
Copyright ©2011 Zilog®, Inc. All rights reserved.
www.zilog.com

User Manual

ZNEO® CPU Core

High-Performance 16-Bit Microcontrollers

UM018809-0611

http://www.zilog.com

ii

ZNEO® CPU Core
User Manual
This publication is subject to replacement by a later edition. To determine whether a later edition exists, or
to request copies of publications, visit www.zilog.com.

DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.

LIFE SUPPORT POLICY

ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)
support or sustain life and whose failure to perform when properly used in accordance with instructions for
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A criti-
cal component is any component in a life support device or system whose failure to perform can be reason-
ably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

Document Disclaimer

©2011 Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications,
or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES
NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO
DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED
IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED
HEREIN OR OTHERWISE. The information contained within this document has been verified according
to the general principles of electrical and mechanical engineering.

Z8, Z8 Encore!, Z8 Encore! XP, Z8 Encore! MC, eZ80, and ZNEO are trademarks or registered trademarks
of Zilog, Inc. All other product or service names are the property of their respective owners.

Warning:
 UM018809-0611

http://www.zilog.com

ZNEO® CPU Core
User Manual

iii
Revision History

Each instance in the Revision History table below reflects a change to this document from
its previous version. For more details, click the appropriate links in the table.

Date
Revision

Level Section Description Page

May
2011

09 All Updated for style. All

Using the Program Counter as
a Base Address

Added note. 34

LEA Added addressing mode offset description. 122

SDIV Corrected After address in Example. 152

Aug
2010

08 ADC, ADD Updated Syntax and Opcodes table. 68, 71

Feb
2008

07 Flags Register (FLAGS) Updated User Flag description. 9

Loading an Effective Address Updated example. 33

System Exceptions Updated first paragraph. 49

Stack Overflow Updated second step for Stack Overflow
protection.

50

Sep
2007

06 Instruction Set Reference Updated Examples for DEC Instruction. 65

Mar
2007

05 Loading an Effective Address Change in instruction. 33

Flags Register (FLAGS), Vec-
tored Interrupts, Instruction Set
Reference

Updated with CIRQE bit. 9, 41, 65

May
2006

04 Multiple Updated ZNEO trademark issues. Applied
current publications template.

All

Features, Control Registers,
Address Space, I/O Memory,
Direct Memory Addressing

Clarified size of address space. 1, 8, 15,
18, 29

CPU Control Register
(CPUCTL)

Clarified section. 13

Memory Map, Jump Addressing Jump addresses FF_E000H and above
are reserved.

16, 39

Internal Nonvolatile Memory,
Internal RAM

Clarified use of assembler address
ranges.

17, 17

Direct Memory Addressing 16-bit address range is in highest and low-
est 32K blocks, not 8K blocks.

29
UM018809-0611 Revision History

iv

ZNEO® CPU Core
User Manual
Jan
2006

03 Multiple Updated ZNEO trademark. All

02 Instruction Opcodes Moved opcodes beginning 0000 1011
and 0001 001+ to correct listing order.
(Opcode-to-instruction relationship is not
changed); corrected sequence of unimple-
mented opcodes and removed duplicate
row.

55

UDIV64 Corrected “After” register in example. 182

Date
Revision

Level Section Description Page
Revision History UM018809-0611

ZNEO® CPU Core
User Manual

v

Table of Contents

Revision History .iii

List of Figures . ix

List of Tables. xi

Manual Objectives .xiii
About This Manual .xiii
Intended Audience .xiii
Manual Organization .xiii

Manual Conventions . xiv
Safeguards . xvi

Architectural Overview. 1
Features . 1
Program Control . 2
Processor Block Diagram . 2

Fetch Unit . 3
Execution Unit . 4

Instruction Cycle Time . 5
Instruction Fetch Cycles . 5
Execution Cycles . 6

Control Registers . 8
Program Counter Overflow Register . 9
Stack Pointer Overflow . 9
Flags Register (FLAGS) . 9
CPU Control Register (CPUCTL) . 13

Address Space . 15
Memory Map . 16
Internal Nonvolatile Memory . 17
Internal RAM . 17
I/O Memory . 18

I/O Memory Precautions . 18
External Memory . 18
Endianness . 19
Bus Widths . 19

Assembly Language Introduction . 21
 ZNEO CPU Instruction Classes . 22
UM018809-0611 Table of Contents

vi

ZNEO® CPU Core
User Manual
Operand Addressing . 27
Immediate Data . 28
Register Addressing . 28
Direct Memory Addressing . 29

Memory Data Size . 30
Resizing Data . 31

Register-Indirect Memory Addressing . 32
Loading an Effective Address . 33
Using the Program Counter as a Base Address . 34
Memory Address Decrement and Increment . 35
Using the Stack Pointer (R15) . 36
Using the Frame Pointer (R14) . 37

Bit Manipulation . 37
Clearing Bits (Masked AND) . 37
Setting Bits (Masked OR) . 38
Testing Bits (TM and TCM) . 38

Jump Addressing . 39

Interrupts . 41
Vectored Interrupts . 41

Interrupt Enable and Disable . 41
Interrupt Processing . 42
Returning From a Vectored Interrupt . 44
Interrupt Priority and Nesting . 45
Software Interrupt Generation . 46

Polled Interrupts . 46

System Exceptions . 49
Program Counter Overflow . 50
Stack Overflow . 50
Divide-by-Zero . 51
Divide Overflow . 51
Illegal Instruction . 52

Software Traps . 53

Instruction Opcodes . 55

Instruction Set Reference . 65
Instruction Notation . 65

Numerical and Expression Notation . 65
Miscellaneous Abbreviations . 66

Example Description . 67
Mnemonic . 67
Table of Contents UM018809-0611

ZNEO® CPU Core
User Manual

vii
ADC . 68
ADD . 71
AND . 74
ATM . 77
BRK . 78
CALL . 79
CALLA . 81
CLR . 82
COM . 84
CP . 86
CPC . 89
CPCZ . 92
CPZ . 94
DEC . 96
DI . 98
DJNZ . 100
EI . 102
EXT . 103
HALT . 105
ILL . 106
INC . 108
IRET . 110
JP . 112
JPA . 113
JP cc . 114
LD . 115
LD cc . 120
LDES . 121
LEA . 122
LINK . 124
MUL . 125
NEG . 127
NOFLAGS . 129
NOP . 130
OR . 131
POP . 134
POPF . 136
POPMLO . 137
POPMHI . 138
PUSH . 140
PUSHF . 142
UM018809-0611 Table of Contents

viii

ZNEO® CPU Core
User Manual
PUSHMHI . 143
PUSHMLO . 144
RET . 146
RL . 147
SBC . 149
SDIV . 152
SLL . 154
SLLX . 156
SMUL . 158
SRA . 160
SRAX . 162
SRL . 164
SRLX . 166
STOP . 168
SUB . 169
TCM . 172
TM . 175
TRAP . 178
UDIV . 180
UDIV64 . 182
UMUL . 184
UNLINK . 186
WDT . 187
XOR . 188

Index . 191

Customer Support . 199
Table of Contents UM018809-0611

ZNEO® CPU Core
User Manual

ix
List of Figures

Figure 1. ZNEO CPU Block Diagram . 3

Figure 2. Flags Register . 9

Figure 3. ZNEO CPU Memory Map (24 Significant Address Bits) 16

Figure 4. Endianness of Words and Quads . 19

Figure 5. Alignment of 16-Bit and 32-Bit Operations on 16-Bit Memories 20

Figure 6. Example Assembly Language Statement . 21

Figure 7. Mapping of Register to Memory Bytes . 31

Figure 8. Register-Indirect Memory Addressing Example . 33

Figure 9. Masked Logic Example: Clearing a Bit . 38

Figure 10. Effects of an Interrupt on the Stack . 43

Figure 11. Interrupt Vectoring Example . 44
UM018809-0611 List of Figures

x

ZNEO® CPU Core
User Manual
List of Figures UM018809-0611

ZNEO® CPU Core
User Manual

xi
List of Tables

Table 1. Instruction Execution Cycles . 6

Table 2. Control Registers . 8

Table 3. Condition Codes . 12

Table 4. CPU Control Register . 13

Table 5. Reserved Memory Map Example . 17

Table 6. Arithmetic Instructions . 23

Table 7. Logical Instructions . 23

Table 8. Bit Manipulation Instructions . 24

Table 9. Rotate and Shift Instructions . 24

Table 10. Load Instructions . 24

Table 11. CPU Control Instructions . 25

Table 12. Program Control Instructions . 25

Table 13. 16-Bit Addressing (Object Code Only) . 29

Table 14. Data Sizes for Memory Read . 32

Table 15. Relative Jump Offset Ranges . 40

Table 16. Bit Field Symbols . 55

Table 17. Operand Symbols . 56

Table 18. ZNEO CPU Instructions Listed by Opcode . 56

Table 19. Symbols Used in Expressions . 65

Table 20. Abbreviations Used in Text and Tables . 66

Table 21. Truth Table for AND . 74

Table 22. Truth Table for OR . 131

Table 23. Truth Table for XOR . 188
UM018809-0611 List of Tables

xii

ZNEO® CPU Core
User Manual
List of Tables UM018809-0611

ZNEO® CPU Core
User Manual

xiii
Manual Objectives

This user manual describes the CPU architecture and instruction set common to all Zilog
devices that incorporate the ZNEO® CPU. For complete information about interfaces,
internal peripherals and memory, and I/O registers for each device, refer to the device-spe-
cific Product Specification.

About This Manual

Zilog® recommends you to read and understand everything in this manual before setting
up and using the product. We have designed this manual to be used either as an instruc-
tional manual or a reference guide to important data.

Intended Audience

This document is written for Zilog customers with experience in writing microprocessor,
assembly code, and compilers. Some introductory material is included to help new cus-
tomers who are less familiar with this device.

Manual Organization

This user manual is divided into nine chapters to describe the following device character-
istics:

Architectural Overview

Describes the ZNEO CPU’s features and benefits, architecture, and control registers.

Address Space

Introduces the ZNEO CPU’s unified memory address space, with a memory map illustrat-
ing how the available memory areas are addressed.

Assembly Language Introduction

Briefly introduces some of the assembly language terminology used in the following chap-
ters and lists ZNEO CPU instructions in functional groups.

Operand Addressing

Explains ZNEO CPU operand addressing and data sizes.
UM018809-0611 Manual Objectives

xiv

ZNEO® CPU Core
User Manual
Interrupts

Introduces the use of vectored and polled interrupts to service interrupt requests from
peripherals or external devices.

System Exceptions

Explains system exceptions and the events which cause the processor overflow, stack
overflow, divide-by-zero, divide overflow, and illegal instruction.

Software Traps

Explains the software trap instruction.

Instruction Opcodes

Numerical list of ZNEO CPU instruction opcodes and syntax.

Instruction Set Reference

Alphabetical list of ZNEO CPU instruction descriptions, with syntax and opcodes.

Manual Conventions

The following manual conventions provide clarity and ease of use.

Notations specific to assembly language, address operands, opcodes, and instruction
descriptions are explained in the chapters discussing those topics.

Courier Typeface

User-typed commands, code lines and fragments, bit names, equations, hexadecimal
addresses, and executable items are distinguished from general text by the use
of the Courier typeface. Where the use of the font is not indicated (for example, Index)
the name of the entity is presented in upper case.

For example, Internal RAM begins at FFFF_0000H.

Binary Values

Binary values are designated by an uppercase ‘B’ suffix. For readability, underscore ‘_’
characters separate large values into four-digit groups, except in program statements.

For example, 8-bit binary value 0100_0010B.

Hexadecimal Values

Hexadecimal values are designated by an uppercase ‘H’ and appear in the Courier type-
face. For readability, underscore ‘_’ characters separate large values into four-digit groups,
except in program statements as illustrated in the below examples:
Manual Objectives UM018809-0611

ZNEO® CPU Core
User Manual

xv
Example 1: R1 is set to F8H.

Example 2: 32-bit hexadecimal value 1234_5678H

Bit Numbering

Bits are numbered in order of significance, from 0 to n–1 where 0 indicates the least sig-
nificant bit and n indicates the total number of bits.

For example, 8 bits of a memory byte are numbered from 0 to 7.

Registers, memory bytes, and binary values are illustrated with the highest-numbered bit
on the left and the lowest-numbered bit on the right.

For example, Bit 6 of the value 0100_0000B is 1.

Brackets

In text, square brackets, [], indicate one or more bits of a register, memory location, or
bus. A colon between bit numbers indicates a range of bits. A comma between bit numbers
indicates individual bits as given below:

Example 1: ADDR[31:0] refers to bit 31 through bit 0 of the ADDR bus or memory loca-
tion. ADDR[31] is the most significant bit (msb), and ADDR[0] is the least significant bit
(lsb). ADDR[31:24] is the most significant byte (MSB), and ADDR[7:0] is the least sig-
nificant byte (LSB).

Example 2: If the value of R1[7:0] is 0100_0010B, the bits R1[6,2] are both 1.

Braces

The curly braces, { }, indicate a single register, memory address or bus created by concat-
enating combination of smaller registers, addresses, buses or individual bits.

For example, the 32-bit effective address {FFFFH, ADDR[15:0]} consists of a 16-bit
hexadecimal value (FFFFH) and a 16-bit direct address. FFFFH is the most significant
word (16 bits) and ADDR[16:0] is the least significant word of the resulting 32-bit
address.

Use of the Words Set, Reset and Clear

The word set indicates a 1 is stored in a register or memory bit or flag. The words reset or
clear indicates a 0 is stored in a register or memory bit or flag.

Use of the Terms LSB, MSB, lsb and msb

In this document, the terms LSB and MSB, when appearing in upper case, mean least sig-
nificant byte and most significant byte, respectively. The lowercase forms (lsb and msb)
mean least significant bit and most significant bit, respectively.
UM018809-0611 Manual Objectives

xvi

ZNEO® CPU Core
User Manual
Use of Initial Uppercase Letters

Initial uppercase letters designate settings, modes, and conditions in general text:

Example 1: Stop mode.

Example 2: The receiver forces the SCL line to Low.

Example 3: The Master can generate a Stop condition to abort the transfer.

Use of All Uppercase Letters

The use of all uppercase letters designates assembly mnemonics or the names of states and
hardware commands.

Example 1: The bus is considered BUSY after the Start condition.

Example 2: A START command triggers the processing of the initialization sequence.

Safeguards

It is important to understand the following safety terms:

Indicates that a procedure or file may become corrupted if you do not follow directions.

Indicates that you are in a situation that could cause bodily injury. Before you work on
any equipment, be aware of the hazards involved with electrical circuitry and be famil-
iar with standard practices for preventing accidents.

Caution:

Warning:
Manual Objectives UM018809-0611

ZNEO® CPU Core
User Manual

1

Architectural Overview

Zilog’s ZNEO CPU meets the continuing demand for faster and more code-efficient
microcontrollers. ZNEO CPU’s architecture greatly improves the execution efficiency of
code developed using higher-level programming languages like ‘C’ language.

Features

The key features of ZNEO CPU architecture include:

• Highly efficient register-based architecture with sixteen 32-bit registers. All register
operations are 32 bits wide

• Up to 4 GB linear address space (16 MB on current devices) with multiple internal
and external memory and I/O buses

• Short 16-bit addressing for internal RAM, I/O, and 32K of nonvolatile memory

• Instructions using memory can operate on 8-bit, 16-bit, or 32-bit values

• Support for 16-bit memory paths (internal and external)

• Pipelined instruction fetch, decode, and execution

• Bus arbiter supports simultaneous instruction and memory access (when possible)

Other features of the ZNEO CPU include:

• Direct register-to-register architecture allows each 32-bit register to function as an
accumulator. This improves the execution time and decreases the memory required for
programs.

• Expanded stack support:

– Push/Pop instructions use one 32-bit register as Stack Pointer

– Single-instruction push and pop of multiple registers

– Stack Pointer overflow protection

– Predecrement/postincrement Load instructions simplify the use of multiple stacks

– Link and Unlink operations with enhanced Frame Pointer-based instructions for
efficient access to arguments and local variables in subroutines

• Program Counter overflow protection

• User-selectable bus bandwidth control for DMA and CPU sharing
UM018809-0611 Architectural Overview

2

ZNEO® CPU Core
User Manual
Program Control

ZNEO CPU is controlled by a program stored in memory as object code. An object code is
a sequence of numerical opcode and operand bytes. An opcode specifies an instruction to
perform while operands specify the data addresses to be operated upon. Numerical object
code is rarely used to write programs. Instead, programs is written in a symbolic assembly
language using easily remembered (mnemonic) instructions. A program called an assem-
bler translates assembly language into object code.

This user manual provides details about using ZNEO CPU instructions in both object code
and assembly language. Those interested in writing assembly language can skip object
code details handled by the assembler.

Programmers using high-level languages like ‘C’ require this manual while writing opti-
mized routines in assembly language. Otherwise, the compiler or interpreter’s documenta-
tion should describe processor-specific details affecting program operation.

Processor Block Diagram

The ZNEO CPU consists of following two major functional blocks:

• Fetch Unit

• Execution Unit

The Fetch and Execution units access memory through a bus arbiter. The Execution Unit
is subdivided into the Instruction State Machine, Program Counter, Arithmetic Logic Unit
(ALU), and ALU registers. Figure 1 on page 3 displays the ZNEO CPU architecture.
Architectural Overview UM018809-0611

ZNEO® CPU Core
User Manual

3

Fetch Unit

The Fetch Unit’s primary function is to fetch opcodes and operand words (including
immediate data) from memory. The Fetch Unit also fetches interrupt vectors. The Fetch
Unit is pipelined and operates semi-independently from the execution unit. This Unit per-
forms a partial decoding of the opcode to determine the number of bytes to fetch for the
operation.

The Fetch Unit operation sequence functions as follows:

1. Fetch the first 2-byte opcode word.

2. Determine number of remaining opcode and operand words (one or two).

3. Fetch the remaining opcode and operand words.

4. Present the opcode and operands to the Instruction State Machine.

A ZNEO CPU instruction is always 1, 2, or 3 words long, including operands, and must be
aligned on an even address.

Figure 1. ZNEO CPU Block Diagram

Fetch Unit

Instruction and
Operand Fetch

Instruction State Machine

Arithmetic Logic Unit (ALU)

32-bit ALU Registers, R0-R15

Bus Arbiter

16

Internal
Non-volatile

Memory

16

Internal
RAM

8/16

Internal I/O

8/16

External
Memory
Interface

Program
Counter

Control
Registers

Execution Unit
UM018809-0611 Architectural Overview

4

ZNEO® CPU Core
User Manual
Execution Unit

The Execution Unit performs the processing functions required by the instruction opcodes
and operands which it receives from the Fetch Unit.

Instruction State Machine

The Instruction State Machine is the controller for the ZNEO CPU Execution Unit. After
the initial operation decode by the Fetch Unit, the Instruction State Machine takes over
and completes the instruction. The Instruction State Machine generates effective addresses
and controls memory read and write operations.

Program Counter

The Program Counter contains a counter and adder to monitor the address of the current
instruction and calculates the next instruction address. According to the number of bytes
fetched by the Fetch Unit, the Program Counter increments automatically. The adder
increments and handles Program Counter jumps for relative addressing. The initial value
of the program counter is programmable through the RESET vector.

refer to the ZNEO product specification that is specific to your device for the RESET vec-
tor location.

Programs cannot address the Program Counter directly but the instruction
LEA Rd, 4(PC) can be used to load the current Program Counter value (the next instruc-
tion address) into an ALU Register. The JP, CALL, and related instructions are used to
alter the program counter value.

The I/O memory register described in Program Counter Overflow Register on page 9 pro-
vides access to the program counter overflow feature.

