
Copyright ©2008 by Zilog®, Inc. All rights reserved.
www.zilog.com

INTRODUCTION
Zilog's Z80® 8-bit CPU, with its powerful instruc-
tion set, fast execution time and extensively
installed software base, continues to be extremely
popular in today's 32-bit world. The Z80's wide-
spread use includes applications in toys, printers,
faxes, modem, data communications equipment,
and wireless technology.

In today's marketplace, products undergo continu-
ous redesign during their life cycle. New features
are often added in response to competitive pres-
sures. Although it is impossible to design a product
that can be expanded indefinitely, the design
should be open-ended to prevent having to start
over from scratch. Software development is always
the most expensive, and hence the most valuable,
high-risk element of the project's design. For this
reason the engineer must ensure that the processor
is not operating at peak capacity. Being forced to
change a CPU in midstream development due to
software bottlenecks will drive costs up dramati-
cally. Additionally, in real-time embedded applica-
tions, where much of the software is done in
assembly language (processor dependent code), the
cost of making a change will be even more signifi-
cant.

Only three major processor families give the
designer a wide range of performance with
upgrade-compatible instruction: Motorola's 68000/
20/30/40 CPU32 series spans the range of perfor-
mance to 32 bits; Intel's 8068/286/386/ 486/Pen-
tium, and I960 family. The third major processor
family, Zilog's Z80/Z180/Z380, gives the user a
choice of compatible CPUs with 8-, 16-bit bus ver-
sions and a wide selection of peripherals. However,
apart from the selection of processor, other issues
are important when considering the total cost of the

design. These issues include peripheral availability,
time to market, lower power consumption and
development costs.

Zilog's new, high-performance Z380 processor is
designed for today's sophisticated embedded-con-
trol applications. In addition to providing a natural
upgrade path for Z80/Z180 applications, the Z380's
unique architecture makes it ideal for multitasking
embedded-control applications.

The Z380 CPU incorporates advanced architectural
features that allow fast and efficient throughput
and increased memory addressing capability while
maintaining Z80®/ Z180® object code compatibil-
ity.

The Z380 CPU is an enhanced version of the Z80
CPU. The Z80 instruction set has been retained,
adding a full compliment of 16-bit arithmetic and
logical operations, multiply and divide, a complete
set of register-to-register loads and exchanges, plus
32-bit load and exchange, and 32-bit arithmetic
operations for address calculations.

The addressing modes of the Z80 have been
enhanced with Stack pointer relative loads and
stores, 16-bit and 24-bit indexed offsets, and more
flexible indirect register addressing. All of the
addressing modes allow access to the entire 32-bit
addressing space.

The register set of the Z80 microprocessor is
expanded to 32 bits, and has been replicated four
times to allow for fast context switching among
tasks in a dedicated control environment.

Application Note

The Z380—A 16, 32-Bit Z80® CPU

AN008602-0708

AN008602-0708

The Z380—A 16, 32-Bit Z80® CPU

Key features of Z380 include:

• Full static CMOS design with low-power
standby mode support

• 32-bit internal data paths and ALU

• 16-bit (64K) or 32-bit (4G) linear addressing
space

• 16-bit internal data bus

• Two clock cycle minimum instruction execution

• Two clock cycle Memory bus

• Programmable I/O bus protocols and clock rates

• Four banks of 32-bit registers

• Enhanced interrupt capabilities, including 16-bit
vectors and four external Interrupt inputs

• Undefined opcode trap for full Z380 CPU
instruction set

Figure 1. Z380 Functional Block Diagram

Clock with
Standby Control

C
LK

I

C
LK

SE
L

C
LK

O

B
U

SC
LK

IO
C

LK

/S
TN

B
Y

/H
A

LT

/L
M

C
S/

U
M

C
S/

M
C

S3
-0

A
31

-0

D
15

-0

M
SI

ZE

/W
A

IT

M
EM

 B
U

S
C

N
TL

S

I/O
 B

U
S

C
N

TL
S

/B
R

EQ
/B

A
C

K

/R
ES

ET

/N
M

I

/IN
T3

-0

Chip Selects
and Waits

Refresh
Conrol

Data (16)

Address (32)

/EV

VDD

VSS

CPU

External Interface Logic Interrupts

 (Continued)

Page 2 of 22

The Z380—A 16, 32-Bit Z80® CPU
BENCHMARKS AMONG
EMBEDDED PROCESSORS
In response to a recent microprocessor selection
process by a major customer, Zilog's Datacom
Marketing group compared the performance and
program memory requirements among the new
Z80380 and several competing processors, includ-
ing the Intel 80186 and 80960 and the Motorola
68020 and CPU32. (The CPU32 is the heart of the
Motorola's 683xx series of integrated products.)

METHOD
Benchmarking consisted of selecting four code
fragments judged to be typical of embedded appli-
cations, coding the four fragments in assembly lan-
guage for each of the four processors, and
calculating the execution time for each fragment on
each processor, at 16, 25, and 40 MHz clock rates
as applicable to each.

The results were then tabulated in a spreadsheet
that first normalized them to the figure for the 25
MHz 80380, and then averaged the normalized val-
ues for memory code size and execution time, as
well as an overall "figure of merit".

The code fragments were called "I/O Loop",
"Signed Byte Handling". "Multiply/Accumulate".
and "Interrupt". Since the execution time for I/O
Loop is a function of the number of times through
the loop, and because it was felt to be the most typ-
ical of user requirements, it was counted twice
toward the composite performance and merit fig-
ures, once for a single iteration and once for eight
times through the loop. Finally, a fifth performance
category was included, the time required for mem-
ory-to-memory block movement of data. This
made six performance values that were averaged
with four program-size values for the overall Fig-
ure of Merit, an imbalance that "felt right" in terms
of the way we think many users view the value of
an embedded microprocessor.

ASSUMPTIONS
Because execution time can be a complex matter
for today's pipelined processors, our benchmarks
made several assumptions that simplified perfor-
mance evaluation. The most presumptive was that
the memory on all processors was fast enough that
there would be NO WAIT STATES. (In many cases
this would mandate fast Static RAM rather than
larger, more economical Dynamic RAM, which
makes sense for some applications but not others.)

