six keys; it also sets up the
timing for Make Code, Break Code, and Typematic delay
and rate.

Keyboard Scanning

The keyboard has three Key Scan Code Sets: Scan Code
Set 1, which uses PC/XTs; Scan Code Set 2, which uses
PC/ATs; and Scan Code Set 3, which is similar to Scan
Code Set 2 except for the different Typematic, Make, and
Make/Break defaults (refer to Table 2). Unlike Scan Code
Set 2, Scan Code Set 3 is enabled by software. The initial
status of the Scan Code Set is specified by the selection
switch. Scan Code Set 1 activates when the switch closes;
Scan Code Set 2 is selected if it is open.

The keyboard contains 101/102 keypads. All keypads are
scanned every 4.17 ms by the keyboard controller. The
microcontroller handles a maximum of six keys concurrently
by means of the key bounce process and case conditions.
(If more than six keys are pressed concurrently, they are
ignored.) Quick multiple key passing for the first six keys
generate the scan codes.

The key scanning is done from column output 15 toward
column output 0 by keeping one of the column outputs at
a low level and the remaining outputs at a high level.
Whenever a low level output sets on one of the column
ports, eight row inputs are tested 20 µs later. The timing
chart of keyboard scanning is illustrated in Figure 3.

Column 15

Column 14

Column 13

Column 12

Column 1

Column 0

4.17 milliseconds

Gayle Gamble
AN008701-0301

6 AP95KEY0200

Z8602/14/15/C15/E23 KEYBOARD MICROCONTROLLERS
CONTROL A 101/102 PC/KEYBOARD – APPLICATION NOTEZILOG

KEYBOARD OVERVIEW (Continued)

21 COL0

22 COL1

23 COL2

24 COL3

25 COL4
26 COL5

27 COL6

28 COL7

P10

P11
P12

P13

P14

P15

P16

P17

13 COL8

14 COL9

15 COL10

16 COL11

17 COL12
18 COL13

19 COL14

20 COL15

P00

P01
P02

P03

P04

P05

P06

P07

5 ROW0

39 ROW1

33 ROW2

30 ROW3

35 ROW4
36 ROW5

37 ROW6

38 ROW7

P30

P31

P32

P33

P24

P25

P26

P27

+5V

VSS

82K x 8

P23

VCC

XTAL1

XTAL2

22 µF 0.1 µF
1

3

2
2-4 MHz

/RESET

1 µF

6

47K

11

P34

P35

P36

29

P20

P21

ROMLESS

Scroll Lock 330 Ω

Num Lock 330 Ω

Caps Lock 330 Ω

10

40
+5V

32

31

2.2K

2.2K

CLOCK

DATA

NC

34

GND

82K
Close = PC/XT mode
Open = PC/AT mode

+5V

100 pF

Figure 4a. Z8602/14/E23 Schematic Diagram for the Keyboard

Gayle Gamble
AN008701-0301

AP95KEY0200 7

Z8602/14/15/C15/E23 KEYBOARD MICROCONTROLLERS
CONTROL A 101/102 PC/KEYBOARD – APPLICATION NOTEZILOG

Integration of the Z8615/C15
The Z8615/C15 generation keyboard microcontroller
integrates pull-up resistors used on the scan, and Clock
and Data lines. Direct drive LED ports are provided along
with a cost saving RC oscillator option. The Watch-Dog
Timer (WDT) provides added operational reliability in the
various environments of the keyboard. The Z8615/C15
provides 4K bytes of ROM and 124 bytes of RAM.

The Z86C15, in particular, is a CMOS part, so less power
is consumed in Normal mode. Additionally, the Z86C15

can be put in STOP mode, where the power savings is even
more dramatic.

The Figure 4b. represents the integrated diagram of the
Z8615/C15 Keyboard implementation. Direct LED drive
ports, direct-connect Row/Scan lines, direct-connect PC
communication, and the RC oscillator option reduces the
component count significantly.