Arithmetic Logic Unit

The Arithmetic Logic Unit (ALU) performs arithmetic and logical operations on data.
arithmetic operations including addition, subtraction, and multiplication. Logical opera-
tions include binary logic operations, bit shifting, and bit rotation.

ALU Registers

The ZNEO CPU provides 16 highly efficient 32-bit registers associated with the ALU.
The 16 ALU registers are named from R0 to R15.

These registers have the following characteristics:

• The CPU can access ALU registers more quickly than ordinary internal or external
memory.

Note:
Architectural Overview UM018809-0611

ZNEO® CPU Core
User Manual

5

• All 32 bits of a source or destination ALU Register are used for arithmetic and logical
operations.

• When an 8-bit or 16-bit memory read is performed, the value is extended to 32-bits in
the destination register. Unsigned (zero) or Signed extension can be specified.

• When an 8-bit or 16-bit memory write is performed, the source register’s value is trun-
cated (only the least significant 8 or 16 bits are stored in memory.)

• The CALL, IRET, LINK, POP, POPM, PUSH, PUSHM, RET, TRAP, and UNLINK
instructions; system interrupts; and exceptions use Register R15 as the Stack Pointer.
If not used, R15 behaves like any other ALU Register.

• The LINK, UNLINK, and some LD operations use Register R14 as a Frame Pointer. If
not used, R14 behaves like any other ALU Register.

Instruction Cycle Time

Instruction cycle times vary from instruction to instruction. Instructions are pipelined
which means the current instruction executes while the next instruction is being fetched.
This allows higher performance at a specific clock speed.

Instruction Fetch Cycles

The following equation is used to calculate the minimum number of cycles required to
fetch an instruction into the CPU:

Fetch Cycles = (bus_wait_states + 1) opcode_bytes/bus_bytes

In the above equation, the following points are true:

• Bus wait states is configured on a bus to accommodate memory specifications. The
number of wait states is added to each memory read or write on that bus.

For details about wait states, refer to the ZNEO product specification that is specific to
your device .

• The opcode bytes value can be 2, 4 or 6, depending on the instruction. Immediate
operands, if any, are included in the opcode fetch, so they do not affect execution
cycles.

• The bus bytes value can be 1 or 2, for fetches from an 8-bit or 16-bit bus, respectively.
For more details, see the Bus Widths section on page 19.

Note:
UM018809-0611 Architectural Overview

6

ZNEO® CPU Core
User Manual
Instructions always begin at an even address; therefore, instruction fetches are not subject
to uneven alignment delays.

An instruction fetch delay cycle can occur if the Fetch and Execution Units request access
to the same bus on the same cycle. In this case, the bus arbiter gives precedence to the
Execution Unit. This kind of delay can be avoided by storing instructions and data in dif-
ferent memory spaces; for example, instructions in ROM or Flash and data in RAM.

Execution Cycles

The minimum instruction execution time for most CPU instructions is one system clock
cycle. Additional cycles are required for shift, multiply, divide operations, and operations
which read or write memory locations. Table 1 lists minimum Execution Unit cycle times
for the various instructions. The symbol bus_time is described in the text following the
table, as other factors that affect execution of some instructions.

Table 1. Instruction Execution Cycles

Instruction Operand Types Minimum Execution Unit Cycles

LD, LEA Immediate, Register-to-Reg-
ister

1

To or From Memory 1 bus_time

EXT, LDES, ATM, BRK, DI, DJNZ,
EI, HALT, IRET, NOP, RET, STOP

— 1

PUSH, POP,
PUSHF, POPF

— 1 bus_time

PUSHM, POPM — Variable

CLR Register 1

Memory 1 bus_time

CP, CPZ, TM, TCM Immediate, Register-to-Reg-
ister

1

To or From Memory 1 + bus_time

ADC, ADD, AND, COM, CPC,
CPCZ, DEC, INC, NEG, OR, SBC,
SUB, XOR

Immediate, Register-to-Reg-
ister

1

Memory to Register 1 + bus_time

Register to Memory 2 bus_time

Note:
Architectural Overview UM018809-0611

ZNEO® CPU Core
User Manual

7

Execution cycles can be affected by the following factors:

• The symbol bus_time stands for the time to read or write a value to the addressed
memory bus, as given by the formula below:

(bus_wait_states + 1) ceiling(data_bytes/bus_bytes)

In the above equation, the following points can be considered:

– Bus wait states is configured for a bus to accommodate memory specifications.
The number of wait states is added to each memory read or write on that bus.

– The ceiling function rounds up to the nearest integer. This accounts for a 1-byte
access on a 2-byte bus, which takes a full memory access cycle, not 1/2 cycle.

– The data bytes value can be 1, 2 or 4, depending on the size of the addressed data
(for direct or register-indirect addressed memory).

– The bus bytes value can be 1 or 2, for fetches from an 8-bit or 16-bit bus, respec-
tively.

An unaligned 16-bit or 32-bit read or write requires additional cycles. For more
details, see the Bus Widths section on page 19.

MUL, SMUL, UMUL Operands 1_0000H 10

Operands 1_0000H 18

SDIV Destination 1_0000H 17 if result is positive, 18 if negative

Destination 1_0000H 33 if result is positive, 34 if negative

UDIV Destination 1_0000H 17

Destination 1_0000H 33

UDIV64 — 34

SRA, SRL, SLL, RL — (src/8) + (src % 8)

SRAX, SRLX, SLLX — src + 1

JP, JP cc, CALL, NOFLAGS, Extend
Prefix

— 0

ILL, TRAP — 1 + 4 IROM_bus_time
+ 6 stack_bus_time
+ next_instruction_words

LINK — 2 + 4 stack_bus_time

UNLINK — 1 + 4 stack_bus_time

Table 1. Instruction Execution Cycles (Continued)

Instruction Operand Types Minimum Execution Unit Cycles
UM018809-0611 Architectural Overview

8

ZNEO® CPU Core
User Manual
• For LD and LEA instructions, a delay cycle is inserted if a register is loaded immedi-
ately before it is used for the base address in a register-indirect instruction.

• If execution of an instruction ends before all the next instruction words are fetched,
the Execution Unit delays for the number of cycles required by the Fetch unit to com-
plete the instruction fetch. After an ILL or TRAP instruction executes, the entire next
instruction must be fetched.

For details about wait states, refer to the ZNEO product specification that is specific to
your device .

Control Registers

The ZNEO CPU and internal peripheral control registers are accessed in the I/O memory
space starting at FF_E000H (24-bit address space devices). Table 2 lists control registers
common to all Zilog devices that incorporate the ZNEO CPU. In this table, “X” indicates
an undefined hex digit value.

For complete information about peripheral control registers for a particular device, refer to
the device specific Product Specification.

I/O memory locations can be accessed using a 16 bit address operand. For more details, see
the Direct Memory Addressing section on page 29.

Table 2. Control Registers

Address (Hex) Register Description Mnemonic
Reset Value
(Hex)

FF_E004–FF_E007 Program Counter Overflow PCOV FFFFFFFF

FF_E008–FF_E00B Reserved — xxxxxxxx

FF_E00C–FF_E00F Stack Pointer Overflow SPOV 00000000

FF_E010 Flags FLAGS xx

FF_E011 Reserved — xx

FF_E012 CPU Control CPUCTL FF

Note:

Note:

Note:
Architectural Overview UM018809-0611

ZNEO® CPU Core
User Manual

9

Program Counter Overflow Register

The Program Counter Overflow Register (PCOV) implements program counter overflow
protection. For more details, see the Program Counter Overflow section on page 50.

Stack Pointer Overflow

The Stack Pointer Overflow Register (SPOV) is used to provide stack pointer overflow
protection. For more details, see the Stack Overflow section on page 50. CALL, ILL,
IRET, POP, PUSH, RET and TRAP instructions, system interrupts and exceptions use the
ALU Register. R15 is used as the Stack Pointer.

Flags Register (FLAGS)

This byte register contains the status information regarding the most recent arithmetic,
logical, bit manipulation or rotate and shift operation. The Flags Register contains six bits
of status information that are set or cleared by CPU operations. Five of the bits (C, Z, S, V
and B) can be tested with conditional jump instructions. The IRQE bit is the Master Inter-
rupt Enable flag, and the CIRQE bit is the Chained Interrupt Enable flag. Figure 2 displays
the flags and their bit positions in the Flags Register.

Interrupts, System Exceptions, and the software Trap (TRAP) instruction write the value
of the Flags Register to the stack. Executing an Interrupt Return (IRET) instruction
restores the value saved on the stack into the Flags Register.

Figure 2. Flags Register

C Z S V B F1 CIRQE IRQE Flags Register

 Bit
 0

Bit
7

 Master Interrupt Enable

 Chained Interrupt Enable

User Flag 1

Blank Flag

Overflow Flag

Sign Flag

Zero Flag

Carry Flag
UM018809-0611 Architectural Overview

10

ZNEO® CPU Core
User Manual
Flag settings depend on the data size of the result, which can be 8 bits (Byte), 16 bits
(Word), or 32 bits (Quad, the default). For instructions with destinations in memory, the
mnemonic suffix determines the destination size. If the destination is a register, Flags are
based on the 32-bit result. For more information, see the Memory Data Size section on
page 30.

Carry Flag

The Carry (C) flag is 1 when the result of an arithmetic operation generates a carry out of
or a borrow into the most significant bit (msb) of the data. Otherwise, the Carry flag is 0.
Some bit rotate or shift instructions also affect the Carry flag. Bit [31] is considered msb
for register destinations; the msb for a memory destination depends on the data size.

Zero Flag

For arithmetic and logical operations, Zero (Z) flag is 1 if the result is 0. Otherwise, the
Zero flag is 0. If the result of testing bits is 0, Zero flag is 1; otherwise, the Zero flag is 0.

Also, if the result of a rotate or shift operation is 0, the Zero flag is 1; otherwise, the Zero
flag is 0. The test considers 32 bits for a register destination or the destination size for a
memory destination.

Sign Flag

The Sign (S) flag stores the value of the most significant bit (msb) of a result following an
arithmetic, logical, rotate, or shift operation. For signed numbers, the ZNEO CPU uses
binary two’s complement to represent the data and perform the arithmetic operations. A 0
in the msb position identifies a positive number; therefore, the Sign flag is also 0. A 1 in
the most significant position identifies a negative number; therefore, the Sign flag is also
1. Bit [31] is considered msb for register destinations; the msb for a memory destination
depends on the data size.

Overflow Flag

For signed arithmetic, rotate or shift operations, the Overflow (V) flag is 1 when the result
is greater than the maximum possible number or less than the minimum possible number
which is represented with the specified data size in signed (two’s complement) form. For
signed data size ranges, see Table 14 on page 32. The Overflow flag is 0 if no overflow
occurs. Following logical operations, the Overflow flag is 0.

Following addition operations, the Overflow flag is 1 when the operands have the same
sign, but the result has the opposite sign. Following subtraction operations, the Overflow
flag is 1 if the two operands are of opposite sign and the sign of the result is same as the
sign of the source operand. Following shift/rotation operations, the Overflow flag is 1 if
the sign bit of the destination changed during the last bit shift iteration.
Architectural Overview UM018809-0611

ZNEO® CPU Core
User Manual

11
Blank Flag

For some arithmetic, logical, and load operations, the Blank (B) flag is set to 1 if a tested
operand value is 0 before the operation. Otherwise, B is 0. Both source and destination
operands might be tested, but which operands are tested depends on the operation being
performed. See the instruction descriptions for details.

Unlike other flags, the B flag can be altered by POP and some LD instructions. 8-bit or 16-
bit memory operands are tested after unsigned or signed extension, depending on the
instruction. For more information, see the Resizing Data section on page 31.

The B flag is useful for operations involving a null-terminated strings. For example, after
the following statement executes, Z is set if the tested byte is a carriage return (0DH), or B
is set if the byte is zero.

 CP.B (R6), #0DH

User Flag

The User Flag (F1) are available as general-purpose status bits. The User Flag is unaf-
fected by arithmetic operations and must be set or cleared by instructions. The User Flag
must not be used with conditional Jumps. The User Flag is 0 after initial power-up or
Reset.

Chained Interrupt Enable Flag

The Chained Interrupt Enable flag (CIRQE) is used to enable or disable chained-interrupt
optimization, which allows program control to pass directly from one interrupt service
routine to another while omitting unneeded stack operations. For more information, see
the Returning From a Vectored Interrupt section on page 44.

Whenever a vectored interrupt or system exception occurs, the previous state of the IRQE
flag is copied to CIRQE after the Flags Register is pushed onto the stack. This disables
interrupt chaining if interrupts are globally disabled (IRQE=0) when a nonmaskable inter-
rupt or system exception occurs.

The CIRQE flag is unaffected by other operations, but it may be set or cleared by instruc-
tions, if desired. The CIRQE flag cannot be used with conditional Jumps. The CIRQE flag
is 0 after initial power-up or Reset.

Master Interrupt Enable Flag

The Master Interrupt Enable bit (IRQE) globally enables or disables interrupts. For more
information, see the Interrupts chapter on page 41.

Condition Codes

The C, Z, S, V, and B flags control the operation of the conditional jump (JP cc) instruc-
tions. Sixteen frequently useful functions of the flag settings are encoded in a 4-bit field
UM018809-0611 Architectural Overview

12

ZNEO® CPU Core
User Manual
called the condition code (cc), which are assembled into each conditional jump opcode.
Table 3 summarizes condition codes and their assembly language mnemonics.

Some binary condition codes are expressed by more than one mnemonic.

The result of the flag test operation determines if the conditional jump executes.

Table 3. Condition Codes

Binary Hex
Assembly
Mnemonic Definition

Flag Test Operation
(Jump if True)

0000 0 B Blank B = 1

0001 1 LT Less Than (S XOR V) = 1

0010 2 LE Less Than or Equal (Z OR (S XOR V)) = 1

0011 3 ULE Unsigned Less Than or Equal (C OR Z) = 1

0100 4 OV Overflow V = 1

0101 5 MI Minus S = 1

0110 6 Z Zero Z = 1

0110 6 EQ Equal Z = 1

0111 7 C Carry C = 1

0111 7 ULT Unsigned Less Than C = 1

1000 8 NB Not Blank B = 0

1001 9 GE Greater Than or Equal (S XOR V) = 0

1010 A GT Greater Than (Z OR (S XOR V)) = 0

1011 B UGT Unsigned Greater Than (C OR Z) = 0

1100 C NOV No Overflow V = 0

1101 D PL Plus S = 0

1110 E NZ Non-Zero Z = 0

1110 E NE Not Equal Z = 0

1111 F NC No Carry C = 0

1111 F UGE Unsigned Greater Than or
Equal

C = 0

Note:
Architectural Overview UM018809-0611

ZNEO® CPU Core
User Manual

13
CPU Control Register (CPUCTL)

Bits [1:0] of the CPU Control Register (see Table 4 on page 13) control access to the
ZNEO CPU buses through DMA bandwidth selection.

For more details about the available peripheral control and data registers, and additional
information about DMA operation, refer to the device specific Product Specification.

Table 4. CPU Control Register

Bit 7 6 5 4 3 2 1 0

Field Reserved DMABW

Reset 1 1 1 1 1 1 1 1

R/W R R R R R R R/W R/W

Address FFFF_E012H

Note: R = Read-only; R/W = Read/Write; R/W0 = Read/Write to 0.

Bit
Position Description

[7:2] Reserved; must be zero.

[1:0] DMA Bandwidth Selection (DMABW)
The ZNEO CPU can be configured to support four levels of Direct Memory Access (DMA) Con-
troller bus bandwidth. Write one of the following values to DMABW[1:0] to select the portion of
bus bandwidth allocated to DMA operations:
00 = DMA can consume 100% of the bus bandwidth
01 = DMA is allowed one transaction for each CPU operation
10 = DMA is allowed one transaction for every two CPU operations
11 = DMA is allowed one transaction for every three CPU operations

Note:
UM018809-0611 Architectural Overview

14

ZNEO® CPU Core
User Manual
Architectural Overview UM018809-0611

ZNEO® CPU Core
User Manual

15
Address Space

The ZNEO CPU has a unique memory architecture with a unified address space. It sup-
ports memory and I/O up to four buses:

• Internal Non-Volatile Memory (Flash, EEPROM, EPROM, or ROM)

• Internal RAM

• Internal I/O Memory (internal peripherals)

• External Memory (and/or memory-mapped peripherals)

The ZNEO CPU Fetch Unit and Execution Unit can access separate buses at the same
time. The CPU can access memories with either 8-bit or 16-bit bus widths. ZNEO CPU
uses 32-bit addressing internally. Therefore, the CPU is capable of addressing up to 4 GB
of addresses.

Current ZNEO CPU products ignore address bits [31:24], providing a 24-bit address space
with 16 MB (16,777,216 bytes) of unique memory addresses. Address bits [31:24] must
be written appropriately for the addressed space to allow for possible future expansion.

The CPU also provides instructions which use 16-bit addressing. 16-bit addresses are sign
extended by the CPU to access the highest and lowest 32 KB of the available address
space.

Example: The 16-bit address FEFFH resolves to FF_FEFFH in the 24-bit address space.

Most CPU instructions also use Arithmetic and Logic Unit (ALU) registers for either
source or destination data. See the ALU Registers section on page 4.

The ZNEO CPU address space includes the following features:

• Memory Map

• Internal Nonvolatile Memory

• Internal RAM

• I/O Memory

• External Memory

• Endianness

• Bus Widths
UM018809-0611 Address Space

16

ZNEO® CPU Core
User Manual
Memory Map

Figure 3 displays a memory map of the ZNEO CPU. It displays the location of internal
nonvolatile memory, internal RAM, and internal I/O Memory. External memory can be
accessed at addresses not occupied by internal memory or I/O.

Figure 3. ZNEO CPU Memory Map (24 Significant Address Bits)

Internal Non-Volatile

External Memory Interface

00_0000H

FF_8000H

FF_E000H

FF_FFFFH

FF_xxxxH

Data Addresses Jump Addresses
(Execution Unit) (Fetch Unit)

Internal Bus (One of Three)
External Bus

00_xxxxH

00_0xxxH

FF_xxxxH

xxxxH Device-Specific Boundary
16-Bit Address Space

00_7FFFH

Internal I/O &
Control Registers

Option Bits and Vectors

Memory

External Memory Interface

Internal RAM

Reserved
Address Space UM018809-0611

ZNEO® CPU Core
User Manual

17
To determine the amount of internal RAM and internal nonvolatile memory available for
the specific device and for details about the available option bits and vectors, refer to the
ZNEO product specification that is specific to your device .

Internal Nonvolatile Memory

Internal nonvolatile memory consists of executable program code, constants, and data.
The ZNEO CPU assembler provides configurable address range mnemonics (ROM and
EROM) that can be specified to locate data and program elements in nonvolatile memory.
ROM selects nonvolatile memory in the 16-bit address space, while EROM selects non-
volatile memory in the 32-bit address space. For more details about data space and seg-
ment definitions, refer to the assembler documentation.

For each product within the ZNEO CPU family, a block of memory beginning at address
00_0000H is reserved for option bits and system vectors (RESET, trap, interrupts, System
Exceptions; etc.). Table 5 provides an example reserved memory map for a ZNEO CPU
product with 24 interrupt vectors.

Internal RAM

Internal RAM is employed for data and stacks. However, internal RAM can also contain
program code for execution. Most ZNEO CPU devices contain some internal RAM. The
base (lowest address) and top (highest address) of internal RAM are a function of the
amount of internal RAM available.

To determine the amount and location of internal RAM, refer to the ZNEO product specifi-
cation that is specific to your device .