A second assumption was that all operands were
ALIGNED to the natural boundaries for their size:
data accessed 16 bits at a time was located at an
address that was a multiple of two bytes, while data
to be accessed 32 bits at a time was located at an
address that's a multiple of 4 bytes. This character-
istic can be guaranteed by many high-level-lan-
guage compilers, and is questionable only for the
Block Move operations.

For processors that include a cache (the 68020 and
80960), the timing was calculated such that the
first access to each instruction was a cache miss,
and any subsequent accesses were cache hits. In
other words, we assumed that these code fragments
were not part of a central loop, but were executed
in response to specific events that were sufficiently
infrequent that the code was superseded in the
cache between events.

INSTRUCTION TIMING
For the 80186, we allowed Intel their stated timing
assumption "With a 16-Bit Bus Interface Unit, the
80186 has sufficient bus performance to ensure
that an adequate number of pre-fetched bytes will
reside in the queue most of the time." (16-32 Bit
Embedded Processors 1990, pp. 1-50, 1-118). The
following 80186 listings include a column of the
number of clocks for each instruction, taken
directly from the referenced data book.

Motorola's CPU32 User Manual includes several
figures for each instruction and addressing mode,
which have to be combined with each other and
AN008602-0708
Page 3 of 22

The Z380—A 16, 32-Bit Z80® CPU
with those for the following instruction, to deter-
mine execution times. The symbols Cea, Hea, and
Tea represent the total number of clocks to fetch or
calculate an Effective Address, and how many of
these represent Header clocks that can be over-
lapped with subsequent operations, and Tail clocks
that can be overlapped with subsequent operations.
Similarly, the symbols Cop, Hop, and Top repre-
sent the total number of clocks needed to execute
the instruction, and how many of these are Header
clocks and Tail clocks. The total was computed by
the formula:

Cea - min (Tea, Hop) + Cop - min (Top, Hea [next
instruction])

For instructions containing two effective addresses
the formula is: Cea1 - min (Tea1, Hea2) + Cea2 -
min (Tea2, Hop) + Cop - min (Top, Hea [next
instruction])

Each following 680x0 code fragment is followed
by a spreadsheet that performs these calculations
for the CPU32.

For the 68020, Motorola gives three timing figures
for each instruction. Best Case (BC) is the number
of clocks the instruction takes if it is in the cache
and enjoys the maximum possible degree of over-
lap with the preceding and following instructions.
Cache case (CC) is the number of clocks is the
instruction is in the cache but has no overlap with
other instructions. Worst case (WC) is when the
instruction is not in the cache and has no overlap
with other instructions.

The 68020 User Manual includes quite a few pages
that define these three timings for all the possible
instruction variants, but then notes that there is no
way to use these values to arrive at actual execu-
tion times! Since CC-BC is the maximum possible
instruction overlap, we decided to count the first
execution of an instruction as a cache miss with an
"average" amount of overlap:

first execution = WC - (CC-BC)/2

while subsequent executions of an instructions
were counted as a cache hit with an average
amount of overlap:

subsequent execution = (CC+BC)/2

Each following 680x0 code fragment is followed
by a spreadsheet that performs these calculations
for the 68020.

For the 80960, an actual clock-by-clock analysis of
processor activity was done, and is shown by a
spreadsheet that follows the listing of each 960
code fragment. In these charts:

F represents a code fetch operation on the external
bus,

F2 is the second fetch of a 2-word instruction on
the external bus,

CF is a Cache Fetch,

D is a Decode operation,

EA is an Effective Address calculation,

A on B stands for the Address cycle for a data word
on the external bus.

D on B stands for the Data cycle for a data word on
the external bus

W is an extra clock (wait state) the author decided
would be needed for a data write on the external
bus,

X is any other kind of execution cycle, e.g., storing
a value in a register

It's probable that these charts don't sufficiently
account for limits on the number of instructions
that can be pending in similar states simultane-
ously, and that as a result we made the 80960KA
look slightly better than it should.
AN008602-0708
Page 4 of 22

The Z380—A 16, 32-Bit Z80® CPU
For the 80380, execution times were derived in two
steps. First we simply added up the execution times
listed in the User Manual, as for the 80186. Then
the architect of the 380 analyzed the instruction
flow, similarly to what was done for the 960, and
added a few extra clocks for pipeline stalls and
non-overlap between the Bus Interface Unit and
Execution Unit. Because of this, perceptive readers
may notice that the clocks shown for individual
80380 instructions don't always add up to the total
execution figures.

DESCRIPTION OF THE CODE
FRAGMENTS

I/O Loop
This code fragment reads received data, two bytes
at a time, from a 16C30 Universal Serial Controller
(USC), and stores the data in a memory buffer for
each frame. The USC is the successor to Zilog's
popular SCC, and has a 32-byte FIFO capacity.
First, each sequence sets up whatever registers are
needed to access the USC, the memory buffer, and
a current pointer into the buffer named "rxi".

At the start of each loop, the code reads the number
of bytes currently in the receive FIFO, from the
MSbyte of a USC register called RICR. It also
reads a 16-bit status register called RCSR.

IF there are no bytes left in the FIFO, the code exits
from the fragment. If there is one byte in the
RxFIFO, the code checks the status to see if the
byte is either the last one of a frame, or is the byte
at which a Receive Overrun condition occurred. If
neither of these is the case, the code leaves the byte
in the RxFIFO for the future, and exits from the
fragment. Otherwise, or if there are two or more
bytes in the FIFO, the code:

1. ensures that no interrupt can occur between the
following steps,

2. reads two bytes from the FIFO via the USC
register called RDR (the USC will only pro-
vide one if there's only one in the FIFO)

3. stores the data in memory at the address in the
pointer "rxi",

4. increments rxi by 2,

5. stores rxi back in memory, and

6. enables interrupts to occur again.

After these operations the code tests the status
obtained earlier from RCSR, and if the data just
stored didn't represent the end of a frame, it goes
back to the start of the loop described above. The
following code calls an end-of-frame-handling
subroutine called "_Handle_RxStatus"_ this part of
the fragment counts toward the code memory
required but not toward the execution time,
because a frame ends only once in many execu-
tions of the loop.

Signed Byte Handling
This code fragment originally came from a cus-
tomer code in the hard disk field. It examines three
8-bit variables in memory called NORM, Q, and
K2. Actually NORM can range from -256 to +255
and is implemented as a 16-bit variable. It com-
putes an eight-bit result in any of six ways, depend-
ing on the sign of NORM and how it compares to
that of Q, as described in the comments at the top
of each page of code.