1%
Precision
Resistor

VCC
XTAL 1

XTAL 2

/WDTOUT

/RESET

P34

P35

P36

P26

P27

P24

VSS

Scroll Lock

Num Lock

Caps Lock

CLOCK

DATA

GND

Close = PC/XT mode
Open = PC AT mode

0.1 µF

3

2

9

6

29

10

40

1

+5V

37

38

11

35

P10 21 COL0
P11 22 COL1
P12 23 COL2
P13 24 COL3
P14 25 COL4
P15 26 COL5
P16 27 COL6
P17 28 COL7

P20 31 COL8
P21 32 COL9
P22 33 COL10
P23 34 COL11
P04 17 COL12
P05 18 COL13
P06 19 COL14
P07 20 COL15

P00 13 ROW0
P01 14 ROW1
P02 15 ROW2
P03 15 ROW3
P30 5 ROW4
P31 39 ROW5
P32 12 ROW6
P33 30 ROW7

Z8615

101/102-key
Keyboard

Figure 4b. Z8615/C15 Schematic Diagram for the Keyboard

Gayle Gamble
AN008701-0301

8 AP95KEY0200

Z8602/14/15/C15/E23 KEYBOARD MICROCONTROLLERS
CONTROL A 101/102 PC/KEYBOARD – APPLICATION NOTEZILOG

KEYBOARD CODE GENERATION (Continued)

Table 2. Scan Code Set

Gayle Gamble
AN008701-0301

AP95KEY0200 9

Z8602/14/15/C15/E23 KEYBOARD MICROCONTROLLERS
CONTROL A 101/102 PC/KEYBOARD – APPLICATION NOTEZILOG

Table 2. Scan Code Set (Continued)

Gayle Gamble
AN008701-0301

10 AP95KEY0200

Z8602/14/15/C15/E23 KEYBOARD MICROCONTROLLERS
CONTROL A 101/102 PC/KEYBOARD – APPLICATION NOTEZILOG

KEYBOARD CODE GENERATION (Continued)

Figure 5. 101/102 Keyboard Matrix

58

64

44

57

ROW7

ROW0

ROW1

ROW2

ROW3

ROW4

ROW5

ROW6

29

42 45

101-Key Keyboard only

102-key Keyboard only

110

16

1

2

17

31

46

30

112

3

18

32

47

115

114

113

4

19

33

48

35

21

6

5

20

34

49

36

22

7

8

23

37

52

116

15

120

121

43

118

119

10

25

39

54

117

28

13

9

24

38

53

41

27

12

11

26

40

92

76

122

91

93

90

99

97

75

123

96

98

95

104

102

85

86

101

103

100

83

81

106

108

126

COL0 COL1 COL2

50 51 61

COL3 COL4 COL5 COL6 COL7 COL8 COL9 COL10 COL11 COL12 COL13 COL14

60

124

125

COL15

55 84 89 105 79 62

80

45

29

42

Gayle Gamble
AN008701-0301

AP95KEY0200 11

Z8602/14/15/C15/E23 KEYBOARD MICROCONTROLLERS
CONTROL A 101/102 PC/KEYBOARD – APPLICATION NOTEZILOG

Figure 6. Key Detection

bounce = 0

bounce = 2

bounce = 1

No key detection

Key detected once

Decremented at break detection

Key detected twice

Make Scan Code Generation

Data is sent to PC

No key
detection

Decremented
at break detection

bounce = 6

bounce = 7

bounce = 5

No key
detection

bounce = 3

Key detected

Key detected

No key detected

Break Scan Code Generationbounce = 4

Data is sent to PC

Gayle Gamble
AN008701-0301

12 AP95KEY0200

Z8602/14/15/C15/E23 KEYBOARD MICROCONTROLLERS
CONTROL A 101/102 PC/KEYBOARD – APPLICATION NOTEZILOG

KEYBOARD CODE GENERATION (Continued)

Bounce counter

RIGHT_CASE

LEFT_CASE

CTRL_CASE

ALT_CASE

NUM_LOCK2

D7 D6 D5 D4 D3 D2 D1 D0

KEY_STATUS 1

Key number

6 Key Buffers

D7 D6 D5 D4 D3 D2 D1 D0

KEY_DATA 1

D7 D6 D5 D4 D3 D2 D1 D0

KEY_STATUS 6

D7 D6 D5 D4 D3 D2 D1 D0

KEY_DATA 6

Keyboard Buffer
Six pairs of working registers (KEY_STATUS and
KEY_DATA) are manipulated in the keyboard scanning
program. The key bounce is handled in the bounce counter
of KEY_STATUS (Figure 7).