Table 5. Reserved Memory Map Example

Memory Address (Hex) Description

00_0000–00_0003 Option Bits

00_0004–00_0007 RESET Vector

00_0008–00_000B System Exception Vector

00_000C–00_000F Reserved

00_0010–00_006F Interrupt Vectors

Note:

Note:
UM018809-0611 Address Space

18

ZNEO® CPU Core
User Manual
The ZNEO CPU assembler provides a configurable address range mnemonic (RAM) that
can be specified to locate data and (possibly) program elements in the RAM space
accessed using 16-bit addressing. For more details about data space and segment defini-
tions, refer to the assembler documentation.

I/O Memory

ZNEO CPU supports 8 KB (8,192 bytes) of internal I/O Memory space located at
addresses FF_E000H through FF_FFFFH (in the 24-bit address space). The I/O Memory
addresses are reserved for control of the ZNEO CPU, the on-chip peripherals, and the I/O
ports.

For descriptions of the peripheral and I/O control registers, refer to the ZNEO product
specification that is specific to your device . Attempts to read from unavailable I/O Mem-
ory addresses return FFH. Attempts to write to unavailable I/O Memory addresses produce
no effect.

The ZNEO CPU assembler provides a configurable address range mnemonic, IODATA,
that can be specified to locate an address in the reserved I/O Memory space or (if present)
external I/O configured in the adjacent 16-bit addressable memory space. For more details
about data space and segment definitions, refer to the assembler documentation.

I/O Memory Precautions

Some control registers within the I/O Memory provide read-only or write-only access.
When accessing these read-only or write-only registers, ensure that the instructions do not
attempt to read from a write-only register or, conversely, write to a read-only register.

External Memory

ZNEO CPU products support external data and address buses for connecting to additional
external memories and/or memory-mapped peripherals. The external addresses can be
used for storing program code, data, constants, stack, etc. The results of reading from or
writing to unavailable external addresses are undefined.

The ZNEO CPU assembler’s EROM and ERAM address range mnemonics can be config-
ured to include external memory configured in 32-bit addressed memory. These mnemon-
ics can be used to locate data and program elements in nonvolatile or RAM memory, as
required. For more information about data space and segment definitions, refer to the
assembler documentation.

Note:
Address Space UM018809-0611

ZNEO® CPU Core
User Manual

19
Endianness

The ZNEO CPU accesses data in Big Endian order; which means the address of a multi-
byte Word or Quad points to the most significant byte (MSB). Figure 4 displays the Endi-
anness of the ZNEO CPU.

Bus Widths

The ZNEO CPU can access 8-bit or 16-bit wide memories. The data buses of the internal
nonvolatile memory and internal RAM are 16-bits wide. The internal peripherals are a mix
of 8-bit and 16-bit peripherals. The external memory bus can be configured as an 8-bit or
16-bit memory bus.

If a 16-bit or 32-bit operation is performed on a 16-bit wide memory, the number of mem-
ory accesses depends on the alignment of the address. If the address is even, a 16-bit oper-
ation takes one memory access and a 32-bit operation takes two memory accesses. If the
address is odd (unaligned), a 16-bit operation takes two memory accesses and a 32-bit
operation takes three memory accesses. Figure 5 displays this behavior for 16-bit and 32-
bit access.

Figure 4. Endianness of Words and Quads

FF_0080H

FF_0081H

FF_0082H

FF_0083H

MSB

LSB

Address
of Quad

FF_0080H

FF_0081H

MSB

LSB
Address
of Word
UM018809-0611 Address Space

20

ZNEO® CPU Core
User Manual
Figure 5. Alignment of 16-Bit and 32-Bit Operations on 16-Bit Memories

MSB LSBFF_0080H FF_0081H

MSB

LSBFF_0082H

FF_0081H

Aligned 16-Bit Access

Unaligned 16-Bit Access

MSB

LSB

FF_0080H FF_0081H

FF_0082H FF_0083H

MSB

LSB

FF_0081H

FF_0082H FF_0083H

FF_0084H

Aligned 32-Bit Access

Unaligned 32-Bit Access

FF_0080H

FF_0083H

FF_0085H

FF_0080H
Address Space UM018809-0611

ZNEO® CPU Core
User Manual

21
Assembly Language Introduction

Assembly language uses mnemonic symbols to represent instruction opcodes. Operands
such as register names and immediate data is represented symbolically, numerically, as
expressions, or by labels defined elsewhere in the program.

Figure 6 displays a typical assembly language statement.

An assembly statement can include one or more the following elements:

Label. An optional text string used to refer to this statement elsewhere in the program. A
string is considered a label definition if it is not an assembler keyword, and it either begins
a line or is followed by a colon. The label definition identifies the address of the instruc-
tion that follows it.

Instruction Mnemonic. The mnemonic code for the desired operation.

Destination Operand. The destination location for the operation. In assembly, the desti-
nation operand is always first if both operands are specified.

Source Operand. The source location or immediate data for the operation.

Comment. An optional text field ignored by the assembler. Comments are used to
describe the flow of a program so it is easier to understand and maintain later.

Instead of instruction mnemonics, some assembly statements contain assembler directives
(also called pseudo-ops), which are not translated into object code. Directives are used to
select memory segments, allocate storage in memory, define macros, and control the
assembly process.

Example Assembly Language Source

An assembly language program is written in a plain text file called as source file, which
contains a sequence of assembly language statements and directives.

Below is an example of an assembly source file:

SEGMENT NEAR_TEXT ; Directive to place the following statements

Figure 6. Example Assembly Language Statement

LOOP: SUB R5, R7 ;Subtract

 Label
(Optional)

Instruction
Mnemonic

Destination
Operand

Source
Operand

Comment
(Optional)
UM018809-0611 Assembly Language Introduction

22

ZNEO® CPU Core
User Manual
 ; in data (RAM space) memory

Str_Data: ; Make Str_Data label equal to current addr.
 DB "NEVAR" ; Directive to allocate and initialize data
 ; bytes

Str_Length EQU $ - Str_Data ; Equate Str_Length to current
assembly
; address ("$") minus Str_Data address.

Blank_Data: ; Allocate an uninitialized data block
 DS Str_Length ; that is the same size as the Str_Data block.

 SEGMENT CODE ; Directive to put the following statements in
 ; instruction (ROM space) memory
REVERSE: ; Routine to reverse a block of data
 LD R8, #Str_Data ; Load R8 with 1st address in Str_Data block
 LD R12, #Blank_Data+Str_Length ;Next addr. after Blank_Data
LOOP: ; Start of loop
 LD.UB R5,(R8++) ; Load byte pointed to by R8 into R5 LSB
 ; Increment R8 after load.
 LD.B (--R12),R5 ; Decrement R12, then
 ; Load byte pointed to by R12 with R5 LSB
 CP R12, #Blank_Data ; Did we write all the bytes?
 JP NZ,LOOP ; Repeat until Blank_Data block contains
 ; reversed copy of Str_Data bytes

For details about assembly instructions, see the Instruction Set Reference chapter on
page 65. For details about operand addressing and data sizes, see the Operand Addressing
chapter on page 27.

For information about how program flow can be interrupted, see the Interrupts chapter on
page 41, System Exceptions on page 49, and Software Traps on page 53.

For details about assembly language syntax, expressions, directives, and using the assem-
bler, refer to the Zilog Developer Studio II – ZNEO User Manual (UM0171).

 ZNEO CPU Instruction Classes

 ZNEO CPU instructions can be divided functionally into the following groups:

• Arithmetic

• Logical

• Bit Manipulation

• Rotate and Shift
Assembly Language Introduction UM018809-0611

http://www.zilog.com/docs/devtools/um0171.pdf

ZNEO® CPU Core
User Manual

23
• Load

• CPU Control

• Program Control

Tables 6 through 12 list the instructions for each of the above groups and the number of
operands required for each instruction. Some instructions appear in more than one table as
these instructions can be considered members of more than one category. The abbrevia-
tions dst and src refer to destination and source operands, respectively.

Table 6. Arithmetic Instructions

Mnemonic Operands Instruction Page

ADC dst, src Add with Carry 68

ADD dst, src Add 71

CP dst, src Compare 86

CPC dst, src Compare with Carry 89

CPCZ dst Compare to Zero with Carry 92

CPZ dst Compare to Zero 94

DEC dst Decrement 96

INC dst Increment 108

MUL dst, src Multiply (32 bit) 125

NEG dst Negate 127

SBC dst, src Subtract with Carry 149

SDIV dst, src Signed Divide (32 bit) 152

SMUL dst, src Signed Multiply (64 bit) 158

SUB dst, src Subtract 169

UDIV dst, src Unsigned Divide (32 bit) 180

UDIV64 dst, src Unsigned Divide (64 bit) 182

UMUL dst, src Unsigned Multiply (64 bit) 184

Table 7. Logical Instructions

Mnemonic Operands Instruction Page

AND dst, src Logical AND 74

COM dst Complement 84

OR dst, src Logical OR 131

XOR dst, src Logical Exclusive OR 188
UM018809-0611 Assembly Language Introduction

24

ZNEO® CPU Core
User Manual
Table 8. Bit Manipulation Instructions

Mnemonic Operands Instruction Page

TCM dst, src Test Complement Under Mask 172

TM dst, src Test Under Mask 175

Table 9. Rotate and Shift Instructions

Mnemonic Operands Instruction Page

RL dst Rotate Left 147

SLL dst, src Shift Left Logical 154

SLLX dst, src Shift Left Logical, Extended 156

SRA dst, src Shift Right Arithmetic 160

SRAX dst, src Shift Right Arithmetic,
Extended

162

SRL dst, src Shift Right Logical 164

SRLX dst, src Shift Right Logical, Extended 166

Table 10. Load Instructions

Mnemonic Operands Instruction Page

CLR dst Clear Value 82

EXT dst, src Extend Value 103

LD dst, src Load 115

LD cc dst Load Condition Code 120

LDES dst Load and Extend Sign Flag 121

LEA dst Load Effective Address 122

LINK src Link Frame Pointer 124

POP dst Pop 134

POPF dst Pop Flags 136

POPM mask Pop Multiple 137

PUSH src Push 140

PUSHF src Push Flags 142

PUSHM mask Push Multiple 143

UNLINK Unlink Frame Pointer 186
Assembly Language Introduction UM018809-0611

ZNEO® CPU Core
User Manual

25
Table 11. CPU Control Instructions

Mnemonic Operands Instruction Page

ATM — Atomic Operation Modifier 77

DI — Disable Interrupts 98

EI — Enable Interrupts 102

HALT — Halt Mode 105

NOFLAGS — No Flags Modifier 129

NOP — No Operation 130

STOP — Stop Mode 168

Table 12. Program Control Instructions

Mnemonic Operands Instruction Page

BRK — On-Chip Debugger Break 78

CALL dst Call 79

CALLA dst Call Absolute 81

DJNZ dst, src Decrement, Jump if Nonzero 100

IRET — Interrupt Return 110

JP dst Jump 112

JPA dst Jump Absolute 113

JP cc dst Jump Conditional 114

RET — Return from Call 146

TRAP vector Software Trap 178
UM018809-0611 Assembly Language Introduction

26

ZNEO® CPU Core
User Manual
Assembly Language Introduction UM018809-0611

ZNEO® CPU Core
User Manual

27
Operand Addressing

Most ZNEO CPU instructions operate on one or two registers, or one register and one
memory address. Operands following the instruction specify which register or memory
address to use.

Example. The assembly language statement below loads one 32-bit register with data
from another:

 LD R7, R8

The first operand almost always specifies the destination, and the second operand (if any)
specifies the source for the operation. In this example, the R7 register is loaded with the
value from R8 register.

There are four kinds of operand addressing, each of which is described in this chapter:

• Immediate Data, in which the value specified by the operand is used for operation.

• Register Addressing, in which the specified 32-bit register is used for operation.

• Direct Memory Addressing, in which the value specified by the operand addresses a
memory location that is used for the operation. This section introduces the following
topics:

– Memory Data Size

– Resizing Data

These topics also apply to Register-Indirect memory addressing.

• Register-Indirect Memory Addressing, in which the specified 32-bit register and
optional offset point to a memory location that is used for the operation. This section
covers the following topics specific to register-indirect addressing:

– Loading an Effective Address

– Using the Program Counter as a Base Address

– Memory Address Decrement and Increment

– Using the Stack Pointer (R15)

– Using the Frame Pointer (R14)

This chapter also describes Bit Manipulation (see page 37) and Jump Addressing (see
page 39).
UM018809-0611 Operand Addressing

28

ZNEO® CPU Core
User Manual
Immediate Data

An Immediate Data operand specifies a source value to be used directly by the instruction.

Example. The assembly language statement below loads ALU Register R7 with the value
42H:

 LD R7, #42H

The hash mark prefix (#) on the second (source) operand indicates to the assembler that
the value is Immediate Data, so this example loads the R7 register with the value 42H.

Immediate data is stored as part of the instruction opcode. Depending on the opcode, an
immediate data value can be of the same size as the destination (8, 16 or 32 bits), or it may
contain fewer bits to shorten the opcode.

A destination-sized immediate operand (imm syntax symbol) is used directly by the opera-
tion. A shorter immediate operand must be considered signed (simm) or unsigned (uimm).
A signed immediate value is sign-extended to the destination size before it is used. An
unsigned immediate operand is zero-extended to the destination size before it is used. For
more information, see the Memory Data Size section on page 30 and the Resizing Data
section on page 31.

An immediate value does not address data memory, so it cannot be used as the destination
operand. Immediate data is read by the Fetch Unit, so it is not affected by the constraints
described in the I/O Memory Precautions section on page 18.

Register Addressing

A Register operand specifies a 32-bit Arithmetic and Logic Unit (ALU) register to be used
with the instruction. ALU registers are the CPU’s high-speed work space, much faster than
ordinary internal or external memory. There are 16 ALU registers, named R0 to R15. See
the ALU Registers section on page 4 for details.

As mentioned previously, the following assembly language statement loads the destination
register, R7, with data from the source register, R8:

 LD R7, R8

Depending on the instruction, a register name can be used for either the source or destina-
tion operand, or both. Each register is 32-bits (four bytes) wide, and all 32 bits of a register
are used unless the register’s value is loaded into an 8-bit or 16-bit memory location.

The ZNEO CPU assembler recognizes FP as a synonym for R14 and SP as a synonym for
R15. For details, see the Using the Frame Pointer (R14) section on page 37 and the Using
the Stack Pointer (R15) section on page 36. The UDIV64 instruction uses a 64-bit RRd
register pair operand that employs two 32-bit ALU registers. See the UDIV64 section on
page 182 for details.
Operand Addressing UM018809-0611

ZNEO® CPU Core
User Manual

29
Direct Memory Addressing

A Direct Memory operand specifies a memory address to be used by the instruction.

Example. The following assembly language statement loads ALU register R7 with the
value in memory address 0000_B002H:

 LD.SB R7, B002H

Any data operand which does not contain an immediate value (#n) or register name (Rn) is
assumed to be a memory address. Depending on the instruction, a direct memory address
can be used in either the source or destination operand, but a destination’s effective
address must be a writable memory or I/O location.

ZNEO CPU uses 32-bit memory addresses, but it includes instruction opcodes which
accept 16-bit addresses. A 16-bit address operand in object code is sign-extended by the
CPU (see the Resizing Data section on page 31) to create the effective address used. This
feature splits the 16-bit address range between the highest and lowest 32K blocks of the 16
GB address space. Table 13 provides the 16-bit address ranges for object code.

Effective addresses are expressed as 32-bit values. Current devices ignore address bits
[31:24], providing a 24-bit address space.

Internal RAM and I/O memory falls in the range FFFF_8000H to FFFF_FFFFH
(FF_8000H to FF_FFFFH on devices that ignore address bits [31:24]), so 16-bit address-
ing provides efficient access to internal RAM and I/O memory.

The ZNEO CPU assembler does not automatically use 16-bit addressing if an unmodified
16-bit address is specified, as in the previous example. In this case the assembler selects
16-bit or 32-bit addressing to ensure the address is used as specified.

However, you can append address range mnemonics to specify whether the assembler
should use 16-bit or 32-bit addressing. The RAM, IODATA, and ROM mnemonics tell the
assembler to use 16-bit addressing, as shown in the following example statements:

 LD.SB R7, B002H:RAM ; Effective address is FFFF_B002H
 LD.SB R7, E002H:IODATA ; Effective address is FFFF_E002H
 LD.SB R7, 3002H:ROM ; Effective address is 0000_3002H

Table 13. 16-Bit Addressing (Object Code Only)

16-Bit Address Range 32-Bit Effective Addresses Memory Space

0000H to 7FFFH 0000_000H to 0000_7FFFH ROM

8000H to FFFFH FFFF_8000H to FFFF_FFFFH RAM and I/O

Note:
UM018809-0611 Operand Addressing

30

ZNEO® CPU Core
User Manual
The ERAM and EROM address space suffixes tell the assembler to use 32-bit addressing,
as shown in the following statements. A full 32-bit address can access external memory or
memory-mapped I/O anywhere in the 4 GB address space.

 LD.SB R7, B002H:EROM ; Effective address is 0000_B002H
 LD.SB R7, B002H:ERAM ; Effective address is 0000_B002H

The assembler uses memory space mnemonics only to select an appropriate address size
(16 or 32 bit). The assembler does not check an absolute address to make sure it actually
resides in the specified space, but the assembler generates a warning if a label is used in a
space other than the space in which it was declared. See the Address Space section on
page 15 for more information about memory spaces.

Memory Data Size

The ZNEO CPU’s default data size is 32 bits (Quad). Any instruction that addresses an 8-
bit or 16-bit value in memory must use a mnemonic suffix to specify the data size. The
previous examples use the ‘.B’ suffix to tell the CPU that only 8 bits (one byte) must be
loaded. The following data size suffixes can be used (using LD as an example):

LD (No Suffix). Read or write 32 bits (four bytes). In a read, for example, the byte at the
specified effective address loads into bits [31:24] of the destination register. The three sub-
sequent memory bytes load into bits [23:16], [15:8], and [7:0] of the destination register,
in that order.

LD.W. Read or write 16 bits (two bytes). In an unsigned read, for example, bits [31:16] of
the destination register are cleared, the byte at the specified effective address loads into
bits [15:8] of the register, and the byte at the next (+1) address loads into bits [7:0] of the
register.

LD.B. Read or write 8 bits (one byte). In an unsigned read, for example, bits [31:8] of the
destination register are cleared, and the byte at the specified effective address loads into
bits [7:0] of the register.

Figure 7 on page 31 displays the mapping of register bytes to memory bytes for different
data sizes. When 8-bit or 16-bit memory is read or written, the high-order bits are filled or
truncated as described in the Resizing Data section on page 31.
Operand Addressing UM018809-0611

ZNEO® CPU Core
User Manual

31

Resizing Data

When an 8-bit or 16-bit memory location is written, the value from the source register is
truncated, so only the least-significant 8 or 16 bits of the register value are written, respec-
tively. The source register itself is not changed. When an 8-bit or 16-bit memory location
is read, the value from memory must be extended to a full 32 bits before it is used or stored
in a register.

One of the following two kinds of data extension must be used:

Unsigned (Zero) Extension. The upper bits of the new 32-bit value are filled with zeroes.
Unsigned extension is invoked by including a ‘U’ in the mnemonic suffix. For example,
the following instruction loads the byte at FFFF_7002H into R10[7:0] and fills R10[31:8]
with zeroes:

 LD.UB R10,7002H

Signed Extension. The upper bits of the new 32-bit value are filled with ones or zeroes,
depending on the source value’s most-significant (sign) bit, to preserve the sign of the
loaded value. Signed extension is invoked by including an ‘S’ in the mnemonic suffix.

For example, the following instruction loads the byte at address FFFF_7002H into register
bits R10[7:0] and copies bit 7 of that byte into each bit of R10[31:8].