First the code may access some or all or the three
input variables and/or set up registers to point to
one or more of them. Then it tests the sign of
NORM, branching to the second "half" of the code
fragment if it's positive. In each "half", the code
compares NORM and Q and branches around in a
tree-structured fashion to compute the result dic-
tated by relative values of NORM and Q.

To evaluate the overall execution time of the frag-
ment, we computed the execution time for each of
the six result cases, and averaged them.
AN008602-0708
Page 5 of 22

The Z380—A 16, 32-Bit Z80® CPU
This may be the least clear code fragment as to its
cosmic purpose, but it is a reasonable example of
the kind of decision-tree processing that's typical of
many I/O handling and control systems.

Multiply/Accumulate
This code fragments is also taken from a customer
code in a hard-disk application. It uses four 16-bit
input values in memory, CURSEC, POSN_ERR,
S_GRAT, and K_GRAT, plus two memory tables
of 16-bit values called S_TABLE and C_TABLE,
each as large as the largest possible values of CUR-
SEC. From these the code extracts S_TABLE
(CURSEC) and saves the result in a memory vari-
able S_VALUE, and similarly extracts C_TABLE
(CUSEC) and saves it in K_VALUE. The code also
multiplies each value by POSN_ERR, scales/
divides each result by 64, and adds the results into
memory variables S_ACCUM and K_ACCUM
respectively, Finally it calculates R_CP=
(S_VALUE*S_GRAT + K_VALUE*KGRAT) /32.

This code includes four 16x16 multiplications and
32-bit scale/shift operations. For all the processors
except the CPU32, the fragment is coded to loop
back once to minimize memory requirements, by
taking advantage of the similarity of the computa-
tions for the "S" and "K" values.

Interrupt
These code fragments service a "receive status"
interrupt from a Zilog 16C30 Universal Serial Con-
troller (USC). The actual code size and execution
time are reduced from a full-blown ISR, by evalu-
ating for the case of a "Receive Overrun" event,
and by isolating the details of handling an End of
Frame event in a separate subroutine. This is done
to emphasize the interrupt overhead for each pro-
cessor, including interrupt latency, interrupt pro-
cessing, context saving and restoring, and returning
to the interrupted process.

Each code fragment saves register values and any
other necessary contest info, then sets up a base
address for the USC, clears the Interrupt Pending

(IP) for Receive Status interrupts, and reads 16-bit
status from the USC register RCSR. Then, if the
overrun status bit is set, it writes two "command
bytes" called "Enter Hunt Mode" and "Purge Rx"
to USC registers. (These operations count are
counted toward execution time.)

Next, if the status bit indicating the end of a frame
is set, the code calls a subroutine to handle this
condition. Neither the call nor the subroutine are
counted toward execution time.

Next the code reads and writes several USC regis-
ter to ready the device for future interrupts. Finally
it restores the context and returns to the interrupted
program.

The 80960KA does more operations automatically
in hardware before and after the execution of the
interrupt service routine proper, than do the other
processors. The time to perform these operations
were not specified in the Intel literature available to
us, so the time was estimated in the first and last
column of the execution chart, based on the time to
do similar functional under software control.

Block Move Sequences
The "block move" sequences for all the processors
are shown on one sheet. The 8096KA has no spe-
cial instruction for this operation, but its Load and
Store Quad Register instruction each handle 16
bytes per execution. The CPU32 has no special
instruction either, but its two-word prefetch queue
is capable of holding the two-instruction loop
shown, so that no instruction fetches are needed for
the duration of the block move, only data cycles.
For 68020 we used the average of the Best Case
and Cache Case, i.e., a cache hit with an "average"
amount of instruction overlap.

Both the 80186 and 80380 have instructions
intended for this purpose. The evaluation for 380
assumes that the global Longword (LW) control bit
is set so that each iteration includes two 16-bit
reads and two 16-bit writes.
AN008602-0708
Page 6 of 22

The Z380—A 16, 32-Bit Z80® CPU
SUMMARY
The final chart below summarizes and combines
the memory requirements and execution times for
each code fragment on the various processors clock
speeds. The 80186 doesn't come in 25 or 40 MHz
versions, so only 16 MHz results are shown. The
CPU32, 68020, and 80960KA are shown for 16
and 25 MHz. The 80380 is shown for 16, 25, and
40 MHz clocking. In each case this includes the
highest clock speed shown in the latest literature
we could obtain for each processor family.

In all cases, the 80960KA has by far the largest
code size, but makes up for it by needing the few-
est clocks to execute. The 80186 has the smallest
average code size, but makes up for that by being
the slowest device for all cases except Block
Move, for which it edged out the CPU32 to escape
the cellar.

The CPU32 proved exemplary at the Multiply/
Accumulate fragment, having the smallest code
size and running second to the 80960KA for the
faster execution time (even outperforming its 32-
bit relative the 68020, due to its early-exit Booth
multiplier). In the other cases it tended to run sec-
ond-last to the 80960 in code size and to the 80186
in execution time.

The 68020 had the same code sizes as the CPU32
and improved on the CPU32's execution times, but
perhaps not by enough to overcome the higher sys-
tem costs of a 32-bit bus and memory subsystem

The Zilog 80380 typically ran close to the 80186 in
code density and minimizing program size, as
might be expected from an older architecture that
was created when memory was more expensive
than today. Perhaps more surprisingly, it finished
second to the 80960KA in execution clocks most
cases, and counting its faster clock rate ran com-
petitively to the 960KA in total execution time.

When looking at a the normalized program size
and execution time values in the summary table,

remember that smaller values are better, and that a
value less than 1 means that processor/clock rate
combination is better than a 80380 at 25 MHz.

Of course there's something a little out of line
about including the 80960KA in this comparison,
which:

• costs far more than any of the other processors,

• entails added system-level expense because of its
32-bit data path and required memory width
(also true of the 68020), and

• requires special "block transfer" memory design
techniques

In fact, Intel has another member of its 80960 that
is more like the other processors herein, the
8096KA. This device has a 16-bit data bus like the
80380 and 80186, and a more compact package
that lowers its cost into a more competitive range.
Unfortunately we were unable to obtain any timing
information for the 80960SA in the time frame
required for this benchmarking.