Figure 7. Six Pairs of Key Buffers

FIFO Dynamics
The overrun code appears at the last position of the buffer.
When the full 16 bytes of scan code are in the FIFO buffer
and a further scan code appears, the overrun code goes
into the 17th byte of the last occupied buffer register. This
produces an audible “beep” warning. The FIFO buffer
pointer points to the working register plus one. Therefore,
if there are no scan codes available in the buffer, the
pointer is the same address as the top of the FIFO buffer.
The keyboard buffer only contains the scan codes and
does not include any commands from the PC or
acknowledges any data.

Make/Break Scan Code Generation

Each keypad sends multiple data bytes to the PC under the
control of the keyboard controller. There are two kinds of
Scan codes: Make scan code and Break scan code. The
Make scan code is sent to the PC when the key is pressed;
Break scan code is sent when the key releases. Additionally,
these keys are Typematic, which means that when a key is
pressed and held down, the keyboard sends the Make
scan code with a particular delay and rate. The typematic
delay and rate are specified by the F3H command sent by
the PC.

Macro Description
The system has one macro command to expand one byte
of Make code to multiple scan codes. The macro is
data_gen. The macro structure appears in Figure 8.

After getting one byte of Make code, the data_gen macro
command expands to multiple scan codes. The data_gen
macro contains a total number of bytes generated (lower
four bits) minus the offset value. This offset value addresses
a byte that is XORed with a Make-Byte code and other
generated data bytes.

The previously kept “index address” indicates the entry
point of the data_gen macro command when the data is
generated for Break code. If it is generated for Make code,
then the index address is decremented by one and the
ROM data at the address is read to specify the entry
pointer for the Make code generation.

total number of
byte generated

offset address
of data placed

1st data byte for scan code

2nd data byte for scan code

9th data byte for scan code

Macro structure of data_gen

o o o o o o o o o o o o o o o

+ XORed

One byte of Make Code

(4-bit) (4-bit)

2nd data byte for scan code

Figure 8. Macro Structure of Data_Attr and
Data_Gen

Gayle Gamble
AN008701-0301

AP95KEY0200 13

Z8602/14/15/C15/E23 KEYBOARD MICROCONTROLLERS
CONTROL A 101/102 PC/KEYBOARD – APPLICATION NOTEZILOG

Multiple Scan Codes
The multiple scan codes are stored into a 16-byte First-In-
First-Out (FIFO) buffer until the PC is ready to receive them.
A buffer-overrun condition occurs when more than 16
bytes remain in the FIFO buffer. This FIFO uses 16 general-
purpose registers.

Generating Multiple Scan Codes
The following steps explain how multiple scan codes are
generated.

1. Get data for the total number of bytes generated (lower
four bits of first byte).

2. Temporarily store the offset address, which shows the
position to be XORed with a Byte-Make code.

3. Store all the bytes from the ROM table to the FIFO
buffer while incrementing the FIFO_SIZE and the ROM
address pointer.

4. Subtract the offset address from the temporary register
containing the same value of FIFO_SIZE. Change the
FIFO data by taking the XOR with the Byte-Make code.

Multiple Scan Code Organization
The multiple scan code generation starts from conversion
of a key matrix number that points at the Key Matrix Table.
The Key Matrix Table has the index address offset of the
Scan Code Table. The Scan Code Set Table contains all
Make Code keys. The Scan Code Table Map organization
is shown in Table 2 and Figure 10.

Typematic Attribute
The Scan Code Set 3 is similar to Scan Code Set 2. It is the
scan_code set flag (1=Scan Code 1, 2 = Scan Code Set
2, and 3 = Scan Code Set 3), which specifies the Scan
Code Table to use. If the scan_code_ set flag is 3 (Scan
Code Set 3), its data checks for typematic *attributes. The
typematic attribute for scan codes (addresses 7-83H) store
in the scratch pad RAM. The four typematic attributes
include; Typematic, Make/Break, Make and Typematic/
Make/Break. To select one of the attributes, two bits
decode to determine which one of the four attributes to
use.