Figure 7. Mapping of Register to Memory Bytes

ALU Registers Memory Space

7:015:823:1631:24Bits:

FFFF_7005H

(Effective Address)

FFFF_7006H

FFFF_7007H

FFFF_7004H

7:015:823:1631:24Bits:

FFFF_7009H

(Effective Address)FFFF_7008H

7:015:823:1631:24Bits:

FFFF_700AH (Effective Address)
8-Bit

16-Bit

32-Bit
UM018809-0611 Operand Addressing

32

ZNEO® CPU Core
User Manual
 LD.SB R10,7002H

By default, the ZNEO CPU assembler uses an unsigned instruction opcode if the exten-
sion type is not specified for an 8- or 16-bit memory read. The EXT instruction is provided
for extending 8-bit or 16-bit values contained in a register.

The CPU uses ordinary two’s complement notation to represent signed values. In this
notation, the negative of a number is its binary complement, plus one. The most signifi-
cant bit (msb) represents the sign—a one in the msb indicates that the number is negative.

You can use signed or unsigned instructions with a particular memory location. Ensure the
correct usage of extension type whenever a memory location is read.

Table 14 lists data sizes, suffixes, and ranges for signed and unsigned values.

Register-Indirect Memory Addressing

A register-indirect operand uses an address contained in an ALU register, plus an optional
offset, to address data in a memory location.

Example. The following assembly-language statement loads the destination register, R10,
with data from a memory byte pointed to by register R12, plus an offset.

 LD.UB R10, 4(R12)

Figure 8 displays this example. It reads a base address value from R12, adds the signed
offset, 4, to create an effective address in memory, and then loads register R10 with the
value at that address. The parentheses indicate a register-indirect operand.

Table 14. Data Sizes for Memory Read

Size Bits
Signed or
Unsigned Mnemonic Suffix Range (Hex) Range (Decimal)

 Byte 8 Unsigned .UB 0 to FF 0 to 255

Signed .SB 80 to FF,
00 to 7F

–128 to –1,
0 to 127

 Word 16 Unsigned .UW 0 to FFFF 0 to 65,535

Signed .SW 8000 to FFFF,
0000 to 7FFF

–32,768 to –1,
0 to 32,767

 Quad 32 Unsigned (none) 0 to FFFF_FFFF 0 to 4,294,967,295

Signed (none) 8000_0000 to
FFFF_FFFF,
0000_0000 to
7FFF_FFFF

–2,147,483,648 to –1,
0 to 2,147,483,647
Operand Addressing UM018809-0611

ZNEO® CPU Core
User Manual

33

Depending on the instruction, register-indirect addressing can be used for either the source
or destination operand, but a destination’s effective address must be a writable memory or
I/O location. The range allowed for the signed offset depends on the instruction used. For
the LD, CLR, CPZ, CPCZ, INC, and DEC instructions, the register-indirect offset range is
–4,096 to +4,095. For other instructions that accept an indirect offset, the range is –8,192
to +8,191.

For allowed JP and CALL offsets, see the Jump Addressing section on page 39.

Several register-indirect instructions have alternate opcodes that do not accept an offset,
and therefore use fewer opcode words. When the offset is omitted in a register-indirect
operand, the ZNEO CPU uses the shorter instruction opcode if one is available.

Loading an Effective Address

The following assembly language statement is a an example of how you can initialize a
register with a base address:

 LD R6, #FFFFB002H

Addresses in the range FFFF_8000H to FFFF_FFFFH are common because that is where
I/O memory and internal RAM are addressed, but using a 32-bit LD to initialize a register

Figure 8. Register-Indirect Memory Addressing Example

LD.UB R10,4(R12)

42HFFFF_7006H

R12FFFF_7002H

4 + FFFF_7002H 32-Bit ALU Registers

Memory Space

Value Loaded: 42H—

—

R11—

R13—

0000_0042H R10

(Effective Address)

Note:
UM018809-0611 Operand Addressing

34

ZNEO® CPU Core
User Manual
is not necessary. The ZNEO® CPU assembler automatically uses a shorter LD opcode if
possible.

The LEA mnemonic is provided as an alternative to the immediate LD instruction.

Example. The following statement performs the same initialization as in the previous
example:

 LEA R6, FFFFB002H

LEA and LD accept the memory space notation described in Direct Memory Addressing
on page 29, so the following statements are equivalent to the two previous examples:

 LEA R6,B002H:RAM ; Load address of FFFF_B002H
 LEA R7,B002H:RAM ; Load address FFFF_B002H

Once a register is initialized with a base address, the LEA instruction can be used to gener-
ate a new effective address based on that register value.

Example. If the value in register R8 is FFFF_7002H, the following assembly language
statement loads register R7 with the value FFFF_7006H:

 LEA R7, 4(R8)

This LEA operation loads the effective address indicated by the source operand, while a
similar LD instruction would load the contents of the address. The allowed offset range for
a register-based LEA operand is –8,192 to +8,191.

Using the Program Counter as a Base Address

Some LD and LEA instructions use the Program Counter (PC) as the base address for indi-
rect addressing with an offset. Normally these instructions are used to access a data block
declared in line with the program.

For example, the following statements declare a variable and load it into register R7:

DATA: DB 00H, 00H, 00H, 42H
 LD R7, DATA(PC)

The ZNEO CPU assembler automatically calculates the correct relative offset to access
the labeled address using PC as a base address. If a constant (non-label) offset is used with
PC in assembly language, the assembler measures the offset from the start of the current
instruction. The actual offset used in object code is a signed 14-bit value measured from
the end of the current instruction, but the assembler makes this adjustment automatically.

A program can use LEA to load the actual PC contents into a register. The following state-
ments both load the PC value (the next instruction’s address) into register R5:

 LEA R5, NEXT(PC)
NEXT: LEA R5, 4(PC)

A PC-based address cannot be used for the destination operand. The allowed offset range
for a PC-based LD or LEA operand is –8,192 to +8,191.
Operand Addressing UM018809-0611

ZNEO® CPU Core
User Manual

35
If the required offset for a PC-based instruction exceeds the allowed range, the assembler
may silently convert the instruction to use the 32-bit immediate addressing mode.

Memory Address Decrement and Increment

In certain circumstances, a register-indirect LD operation can automatically decrement or
increment the base address register. A decrement is selected by adding a ‘--’ (double-
minus) prefix to the destination register name. The decrement always takes place before
the load is performed. This is called predecrement.

Example. The following statement decrements the base address in register R5, then loads
the memory location pointed to by R5 with the 32-bit contents of R6:

 LD (--R5), R6

Predecrement is supported only for destination operands. An LD store using predecrement
is similar to a PUSH, except the LD mnemonic allows a value in any register to be used as
the base address (See the Using the Stack Pointer (R15) section on page 36 for more infor-
mation).

An increment is selected by adding a ‘++’ (double-plus) suffix to the source or destination
register name. The increment always takes place after the load is performed. This is called
postincrement.

Example. The following statement loads the memory location pointed to by register R5
with the contents of R6, then increments the base address in R5:

 LD (R5++), R6

Postincrement can also be used for source operands. For example, the following statement
loads register R6 with the contents of the memory location pointed to by R5, then incre-
ments the base address in R5:

 LD R6, (R5++)

An LD read using postincrement is similar to a POP, except the LD mnemonic allows a
value in any register to be used as the base address. The predecrement and postincrement
features can be used to implement high-level stack data structures independent of the
Stack Pointer. To help ensure that the next base address is valid, the increment or decre-
ment amount varies with the size of the LD operation.

This is illustrated in the following example statements:

 LD.B (--R5), R6 ; Decrement R5 by 1 and store 1 byte
 LD.W (--R5), R6 ; Decrement R5 by 2 and store 2 bytes
 LD (--R5), R6 ; Decrement R5 by 4 and store 4 bytes

Predecrement or postincrement operands cannot include an offset.

Note:
UM018809-0611 Operand Addressing

36

ZNEO® CPU Core
User Manual
Using the Stack Pointer (R15)

Stack operations are a special kind of register-indirect memory access. The ZNEO CPU
system stack is implemented using ALU Register R15 as the Stack Pointer (SP). R15 can
be addressed like any register, but because of its Stack Pointer role it would be awkward to
use for any other purpose. The ZNEO CPU assembler recognizes SP as a synonym for
R15.

The system program startup routine initializes R15 to point to the highest address in inter-
nal RAM, plus 1. Subsequent PUSH, PUSHM, CALL, and LINK instructions; interrupts,
system exceptions, and traps all decrement SP before they store data on the stack. POP,
POPM, RET, UNLINK, and IRET instructions all increment SP to release stack space as it
is no longer needed. A program can also allocate or release stack space by changing the
register R15 (SP) value directly.

A system exception is provided to help keep the stack from overwriting other data; see the
Stack Overflow section on page 50. Software can use the PUSH, POP, PUSHM, and
POPM instructions to store and retrieve data from the stack.

PUSH decrements SP and stores the source value onto the stack. POP loads the last value
on the stack into the specified register and increments SP. The assembler uses predecre-
ment and postincrement LD opcodes to implement most PUSH and POP instructions.
PUSH and POP can be used with 8-, 16-, or 32-bit data sizes. 8-bit and 16-bit POP instruc-
tions can be either Unsigned or Signed.

When a 16-bit or 32-bit value is pushed onto the stack, the low-order bytes are pushed first
to store the value in the ZNEO CPU’s normal big-endian fashion.

Example

A 16-bit value is stored with bits [7:0] in the value’s higher-addressed byte, and bits [15:8]
in the value’s base address byte.

If the stack is located on a 16-bit bus, an assembly language program might improve stack
performance by maintaining an even SP value—for example, by avoiding the single-byte
PUSH.B and POP.B instructions. This may require some effort, especially if the program
includes compiled C routines or any other code that does not preserve stack alignment.

The PUSHM and POPM instructions push or pop multiple registers with a single instruc-
tion. For example, the following statements push R0, R5, R6, R7 and R13 onto the stack
(in reverse numerical order), and then pop the same registers (in numerical order, so
pushes and pops remain symmetrical):

 PUSHM <R0, R5-R7, R13>
 POPM <R0, R5-R7, R13>
Operand Addressing UM018809-0611

ZNEO® CPU Core
User Manual

37
The PUSHM and POPM instructions always push or pop all 32 bits of each register. The
ZNEO CPU assembler uses the PUSHMHI, PUSHMLO, POPMLO, and POPMHI
opcodes to implement PUSHM and POPM.

Using the Frame Pointer (R14)

Subroutines often use the stack for temporary variable space. For example, a CALL
sequence begins by pushing arguments onto the stack before calling the subroutine. When
the subroutine starts, it stores a copy of SP in another register called the Frame Pointer
(FP) and decrements SP to create stack space for local variables. When the subroutine is
finished, it copies FP back into SP and returns. Finally, the calling routine deallocates the
stack space it used for arguments.

The ZNEO CPU provides the LINK and UNLINK instructions to help program this
sequence. These instructions use register R14 as the FP register. The ZNEO CPU assem-
bler recognizes FP as a synonym for R14.

LINK is used at the beginning of a subroutine to copy the SP contents to FP and decrement
SP as needed. UNLINK copies FP back to SP, releasing the allocated space. LINK pushes
R14 on the stack before changing it, and UNLINK pops R14 after it is done, so routines
not using LINK or UNLINK can use R14 normally.

While the subroutine executes, it can access its arguments and variables using register-
indirect addressing with the FP register. For constant (non-label) offsets in the range –32
to +31, the assembler uses special opcodes that make FP-based accesses more efficient.

Bit Manipulation

The ZNEO CPU does not provide any special instructions to address only one bit in mem-
ory, but individual bits are easily manipulated using masked logical instructions.

The following sections introduce the most basic bit manipulation techniques. The instruc-
tions used here are AND, OR, TM, and TCM. Other useful bit, logic and shift operations
are listed by groups in the ZNEO CPU Instruction Classes section on page 22.

Clearing Bits (Masked AND)

The logical AND instruction (discussed on page 74) stores a 1 bit only if the correspond-
ing bit is set in both the source and destination. In effect, if the source (mask) bit is 0, the
destination bit is cleared. If the mask bit is 1, the destination bit is not changed.

Example. The following assembly language statements initialize register R15 and then
clear bit 5 of that register:

 LD R15, #FFFFFF70H ; LSB = 0111_0000B
 AND R15, #FFFFFFDFH ; Clear R15 bit 5
UM018809-0611 Operand Addressing

38

ZNEO® CPU Core
User Manual
This leaves the value FFFF_FF50H in register R15. Figure 9 displays how this example
clears only one bit of register R15.

Setting Bits (Masked OR)

The logical OR instruction stores a 0 bit only if the corresponding bit is clear in both the
source and destination. In effect, if the source (mask) bit is 1, the destination bit is set. If
the mask bit is 0, the destination bit is not changed.

Example. The following assembly language statements initialize register R15 and then set
bits [2,1] of that register:

 LD R15, #00000070H ; LSB = 0111_0000B
 OR R15, #00000006H ; Set R15 bits 1 and 2

This leaves the value 0000_0076H (LSB = 0111_0110B) in register R15.

Testing Bits (TM and TCM)

The TM instruction performs an internal AND to test mask-selected bits in the destination
register, but does not changes the source or destination register contents. Instead, TM sets
the Z flag if the tested destination bits are all 0.

To select a bit to test, set the corresponding bit in the source (mask) operand as given in
the example below.

Example. The following assembly language statements initialize register R15 and then
test bit 2 of that register:

 LD R15, #00000070H ; LSB = 0111_0000B
 TM R15, #00000004H ; Test bit 2
 JP Z, BIT_IS_CLEAR

Figure 9. Masked Logic Example: Clearing a Bit

0 1 1 1 0 0 0 0 R15[7:0] = 70H

1 1 0 1 1 1 1 1 MASK = FFFF_FFDFH

0 1 0 1 0 0 0 0 R15[7:0] = 50H

Bit
5

Bit
32

AND R15, #FFFFFFDFH ; Clear Bit 5 of Register 15

1 1 1 1 1 1 1 11 1 1 1 1 1 1 11 1 1 1 1 1 1 1

Bit
0

1 1 1 1 1 1 1 11 1 1 1 1 1 1 11 1 1 1 1 1 1 1

1 1 1 1 1 1 1 11 1 1 1 1 1 1 11 1 1 1 1 1 1 1
Operand Addressing UM018809-0611

ZNEO® CPU Core
User Manual

39
This leaves R15 unchanged, but sets the Z flag as R15[2] is clear.

The TCM instruction (Test Complement under Mask, discussed on page 172) comple-
ments the destination value before ANDing it to the mask. In effect, TCM is identical to
TM except it sets the Z flag if the tested destination bits are all 1.

Example . The following assembly language statements initialize register R15 and then
test bits [2,1] of that register:

 LD R15, #00000070H ; LSB = 0111_0000B
 TCM R15, #00000006H ; Test bits 1 and 2
 JP Z, BITS_ARE_ONES

As a result, R15 remains unchanged but clears the Z flag because neither bit R15[2,1] is 1.

Jump Addressing

The ZNEO CPU jump instructions (JP and CALL), are used to alter the program flow.
These instructions alter the Program Counter, which indicates the next instruction to be
fetched. A few considerations are listed below.

• All instructions must begin on an even address.

• Instruction fetches bypass the internal I/O space. The result of an instruction fetch is
not defined in the range FFFF_E000H–FFFF_FFFFH (FF_E000H–FF_FFFFH on
devices that ignore address bits [31:24]).

• A small device-specific address block starting at 0000_0000H is reserved for CPU
option bits and interrupt, trap, or exception vectors.

For details about option bits and vectors, refer to the ZNEO product specification that is
specific to your device .

Assembly language statements use a label, expression, or numeric value to indicate the 32-
bit jump destination. The ZNEO CPU assembler analyzes the address and determines the
best address mode to use in the assembled object code.

In object code, following two jump address modes are available:

Direct Address. The JP, JP cc, or CALL opcode includes four operand bytes containing
the 32-bit jump destination address. The destination address is written directly to the Pro-
gram Counter to indicate the next instruction. Bit [0] of the operand is ignored.

Note:
UM018809-0611 Operand Addressing

40

ZNEO® CPU Core
User Manual
Relative Address. The JP, JP cc, or CALL opcode includes a signed relative offset field
of 8, 12, 16, or 24 bits, which is added to the Program Counter’s contents. Table 15 pro-
vides the relative address operand ranges. For jumps within the same module, the assem-
bler uses the most efficient offset size. For relative jumps across modules, the assembler
uses a default offset size that can be configured at assembly time.

Table 15. Relative Jump Offset Ranges

Operand Bits Offset Range

8 –128 to +127

12 –2,048 to +2,047

16 –32,768 to +32,767

24 –8,388,608 to +8,388,607
Operand Addressing UM018809-0611

ZNEO® CPU Core
User Manual

41
Interrupts

Peripherals use an interrupt request (IRQ) signal to get the CPU’s attention when it needs
to perform some action, such as moving peripheral data or exchanging status and control
information.

There are two ways to handle interrupt requests:

Vectored Interrupts. Asserting the IRQ signal forces the CPU to execute the corresponding
interrupt service routine (ISR). The ISR must end with an Interrupt Return (IRET) instruc-
tion.

Polled Interrupts. Vectored interrupts are disabled (globally or only for the device), and
the software tests the device’s interrupt request bits periodically. If action is required, the
software uses CALL and RET to invoke the appropriate service routine.

Interrupts are generated by internal peripherals, external devices (through the port pins) or
software. The Interrupt Controller prioritizes and handles individual interrupt requests
before passing them to the ZNEO CPU. The interrupt sources and trigger conditions are
device dependent.

To determine available interrupt sources (internal and external), triggering edge options,
and exact programming details, refer to the ZNEO Product Specification that is specific to
your device.

Vectored Interrupts

Each ZNEO CPU interrupt is assigned an interrupt vector that points to the appropriate
service routine for that interrupt. Vectors are stored in a reserved block of 4-byte memory
quads in the nonvolatile memory space. Each interrupt vector is a 32-bit pointer (service
routine address) stored in a memory quad.

For interrupt vector locations, refer to the ZNEO Product Specification that is specific to
your device.

Interrupt Enable and Disable

Vectored interrupts are globally enabled and disabled by executing the Enable Interrupts
(EI) and Disable Interrupts (DI) instructions, respectively. These instructions affect the

Note:

Note:
UM018809-0611 Interrupts

42

ZNEO® CPU Core
User Manual
Master Interrupt Enable flag (IRQE) in the FLAGS register in I/O memory. It is possible to
enable or disable interrupts by writing to the Flags Register directly. You can enable or
disable the individual interrupts using control registers in the Interrupt Controller.

For information about the Interrupt Controller, refer to the ZNEO Product Specification
that is specific to your device.

Interrupt Processing

When an enabled interrupt occurs, the ZNEO CPU performs the following tasks to pass
control to the corresponding interrupt service routine:

1. Push the Flags Register, including the Master Interrupt Enable bit (IRQE), onto the
stack.

2. Push 00H (so SP alignment is not changed).

3. Push PC[7:0] (Program Counter bits [7:0]) onto the stack.

4. Copy the state of the IRQE flag into the Chained Interrupt Enable flag (CIRQE).

5. Push PC[15:8] onto the stack.

6. Push PC[23:16] onto the stack.

7. Push PC[31:24] onto the stack.

8. Disable interrupts (clear IRQE).

9. Fetch interrupt vector bits [31:24] into PC[31:24].

10. Fetch interrupt vector bits [23:16] into PC[23:16].

11. Fetch interrupt vector bits [15:8] into PC[15:8].

12. Fetch interrupt vector bits [7:0] into PC[7:0].

13. Begin execution at the new Program Counter address specified by the Interrupt Vector.

Figure 10 displays the effect of vectored interrupts on the Stack Pointer and the contents of
the stack.