However, we did find an Intel brochure that allows
the 80960SA to participate in these results in a
small way. It showed a "Dhrystone" (fixed point)
figure for the 80960SA of 12145, compared to
19740 for the 960KA. Multiplying the perfor-
mance figures for the 960KA by 19740/12145
(smaller is better in our figures while larger is bet-
ter for the Dhrystone) yielded the results shown in
the third-last and last lines. For the last line that
combines code size and execution time into a final
figure of Merit, only the execution time values
were scaled by Intel's Dhrystone results.

To wrap up, considering both code density and exe-
cution time for these code fragments, the new
Zilog 80380 blows away other 16-bit processors
including the 80960SA, and comes out about equal
to the much more expensive 32-bit 80960KA if
skewed by one speed grade (25 MHz 380 vs. 16
MHz 960, 40 MHz 380 vs. 25 MHz 960).
AN008602-0708
Page 7 of 22

AN008602-0708

The Z380—A 16, 32-Bit Z80® CPU

Due to the size of the coding of the
bench marking exercise, only the CPU32 and the
Z380 has been included in this paper. However, the
methodology and presentation is similar for the
other processors benchmarked. The complete
benchmark report is available from Zilog in the
Z380 CPU User's Manual.

Note:

Page 8 of 22

THE Z380™—
A 16-, 32-B IT Z80® CPU

AP973800300

ZILOG

I/O LOOP: 68XXX–CPU32

; the following CPU32 code reads data from a USC
; this code is not warranted to be correct nor operative, and is
; intended for performance benchmarking purposes only
; this version assumes that rxi variable is in first 64 Kbytes

Bytes Clks (CPU32)
— —
 4 8 MOVE.L rxi,A1 ; address in rcv area
 6 10 MOVE.L #uscBase+ICR,A2 ; address of ICR in USC

RxPoll16U_lp:
 6 11 CMP.B #1,RICR-ICR(A2) ; <> 1 byte in RxFIFO?
 4 7 MOVE.W RCSR-ICR(A2),D0 ; get status
 2 4/10 BHI RxPoll16U_hav ; around if > 1 byte
 2 4/10 BLO RxPoll16U_end ; nothing to do if < 1 byte
 4 5 AND.B #$12,D0 ; 1 byte: RxBound or overrun?
 2 4/10 BZ RxPoll16U_end ; ignore 1 byte if neither

RxPoll16U_hav:
 4 9 BCLR #7,(A2) ; disable interrupts
 4 8 MOVE.W RDR-ICR(A2),(A1)+ ; 2 serial bytes to Rx area
 4 8 MOVE.L A1,rxi ; store rx pointer
 4 9 BSET #7,(A2) ; re-enable ints
 4 5 AND.B #$10,D0 ; RxBound?
 2 4/10 BZ RxPoll16U_lp ; loop if not
 2 MOVEQ #$C0,D0
 4 AND.B CCR+1-ICR(A2),D0 ; RSBs in use?
 2 BNZ RxPoll16U_rsb ; around if so
 4 MOVE.W RCSR-ICR(A2),D0 ; take status from RCSR if not
 2 BRA RxPoll116U_call

RxPoll16U_rsb:
 4 MOVE.W RDR-ICR(A2),D0 ; take status from RDR

RxPoll16U_call:
 4 BCLR #1,D0
 2 MOVE.W D0,-(SP)
 4 BCLR #7,(A2) ; disable interrupts
 4 JSR _Handle_RxStatus ; call the RxBound subroutine
 2 ADDQ #2,SP
 4 BSET #7,(A2) ; enable interrupts
 2 BRA RxPoll16U_lp ; and loop

RxPoll16U_end:

— —
92 50+77*N clocks (CPU32)

Page 9 of 22AN008602-0708

THE Z380™—
A 16-, 32-BIT Z80® CPUZILOG

AP973800300

I/O LOOP: CPU32

Bytes Clks Source Hop Top Cop LW Hea1 Tea1 Cea1 Hea2 Tea2 Cea2

4 8 “MOVE.L rxi,A1” 0 2 4 2 1 3 5
6 10 “MOVE.L #uscBase+ICR,A2” 2 4 8 2 1 3 5

18 subtotal: start
6 11 “lp: CMP.B #1,RICR-ICR(A2)” 0 3 5 0 1 3 5 1 1 3

4 7 “MOVE.W RCSR-ISR(A2),D0” 0 0 2 0 1 3 5
2 10 BHI hav (taken) 2 -2 8 0 0 0 0

4 BHI hav (not taken) 2 0 4 0 0 0 0
2 10 BLO end (taken) 2 -2 8 0 0 0 0

4 BLO end (not taken) 2 0 4 0 0 0 0

4 5 “AND.B #$12,D0” 0 0 2 0 1 1 3
2 10 BZ end (taken) 2 -2 8 0 0 0 0

32 subtotal: exit
4 BZ end (not taken) 2 0 4 0 0 0 0

4 9 “hav: BCLR #7,(A2)” 1 2 8 0 1 1 3

4 8 “MOVE.W RDR-ICR(A2),(A1)+” 2 2 6 0 1 3 5
4 8 “MOVE.L A1,rxi” 1 5 7 2 1 1 3
4 9 “BSET #7,(A2)” 1 2 8 0 1 1 3
4 5 “AND.B #$10,D0” 0 0 2 0 1 1 3
2 10 BZ lp (taken) 2 -2 8 0 0 0 0

77 subtotal: loop

4 BZ lp (not taken) 2 0 4 0 0 0 0
2 “MOVEQ #$C0,D0”
4 “AND.B CCR+1-ICR(A2),D0”
2 BNZ rsb
4 “MOVE.W RCSR-ISR(A2),D0”
2 BRA call
4 “rsb: MOVE.W RDR-ICR(A2),D0”

4 “BCLR #1,D0”
2 “MOVE.W D0,-(SP)”
4 “BCLR #7,(A2)”
4 JSR _Handle_RxStatus
2 “ADDQ #2,SP”
4 “BSET #7,(A2)”
2 BRA lp
 —— —— end:

92 50+N*77 total

Page 10 of 22AN008602-0708

THE Z380™—
A 16-, 32-B IT Z80® CPU

AP973800300

ZILOG

I/O LOOP: 80380

; the following Z380 code reads data from a Zilog 16C30 USC.
; this code is not warranted to be correct nor operative, and is
; intended for performance benchmarking purposes only
; this code assumes that the global LW and XM bits are set
; and that the USC is in a 16-bit-addressed I/O space