Phantom Keys
If the key matrix number is none of the valid keys, it is
designated the "Phantom" key. The Phantom key is the
result of multiple keypads depressed concurrently. The
Phantom key is zero in the Keyboard Matrix. If the
microcontroller sees a zero from the Key Matrix Table, it
sends no code to the PC. (Data conversion for Phantom
key is ignored.)

Make/Break/Typematic Timing Control

Make Code Timing Control
The Make scan code is generated when the bounce bits of
KEY_STATUS is three. Then, the delay timer is calculated
by using the TYPEMATIC_RATE register (see Figure 9)
and sets to one of the periods: 250 ms, 500 ms, 750 ms, or
1 second. The keys for the left/right shift case, control case,
and alternate case test to hold the current key configuration
case. The Num Lock, Caps Lock, and Scroll Lock status
cases are stored in three of the six KEY_STATUS registers
to keep the same pair of Make and Break codes for each
key. The Make scan code is stored in the FIFO keyboard
buffer. The lock status transfers back from the PC soon
after the key scan code transmits.

Rate bits

D7 D6 D5 D4 D3 D2 D1 D0

TYPEMATIC_RATE

Delay bits

0

Pointer for KEY_DATA

D7 D6 D5 D4 D3 D2 D1 D0

TYPEMATIC

D7 D6 D5 D4 D3 D2 D1 D0

KEY_TYPE

Key Attribute

All 0

Figure 9. Key Control Registers

Gayle Gamble
AN008701-0301

14 AP95KEY0200

Z8602/14/15/C15/E23 KEYBOARD MICROCONTROLLERS
CONTROL A 101/102 PC/KEYBOARD – APPLICATION NOTEZILOG

SCAN CODE SET 1 SCAN CODE SET 2&3

SET 2 AND 3SET1

89

92

93

103

104

SET 3 SET 2

65

0

NORMAL CASE

KEY #62, 64, 108

KEY #95

KEY #75-89

KEY #124

KEY #126

KEYBOARD CODE GENERATION (Continued)

Figure 10. Scan Code Table Map

Gayle Gamble
AN008701-0301

AP95KEY0200 15

Z8602/14/15/C15/E23 KEYBOARD MICROCONTROLLERS
CONTROL A 101/102 PC/KEYBOARD – APPLICATION NOTEZILOG

Make/Break/Typematic Timing Control

The current pointer of KEY_DATA stores in the TYPEMATIC
pointer register to generate Make scan code when
typematic time-out occurs. When the Make code is
generated, two flag bits in the KEY_TYPE register are set
to determine the key attributes: Make-Typematic-Break
(00), Make-Typematic (01), Make-Break (10) and Make
only (11).

Break Code Timing Control
Code is generated when the bounce bits of KEY_STATUS
are set to four, which means the key is released. The
TYPEMATIC pointer register is reset when the current
typematic key releases. The case key tests and the case
flag is reset when released. Then, Break code is stored in

the FIFO keyboard buffer and KEY_DATA plus
KEY_STATUS reset to show an empty key. This procedure
repeats for the six KEY_STATUS registers.

Typematic Code Timing Control
To generate typematic code, the key attribute tests to be
sure the key is typematic. If the current TYPEMATIC pointer
is not zero, the typematic process is carried out. The delay
timer decrements every 4.17 ms. When it reaches 0, there
is Make code generation. Once the delay timer sets to 0,
the rate timer takes over the typematic code generation,
which continues whenever the rate timer decrements to 0.
The rate timer than reloads from the TYPEMATIC_RATE
register (see Figure 11).

after key scan

Delay Time Setting

Bounce = 3?

Delay & Rate Counting

Make Scan Code Generation

Case Status Detection

end

Case Status Detection

Break_Code Generation

Typematic Key?

6 Keys tested?

no

no

Bounce = 4?

yes

yes

Time to Generate?

yes

no

no

yes

yes

no

Make Scan Code Generation

Make Scan Code Generation

Figure 11. Flow Chart to Make/Break/Typematic Timing

Gayle Gamble
AN008701-0301

16 AP95KEY0200

Z8602/14/15/C15/E23 KEYBOARD MICROCONTROLLERS
CONTROL A 101/102 PC/KEYBOARD – APPLICATION NOTEZILOG

KEYBOARD MICROCONTROLLER CONTROL AND INTERFACE

The following subsections define the parameters and
explain the control and interfacing of the microcontroller
(located in the keyboard) to the PC.