Note:
Interrupts UM018809-0611

ZNEO® CPU Core
User Manual

43
Example. Figure 11 displays an example of addresses used during an interrupt operation.
In this example, the interrupt vector quad address is 0000_0014H. The 32-bit interrupt
vector address contained by that quad (0023_4567H) is loaded into the Program Counter.
The execution of the interrupt service routine begins at 0023_4567H.

Figure 10. Effects of an Interrupt on the Stack

Top of StackStack Pointer

FLAGS[7:0]

PC[15:8]

PC[7:0]

Stack Pointer

Stack Pointer and Stack
Before an Interrupt

Stack Pointer and Stack
After an Interrupt

PC[23:16]

PC[31:24]

00H

—

UM018809-0611 Interrupts

44

ZNEO® CPU Core
User Manual
Returning From a Vectored Interrupt

If no interrupts are pending or the Chained Interrupt Enable Flag (CIRQE) is 0, executing
the Interrupt Return (IRET) instruction at the end of an interrupt service routine results in
the following operations:

1. Pop PC[31:24] from the stack.

2. Pop PC[23:16] from the stack.

3. Pop PC[15:8] from the stack.

4. Pop PC[7:0] from the stack.

5. Increment SP by 1 (so SP alignment is not changed).

Figure 11. Interrupt Vectoring Example

Memory

Interrupt Vector Quad
Interrupt
Vector
Table

Interrupt Service
Routine First

Vector[23:16] = 23H

Vector[15:8] = 45H

0023_4567H

0000_0014H

0000_0015H

Vector[7:0] = 67H

0000_0016H

0000_0017H

Vector[31:24] = 00HQuad Base Address

Address

Instruction
Interrupts UM018809-0611

ZNEO® CPU Core
User Manual

45
6. Pop the Flags register, including the Master Interrupt Enable bit (IRQE), from the
stack. This returns the IRQE bit to its state before the interrupt occurred (assuming the
contents of the stack are not altered by the interrupt service routine).

7. Begin execution at the new Program Counter address.

If the CIRQE flag is 1 and one or more vectored interrupts are pending, executing the IRET
instruction results in the following operation:

1. Disable interrupts (clear the IRQE flag).

2. Load the Program Counter directly from the vector table quad for the highest-priority
pending interrupt.

3. Begin execution at the new Program Counter address.

This chained-interrupt optimization omits unneeded pop and push cycles when program
control passes directly from one interrupt service routine to another.

Whenever a vectored interrupt or system exception occurs, the previous state of the IRQE
flag is copied to the CIRQE flag after the Flags Register is pushed onto the stack. As a
result, interrupt chaining is disabled if interrupts are globally disabled (IRQE=0) when a
nonmaskable interrupt or system exception occurs.

Programs that branch to interrupt service routines directly—for example, by executing a
PUSHF followed by a CALL—must set or clear the CIRQE flag to enable or disable in-
terrupt chaining, respectively. Otherwise, the IRET that ends the routine might chain to
another interrupt unexpectedly.

The following assembly language statements clear the CIRQE flag:

LD.UB R5, FLAGS ;Read the current FLAGS value
AND R5, #11111101B ;Clear bit 1 (CIRQE)
LD.B FLAGS, R5 ;Write back with CIRQE flag cleared

Interrupt Priority and Nesting

The Interrupt Controller assigns a specific priority to each IRQ signal. When two IRQ sig-
nals are asserted at the same time, the higher priority interrupt service routine is executed
first. An interrupt service routine enables the vectored interrupt nesting, which allows
higher priority requests to interrupt the request being serviced.

Observe the following steps during the interrupt service routine to enable vectored inter-
rupt nesting:

1. Push the current value of the Interrupt Enable Registers in I/O memory onto the stack.

Caution:
UM018809-0611 Interrupts

46

ZNEO® CPU Core
User Manual
2. Configure the Interrupt Enable Registers to disable lower priority interrupts.

3. Execute an EI instruction to enable vectored interrupts.

4. Proceed with the interrupt service routine processing.

5. After processing is complete, execute a DI instruction to disable interrupts.

6. Restore the Interrupt Enable Registers values from the stack.

7. Execute an IRET instruction to return from the interrupt service routine.

For information about Interrupt Priority and Interrupt Enable Registers, refer to the ZNEO
Product Specification that is specific to your device.

Software Interrupt Generation

Software can generate a vectored interrupt request directly by writing to the Interrupt
Request Registers in I/O memory. The Interrupt Controller and CPU handle software
interrupts in the same manner as hardware-generated interrupt requests.

To generate a Software Interrupt, write 1 to the appropriate interrupt request bit in the
selected Interrupt Request Register.

Example. The following instruction writes 1 to Bit 5 of Interrupt Request Register 1
(IRQ1SET):

 LD R5, #00100000B ; Load mask for bit 5
 OR.B IRQ1SET:IODATA, R5 ; Set interrupt request bit 5

If an interrupt at Bit 5 is enabled and there are no higher priority interrupt requests pend-
ing, program control gets transferred to the interrupt service routine specified by the corre-
sponding interrupt vector.

For more information about the Interrupt Controller and Interrupt Request registers, refer
to the ZNEO Product Specification that is specific to your device.

Polled Interrupts

The ZNEO CPU supports polled interrupt processing. Polled interrupts are used when it is
not desirable to enable vectored interrupts for one or more devices. If interrupts are dis-
abled for a device (or globally), no action is taken after the device asserts its IRQ signal
unless software explicitly polls (tests) the corresponding interrupt bit.

Note:

Note:
Interrupts UM018809-0611

ZNEO® CPU Core
User Manual

47
Polling is performed in a frequently-executed section of code, such as the main loop of an
interactive program. For processor-intensive applications, there can be a trade-off between
the responsiveness of polled interrupts and the overhead of frequent polling.

To poll the bits of interest in an Interrupt Request register, use the Test Under Mask (TM)
or similar bit test instruction. If the bit is 1, perform a software call or jump to the interrupt
service routine. The interrupt service routine must clear the Interrupt Request Bit (by writ-
ing 1 to the bit) in the Interrupt Request Register and then return or branch back to the
main program.

Example. The following example outlines the sequence of a polling routine:

 INCLUDE "device.INC" ; Include device-specific label
 ; definitions

 LD R0, #00100000B ; Load mask for bit 5
 TM.B IRQ1, R0 ; Test for 1 in IRQ1 Bit 5
 JP Z, NEXT ; If no IRQ, go to NEXT
 CALL SERVICE ; If IRQ, call the interrupt
 ; service routine.
NEXT:
 ;[Insert additional program code here.]

SERVICE: ; Process interrupt request
 ;Service routine code here.

 LD.B IRQ1, R0 ; Write a 1 to clear IRQ1 bit 5
 RET ; Return to address after CALL

Do not use IRET when returning from a polled interrupt service routine.

For information about the Interrupt Request registers, refer to the ZNEO Product Specifica-
tion that is specific to your device.

Caution:

Note:
UM018809-0611 Interrupts

48

ZNEO® CPU Core
User Manual
Interrupts UM018809-0611

ZNEO® CPU Core
User Manual

49
System Exceptions

System exceptions are similar to Vectored Interrupts; however, exceptions are generated
by the CPU and cannot be masked or disabled. There are five ZNEO CPU events that gen-
erate system exceptions; each is listed below and described in this chapter.

• Program Counter Overflow

• Stack Overflow

• Divide-by-Zero

• Divide Overflow

• Illegal Instruction

It is possible for individual ZNEO CPU products to generate system exceptions in addition
to those listed above.

To determine if your device generates other system exceptions, refer to the ZNEO product
specification that is specific to your device .

Following a system exception, the Flags and Program Counter are pushed on the stack.
The Program Counter value that is pushed onto the stack points to the next instruction (not
the instruction that generated the system exception).

The system exception vector is stored in a reserved memory quad at 0000_0008H in the
nonvolatile memory space. The vector is a 32-bit pointer (service routine address) stored
in the 4-byte quad. When an exception occurs, the vector replaces the value in the Program
Counter (PC). Program execution continues with the instruction pointed to by the new PC
value.

Symbolic Operation of System Exception

A symbolic operation of system exceptions is exemplified below.

SP SP – 1
(SP) Flags
SP SP – 5
(SP) PC
PC Vector

Note:
UM018809-0611 System Exceptions

50

ZNEO® CPU Core
User Manual
Program Counter Overflow

The Program Counter Overflow exception can be used to restrict program execution to the
memory space below a certain address. On each instruction fetch, the 32-bit PC value is
compared to the value in the Program Counter Overflow register (PCOV) in I/O memory.
If the PC value is greater than the PCOV value, a Program Counter Overflow system
exception is generated after the instruction fetch completes. After a Program Counter
Overflow occurs, the PCOVF bit in the System Exception register in I/O memory (SYS-
EXCP) is set to 1. After the first PCOV exception has executed, no additional PCOV
exceptions are generated until the PCOVF bit is cleared. Writing 1 to the PCOVF bit clears
the bit to 0.

For detailed information regarding the System Exception register (SYSEXCP), refer to the
ZNEO product specification that is specific to your device .

The IRET instruction must not be used to end a PCOV exception service routine. After
a PCOV exception occurs, the Program Counter value on the stack points to an address
following the presumably invalid instruction that was fetched.

To set up Program Counter Overflow Protection, initialize PCOV to the highest address
that you intend to use for program instructions.

Stack Overflow

The Stack Overflow exception can be used to help restrict stack growth to the memory
space above a certain address. Whenever the register R15 Stack Pointer (SP) is changed,
its value is compared to the value in the Stack Pointer Overflow register (SPOV) in I/O
memory. If the SP value is less than the SPOV value, a Stack Pointer Overflow system
exception is generated after the current instruction completes.

After a Stack Pointer Overflow occurs, the SPOVF bit in the System Exception register in
I/O memory (SYSEXCP) is set to 1. After the first SPOV exception has executed, no addi-
tional SPOV exceptions are generated until the SPOVF bit is cleared. Writing 1 to the
SPOVF bit clears the bit to 0.

For more information about the System Exception register (SYSEXCP), refer to the ZNEO
product specification that is specific to your device .

Note:

Caution:

Note:
System Exceptions UM018809-0611

ZNEO® CPU Core
User Manual

51
Observe the following steps to set up Stack Overflow Protection.

1. Initialize the Stack Pointer (SP) to its starting location (the highest RAM address +1).

2. Initialize SPOV to the lowest address to which it is safe for the stack to extend, minus
at least 12 bytes to allow room for interrupt completion.

An SPOV exception does not block writes to the stack. When initializing the SPOV regis-
ter, you must provide for at least 12 additional bytes of stack data that might be written
below the programmed address. This occurs if an interrupt generates a Stack Overflow on
the first byte it pushes. In this case the interrupt pushes 5 additional bytes and the excep-
tion itself must push six more before the exception handler can start.

The 11-byte allowance described here is not sufficient if user code manipulates the Stack
Pointer (register R15), either directly or by using the LINK instruction. The allowance
must be increased to accommodate the largest expected decrement of SP.

Divide-by-Zero

If the divisor is zero during execution of a divide instruction (UDIV or SDIV), the ZNEO
CPU generates a Divide-by-Zero system exception. After a Divide-by-Zero has occurred,
the DIV0 bit in the System Exception register in I/O memory (SYSEXCP) is set to 1. After
the first Divide-by-Zero system exception has executed, no additional Divide-by-Zero
system exceptions are generated until the DIV0 bit is cleared. Writing 1 to DIV0 clears the
bit to 0.

For more information about the System Exception register (SYSEXCP), refer to the ZNEO
product specification that is specific to your device .

Divide Overflow

If execution of a divide instruction (UDIV64) results in an overflow, the ZNEO CPU gen-
erates a Divide Overflow system exception. After a Divide Overflow has occurred, the
DIVOVF bit in the System Exception register in I/O memory (SYSEXCP) is set to 1. After
the first Divide Overflow system exception has executed, no additional Divide Overflow
system exceptions are generated until the DIVOVF bit is cleared. Writing 1 to DIVOVF
clears the bit to 0.

Caution:

Note:
UM018809-0611 System Exceptions

52

ZNEO® CPU Core
User Manual
For more information about the System Exception register (SYSEXCP), refer to the ZNEO
product specification that is specific to your device .

Illegal Instruction

If the Program Counter addresses any unimplemented opcode, the ZNEO CPU generates
an Illegal Instruction system exception. FFFFH is the default value of an unprogrammed
memory word, so the FFFFH opcode is defined as the Illegal Instruction Exception (ILL)
instruction.

The Break opcode (BRK, 0000H) operates as an ILL exception if On-Chip Debugger
(OCD) breaks are disabled. For details about the OCD, refer to the ZNEO product specifi-
cation that is specific to your device.

An illegal instruction invokes the System Exception vector at 0000_0008H in memory.
An ILL is similar to other system exceptions except the Program Counter does not incre-
ment before it is pushed onto the stack, so the Program Counter value on the stack points
to the instruction that caused the exception.

After an illegal instruction exception occurs, the ILL bit in the System Exception register
in I/O memory (SYSEXCP) is set to 1. After the first ILL exception has executed, addi-
tional ILL exceptions will not push the Program Counter again until the ILL bit is cleared.
Writing 1 to the ILL bit clears the bit to 0. For more information, see the description of the
ILL instruction on page 106.

For more information about the System Exception register (SYSEXCP), refer to the ZNEO
product specification that is specific to your device .

An IRET instruction must not be performed to end an illegal instruction exception ser-
vice routine. As the stack contains the Program Counter value of the illegal instruction,
the IRET instruction returns the code execution to this illegal instruction.

Note:

Note:

Note:

Caution:
System Exceptions UM018809-0611

ZNEO® CPU Core
User Manual

53
Software Traps

The TRAP Vector instruction allows software to invoke any vectored service routine, par-
ticularly software-defined traps. The TRAP instruction executes the pointed service rou-
tine by the specified vector. Software traps use the same vector space as system exceptions
and interrupts. Like other vectors, the 32-bit trap vector value is stored in a memory quad.

Possible vectors are numbered from 0 to 255 (0H to FFH). The possible vector space
includes memory quads 0000_0000H to 0000_03FCH. Each vector quad’s physical
address is 4 Vector.

Example. The following instruction executes a software-defined service routine pointed
to by Vector 255 stored in quad 0000_03FCH:

 TRAP #FFH

A software trap service routine must execute an IRET instruction to return from the trap.
Other vectors not used by the CPU or peripherals are available for software-defined traps.
For example, Vector 255 (vector quad 0000_03FCH) is initialized with a pointer to a user-
input error handling routine, which is then invoked by a TRAP FFH instruction.

For a list of vectors used by the CPU and internal peripherals, refer to the ZNEO product
specification that is specific to your device .

A TRAP instruction is used with exception or interrupt vectors but the TRAP instruction
does not sets any register bits in I/O memory that the corresponding service routine is
likely to inspect. For more information, see the Software Interrupt Generation section on
page 46.

Some locations in the vector space may be reserved by the CPU for other uses. For exam-
ple, a typical ZNEO CPU uses the memory quad at 0000_0000H for option bits; there-
fore, Vector 00 is not available for service routines. Software can use the instruction TRAP
#01 to invoke the RESET vector at 0000_0004H. For more information, see the TRAP
instruction on page 178.

Note:
UM018809-0611 Software Traps

54

ZNEO® CPU Core
User Manual
Software Traps UM018809-0611

ZNEO® CPU Core
User Manual

55
Instruction Opcodes

This chapter provides a complete list of ZNEO CPU instruction opcodes.

Each instruction opcode listed in this chapter consists of one, two or three 16-bit words. To
abbreviate the listing, certain bit positions are represented symbolically by function.
Table 16 lists the bit field symbols used.

Table 17 lists the abbreviations used in place of register names or explicit values in this
chapter. Normal assembly syntax for operands is described in the Operand Addressing
chapter on page 27.

Table 16. Bit Field Symbols

Bit Character Meaning

1 Literal 1 bit.

0 Literal 0 bit.

o Binary operation (BOP) number: 000B=ADD, 001B=SUB, 010B=AND,
011B=OR, 100B=XOR, 101B=CP, 110B=TM, 111B=TCM.
Unary operation (UOP) number: 00B=CLR, 01B=CPZ, 10B=INC, 11B=DEC.

d Destination register number.

s Source register number.

m Register mask for PUSHM, POPM.

i Immediate operand bits.

c Condition code.

r Relative offset (in Words).

v Vector number.

w Select Word or Quad (0=16, 1=32 bits)

b Select Byte or Word (0=8 bits, 1=16 bits)

z Select extension (0=Unsigned, 1=Signed)

+ Select pointer predecrement or postincrement.
For a destination pointer: 0=predecrement, 1=postincrement.
For a source pointer: 0=no increment, 1=postincrement

x Don't care digit (ignored by CPU).
UM018809-0611 Instruction Opcodes

56

ZNEO® CPU Core
User Manual
Table 18 lists instructions by opcode. Unimplemented opcodes are shaded in grey.

Table 17. Operand Symbols

Operand Abbreviation Meaning

addr16, addr32 16- or 32-bit direct address.

cc4 4-bit condition code.

imm32 Immediate destination-sized operand with the specified number of bits.

uimm8 Unsigned immediate short operand with the specified number of bits.

simm16 Signed immediate short operand with the specified number of bits.

mask Register mask (list of ALU registers).

vector8 8-bit vector number.

Rs Source register name.

Rd Destination register name.

src Source operand.

dst Destination operand.

soff14, soff13, soff6 Signed indirect address (pointer) offset.

rel Relative jump offset.

Table 18. ZNEO CPU Instructions Listed by Opcode

Opcode Format Instruction, Operands Description

0000 0000 0000 0000 BRK Debugger Break.

0000 0000 0000 0001 UNLINK Unlink Frame
(LD R15, R14; POP R14).

0000 0000 0000 0010 PUSHF Push Flags Register .

0000 0000 0000 0011 POPF Pop Flags Register.

0000 0000 0000 0100 ATM Disable Interrupts and DMA during next three
instructions.

0000 0000 0000 0101 NOFLAGS Disable write to FLAGS on next instruction.

0000 0000 0000 0110 — Unimplemented

0000 0000 0000 0111 — Extend prefix used to select extended function
for next ADD, SUB, CP, CPZ, SRR, SRA, SLL,
or UDIV instruction.

0000 0000 0000 1xxx — Unimplemented

0000 0000 0001 xxxx — Unimplemented
Instruction Opcodes UM018809-0611

ZNEO® CPU Core
User Manual

57
0000 0000 0010 dddd
0xrr rrrr rrrr rrrr

LD Rd, soff14(PC) Load Quad pointed to by program counter plus
14-bit signed offset.

0000 0000 0010 dddd
1xrr rrrr rrrr rrrr

LEA Rd, soff14(PC) Load register with PC-based effective address.

0000 0000 0011 dddd
zbrr rrrr rrrr rrrr

LD.UB Rd, soff14(PC)
LD.SB Rd, soff14(PC)
LD.UW Rd, soff14(PC)
LD.SW Rd, soff14(PC)

Load memory Byte or Word pointed to by pro-
gram counter plus 14-bit signed offset with
Unsigned/Signed extension.

0000 0000 01xx xxxx — Unimplemented

0000 0000 1xxx xxxx — Unimplemented

0000 0001 cccc dddd LD cc, Rd Load register with condition code.

0000 0010 xxxx xxxx — Unimplemented

0000 0011 00bz dddd
aaaa aaaa aaaa aaaa

LD.UB Rd, addr16
LD.SB Rd, addr16
LD.UW Rd, addr16
LD.SW Rd, addr16

Load memory Byte or Word with Unsigned/
Signed extension; 16-bit address.