Bytes Clks
— —
 3 2 LD DE,uscBase+RDR
 1 2 LD B,D
 3 8 LD HL,(rxi) ; 32-bit address in variable

RxPoll16U_lp:
 4 6* INA A,(uscBase+RICR+1) ; get hi byte of RICR
 2 2* SRL A ; byte count to word count
 4 6* INA A,(uscBase+RCSR) ; get status, no CC change
 2 2/6* JR NZ,RxPoll16U_hav
 2 2/6 JR NC,RxPoll16U_end
 3 2 TST 12H ; RxBound or overrun?
 2 2/6 JR Z,RxPoll16U_end

RxPoll16U_hav:
 1 2* DI
 2 7* INIW ; 16 bits from RDR to buffer
 3 6* LD (rxi),HL ; store address in buffer
 1 2* EI
 3 2* TST 10H
 2 6* JR Z,RxPoll16U_lp
 2 LD C,CCR
 2 IN A,(C)
 1 LD C,E ; get status from RDR if RSBs
 3 TST 0C0H ; RSBs in use?
 2 JR NZ,RxPoll16U_rsb ; around if so
 2 LD C,RCSR ; get status from RCSR if not

RxPoll16U_rsb:
 2 INW HL,(C) ; status word from RSB or RCSR
 2 RES 1,L ; leave overrun to int level
 1 DI
 2 PUSH HL
 3 CALL Handle_RxStatus
 1 INC SP
 1 INC SP
 1 EI
 2 JR RxPoll16U_lp
RxPoll16U_end:

— —
65 41+53N (corrected for pipeline stalls)

Page 11 of 22AN008602-0708

THE Z380™—
A 16-, 32-BIT Z80® CPUZILOG

AP973800300

SIGNED BYTE HANDLING: 68XXX–CPU32

; the following CPU32 code handles signed bytes.
; there are 3 signed byte variables in memory, Q, K2, and NORM.
; Actually NORM can range from -256 to +255, so we test the
; MSbyte of a 16-bit NORM but use only the LSbyte otherwise.
; The result is as follows
; if NORM < 0 then
; if NORM > -Q then result := NORM
; else if NORM > Q then result := -2*K2-NORM
; else result := Q - K2
; else if NORM <= Q then result := NORM
; else if NORM <= -Q then result := 2*K2-NORM
; else result := K2 - Q
; Routines can leave the result wherever is most convenient.
; this code is not warranted to be correct nor operative, and
; is intended for performance benchmarking purposes only.
; this code assumes that all variables are in the first 64K
; bytes of memory

Bytes Clks (CPU32)
— —
 4 7 MOVE.B Q,D0 ; get variable
 4 7 MOVE.W NORM,D1 ; get variable
 2 4/10 BPL.S npos ; around if positive
 2 2 NEG.B D0 ; -Q
 2 2 CMP.B D1,D0 ; -Q-NORM
 2 4/10 BMI.S rnorm ; go if -Q-NORM<0, NORM>-Q
 2 2 NEG.B D0 ; Q
 2 2 CMP.B D1,D0 ; Q-NORM
 2 4/10 BMI.S m2k2 ; go if Q-NORM<0, NORM>Q
 4 7 SUB.B K2,D0 ; Q - K2
 2 10 BRA.S next
 4 7 m2k2: MOVE.B K2,D0 ; K2
 2 2 NEG.B D0 ; -K2
 2 10 BRA.S dmn
 2 2 rnorm: MOVE.B D1,D0 ; NORM
 2 10 BRA.S next
 2 2 npos: CMP.B D1,D0 ; Q-NORM
 2 4/10 BPL rnorm ; go if Q-NORM>=0, NORM<=Q
 2 2 NEG.B D0 ; -Q
 2 2 CMP.B D1,D0 ; -Q-NORM
 2 4/10 BPL.S p2k2 ; go if -Q-NORM>=0, NORM<=-Q
 4 7 ADD.B K2,D0 ; K2 - Q
 2 10 BRA.S next
 4 7 p2k2: MOVE.B K2,D0 ; K2
 2 2 dmn: ADD.B D0,D0 ; +- 2K2
 2 2 SUB.B D1,D0 ; +- 2K2 - NORM

 next:
— —
64 CPU32 68020

48 NORM (pos) 40
44 NORM (neg) 38
55 2*K2-NORM 48
63 -2*K2-NORM 56
55 K2-Q 48
51 Q-K2 46
52.67 average 45.92

Page 12 of 22AN008602-0708

awong
Rectangle

THE Z380™—
A 16-, 32-B IT Z80® CPU

AP973800300

ZILOG

SIGNED BYTE HANDLING: CPU32

Bytes Clks Source Hop Top Cop Hea1 Tea1 Cea1 Hea2 Tea2 Cea2

4 7 “ move.b Q,D0” 0 0 2 1 3 5
4 7 “ move.w NORM,D1” 0 0 2 1 3 5
2 10 bpl.s npos (taken) 2 -2 8 0 0 0

4 bpl.s npos (not taken) 2 0 4 0 0 0

2 2 neg.b D0 0 0 2 0 0 0
2 2 “ cmp.b D1,D0” 0 0 2 0 0 0
2 10 bmi.s rnorm (taken) 2 -2 8 0 0 0

4 bmi.s rnorm (not taken) 2 0 4 0 0 0
2 2 neg.b D0 0 0 2 0 0 0

2 2 “ cmp.b D1,D0” 0 0 2 0 0 0
2 10 bmi.s m2k2 (taken) 2 -2 8 0 0 0

4 bmi.s m2k2 (not taken) 2 0 4 0 0 0
4 7 “ sub.b k2,d0” 0 0 2 1 3 5

2 10 bra.s next 2 -2 8 0 0 0
4 7 “m2k2: move.b K2,d0” 0 0 2 1 3 5
2 2 neg.b D0 0 0 2 0 0 0
2 10 bra.s dmn 2 -2 8 0 0 0
2 2 “rnorm: move.b D1,D0” 0 0 2 0 0 0

2 10 bra.s next 2 -2 8 0 0 0
2 2 “npos: cmp.b D1,D0” 0 0 2 0 0 0
2 10 bpl rnorm (taken) 2 -2 8 0 0 0