Pin Descriptions and Assignments

Figure 12 and Table 3 show the pin assignment and pin
descriptions, respectively. Figure 13 shows the
communications format between the PC and the keyboard.

Communication Between the PC and
Keyboard

Before the keyboard microcontroller drives the keyboard
Clock and Data lines, it sets both lines to a high level to
check the current line status. The three line status modes
between the PC and the keyboard are the following:

■ Two-way communication between Keyboard and PC
if both Clock and Data lines are high

■ PC sends to Keyboard if Data line is low

■ PC inhibits communication if Clock is low

The PC always drives the Clock and inhibits the
communication by forcing the Clock line to a low level
(inactive level), which keeps the keyboard from sending
any data packet and from generating Clock pulses during
this stage.

Once the Clock line releases high (active level), the
keyboard has to check the Data line. When the Data line is
inactive, the PC requests to send the serial data to the
keyboard. The keyboard has to send serial Clock streams
to receive the data packet from the PC. When both data
and Clock lines are active, the keyboard sends the scan
codes to the PC at any time.

Serial Data Stream
The serial data bit stream consists of 11 bits, which include
a start bit, 8 data bits, odd parity bit, and a stop bit. When
bit stream sends data to the PC, all the data bits are
guaranteed while the Clock line is low. The data changes
during a high level of the Clock line. When the bit stream
arrives from the PC, the data fetches at the leading edge
of the Clock. After the stop bit detects high, the KBC forces
the Data line to a low level for one bit period. The start bit
is always low and the stop bit is high. The 8-bit data
transmits from the least significant bit (LSB). The odd parity
bit means that the number of 1s for the data bit and the
parity bit must be odd all the time.

Gayle Gamble
AN008701-0301

AP95KEY0200 17

Z8602/14/15/C15/E23 KEYBOARD MICROCONTROLLERS
CONTROL A 101/102 PC/KEYBOARD – APPLICATION NOTEZILOG

/RESET
Z8602/14/15/

15C/E23

1

2

3

4

5

6

7 * **

+5V

XTAL2

P37

P30

N/C

N/C

14

10

11

12

13

XTAL1

GND

P32

P00

P01

15

20

16

17

18

19

N/C

P35

P02

P03

P06

P07

P05

P04

40

39

38

37

36

35

34

33

32

P36

P31

P21

P27

P26

P25

P24

P23

P22

31

30

29

28

27

P20

P33

P34

P17

P16

26

25

24

23

22

21

P13

P15

P14

P12

P11

P10

* Pin 7&8 are used for test
purposes and must be floating pins.

**For the Z8615/15C: Pin 7 = AGnd
**For the Z8615/15C: Pin 9 = Watch-Dog Timer (WDT) Output

8 *

9 **

Figure 12. Pin Assignments

Gayle Gamble
AN008701-0301

18 AP95KEY0200

Z8602/14/15/C15/E23 KEYBOARD MICROCONTROLLERS
CONTROL A 101/102 PC/KEYBOARD – APPLICATION NOTEZILOG

KEYBOARD MICROCONTROLLER CONTROL AND INTERFACE (Continued)

Table 3. Pin Assignments

Pin No. I/O Pin Description

+5V 1 IN +5V Power Supply
GND 11 IN Common Ground
XTAL2 2 OUT 8 MHz Ceramic Resonator
XTAL1 3 IN 8 MHz Ceramic Resonator
RESET 6 IN Reset Input (active Low)

N/C 7* N/C No Connection
N/C 8 N/C No Connection
N/C 9* N/C No Connection
ROMless 12 IN, PUR ROMless Selection (=GND)

P00 13 OUT,OD Column 8 Low Output Scan Line
P01 14 OUT,OD Column 9 Low Output Scan Line
P02 15 OUT,OD Column 10 Low Output Scan Line
P03 16 OUT,OD Column 11 Low Output Scan Line
P04 17 OUT,OD Column 12 Low Output Scan Line

P05 18 OUT,OD Column 13 Low Output Scan Line
P06 19 OUT,OD Column 14 Low Output Scan Line
P07 20 OUT,OD Column 15 Low Output Scan Line
P10 21 OUT,OD Column 0 Low Output Scan Line
P11 22 OUT,OD Column 1 Low Output Scan Line