0000 0011 0100 dddd
aaaa aaaa aaaa aaaa

LD Rd, addr16 Load memory Quad; 16-bit address.

0000 0011 0101 ssss
aaaa aaaa aaaa aaaa

LD.B addr16, Rs Store memory Byte; 16-bit address.

0000 0011 0110 ssss
aaaa aaaa aaaa aaaa

LD.W addr16, Rs Store memory Word; 16-bit address.

0000 0011 0111 ssss
aaaa aaaa aaaa aaaa

LD addr16, Rs Store memory Quad; 16-bit address.

0000 0011 10bz dddd
aaaa aaaa aaaa aaaa
aaaa aaaa aaaa aaaa

LD.UB Rd, addr32
LD.SB Rd, addr32
LD.UW Rd, addr32
LD.SW Rd, addr32

Load memory Byte or Word with Unsigned/
Signed extension; 32-bit address.

0000 0011 1100 dddd
aaaa aaaa aaaa aaaa
aaaa aaaa aaaa aaaa

LD Rd, addr32 Load memory Quad; 32-bit address.

0000 0011 1101 ssss
aaaa aaaa aaaa aaaa
aaaa aaaa aaaa aaaa

LD.B addr32, Rs Store memory Byte; 32-bit address.

0000 0011 1110 ssss
aaaa aaaa aaaa aaaa
aaaa aaaa aaaa aaaa

LD.W addr32, Rs Store memory Word; 32-bit address.

Table 18. ZNEO CPU Instructions Listed by Opcode (Continued)

Opcode Format Instruction, Operands Description
UM018809-0611 Instruction Opcodes

58

ZNEO® CPU Core
User Manual
0000 0011 1111 ssss
aaaa aaaa aaaa aaaa
aaaa aaaa aaaa aaaa

LD addr32, Rs Store memory Quad; 32-bit address.

0000 0100 mmmm mmmm PUSHMLO mask Push multiple registers, R7–R0.

0000 0101 mmmm mmmm PUSHMHI mask Push multiple registers, R15–R8.

0000 0110 mmmm mmmm POPMLO mask Pop multiple registers, R7–R0.

0000 0111 mmmm mmmm POPMHI mask Pop multiple registers, R15–R8.

0000 1000 iiii iiii LINK #uimm8 Link Frame (PUSH R14; LD R14,R15; SUB
R15,#uimm8).

0000 1001 00xx xxxx — Unimplemented

0000 1001 010+ dddd
xxxx xxxx iiii iiii

LD.B (--Rd), #imm8
LD.B (Rd++), #imm8

Store immediate 8 bits with Predecrement/
Postincrement.

0000 1001 011w dddd
iiii iiii iiii iiii

LD.W (Rd), #imm16
LD (Rd), #simm16

Store signed immediate 16 bits to Word or
Quad.

0000 1001 10+w dddd
iiii iiii iiii iiii

LD.W (--Rd), #imm16
LD.W (Rd++), #imm16
LD (--Rd), #simm16
LD (Rd++), #simm16

Store signed immediate 16 bits to Word or Quad
with Predecrement/Postincrement.

0000 1001 1100 dddd
xxxx xxxx iiii iiii

LD.B (Rd), #imm8 Store immediate 8 bits to Byte.

0000 1001 1101 dddd
iiii iiii iiii iiii
iiii iiii iiii iiii

LD (Rd), #imm32 Store immediate 32 bits to Quad.

0000 1001 111+ dddd
iiii iiii iiii iiii
iiii iiii iiii iiii

LD (--Rd), #imm32
LD (Rd++), #imm32

Store immediate 32 bits to Quad with Predecre-
ment/Postincrement.

0000 1010 iiii iiii PUSH.B #imm8 Push immediate 8 bits onto system stack.

0000 1011 ssss dddd LD (Rd), Rs Store register to Quad.

0000 110w iiii iiii PUSH.W #simm8
PUSH #simm8

Push signed immediate 8 bits to Word or Quad
on system stack.

0000 111b ssss dddd LD.B (Rd), Rs
LD.W (Rd), Rs

Store register to Byte or Word.

0001 000+ ssss dddd LD (--Rd), Rs
LD (Rd++), Rs

Store register to Quad with Predecrement/
Postincrement.

Table 18. ZNEO CPU Instructions Listed by Opcode (Continued)

Opcode Format Instruction, Operands Description
Instruction Opcodes UM018809-0611

ZNEO® CPU Core
User Manual

59
0001 001+ ssss dddd LD Rd, (Rs)
LD Rd, (Rs++)

Load dst register from Quad with optional
Postincrement.

0001 01b+ ssss dddd LD.B (--Rd), Rs
LD.B (Rd++), Rs
LD.W (--Rd), Rs
LD.W (Rd++), Rs

Store register to Byte or Word with Predecre-
ment/Postincrement.

0001 1zb+ ssss dddd LD.UB Rd, (Rs)
LD.SB Rd, (Rs)
LD.UB Rd, (Rs++)
LD.SB Rd, (Rs++)
LD.UW Rd, (Rs)
LD.SW Rd, (Rs)
LD.UW Rd, (Rs++)
LD.SW Rd, (Rs++)

Load dst register from Byte or Word with
optional Postincrement and Unsigned/Signed
extension.

0010 dddd ssss ssss ADD Rd, Rs1+Rs2 Add using two src registers, one dst.

0011 dddd iiii iiii LD Rd, #simm8 Load dst register from immediate 8 bits with
Signed extension.

0100 00zb ssss dddd EXT.UB Rd, Rs
EXT.SB Rd, Rs
EXT.UW Rd, Rs
EXT.SW Rd, Rs

Load 8 or 16 bits to dst from src register with
Unsigned/Signed extension.

0100 0100 ssss dddd LD Rd, Rs Load dst from src register.

0100 0101 000z dddd
iiii iiii iiii iiii

LD Rd, #simm17 Load dst register from immediate 16 bits plus
sign bit z; Signed extension.

0100 0101 0010 dddd
iiii iiii iiii iiii
iiii iiii iiii iiii

LD Rd,#imm32 Load dst register from immediate 32 bits.

0100 0101 0011 dddd LDES Rd Fill dst from Sign bit.

0100 0101 0100 dddd COM Rd Complement destination.

0100 0101 0101 dddd NEG Rd Negate dst (subtract from zero).

0100 0101 011x xxxx — Unimplemented

0100 0101 1xxx xxxx — Unimplemented

0100 011x xxxx xxxx — Unimplemented

0100 1000 ssss dddd
0xrr rrrr rrrr rrrr

LD Rd, soff14(Rs) Load dst from Quad pointed to by src plus
signed offset.

Table 18. ZNEO CPU Instructions Listed by Opcode (Continued)

Opcode Format Instruction, Operands Description
UM018809-0611 Instruction Opcodes

60

ZNEO® CPU Core
User Manual
0100 1000 ssss dddd
1xrr rrrr rrrr rrrr

LEA Rd, soff14(Rs) Load dst with effective address of src operand.

0100 1001 ssss dddd
zbrr rrrr rrrr rrrr

LD.UB Rd, soff14(Rs)
LD.SB Rd, soff14(Rs)
LD.UW Rd, soff14(Rs)
LD.SW Rd, soff14(Rs)

Load dst from Byte or Word pointed to by src
plus signed offset, with Unsigned/Signed exten-
sion.

0100 1010 ssss dddd
xxrr rrrr rrrr rrrr

LD soff14(Rd), Rs Load Quad, pointed to by dst plus signed offset,
from src register.

0100 1011 ssss dddd
xbrr rrrr rrrr rrrr

LD.B soff14(Rd), Rs
LD.W soff14(Rd), Rs

Load Byte or Word, pointed to by dst plus
signed offset, from src register.

0100 11rr rrrr dddd LEA Rd, soff6(FP) Load dst with FP-based effective address.

0101 0brr rrrr ssss LD.B soff6(FP), Rs
LD.W soff6(FP), Rs

Load Byte or Word, pointed to by R14 plus
signed offset, from src register.

0101 10rr rrrr ssss LD soff6(FP), Rs Load Quad, pointed to by R14 plus signed off-
set, from src register.

0101 11rr rrrr dddd LD Rd, soff6(FP) Load dst from Quad pointed to by R14 plus
signed offset.

0110 zbrr rrrr dddd LD.UB Rd, soff6(FP)
LD.SB Rd, soff6(FP)
LD.UW Rd, soff6(FP)
LD.SW Rd, soff6(FP)

Load dst from Byte or Word pointed to by R14
plus signed offset, with Unsigned/Signed exten-
sion.

0111 0ooo 00bz dddd
aaaa aaaa aaaa aaaa

BOP.UB Rd, addr16
BOP.SB Rd, addr16
BOP.UW Rd, addr16
BOP.SW Rd, addr16

Binary operation ‘ooo’ on dst using Byte or
Word with Unsigned/Signed extension; 16-bit
address.

0111 0ooo 0100 dddd
aaaa aaaa aaaa aaaa

BOP Rd, addr16 Binary operation ‘ooo’ on dst using Quad; 16-bit
address.

0111 0ooo 0101 ssss
aaaa aaaa aaaa aaaa

BOP.B addr16, Rs Binary operation ‘ooo’ on Byte; 16-bit address.

0111 0ooo 0110 ssss
aaaa aaaa aaaa aaaa

BOP.W addr16, Rs Binary operation ‘ooo’ on Word; 16-bit address.

0111 0ooo 0111 ssss
aaaa aaaa aaaa aaaa

BOP addr16, Rs Binary operation ‘ooo’ on Quad; 16-bit address.

0111 0ooo 10bz dddd
aaaa aaaa aaaa aaaa
aaaa aaaa aaaa aaaa

BOP.UB Rd, addr32
BOP.SB Rd, addr32
BOP.UW Rd, addr32
BOP.SW Rd, addr32

Binary operation ‘ooo’ on dst using Byte or
Word with Unsigned/Signed extension; 32-bit
address.

Table 18. ZNEO CPU Instructions Listed by Opcode (Continued)

Opcode Format Instruction, Operands Description
Instruction Opcodes UM018809-0611

ZNEO® CPU Core
User Manual

61
0111 0ooo 1100 dddd
aaaa aaaa aaaa aaaa
aaaa aaaa aaaa aaaa

BOP Rd, addr32 Binary operation ‘ooo’ on dst using Quad; 32-bit
address.

0111 0ooo 1101 ssss
aaaa aaaa aaaa aaaa
aaaa aaaa aaaa aaaa

BOP.B addr32, Rs Binary operation ‘ooo’ on Byte; 32-bit address.

0111 0ooo 1110 ssss
aaaa aaaa aaaa aaaa
aaaa aaaa aaaa aaaa

BOP.W addr32, Rs Binary operation ‘ooo’ on Word; 32-bit address.

0111 0ooo 1111 ssss
aaaa aaaa aaaa aaaa
aaaa aaaa aaaa aaaa

BOP addr32, Rs Binary operation ‘ooo’ on Quad; 32-bit address.

0111 1ooo ssss dddd
0bzr rrrr rrrr rrrr

BOP.UB Rd, soff13(Rs)
BOP.SB Rd, soff13(Rs)
BOP.UW Rd, soff13(Rs)
BOP.SW Rd, soff13(Rs)

Binary operation ‘ooo’ on dst using Byte or
Word with Unsigned/Signed extension.

0111 1ooo ssss dddd
100r rrrr rrrr rrrr

BOP Rd, soff13(Rs) Binary operation ‘ooo’ on dst using Quad.

0111 1ooo ssss dddd
101r rrrr rrrr rrrr

BOP.B soff13(Rd), Rs Binary operation ‘ooo’ on Byte.

0111 1ooo ssss dddd
110r rrrr rrrr rrrr

BOP.W soff13(Rd), Rs Binary operation ‘ooo’ on Word.

0111 1ooo ssss dddd
111r rrrr rrrr rrrr

BOP soff13(Rd), Rs Binary operation ‘ooo’ on Quad.

1000 dddd iiii iiii ADD Rd, #simm8 Add 8 signed immediate bits to dst.

1001 dddd iiii iiii CP Rd, #simm8 Compare 8 signed immediate bits to dst.

1010 0ooo ssss dddd BOP Rd, Rs Binary operation ‘ooo’ on dst, src.

1010 100x xxxx xxxx — Unimplemented

1010 1010 0ooo dddd
iiii iiii iiii iiii

BOP Rd, #uimm16 Binary operation ‘ooo’ on dst using unsigned
immediate 16 bits.

1010 1010 1ooo dddd
iiii iiii iiii iiii
iiii iiii iiii iiii

BOP Rd, #imm32 Binary operation ‘ooo’ on dst using immediate
32 bits.

1010 1011 0ooo dddd
iiii iiii iiii iiii

BOP.W (Rd), #imm16 Binary operation ‘ooo’ on Word using immediate
Word.

Table 18. ZNEO CPU Instructions Listed by Opcode (Continued)

Opcode Format Instruction, Operands Description
UM018809-0611 Instruction Opcodes

62

ZNEO® CPU Core
User Manual
1010 1011 1ooo dddd
iiii iiii iiii iiii
iiii iiii iiii iiii

BOP (Rd), #imm32 Binary operation ‘ooo’ on Quad using immediate
Quad.

1010 1100 0boo dddd UOP.B (Rd)
UOP.W (Rd)

Unary operation ‘oo’ on Byte or Word.

1010 1100 1xoo dddd UOP (Rd) Unary operation ‘oo’ on Quad.

1010 1101 0ooo dddd
iiii iiii iiii iiii

BOP (Rd), #simm16 Binary operation ‘ooo’ on Quad using signed
immediate Word.

1010 1101 1000 xxxx — Unimplemented

1010 1101 1001 dddd
xxxx xooo iiii iiii

BOP.B (Rd), #imm8 Binary operation ‘ooo’ on Byte using immediate
Byte.

1010 1101 1010 0boo
aaaa aaaa aaaa aaaa

UOP.B addr16
UOP.W addr16

Unary operation ‘oo’ on Byte or Word. 16-bit
address.

1010 1101 1010 1xoo
aaaa aaaa aaaa aaaa

UOP addr16 Unary operation ‘oo’ on Quad. 16-bit address.

1010 1101 1011 0boo
aaaa aaaa aaaa aaaa
aaaa aaaa aaaa aaaa

UOP.B addr32
UOP.W addr32

Unary operation ‘oo’ on Byte or Word. 32-bit
address.

1010 1101 1011 1xoo
aaaa aaaa aaaa aaaa
aaaa aaaa aaaa aaaa

UOP addr32 Unary operation ‘oo’ on Quad. 32-bit address.

1010 1101 11oo dddd
0brr rrrr rrrr rrrr

UOP.B soff14(Rd)
UOP.W soff14(Rd)

Unary operation ‘oo’ on Byte or Word.

1010 1101 11oo dddd
1xrr rrrr rrrr rrrr

UOP soff14(Rd) Unary operation ‘oo’ on Quad.

1010 1110 ssss dddd UDIV Rd, Rs Unsigned Divide, 64-bit result.

1010 1111 ssss dddd SDIV Rd, Rs Signed Divide, 64-bit result.

1011 0000 ssss dddd UMUL Rd, Rs Unsigned Multiply, 64-bit result.

1011 0001 ssss dddd SMUL Rd, Rs Signed Multiply, 64-bit result.

1011 0010 ssss dddd MUL Rd, Rs Unsigned Multiply, 32-bit result.

1011 0011 xxxx xxxx — Unimplemented

1011 0100 ssss dddd SRA Rd, Rs Arithmetic shift right by src bits. Extend modifier
causes shifted-out bits to overwrite src.

1011 0101 ssss dddd SRL Rd, Rs Logical shift right by src bits. Extend modifier
causes shifted-out bits to overwrite src.

Table 18. ZNEO CPU Instructions Listed by Opcode (Continued)

Opcode Format Instruction, Operands Description
Instruction Opcodes UM018809-0611

ZNEO® CPU Core
User Manual

63
1011 0110 ssss dddd SLL Rd, Rs Logical shift left by src bits. Extend modifier
causes shifted-out bits to overwrite src.

1011 0111 ssss dddd RL Rd, Rs Rotate left by src bits.

1011 100i iiii dddd SRA Rd, #uimm5 Arithmetic shift right by uimm bits. Extend modi-
fier causes shifted-out bits to overwrite src.

1011 101i iiii dddd SRL Rd, #uimm5 Logical shift right by uimm bits. Extend modifier
causes shifted-out bits to overwrite src.

1011 110i iiii dddd SLL Rd, #uimm5 Logical shift left by uimm bits. Extend modifier
causes shifted-out bits to overwrite src.

1011 111i iiii dddd RL Rd, #uimm5 Rotate left by uimm bits.

1100 rrrr rrrr rrrr JP rel12 Jump with 12-bit offset.

1101 rrrr rrrr rrrr CALL rel12 Call with 12-bit offset.

1110 cccc rrrr rrrr JP cc, rel8 Conditional Jump, signed 8-bit offset.

1111 0000 rrrr rrrr
rrrr rrrr rrrr rrrr

JP rel24 Jump with 24-bit offset.

1111 0001 rrrr rrrr
rrrr rrrr rrrr rrrr

CALL rel24 Call with 24-bit offset.

1111 0010 0000 ssss JP (Rs) Jump to address pointed to by src.

1111 0010 0001 ssss CALL (Rs) Call address pointed to by src.

1111 0010 0010 cccc
rrrr rrrr rrrr rrrr

JP cc,rel16 Conditional Jump, 16-bit offset.

1111 0010 0011 0000
iiii iiii iiii iiii
iiii iiii iiii iiix

JPA #imm32 Jump to immediate address.

1111 0010 0011 0001
iiii iiii iiii iiii
iiii iiii iiii iiix

CALLA #imm32 Call immediate address.

1111 0010 0011 001x — Unimplemented

1111 0010 0011 01xx — Unimplemented

1111 0010 0011 1xxx — Unimplemented

1111 0010 01xx xxxx — Unimplemented

1111 0010 1xxx xxxx — Unimplemented

1111 0011 xxxx xxxx — Unimplemented

Table 18. ZNEO CPU Instructions Listed by Opcode (Continued)

Opcode Format Instruction, Operands Description
UM018809-0611 Instruction Opcodes

64

ZNEO® CPU Core
User Manual
1111 01xx xxxx xxxx — Unimplemented

1111 10xx xxxx xxxx — Unimplemented

1111 1100 xxxx xxxx — Unimplemented

1111 1101 rrrr dddd DJNZ Rd, urel4 Decrement dst and jump if nonzero.

1111 1110 vvvv vvvv TRAP #vector8 Software trap.

1111 1111 0xxx xxxx — Unimplemented

1111 1111 10xx xxxx — Unimplemented

1111 1111 110x xxxx — Unimplemented

1111 1111 1110 xxxx — Unimplemented

1111 1111 1111 00xx — Unimplemented

1111 1111 1111 010x — Unimplemented

1111 1111 1111 0110 — Unimplemented

1111 1111 1111 0111 WDT Watchdog Timer Refresh.

1111 1111 1111 1000 STOP Enter STOP.

1111 1111 1111 1001 HALT Enter HALT.

1111 1111 1111 1010 EI Enable Interrupts.

1111 1111 1111 1011 DI Disable Interrupts.

1111 1111 1111 1100 RET Return from subroutine.

1111 1111 1111 1101 IRET Return from interrupt.

1111 1111 1111 1110 NOP No operation.

1111 1111 1111 1111 ILL Explicit illegal instruction.

Table 18. ZNEO CPU Instructions Listed by Opcode (Continued)

Opcode Format Instruction, Operands Description
Instruction Opcodes UM018809-0611

ZNEO® CPU Core
User Manual

65
Instruction Set Reference

This chapter provides detailed description of the assembly language instructions available
with the ZNEO CPU.