4 bpl rnorm (not taken) 2 0 4 0 0 0
2 2 neg.b D0 0 0 2 0 0 0

2 2 “ cmp.b D1,D0” 0 0 2 0 0 0
2 10 bpl.s p2k2 (taken) 2 -2 8 0 0 0

4 bpl.s p2k2 (not taken) 2 0 4 0 0 0
4 7 “ add.b K2,D0” 0 0 2 1 3 5
2 10 bra.s next 2 -2 8 0 0 0

4 7 “p2k2: move.b k2,d0” 0 0 2 1 3 5
2 2 “dmn: add.b d0,d0” 0 0 2 0 0 0
2 2 “sub.b d1,d0” 0 0 2 0 0 0
 —— —— next:
64 48 NORM (pos)

44 NORM (neg)

55 2*K2-NORM
63 -2*K2-NORM
55 K2-Q
51 Q-K2
52.67 average

Page 13 of 22AN008602-0708

THE Z380™—
A 16-, 32-BIT Z80® CPUZILOG

AP973800300

SIGNED BYTE HANDLING: 80380

; the following Z380 code handles signed bytes.
; there are 3 signed byte variables in memory, Q, K2, and NORM.
; Actually NORM can range from -256 to +255, so we test the
; MSbyte of a 16-bit NORM but use only the LSbyte otherwise.
; The result is as follows
; if NORM < 0 then
; if NORM > -Q then result := NORM
; else if NORM > Q then result := -2*K2-NORM
; else result := Q - K2
; else if NORM <= Q then result := NORM
; else if NORM <= -Q then result := 2*K2-NORM
; else result := K2 - Q
; Routines can leave the result wherever is most convenient.
; this code is not warranted to be correct nor operative, and is
; intended for performance benchmarking purposes only
; this code assumes the global LW bit is cleared

Bytes Clks
 3 6 LD A,(Q) ; get variable
 4 2 LD HL,K2 ; address of variable
 3 6 LD BC,(NORM) ; get variable
 1 2 OR B,B ; test if NORM positive
 2 2/6 JR Z,npos ; around if so
 2 2 NEG A ; -Q
 1 2 CP A,C ; -Q-NORM
 3 2/6 JP S,rnorm ; go if -Q-NORM<0, NORM>-Q
 2 2 NEG A ; Q
 1 2 CP A,C ; Q-NORM
 3 2/6 JP S,m2k2 ; go if Q-NORM<0, NORM>Q
 1 6 SUB A,(HL) ; Q - K2
 2 6 JR next
 1 6 m2k2: LD A,(HL) ; K2
 2 2 NEG A ; -K2
 2 6 JR dmn
 1 2 rnorm: LD A,C ; NORM
 2 6 JR next
 1 2 npos: CP A,C ; Q-NORM
 3 2/6 JP NS,rnorm ; go if Q-NORM>=0, NORM<=Q
 2 2 NEG A ; -Q
 1 2 CP A,C ; -Q-NORM
 3 2/6 JP NS,p2k2 ; go if -Q-NORM>=0, NORM<=-Q
 1 6 ADD A,(HL) ; K2 - Q
 2 6 JR next
 1 6 p2k2: LD A,(HL) ; K2
 1 2 dmn: ADD A,A ; +- 2K2
 1 2 SUB A,C ; +- 2K2 - NORM

 next:
— —
52 NORM (pos) 36

NORM (neg) 38
2*K2-NORM 46
-2*K2-NORM 50
K2-Q 44
Q-K2 42

average 42.67

Page 14 of 22AN008602-0708

THE Z380™—
A 16-, 32-B IT Z80® CPU

AP973800300

ZILOG

MULTIPLY/ACCUMULATE: 68XXX–CPU32

; this CPU32 code performs a 16-bit multiply/accumulate:
; several 16-bit variables pre-exist in memory, including
; CURSEC, POSN_ERR, S_GRAT, and K_GRAT. In addition,
; two tables S_TABLE and C_TABLE are of a size equal to
; the possible range of values of CURSEC. 16-bit results
; of this calculation in memory include S_VALUE, K_VALUE,
; R_CP, and two accumulators S_ACCUM and K_ACCUM:

; S_VALUE := S_TABLE(CURSEC)
; K_VALUE := C_TABLE(CURSEC)
; S_ACCUM := S_ACCUM + ((S_VALUE*POSN_ERR)/64)
; K_ACCUM := K_ACCUM + ((K_VALUE*POSN_ERR)/64)
; R_CP := (S_VALUE*S_GRAT + K_VALUE*K_GRAT) / 32

; to optimize memory accessing, all routines may assume
; that variables S_VALUE, S_GRAT, S_ACCUM, K_VALUE, K_GRAT,
; K_ACCUM are consecutive in memory in whatever order is
; optimal for their instruction set, while CURSEC. POSN_ERR,
; S_TABLE, and C_TABLE are at unrelated locations. R_CP
; can be in either place.

; the order in this version is S_VALUE, S_ACCUM, S_GRAT,
; K_VALUE, K_ACCUM, K_GRAT, R_CP.

; this code is not warranted to be correct nor operative, and is
; intended for performance benchmarking purposes only

; the size/clocks figures assume all data is in the first
; 64K bytes

Bytes Clks (CPU32)
—— —
 4 7 MOVE.W CURSEC,D0
 6 10 MOVE.W S_TABLE(D0.W*2),D1 ; get S_VALUE from table
 4 5 LEA S_VALUE,A0 ; start pointer into variables
 2 5 MOVE.W D1,(A0)+ ; store S_VALUE
 2 2 MOVE.W D1,D2 ; copy it
 4 31 MULS.W POSN_ERR,D1
 2 6 ASR.L #6,D1 ; divide by 64
 2 7 ADD.W D1,(A0)+ ; add into accumulator
 2 29 MULS.W (A0)+,D2 ; S_GRAT*S_VALUE
 6 10 MOVE.W C_TABLE(D0.W*2),D1 ; get K_VALUE from table
 2 5 MOVE.W D1,(A0)+ ; store K_VALUE
 2 2 MOVE.W D1,D0 ; copy it
 4 31 MULS.W POSN_ERR,D1
 2 6 ASR.L #6,D1 ; divide by 64
 2 7 ADD.W D1,(A0)+ ; add into accumulator
 2 29 MULS.W (A0)+,D0 ; K_GRAT*K_VALUE
 2 2 ADD.L D2,D0 ; S_GRAT*S_VALUE + K_GRAT*K_VALUE
 2 6 ASR.L #5,D0 ; /32
 2 4 MOVE.W D0,(A0)+ ; save that in R_CP
— —
54 204 clocks (CPU32)