P12 23 OUT,OD Column 2 Low Output Scan Line
P13 24 OUT,OD Column 3 Low Output Scan Line
P14 25 OUT,OD Column 4 Low Output Scan Line
P15 26 OUT,OD Column 5 Low Output Scan Line
P16 27 OUT,OD Column 6 Low Output Scan Line

P17 28 OUT,OD Column 7 Low Output Scan Line
P20 31 IN/OUT,OD Data line for PC Communication
P21 32 IN/OUT,OD Clock line for PC Communication
P22 33 IN Row 2 Input Scan Line
P23 34 IN PC/XT or AT (=high) Selection

P24 35 IN Row 4 input Scan Line
P25 36 IN Row 5 input Scan Line
P26 37 IN Row 6 input Scan Line
P27 38 IN Row 7 input Scan Line
P30 5 IN Row 0 input Scan Line

P31 39 IN Row 1 input Scan Line
P33 30 IN Row 3 input Scan Line
P34 29 OUT Scroll Lock Indicator
P35 10 OUT Num Lock Indicator
P36 40 OUT Caps Lock Indicator
P37 4 N/C No Connection

Notes:
IN = Input Port
PUR = Pull-up Resistor
OUT = Output Port
OD = Open-Drain Output
N/C = No Connection
* For the Z8615/C15 only: Pin7 = AGnd; Pin 9 = WDT Output.

Gayle Gamble
AN008701-0301

AP95KEY0200 19

Z8602/14/15/C15/E23 KEYBOARD MICROCONTROLLERS
CONTROL A 101/102 PC/KEYBOARD – APPLICATION NOTEZILOG

Serial Data Communication from PC to Keyboard

Three kinds of data are handled between the keyboard
and the PC:

■ Command and Acknowledge

■ Optional Data

■ Key Scan Code from the Keyboard FIFO Buffer

The command reception has the highest priority of the
data communication. A new command always overrides
to the old command even during communication. The PC
starts the command transfer by lowering the Data line.
Then, the microcontroller sends eleven Clock pulses to
receive the serial data packet from the PC. When the data
arrives, the microcontroller sends an acknowledge (0FAh).
The optional data arrives or departs after sending the
acknowledge. The key scan code only sends from the
keyboard FIFO buffer when no data is coming from the PC.

Figure 13. Data Communication Format Timing Between Microcontroller/PC

Gayle Gamble
AN008701-0301

20 AP95KEY0200

Z8602/14/15/C15/E23 KEYBOARD MICROCONTROLLERS
CONTROL A 101/102 PC/KEYBOARD – APPLICATION NOTEZILOG

KEYBOARD MICROCONTROLLER CONTROL AND INTERFACE (Continued)

Table 4. Commands Between the Keyboard and the PC

Name Hex Values Function

STATUS_IND ED,ACK,XX,ACK Set/Reset Lock Status indicators
ECHO EE,EE (=ACK) Echo Command
ALT_SCAN F0,ACK,XX,ACK Select Alternate Scan Codes
TYPE_RATE DELAY F3,ACK,XX,ACK Set Typematic Rate/Delay
ENABLE F4,ACK Enable Key Scanning
DISABLE F5,ACK Default Disable

SET_DEFAULT F6,ACK Set Default Value
ALL_MAKE_TYPE F7,ACK Set All Keys - Typematic
ALL_MAKE_BREAK F8,ACK Sent All Keys - Make/Break
ALL MAKE F9,ACK Set All Keys - Make
ALL_M_T_B FA,ACK Set All Keys Typematic/Make/Break

KEY_MAKE_TYPE FB,ACK,XX,ACK Set Key Type - Typematic
KEY_MAKE_BREAK FC,ACK,XX,ACK Set Key Type - Make/Break
KEY MAKE FD,ACK,XX,ACK Set Key Type - Make
RESEND FE Resend Command
RESET FF,ACK,YY Reset Command
READ ID F2 ACK, AB,83 Read ID Command

Notes:
ACK = Acknowledge Data to PC (0FAh)
XX = Received Data from PC.
YY = Result of Basic Assurance Test
AB 83 = ID Number