Instruction Notation

Tables 19 and 20 list the symbolic notation for expressions and other miscellaneous sym-
bols used to describe the operation of ZNEO CPU instructions. For general notation
details, see Manual Conventions on page xiv. For operand notation details, see the Oper-
and Addressing section on page 27. The operand abbreviations are explained in Table 17
on page 56.

Numerical and Expression Notation

Table 19 lists symbols and operators used in expressions in this document. This is a subset
of operators recognized by the assembler. For more details, refer to the assembler docu-
mentation.

Table 19. Symbols Used in Expressions

Symbol Definition

$ During assembly, returns the current address.

H Hexadecimal number suffix.

B Binary number suffix.

xB, xH Binary or hexadecimal “don’t care” digit (ignored by CPU).

% Alternate hexadecimal number prefix.
Modulus operator (remainder of division) when preceded and followed by spaces.

* Multiplication operator (in assembly source).

/ Division operator.

+ Addition operator.

– Subtraction operator. Minus sign or negation when used as unary prefix.

~ One’s complement unary operator.

!= Not equal relational operator. True if terms are not equal.
UM018809-0611 Instruction Set Reference

66

ZNEO® CPU Core
User Manual
Miscellaneous Abbreviations

Table 20 lists additional symbols used in the instruction set descriptions.

Table 20. Abbreviations Used in Text and Tables

Symbol Definition

dst Destination Operand.

src Source Operand.

Rd Destination Register.

Rs Source Register.

cc Condition Code.

 An arrow (indicates assignment of a value. For example,
dst dst + src indicates that sum of the operands is stored in the destination location.

 A double arrow () indicates the exchange of two values.

 Multiplication sign (arithmetic); repeated operation count.

FLAGS Flags Register.

C Carry Flag.

Z Zero Flag.

S Sign Flag.

V Overflow Flag.

B Blank Flag.

CIRQE Chained Interrupt Enable.

IRQE Master Interrupt Enable.

* Flag bit state depends on result of operation.

– Flag bit state is not affected by operation.

0 Flag bit is cleared to 0.

1 Flag bit is set to 1.

SP Stack Pointer.

PC Program Counter.

FP Frame Pointer.
Instruction Set Reference UM018809-0611

ZNEO® CPU Core
User Manual

67
Example Description

The instruction sets described on the following pages are organized alphabetically by
mnemonic abbreviation. An example instruction is provided below.

MNEMONIC

Definition

Definition of instruction mnemonic.

Syntax

Simplified description of assembly coding.

Operation

Symbolic description of the operation performed.

Description

Detailed description of the instruction operation.

Flags

Information about how the CPU flags are affected by instruction operation.

Syntax and Opcodes

A table providing assembly syntax and corresponding opcodes.

Example

A sample code example using the instruction.
UM018809-0611 Mnemonic

68

ZNEO® CPU Core
User Manual
ADC

Definition

Add with Carry

Syntax

ADC dst, src

Operation

dstdst + src + C

Description

The source operand and the Carry (C) flag are added to the destination operand using signed
(two’s-complement) addition. The sum is stored in the destination operand. The contents of the
source operand are not affected. This instruction is used in multiple-precision arithmetic to
include the carry from the addition of low-order operands into the addition of high-order oper-
ands.

The Zero (Z) flag is set only if the initial state of the Z flag is 1 and the result is 0. This instruction
is generated by using the Extend prefix, 0007H, with the ADD opcodes.

Flags

Flags are set based on the memory destination size, or 32 bits for register destinations.

7 6 5 4 3 2 1 0
C Z S V B CIRQE IRQE
* * * * * – – –

Legend

C = Set to 1 if the result generated a carry; otherwise set to 0.

Z = Set to 1 if Z is initially 1 and the result is zero; otherwise set to 0.

S = Set to 1 if the result msb is 1; otherwise set to 0.

V = Set to 1 if an arithmetic overflow occurs; otherwise set to 0.

B = Set to 1 if the initial destination or source value is 0; otherwise set to 0.

CIRQE = No change.

IRQE = No change.

Note:
ADC Instruction UM018809-0611

ZNEO® CPU Core
User Manual

69
Syntax and Opcodes

Instruction, Operands
Extend
Prefix Word 0 Word 1 Word 2

ADC Rd, #imm32 0007H {AA8H, Rd} imm[31:16] imm[15:0]

ADC Rd, #simm8 0007H {8H, Rd, simm8}

ADC Rd, #uimm16 0007H {AA0H, Rd} uimm16

ADC Rd, Rs 0007H {A0H, Rs, Rd}

ADC Rd,Rs1,Rs2 0007H {2H, Rd, Rs, Rs}

ADC Rd, addr16 0007H {704H, Rd} addr16

ADC Rd, addr32 0007H {70CH, Rd} addr[31:16] addr[15:0]

ADC Rd, soff13(Rs) 0007H {78H, Rs, Rd} {100B, soff13}

ADC addr16, Rs 0007H {707H, Rs} addr16

ADC addr32, Rs 0007H {70FH, Rs} addr[31:16] addr[15:0]

ADC (Rd), #imm32 0007H {AB8H, Rd} imm[31:16] imm[15:0]

ADC (Rd), #simm16 0007H {AD0H, Rd} simm16

ADC soff13(Rd), Rs 0007H {78H, Rs, Rd} {111B, soff13}

ADC.W addr16, Rs 0007H {706H, Rs} addr16

ADC.W addr32, Rs 0007H {70EH, Rs} addr[31:16] addr[15:0]

ADC.W (Rd), #imm16 0007H {AB0H, Rd} imm16

ADC.W soff13(Rd), Rs 0007H {78H, Rs, Rd} {110B, soff13}

ADC.SW Rd, addr16 0007H {703H, Rd} addr16

ADC.SW Rd, addr32 0007H {70BH, Rd} addr[31:16] addr[15:0]

ADC.SW Rd, soff13(Rs) 0007H {78H, Rs, Rd} {011B, soff13}

ADC.UW Rd, addr16 0007H {702H, Rd} addr16

ADC.UW Rd, addr32 0007H {70AH, Rd} addr[31:16] addr[15:0]

ADC.UW Rd, soff13(Rs) 0007H {78H, Rs, Rd} {010B, soff13}

ADC.B addr16, Rs 0007H {705H, Rs} addr16

ADC.B addr32, Rs 0007H {70DH, Rs} addr[31:16] addr[15:0]

ADC.B (Rd), #imm8 0007H {AD9H, Rd} {xH, x000B, imm8}

ADC.B soff13(Rd), Rs 0007H {78H, Rs, Rd} {101B, soff13}

ADC.SB Rd, addr16 0007H {701H, Rd} addr16

ADC.SB Rd, addr32 0007H {709H, Rd} addr[31:16] addr[15:0]

ADC.SB Rd, soff13(Rs) 0007H {78H, Rs, Rd} {001B, soff13}

ADC.UB Rd, addr16 0007H {700H, Rd} addr16

ADC.UB Rd, addr32 0007H {708H, Rd} addr[31:16] addr[15:0]

ADC.UB Rd, soff13(Rs) 0007H {78H, Rs, Rd} {000B, soff13}
UM018809-0611 ADC Instruction

70

ZNEO® CPU Core
User Manual
Examples

Before: R3=16H, R11=20H, Flag C=1

ADC R3, R11 ;Object Code: 0007 A0B3

After: R3=37H, Flags C, Z, S, V, B = 0

Before: R3=16H, R11=20H, Flag C=0

ADC R3, R11 ;Object Code: 0007 A0B3

After: R3=36H, Flags C, Z, S, V, B = 0
ADC Instruction UM018809-0611

ZNEO® CPU Core
User Manual

71
ADD

Definition

Add

Syntax

ADD dst, src

Operation

dstdst + src

Description

Add the source operand to the destination operand. Perform signed (two’s-complement) addition.
Store the sum in the destination operand. The contents of the source operand are not affected.

Flags

Flags are set based on the memory destination size, or 32 bits for register destinations.

7 6 5 4 3 2 1 0
C Z S V B CIRQE IRQE
* * * * * – – –

Legend

C = Set to 1 if the result generated a carry; otherwise set to 0.

Z = Set to 1 if the result is zero; otherwise, set to 0.

S = Set to 1 if the result msb is 1; otherwise set to 0.

V = Set to 1 if an arithmetic overflow occurs; otherwise set to 0.

B = Set to 1 if the initial destination or source value is 0; otherwise set to 0.

CIRQE = No change.

IRQE = No change.

Note:
UM018809-0611 ADD Instruction

72

ZNEO® CPU Core
User Manual
Syntax and Opcodes

Instruction, Operands Word 0 Word 1 Word 2

ADD Rd, #imm32 {AA8H, Rd} imm[31:16] imm[15:0]

ADD Rd, #simm8 {8H, Rd, simm8}

ADD Rd, #uimm16 {AA0H, Rd} uimm16

ADD Rd, Rs {A0H, Rs, Rd}

ADD Rd,Rs1,Rs2 {2H, Rd, Rs, Rs}

ADD Rd, addr16 {704H, Rd} addr16

ADD Rd, addr32 {70CH, Rd} addr[31:16] addr[15:0]

ADD Rd, soff13(Rs) {78H, Rs, Rd} {100B, soff13}

ADD addr16, Rs {707H, Rs} addr16

ADD addr32, Rs {70FH, Rs} addr[31:16] addr[15:0]

ADD (Rd), #imm32 {AB8H, Rd} imm[31:16] imm[15:0]

ADD (Rd), #simm16 {AD0H, Rd} simm16

ADD soff13(Rd), Rs {78H, Rs, Rd} {111B, soff13}

ADD.W addr16, Rs {706H, Rs} addr16

ADD.W addr32, Rs {70EH, Rs} addr[31:16] addr[15:0]

ADD.W (Rd), #imm16 {AB0H, Rd} imm16

ADD.W soff13(Rd), Rs {78H, Rs, Rd} {110B, soff13}

ADD.SW Rd, addr16 {703H, Rd} addr16

ADD.SW Rd, addr32 {70BH, Rd} addr[31:16] addr[15:0]

ADD.SW Rd, soff13(Rs) {78H, Rs, Rd} {011B, soff13}

ADD.UW Rd, addr16 {702H, Rd} addr16

ADD.UW Rd, addr32 {70AH, Rd} addr[31:16] addr[15:0]

ADD.UW Rd, soff13(Rs) {78H, Rs, Rd} {010B, soff13}

ADD.B addr16, Rs {705H, Rs} addr16

ADD.B addr32, Rs {70DH, Rs} addr[31:16] addr[15:0]

ADD.B (Rd), #imm8 {AD9H, Rd} {xH, x000B, imm8}

ADD.B soff13(Rd), Rs {78H, Rs, Rd} {101B, soff13}

ADD.SB Rd, addr16 {701H, Rd} addr16

ADD.SB Rd, addr32 {709H, Rd} addr[31:16] addr[15:0]

ADD.SB Rd, soff13(Rs) {78H, Rs, Rd} {001B, soff13}

ADD.UB Rd, addr16 {700H, Rd} addr16

ADD.UB Rd, addr32 {708H, Rd} addr[31:16] addr[15:0]

ADD.UB Rd, soff13(Rs) {78H, Rs, Rd} {000B, soff13}
ADD Instruction UM018809-0611

ZNEO® CPU Core
User Manual

73
Examples

Before: R3=16H, R11=20H

ADD R3, R11 ;Object Code: A0B3

After: R3=36H, Flags C, Z, S, V, B = 0

Before: R3=FFFF_B023H, FFFF_B023H=702EH

ADD.W (R3), #1055H ;Object Code: AB03 1055

After: FFFF_B023H=8083H, Flags S=1, C, Z, V, B=0

Before: R12=16H, R10=FFFF_B020H, FFFF_B020H=91H

ADD.UB R12, (R10) ;Object Code: 78AC 0000

After: R12=A7H, Flags C, Z, S, V, B = 0

Before: R12=16H, R10=FFFF_B020H, FFFF_B020H=91H

ADD.SB R12, (R10) ;Object Code: 78AC 2000

After: R12=FFFF_FFA7H, Flags S=1 C, Z, V, B = 0

Before: FFFF_B034H=2EH, R12=1BH

ADD.B B034H:RAM, R12;Object Code: 705C B034

After: FFFF_B034H = 49H, Flags C, Z, S, V, B =0
UM018809-0611 ADD Instruction

74

ZNEO® CPU Core
User Manual
AND

Definition

Logical AND

Syntax

AND dst, src

Operation

dstdst AND src

Description

The source operand is logically ANDed with the destination operand. An AND operation stores a
1 when the corresponding bits in the two operands are both 1; otherwise the operation stores a 0.
The result is written to the destination. The contents of the source are unaffected. Table 21 sum-
marizes the AND operation.

Flags

Table 21. Truth Table for AND

dst src Result (dst)

0 0 0

1 0 0

0 1 0

1 1 1

7 6 5 4 3 2 1 0
C Z S V B CIRQE IRQE
– * * 0 * – – –

Legend

C = No change.

Z = Set to 1 if the result is zero; otherwise, set to 0.

S = Set to 1 if the result msb is 1; otherwise set to 0.

V = Cleared to 0.

B = Set to 1 if the initial destination or source value is 0; otherwise set to 0.

CIRQE = No change.

IRQE = No change.
AND Instruction UM018809-0611

ZNEO® CPU Core
User Manual

75
Flags are set based on the memory destination size, or 32 bits for register destinations.

Syntax and Opcodes

Instruction, Operands Word 0 Word 1 Word 2

AND Rd, #imm32 {AAAH, Rd} imm[31:16] imm[15:0]

AND Rd, #uimm16 {AA2H, Rd} uimm16

AND Rd, Rs {A2H, Rs, Rd}

AND Rd, addr16 {724H, Rd} addr16

AND Rd, addr32 {72CH, Rd} addr[31:16] addr[15:0]

AND Rd, soff13(Rs) {7AH, Rs, Rd} {100B, soff13}

AND addr16, Rs {727H, Rs} addr16

AND addr32, Rs {72FH, Rs} addr[31:16] addr[15:0]

AND (Rd), #imm32 {ABAH, Rd} imm[31:16] imm[15:0]

AND (Rd), #simm16 {AD2H, Rd} simm16

AND soff13(Rd), Rs {7AH, Rs, Rd} {111B, soff13}

AND.W addr16, Rs {726H, Rs} addr16

AND.W addr32, Rs {72EH, Rs} addr[31:16] addr[15:0]

AND.W (Rd), #imm16 {AB2H, Rd} imm16

AND.W soff13(Rd), Rs {7AH, Rs, Rd} {110B, soff13}

AND.SW Rd, addr16 {723H, Rd} addr16

AND.SW Rd, addr32 {72BH, Rd} addr[31:16] addr[15:0]

AND.SW Rd, soff13(Rs) {7AH, Rs, Rd} {011B, soff13}

AND.UW Rd, addr16 {722H, Rd} addr16

AND.UW Rd, addr32 {72AH, Rd} addr[31:16] addr[15:0]

AND.UW Rd, soff13(Rs) {7AH, Rs, Rd} {010B, soff13}

AND.B addr16, Rs {725H, Rs} addr16

AND.B addr32, Rs {72DH, Rs} addr[31:16] addr[15:0]

AND.B (Rd), #imm8 {AD9H, Rd} {xH, x010B, imm8}

AND.B soff13(Rd), Rs {7AH, Rs, Rd} {101B, soff13}

AND.SB Rd, addr16 {721H, Rd} addr16

AND.SB Rd, addr32 {729H, Rd} addr[31:16] addr[15:0]

AND.SB Rd, soff13(Rs) {7AH, Rs, Rd} {001B, soff13}

AND.UB Rd, addr16 {720H, Rd} addr16

AND.UB Rd, addr32 {728H, Rd} addr[31:16] addr[15:0]

AND.UB Rd, soff13(Rs) {7AH, Rs, Rd} {000B, soff13}

Note:
UM018809-0611 AND Instruction

76

ZNEO® CPU Core
User Manual
Examples

Before: R1[7:0]=38H (0011_1000B), R14[7:0]=8DH (1000_1101B)

AND R1, R14 ;Object Code: A2E1

After: R1[7:0]=08H (0000_1000B), Flags Z, V, S, B=0

Before: R4[31:8]=FFFF_FFH, R4[7:0]=79H (0111_1001B), FFFF_B07BH=EAH
(1110_1010B)

AND.SB R4, B07BH:RAM;Object Code: 7214 B07B

After: R4[31:8]=FFFF_FFH, R4[7:0]=68H (0110_1000B), Flags S=1; Z, V, B=0

Before: R4[31:8]=FFFF_FFH, R4[7:0]=79H (0111_1001B), FFFF_B07BH=EAH
(1110_1010B)

AND.UB R4, B07BH:RAM;Object Code: 7204 B07B

After: R4[31:8]=0000_00H, R4[7:0]=68H (0110_1000B), Flags Z, V, S, B=0

Before: R13=FFFF_B07AH, FFFF_B07AH=C3F7H (1100_0011_1111_0111B)

AND.W (R13), #80F0H ;Object Code: AB2D 80F0

After: FFFF_B07AH=80F0H (1000_0000_1111_0000B), Flags S=1; Z, V, B=0
AND Instruction UM018809-0611

ZNEO® CPU Core
User Manual

77
ATM

Definition

Atomic Execution

Syntax

ATM

Operation

Block all interrupt and DMA requests during execution of the next 3 instructions.

Description

The Atomic instruction forces the ZNEO CPU to execute the next three instructions as a single
block (that is, atom) of operations. During execution of these next three instructions, all inter-
rupts and DMA requests are prevented. This allows operations to be performed on memory loca-
tions that might otherwise be changed or used during the operation by interrupts or DMA.

Flags

Flags are not affected by this instruction.

Syntax and Opcodes

Example

The following example tests a bit used to lock a resource, then sets the bit if it is clear. ATM
ensures that the tested bit can be set before another routine tests it.

Instruction, Operands Word 0 Word 1 Word 2

ATM 0004H

LD R7, #00000010B ;Load mask for bit 1 Object Code: 3702

ATM ;Block interrupt/DMA requests Object Code: 0004

TM.B B047H:RAM, R7 ;Test semaphore with bit mask Object Code: 7657 B047

JP NZ, Msg1_In_Use ;JP if resource is in use Object Code: EE xx

OR.B B047H:RAM, R7 ;Else set masked bit
; to lock resource

Object Code: 7357 B047
UM018809-0611 ATM Instruction

78

ZNEO® CPU Core
User Manual
BRK

Definition

On-Chip Debugger Break

Syntax

BRK

Operation

None

Description

If the Break capability is enabled, execution of the BRK instruction initiates an On-Chip Debug-
ger break at this address. If the Break capability is not enabled, the BRK instruction operates as
an Illegal Instruction Exception (ILL).

Refer to the ZNEO product specification that is specific to your device for information
regarding the On-Chip Debugger.

Flags

Flags are not affected by this instruction.

Syntax and Opcodes

Instruction, Operands Word 0 Word 1 Word 2

BRK 0000H

Note:
BRK Instruction UM018809-0611

ZNEO® CPU Core
User Manual

79
CALL

Definition

CALL Procedure

Syntax

CALL dst

Operation

SPSP4
(SP)PC
PCdestination address

Description

A CALL instruction decrements the Stack Pointer (R15) by four and stores the current Program
Counter value on the top of the stack. The pushed PC value points to the first instruction follow-
ing the CALL instruction. Then the destination address is loaded into the Program Counter and
execution of the procedure begins. After the procedure completes, it uses a RET instruction to
pop the previous PC value and return from the procedure.