212 clocks (68020)

Page 15 of 22AN008602-0708

THE Z380™—
A 16-, 32-BIT Z80® CPUZILOG

AP973800300

MULTIPLY/ACCUMULATE: CPU32

Bytes Clks Source Hop Top Cop Hea1 Tea1 Cea1

4 7 “MOVE.W CURSEC,D0” 0 0 2 1 3 5
6 10 “MOVE.W S_TABLE(D0.W*2),D1” 0 0 2 2 2 8
4 5 “LEA S_VALUE,A0” 0 0 2 1 1 3
2 5 “MOVE.W D1,(A0)+” 1 1 5 0 0 0
2 2 “MOVE.W D1,D2” 0 0 2 0 0 0
4 31 “MULS.W POSN_ERR,D1” 0 0 26 1 3 5

2 6 “ASR.L #6,D1” 4 0 6 0 0 0
2 7 “ADD.W D1,(A0)+” 0 3 5 1 1 3
2 29 “MULS.W (A0)+,D2” 0 0 26 1 1 3
6 10 “MOVE.W C_TABLE(D0.W*2),D1” 0 0 2 2 2 8
2 5 “MOVE.W D1,(A0)+” 1 1 5 0 0 0
2 2 “MOVE.L D1,D0” 0 0 2 0 0 0

4 31 “MULS.W POSN_ERR,D1” 0 0 26 1 3 5
2 6 “ASR.L #6,D1” 4 0 6 0 0 0
2 7 “ADD.W D1,(A0)+” 0 3 5 1 1 3
2 29 “MULS.W (A0)+,D0” 0 0 26 1 1 3

2 2 “ADD.L D2,D0” 0 0 2 0 0 0
2 6 “ASR.L #5,D0” 4 0 6 0 0 0
2 4 “MOVE.W D0,(A0)+” 1 1 5 0 0 0

 54 204

Page 16 of 22AN008602-0708

THE Z380™—
A 16-, 32-B IT Z80® CPU

AP973800300

ZILOG

MULTIPLY/ACCUMULATE: 80380

; this 80380 code performs a 16-bit multiply/accumulate:
; several 16-bit variables pre-exist in memory, including
; CURSEC, POSN_ERR, S_GRAT, and K_GRAT. In addition,
; two tables S_TABLE and C_TABLE are of a size equal to
; the possible range of values of CURSEC. 16-bit results
; of this calculation in memory include S_VALUE, K_VALUE,
; R_CP, and two accumulators S_ACCUM and K_ACCUM:

; S_VALUE := S_TABLE(CURSEC)
; K_VALUE := C_TABLE(CURSEC)
; S_ACCUM := S_ACCUM + ((S_VALUE*POSN_ERR)/64)
; K_ACCUM := K_ACCUM + ((K_VALUE*POSN_ERR)/64)
; R_CP := (S_VALUE*S_GRAT + K_VALUE*K_GRAT) / 32

; to optimize memory accessing, all routines may assume
; that variables S_VALUE, S_GRAT, S_ACCUM, K_VALUE, K_GRAT,
; K_ACCUM are consecutive in memory in whatever order is
; optimal for their instruction set, while CURSEC. POSN_ERR,
; S_TABLE, and C_TABLE are at unrelated locations. R_CP
; can be in either place.

; the order in this version in S_VALUE, S_ACCUM, S_GRAT, K_VALUE,
; K_ACCUM, K_GRAT, R_CP.

; this code is not warranted to be correct nor operative, and is
; intended for performance benchmarking purposes only
; this code assumes that the global LW and XM bits are cleared.

Bytes Clks
—— —
 4 6 LD IX,(CURSEC)
 2 2 ADD IX,IX
 2 2 DDIR IB
 5 8 LD HL,(IX+S_TABLE) ; get S_VALUE from table
 2 2 DDIR IB
 5 8 LD IY,(IX+C_TABLE) ; get K_VALUE from table
 3 2=35 LD DE,S_VALUE ; start pointer into variables
2 3 lp: LD (DE),HL ; save VALUE in memory
 2 2 LD IX,HL ; save in reg
 4 6 LD BC,(POSN_ERR)
 3 10 MULTW HL,BC ; VALUE * POSN_ERR (16x16=32)
 2 2 DDIR LW
 1 2 ADD HL,HL
 2 2 DDIR LW
 1 2 ADD HL,HL
 1 2 LD A,H
 2 2 SWAP HL
 1 2 LD H,L
 1 2 LD L,A ; 16 bit product/64
 1 2 INC DE
 1 2 INC DE
 2 6 LD BC,(DE) ; get accum
 1 2 ADD HL,BC ; add
 2 3 LD (DE),HL ; save accum

Page 17 of 22AN008602-0708

THE Z380™—
A 16-, 32-BIT Z80® CPUZILOG

AP973800300

MULTIPLY/ACCUMULATE: 80380 (Continued)

Bytes Clks
 1 2 INC DE
 1 2 INC DE
 2 6 LD HL,(DE) ; get GRAT
 1 2 INC DE
 1 2 INC DE
 2 2 LD BC,IX ; retrieve value
 3 10 MULTW BC ; GRAT*VALUE
 2 2 LD A,K_VALUE MOD 256
 1 2 CP A,E
 2 2/6=89 JR NZ,kdone ; around if K group done

 2 2 DDIR LW
 2 3 EX HL,IY ; HL:=K_VALUE, IY:=S_VALUE*S_GRAT

 2 6=11 JR lp ; and go do K group

 2 2 kdone: DDIR LW
 2 2 ADD HL,IY ; S_VALUE*S_GRAT + K_VALUE*K_GRAT
 2 2 DDIR LW
 1 2 ADD HL,HL
 2 2 DDIR LW
 1 2 ADD HL,HL
 2 2 DDIR LW
 1 2 ADD HL,HL ; 32-bit left shift 3
 1 2 LD A,H
 2 2 SWAP HL
 1 2 LD H,L
 1 2 LD L,A ; sum div 32
 3 6=30 LD (R_CP),HL ; save that
— —
95 254 (35+89+11+89+30)