Gayle Gamble
AN008701-0301

AP95KEY0200 21

Z8602/14/15/C15/E23 KEYBOARD MICROCONTROLLERS
CONTROL A 101/102 PC/KEYBOARD – APPLICATION NOTEZILOG

FIFO_BUFFER1 = 16h

FIFO_BUFFER2 = 1Eh

FIFO_BUFFER3 = 26h

FIFO_BUFFER4 = 25h

FIFO_BUFFER5 = 00h

FIFO_BUFFER6 = 00h

FIFO_BUFFER7 = 00h

FIFO_BUFFER14 = 00h

FIFO_BUFFER15 = 00h

FIFO_BUFFER16 = 00h

o o o o o o o o o o o o o o

(Piling Up FIFO Buffer)

FIFO_SIZE_FIFO_GRP+5

Key number 1
pressed first

Key number 2

Key number 3

Key number 4

Key number 5
pressed last

FIFO_GRP

FIFO_BUFFER0 = 16h

FIFO_BUFFER1 = 1Eh

FIFO_BUFFER2 = 26h

FIFO_BUFFER3 = 25h

FIFO_BUFFER4 = 00h

FIFO_BUFFER5 = 00h

FIFO_BUFFER6 = 00h

FIFO_BUFFER7 = 00h

FIFO_BUFFER14 = 00h

FIFO_BUFFER15 = 00h

FIFO_BUFFER16 = 00h

o o o o o o o o o o o o o o

(Transmitting FIFO buffer)

FIFO_SIZE_FIFO_GRP+4

Shift up one byte

CURRENT_BUFFER0 = 0Eh

Transmit one byte to IBM

FIFO_BUFFER1 = 0Eh

Decrement FIFO_SIZE

Figure 14. Stacking and Sending Status
of Keyboard FIFO Buffer

Gayle Gamble
AN008701-0301

22 AP95KEY0200

Z8602/14/15/C15/E23 KEYBOARD MICROCONTROLLERS
CONTROL A 101/102 PC/KEYBOARD – APPLICATION NOTEZILOG

KEYBOARD MICROCONTROLLER CONTROL AND INTERFACE (Continued)

Command Communication
To do the command communication, use the macro
command com_gen. The com_gen macro contains three
parameters which ensures the number of bytes handled
after command reception, command data, and Jump
address at the end of the communication (see Figure 15).

Whenever Data line goes low (from PC), the microcontroller
receives the data by driving the Clock line eleven times.
The received data is always checked whether or not it is a
new command. The command compares to the Command
data defined in com_gen macro.

If it is a new command, then it is stored in a COMMAND
register. The first parameter of com_gen saves to the
COM_STATUS register. The COM_STATUS shows how
many bytes are handled in the current command. The
acknowledge data (0FAh) sets to COMMAND_BUFFER
and departs in the next Timer0 interrupt.

After that transmission, COM_STATUS decrements by one
and tests for zero. If it is zero, the communication is over
and the program executes by getting a jump address from
the com_gen macro table.

If it is not zero, the communication remains active. The new
command buffer sets to 0 unless the current command is
READ_ID. The command buffer at 0 means data receive;
non-zero means a data transmission to the PC. After the
proper data transfer, the acknowledge data is sent. Now,
each command is executable.

Basic Serial Data Input and Output Drivers

This module includes a parity generation for data
transmission; 11 bits of data transmission with detection of
line contention and 11 bits of data reception with an 11th
bit acknowledge pulse.

Table 5 shows working registers specifying the initial
values used to handle serial data transfers.

Table 5. Serial Data Transfer Working Registers

Register Function

Serial Data Output
CF (carry flag) 0 to set low start bit
serial data hi bit7-1=1 and bit0 = odd parity bit
serial data lo 8 bits data to be transmitted
bit count 11 = number of bit transmitted
serial bit temporary register for P2 I/O port
transmit 0ffh to specify transmit mode
com_delay to set up 80 µsec/bit timing
P2 P2.1 = Clock to make pulse,

P2.0=Data to transmit data

Serial Data Input
CF (carry flag) 1 to set low high output for input mode
serial data hi 0ffh to receive 8 bits data
serial data lo 0ffh to receive 3 bits data
bit_count 11 = number of bits received
serial bit temporary register for P2 I/O port
transmit 0 to specify receive mode
com_delay to set up 80 µsec/bit timing
P2 P2.1 = Clock to make pulse,