Page 18 of 22AN008602-0708

THE Z380™—
A 16-, 32-B IT Z80® CPU

AP973800300

ZILOG

INTERRUPT: 68XXX–CPU32

; This CPU32 code handles Rx Status interrupts from a 16C30.
; It is evaluated for an overrun condition, so that End Of
; Frame processing, which is handled by a separate subroutine,
; doesn’t count toward the totals.
; It is not warranted to be correct nor operative, and is
; intended for performance benchmarking purposes only

; It assumes the USC is in a 24-bit addressed memory space
; and that the hardware includes byte/word addressing
; hardware (i.e., an environment like the IUSC/AT Starter Kit)

Bytes Clks (CPU32)
— —

32 interrupt (per CPU32 ref man p.8-27)
rxStInt:
 ; save registers

 4 73 MOVEM.L A0-6/D0-7,-(SP) ; could save less, but we don’t
 ; begin handling the interrupt know what procEOF does...

 6 7 LEA uscBase,A0
 6 10 MOVE.B #clrIP+RS_IP,DCCR(A0) ; clear IP
 4 7 MOVE.W RCSR(A0),D0 ; get status
 4 4 BTST #rxOv,D0 ; test overflow
 2 4 BEQ noOver ; around if not

 ; handle Rx overrun
 6 10 MOVE.B #EnterHuntMode,RCSR+1(A0) ; force Rx into Hunt
 6 12 OR.B #PurgeRx,CCAR+1(A0) ; issue purge Rx command

 ; handle RxBound (end of frame)
 4 4 BTST #rxBnd,D0
 2 10 BZ noEOF ; around if no End of Frame
 4 BSR procEOF ; call subr if so

 ; clear interrupt hardware
 4 5 noEOF: AND.B #$F6,D0 ; mask status
 4 6 MOVE.B D0,RCSR(A0) ; unlatch status bits we saw
 4 7 MOVE.B RICR(A0),D0 ; save arm bits
 4 6 CLR.B RICR(A0) ; disarm all
 4 6 MOVE.B D0,RICR(A0) ; rearm
 6 10 MOVE.B #clrIUS+RS_IUS,DCCR+1(A0)

 ; restore regs, dismiss interrupt and return
 4 74 MOVEM.L (SP)+,A0-6/D0-7
 2 26 RTE
— —
80 313 clocks (CPU32)

288 clocks (68020)

Page 19 of 22AN008602-0708

THE Z380™—
A 16-, 32-BIT Z80® CPUZILOG

AP973800300

INTERRUPT: 80380

; This 380 code handles Rx Status interrupts from a 16C30.
; It is evaluated for an overrun condition, so that End Of
; Frame processing, which is handled by a separate subroutine,
; doesn’t count toward the totals.
; It is not warranted to be correct nor operative, and is
; intended for performance benchmarking purposes only

; It assumes the USC is in a 24-bit addressed memory space
; and that the hardware includes byte/word addressing
; hardware (i.e., an environment like the IUSC/AT Starter Kit)

Bytes Clks
— —

18 (interrupt time)
rxStInt:
 ; save registers

 2 2 DDIR LW
 2 6 PUSH SR ; save old control settings
 3 4 LDCTL SR,intBank ; one reg bank dedicated

; for unnested interrupts
 ; begin handling the interrupt

 2 2 DDIR IB
 5 4 LD IX,uscBase ; set 24-bit address of USC
 4 6 LD (IX+DCCR),clrIP+RS_IP ; clear IP bit
 4 7 LD BC,(IX+RCSR) ; get status
 2 2 BIT rxOv,C
 2 2/6 JR Z,noOver ; around if no overflow flag

 ; handle Rx overrun
 4 6 LD (IX+RCSR+1),EnterHuntMode ; force Rx hunt mode
 3 7 LD A,(IX+CCAR+1)
 2 2 OR A,PurgeRx
 3 6 LD (IX+CCAR+1),A; issue purge Rx command

 ; handle RxBound (End of Frame)
 2 2/6 noOver:BIT rxBd,C
 3 2 CALL NZ,procEOF ; call End of Frame procedure

 ; clear interrupt hardware
 2 2 AND C,0F6H
 3 6 LD (IX+RCSR),C ; unlatch status bits we saw
 3 7 LD A,(IX+RICR) ; get IA bits
 4 6 LD (IX+RICR),0 ; drop IA bits
 3 6 LD (IX+RICR),A ; rearm them
 4 6 LD (IX+DCCR+1),clrIUS+RS_IUS ; clear IUS

 ; restore registers, dismiss interrupt and return
 2 2 DDIR LW
 2 8 POP SR
 2 8 RETI
— —
66 133

Page 20 of 22AN008602-0708

THE Z380™—
A 16-, 32-B IT Z80® CPU

AP973800300

ZILOG

Page 21 of 22AN008602-0708

AN008602-0708
of 9

The Z380—A 16-, 32-Bit Z80® CPU

DO NOT USE IN LIFE SUPPORT

LIFE SUPPORT POLICY
ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)
support or sustain life and whose failure to perform when properly used in accordance with instructions for
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A
critical component is any component in a life support device or system whose failure to perform can be
reasonably expected to cause the failure of the life support device or system or to affect its safety or
effectiveness.

Document Disclaimer
©2008 by Zilog, Inc. All rights reserved. Information in this publication concerning the devices,
applications, or technology described is intended to suggest possible uses and may be superseded. ZILOG,
INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY
OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT.
ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY
INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR
TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this
document has been verified according to the general principles of electrical and mechanical engineering.

Z8, Z80, Z8 Encore!, Z8 Encore! XP, Z8 Encore! MC, Crimzon, eZ80, and ZNEO are trademarks or
registered trademarks of Zilog, Inc. All other product or service names are the property of their respective
owners.

Warning:

Page 22 of 22

	INTRODUCTION
	BENCHMARKS AMONG EMBEDDED PROCESSORS
	METHOD
	ASSUMPTIONS
	INSTRUCTION TIMING

	DESCRIPTION OF THE CODE FRAGMENTS
	I/O Loop
	Signed Byte Handling
	Multiply/Accumulate
	Interrupt
	Block Move Sequences

	SUMMARY
	Codes