P2.0=Data to receive

Gayle Gamble
AN008701-0301

AP95KEY0200 23

Z8602/14/15/C15/E23 KEYBOARD MICROCONTROLLERS
CONTROL A 101/102 PC/KEYBOARD – APPLICATION NOTEZILOG

COM_STATUS=2

COMMAND BUFFER=FAH

COMMAND=type_rate_delayReceived Data = type_rate_delay

Data Receive from IBM PC

compared to
command data
in macro table

Data Transmission to IBM PC

com_gen3 status_ind , jump_status

com_gen1 jmp_echoecho

com_gen3 alt_scan , jmp_alt_scan

com_gen3 type_rate_delay, jmp_rate

com_gen1 reset jmp_reset

com_gen3 read_id jmp_read_ld

o o o o o o o o o o o o o o o o

Command Data Jump Address
Number of byte handled after command reception

COM_STATUS=3

Grab Jump Address
Then Jump

Execute Each Command

COM_STATUS=0

COMMAND BUFFER = FAh

COM_STATUS=1

Option Byte = Received Data

Received Data=Typematic rate

Data Transmission
to IBM PC

store the data

Data Receive from IBM PC

Set Acknowledge

Figure 15. Register Manipulation in Command Communication

Gayle Gamble
AN008701-0301

24 AP95KEY0200

Z8602/14/15/C15/E23 KEYBOARD MICROCONTROLLERS
CONTROL A 101/102 PC/KEYBOARD – APPLICATION NOTEZILOG

KEYBOARD MICROCONTROLLER CONTROL AND INTERFACE (Continued)

After receiving all 11 bits, the serial_data_hi and
serial_data_lo shift right five times to set up 8 bits of data
into serial_data_lo. Now, parity is in bit 0 of serial_data_hi
and is checked by the subroutine of parity_gen
(see Figure 16).

The period of one data bit is 80 µs; the data must change
when the Clock pulse is high. In fact, the switching is done
20 µs after the leading edge of the Clock pulse.

Transmit Mode
In the second mode, line contention is always detected by
the Clock line during a high level. If the Clock line goes low,
the PC drives the line. If line contention appears before the
10th bit transmission, the system immediately quits the
process and sets both Data and Clock lines to high. If
detection occurs after the 10th bit, sending continues until
complete.

Receive Mode
In the Receive mode, the 10th bit tests for high. If high, the
PC sends a low level for the 11th bit period to show an
acknowledge. This means successful data reception from
the PC. Otherwise, the PC sends multiple Clock pulses
until it receives the correct stop bit.

Figure 16. Register Manipulation of
the Serial Data Buffer

Zilog’s products are not authorized for use as critical compo-
nents in life support devices or systems unless a specific written
agreement pertaining to such intended use is executed between
the customer and Zilog prior to use. Life support devices or
systems are those which are intended for surgical implantation
into the body, or which sustains life whose failure to perform,
when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to result in
significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave.
Campbell, CA 95008-6600
Telephone (408) 370-8000
Telex 910-338-7621
FAX 408 370-8056
Internet: http://www.zilog.com

© 1997 by Zilog, Inc. All rights reserved. No part of this document
may be copied or reproduced in any form or by any means
without the prior written consent of Zilog, Inc. The information in
this document is subject to change without notice. Devices sold
by Zilog, Inc. are covered by warranty and patent indemnification
provisions appearing in Zilog, Inc. Terms and Conditions of Sale
only.

ZILOG, INC. MAKES NO WARRANTY, EXPRESS, STATUTORY,
IMPLIED OR BY DESCRIPTION, REGARDING THE INFORMA-
TION SET FORTH HEREIN OR REGARDING THE FREEDOM OF
THE DESCRIBED DEVICES FROM INTELLECTUAL PROPERTY
INFRINGEMENT. ZILOG, INC. MAKES NO WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PURPOSE.

Zilog, Inc. shall not be responsible for any errors that may appear
in this document. Zilog, Inc. makes no commitment to update or
keep current the information contained in this document.

Gayle Gamble
AN008701-0301