In assembly language, the destination is specified as a label or 32-bit address operand. When pos-
sible, the ZNEO CPU assembler automatically calculates a relative offset and generates relative
CALL opcodes to produce more efficient object code. For a relative CALL, the destination
address is the PC value plus two times the relative operand value.

In the CALL (Rs) syntax, if the contents of Rs are odd the least significant bit is discarded, so that
the call destination address is always an even number.

To invoke a 32-bit addressed call explicitly, use the CALLA instruction.

Flags

Flags are not affected by this instruction.

Syntax and Opcodes

Instruction, Operands Word 0 Word 1 Word 2

CALL (Rs) {F21H, Rs}

CALL rel12 {DH, rel12}

CALL rel24 {F1H, rel[23:16]} rel[15:0]
UM018809-0611 CALL Instruction

80

ZNEO® CPU Core
User Manual
Example

Before: PC=0000_0472H, SP=FFFF_DE24H, R7=0000_3521H

CALL (R7) ;Object Code: F217

After: PC=0000_3520, SP=FFFF_DE20H, FFFF_DE20H=0000_0478H
CALL Instruction UM018809-0611

ZNEO® CPU Core
User Manual

81
CALLA

Definition

CALL Absolute

Syntax

CALLA dst

Operation

SP SP – 4
(SP) PC
PC dst

Description

The CALLA instruction decrements the Stack Pointer (R15) by four and stores the current Pro-
gram Counter value onto the top of the stack. The pushed PC value points to the first instruction
following the CALLA instruction. Then the 32-bit immediate operand is loaded into the Program
Counter and execution of the procedure begins. After the procedure completes, it uses a RET
instruction to pop the previous PC value and return from the procedure.

If the immediate operand is odd, the least significant bit is discarded so that the call destination
address is always an even number.

The CALLA instruction is used to explicitly invoke the 32-bit immediate call opcode in situa-
tions when a fixed opcode size is desired, such as a jump table.

Flags

Flags are not affected by this instruction.

Syntax and Opcodes

Example

Before: PC=0000_044EH, SP=FFFF_DB22H

CALLA 00352920H ;Object Code: F231 0035 2920

After: PC=0035_2920, SP=FFFF_DB1EH, FFFF_DB1EH=0000_0454H

Instruction, Operands Word 0 Word 1 Word 2

CALLA imm32 F231H imm[31:16] imm[15:0]
UM018809-0611 CALLA Instruction

82

ZNEO® CPU Core
User Manual
CLR

Definition

Clear

Syntax

CLR dst

Operation

dst 0

Description

All bits of the destination operand are cleared to 0.

Flags

Flags are not affected by this instruction.

Syntax and Opcodes

Instruction, Operands Word 0 Word 1 Word 2

CLR Rd {3H, Rd, 00H}1

CLR addr16 {ADAH, 1x00B} addr16

CLR addr32 {ADBH, 1x00B} addr[31:16] addr[15:0]

CLR (Rd) {ACH, 1x00B, Rd}

CLR soff14(Rd) {ADCH, Rd} {1xB, soff14}

CLR.W addr16 ADA4H addr16

CLR.W addr32 ADB4H addr[31:16] addr[15:0]

CLR.W (Rd) {AC4H, Rd}

CLR.W soff14(Rd) {ADCH, Rd} {01B, soff14}

CLR.B addr16 ADA0H addr16

CLR.B addr32 ADB0H addr[31:16] addr[15:0]

CLR.B (Rd) {AC0H, Rd}

CLR.B soff14(Rd) {ADCH, Rd} {00B, soff14}

Note:
1. The ZNEO CPU assembler uses an LD opcode to implement CLR Rd.
CLR Instruction UM018809-0611

ZNEO® CPU Core
User Manual

83
Examples

Before: FFFF_B032H=8BF7_47AFH

CLR B032H:RAM ;Object code: ADA8 B032 or ADAE B032

After: FFFF_B032H=0000_0000H

Before: R7=FFFF_B023H, FFFF_B023H=FCH

CLR.B (R7) ;Object code: AC07

After: FFFF_B023H=00H
UM018809-0611 CLR Instruction

84

ZNEO® CPU Core
User Manual
COM

Definition

Complement

Syntax

COM dst

Operation

dst ~dst

Description

The contents of the destination operand are complemented (one’s complement). All 1 bits are
changed to 0 and all 0 bits are changed to 1.

Flags

Flags are set based on the 32-bit destination register value.

Syntax and Opcodes

7 6 5 4 3 2 1 0
C Z S V B CIRQE IRQE
0 * * 0 * – – –

Legend

C = Cleared to 0.

Z = Set to 1 if the result is zero; otherwise, set to 0.

S = Set to 1 if the result msb is 1; otherwise set to 0.

V = Cleared to 0.

B = Set to 1 if the initial destination value was 0; otherwise set to 0.

CIRQE = No change.

IRQE = No change.

Instruction, Operands Word 0 Word 1 Word 2

COM Rd {454H, Rd}

Note:
COM Instruction UM018809-0611

ZNEO® CPU Core
User Manual

85
Example

Before: R7=7F37_B2D3H (0111_1111_0011_0111_1011_0010_1101_0011B)

COM R7 ;Object code: 4547

After: R7=80C8_4D2CH (1000_0000_1100_1000_0100_1101_0010_1100B), Flags S=1;
C, Z, V, B=0
UM018809-0611 COM Instruction

86

ZNEO® CPU Core
User Manual
CP

Definition

Compare

Syntax

CP dst, src

Operation

dst – src

Description

The source operand is compared to (subtracted from) the destination operand and the flags are set
according to the results of the operation. The contents of both the source and destination oper-
ands are unaffected.

Flags

Flags are set based on the memory destination size, or 32 bits for register destinations.

7 6 5 4 3 2 1 0
C Z S V B CIRQE IRQE
* * * * * – – –

Legend

C = Set to 1 if the result generated a borrow; otherwise set to 0.

Z = Set to 1 if the result is zero; otherwise, set to 0.

S = Set to 1 if the result msb is 1; otherwise set to 0.

V = Set to 1 if an arithmetic overflow occurs; otherwise set to 0.

B = Set to 1 if the initial destination or source value is 0; otherwise set to 0.

CIRQE = No change.

IRQE = No change.

Note:
CP Instruction UM018809-0611

ZNEO® CPU Core
User Manual

87
Syntax and Opcodes

Instruction, Operands Word 0 Word 1 Word 2

CP Rd, #imm32 {AADH, Rd} imm[31:16] imm[15:0]

CP Rd, #simm8 {9H, Rd, simm8}

CP Rd, #uimm16 {AA5H, Rd} uimm16

CP Rd, Rs {A5H, Rs, Rd}

CP Rd, addr16 {754H, Rd} addr16

CP Rd, addr32 {75CH, Rd} addr[31:16] addr[15:0]

CP Rd, soff13(Rs) {7DH, Rs, Rd} {100B, soff13}

CP addr16, Rs {757H, Rs} addr16

CP addr32, Rs {75FH, Rs} addr[31:16] addr[15:0]

CP (Rd), #imm32 {ABDH, Rd} imm[31:16] imm[15:0]

CP (Rd), #simm16 {AD5H, Rd} simm16

CP soff13(Rd), Rs {7DH, Rs, Rd} {111B, soff13}

CP.W addr16, Rs {756H, Rs} addr16

CP.W addr32, Rs {75EH, Rs} addr[31:16] addr[15:0]

CP.W (Rd), #imm16 {AB5H, Rd} imm16

CP.W soff13(Rd), Rs {7DH, Rs, Rd} {110B, soff13}

CP.SW Rd, addr16 {753H, Rd} addr16

CP.SW Rd, addr32 {75BH, Rd} addr[31:16] addr[15:0]

CP.SW Rd, soff13(Rs) {7DH, Rs, Rd} {011B, soff13}

CP.UW Rd, addr16 {752H, Rd} addr16

CP.UW Rd, addr32 {75AH, Rd} addr[31:16] addr[15:0]

CP.UW Rd, soff13(Rs) {7DH, Rs, Rd} {010B, soff13}

CP.B addr16, Rs {755H, Rs} addr16

CP.B addr32, Rs {75DH, Rs} addr[31:16] addr[15:0]

CP.B (Rd), #imm8 {AD9H, Rd} {xH, x101B, imm8}

CP.B soff13(Rd), Rs {7DH, Rs, Rd} {101B, soff13}

CP.SB Rd, addr16 {751H, Rd} addr16

CP.SB Rd, addr32 {759H, Rd} addr[31:16] addr[15:0]

CP.SB Rd, soff13(Rs) {7DH, Rs, Rd} {001B, soff13}

CP.UB Rd, addr16 {750H, Rd} addr16

CP.UB Rd, addr32 {758H, Rd} addr[31:16] addr[15:0]

CP.UB Rd, soff13(Rs) {7DH, Rs, Rd} {000B, soff13}
UM018809-0611 CP Instruction

88

ZNEO® CPU Core
User Manual
Examples

Before: R3=16H, R11=20H

CP R3, R11 ;Object code: A5B3

After: Flags C, S=1; Z, V, B=0

Before: R3=FFFF_B0D4H, FFFF_B0D4H=800FH

CP.W (R3), #FFFFH ;Object Code: AB53 FFFF

After: Flags C, S=1; Z, V, B=0

Before: R3=FFFF_B0D4H, FFFF_B0D4H=800FH

CP.W (R3), #800FH ;Object Code: AB53 800F

After: Flags Z=1; C, S, V, B=0

Before: R12=0DH, R10=FFFF_B020H, FFFF_B020H=00H

CP.UB R12, (R10) ;Object Code: 7DAC 0000

After: Flags B=1, C, Z, S, V = 0

Before: R12=16H, R10=FFFF_B020H, FFFF_B020H=91H

CP.SB R12, (R10) ;Object Code: 7DAC 2000

After: Flags S=1; C, Z, V, B = 0

Before: FFFF_B034H=2EH, R12=1BH

CP.B B034H:RAM, R12 ;Object Code: 755C B034

After: Flags C, Z, S, V, B =0
CP Instruction UM018809-0611

ZNEO® CPU Core
User Manual

89
CPC

Definition

Compare with Carry

Syntax

CPC dst, src

Operation

dst – src – C

Description

The source operand with the C bit is compared to (subtracted from) the destination operand. The
contents of both operands are unaffected. Repeating this instruction enables multiregister com-
pares. The Zero flag is set only if the initial state of the Zero flag is 1 and the result is 0. This
instruction is generated by using the Extend prefix, 0007H, with the CP opcodes.

Flags

Flags are set based on the memory destination size, or 32 bits for register destinations.

7 6 5 4 3 2 1 0
C Z S V B CIRQE IRQE
* * * * * – – –

Legend

C = Set to 1 if the result generated a borrow; otherwise set to 0.

Z = Set to 1 if Z is initially 1 and the result is zero; otherwise set to 0.

S = Set to 1 if the result msb is 1; otherwise set to 0.

V = Set to 1 if an arithmetic overflow occurs; otherwise set to 0.

B = Set to 1 if the initial destination or source value is 0; otherwise set to 0.

CIRQE = No change.

IRQE = No change.

Note:
UM018809-0611 CPC Instruction

90

ZNEO® CPU Core
User Manual
Syntax and Opcodes

Instruction, Operands
Extend
Prefix Word 0 Word 1 Word 2

CPC Rd, #imm32 0007H {AADH, Rd} imm[31:16] imm[15:0]

CPC Rd, #simm8 0007H {9H, Rd, simm8}

CPC Rd, #uimm16 0007H {AA5H, Rd} uimm16

CPC Rd, Rs 0007H {A5H, Rs, Rd}

CPC Rd, addr16 0007H {754H, Rd} addr16

CPC Rd, addr32 0007H {75CH, Rd} addr[31:16] addr[15:0]

CPC Rd, soff13(Rs) 0007H {7DH, Rs, Rd} {100B, soff13}

CPC addr16, Rs 0007H {757H, Rs} addr16

CPC addr32, Rs 0007H {75FH, Rs} addr[31:16] addr[15:0]

CPC (Rd), #imm32 0007H {ABDH, Rd} imm[31:16] imm[15:0]

CPC (Rd), #simm16 0007H {AD5H, Rd} simm16

CPC soff13(Rd), Rs 0007H {7DH, Rs, Rd} {111B, soff13}

CPC.W addr16, Rs 0007H {756H, Rs} addr16

CPC.W addr32, Rs 0007H {75EH, Rs} addr[31:16] addr[15:0]

CPC.W (Rd), #imm16 0007H {AB5H, Rd} imm16

CPC.W soff13(Rd), Rs 0007H {7DH, Rs, Rd} {110B, soff13}

CPC.SW Rd, addr16 0007H {753H, Rd} addr16

CPC.SW Rd, addr32 0007H {75BH, Rd} addr[31:16] addr[15:0]

CPC.SW Rd, soff13(Rs) 0007H {7DH, Rs, Rd} {011B, soff13}

CPC.UW Rd, addr16 0007H {752H, Rd} addr16

CPC.UW Rd, addr32 0007H {75AH, Rd} addr[31:16] addr[15:0]

CPC.UW Rd, soff13(Rs) 0007H {7DH, Rs, Rd} {010B, soff13}

CPC.B addr16, Rs 0007H {755H, Rs} addr16

CPC.B addr32, Rs 0007H {75DH, Rs} addr[31:16] addr[15:0]

CPC.B (Rd), #imm8 0007H {AD9H, Rd} {xH, x101B, imm8}

CPC.B soff13(Rd), Rs 0007H {7DH, Rs, Rd} {101B, soff13}

CPC.SB Rd, addr16 0007H {751H, Rd} addr16

CPC.SB Rd, addr32 0007H {759H, Rd} addr[31:16] addr[15:0]

CPC.SB Rd, soff13(Rs) 0007H {7DH, Rs, Rd} {001B, soff13}

CPC.UB Rd, addr16 0007H {750H, Rd} addr16

CPC.UB Rd, addr32 0007H {758H, Rd} addr[31:16] addr[15:0]

CPC.UB Rd, soff13(Rs) 0007H {7DH, Rs, Rd} {000B, soff13}
CPC Instruction UM018809-0611

ZNEO® CPU Core
User Manual

91
Examples

Before: R3=16H, R11=16H, Z=1, C=0

CPC R3, R11 ;Object code: 0007 A5B3

After: Flags Z=1; C, S, V, B=0

Before: R3=16H, R11=16H, C=1

CPC R3, R11 ;Object code: 0007 A5B3

After: Flags C, S=1; Z, V, B=0
UM018809-0611 CPC Instruction

92

ZNEO® CPU Core
User Manual
CPCZ

Definition

Compare with Carry to Zero

Syntax

CPCZ dst

Operation

dst – 0 – C

Description

The value zero and the Carry bit are compared to (subtracted from) the destination operand and
the flags are set according to the results of the operation. The contents of the destination operand
are unaffected. Repeating this instruction enables multiregister compares. The Zero flag is set
only if the initial state of the Zero flag is 1 and the result is 0. This instruction is generated by
using the Extend prefix, 0007H, with the CPZ opcodes.

Flags

Flags are set based on the memory destination size, or 32 bits for register destinations.

7 6 5 4 3 2 1 0
C Z S V B CIRQE IRQE
* * * * 1 – – –

Legend

C = Set to 1 if the result generated a borrow; otherwise set to 0.

Z = Set to 1 if Z is initially 1 and the result is zero; otherwise set to 0.

S = Set to 1 if the result msb is 1; otherwise set to 0.

V = Set to 1 if an arithmetic overflow occurs; otherwise set to 0.

B = Set to 1.

CIRQE = No change.

IRQE = No change.

Note:
CPCZ Instruction UM018809-0611

ZNEO® CPU Core
User Manual

93
Syntax and Opcodes

Examples

Before: R3=FFFF_B0D4H, FFFF_B0D4H=0000H, Z=1, C=0

CPCZ.W (R3) ;Object Code: 0007 AC53

After: Flags Z, B=1; C, S, V=0

Before: R3=FFFF_B0D4H, FFFF_B0D4H=0000H, C=1

CPCZ.W (R3) ;Object Code: 0007 AC53

After: Flags C, S, B=1; Z, V=0

Instruction, Operands
Extend
Prefix Word 0 Word 1 Word 2

CPCZ Rd 0007H {9H, Rd, 00H}1

CPCZ addr16 0007H {ADAH, 1x01B} addr16

CPCZ addr32 0007H {ADBH, 1x01B} addr[31:16] addr[15:0]

CPCZ (Rd) 0007H {ACH, 1x01B, Rd}

CPCZ soff14(Rd) 0007H {ADDH, Rd} {1xB, soff14}

CPCZ.W addr16 0007H ADA5H addr16

CPCZ.W addr32 0007H ADB5H addr[31:16] addr[15:0]

CPCZ.W (Rd) 0007H {AC5H, Rd}

CPCZ.W soff14(Rd) 0007H {ADDH, Rd} {01B, soff14}

CPCZ.B addr16 0007H ADA1H addr16

CPCZ.B addr32 0007H ADB1H addr[31:16] addr[15:0]

CPCZ.B (Rd) 0007H {AC1H, Rd}

CPCZ.B soff14(Rd) 0007H {ADDH, Rd} {00B, soff14}

Note:
1. The ZNEO CPU assembler uses a CPC opcode to implement CPCZ Rd.
UM018809-0611 CPCZ Instruction

94

ZNEO® CPU Core
User Manual
CPZ

Definition

Compare to Zero

Syntax

CPZ dst

Operation

dst – 0

Description

The value zero is compared to (subtracted from) the destination operand and the flags are set
according to the results of the operation. The contents of the destination operand are unaffected.

Flags

Flags are set based on the memory destination size, or 32 bits for register destinations.

7 6 5 4 3 2 1 0
C Z S V B CIRQE IRQE
* * * * 1 – – –

Legend

C = Set to 1 if the result generated a borrow; otherwise set to 0.

Z = Set to 1 if the result is zero; otherwise, set to 0.

S = Set to 1 if the result msb is 1; otherwise set to 0.

V = Set to 1 if an arithmetic overflow occurs; otherwise set to 0.

B = Set to 1.

CIRQE = No change.

IRQE = No change.

Note:
CPZ Instruction UM018809-0611

ZNEO® CPU Core
User Manual

95
Syntax and Opcodes

Examples

Before: R3=FFFF_B0D4H, FFFF_B0D4H=0000H

CPZ.W (R3) ;Object Code: AC53

After: Flags Z, B=1; C, S, V=0

Before: R3=FFFF_B0D4H, FFFF_B0D4H=7042H

CPZ.W (R3) ;Object Code: AC53

After: Flags B=1, C, S, Z, V=0

Instruction, Operands Word 0 Word 1 Word 2

CPZ Rd {9H, Rd, 00H}1

CPZ addr16 {ADAH, 1x01B} addr16

CPZ addr32 {ADBH, 1x01B} addr[31:16] addr[15:0]

CPZ (Rd) {ACH, 1x01B, Rd}

CPZ soff14(Rd) {ADDH, Rd} {1xB, soff14}

CPZ.W addr16 ADA5H addr16

CPZ.W addr32 ADB5H addr[31:16] addr[15:0]

CPZ.W (Rd) {AC5H, Rd}

CPZ.W soff14(Rd) {ADDH, Rd} {01B, soff14}

CPZ.B addr16 ADA1H addr16

CPZ.B addr32 ADB1H addr[31:16] addr[15:0]

CPZ.B (Rd) {AC1H, Rd}

CPZ.B soff14(Rd) {ADDH, Rd} {00B, soff14}

Note:
1. The ZNEO CPU assembler uses a CP opcode to implement CPZ Rd.
UM018809-0611 CPZ Instruction

96

ZNEO® CPU Core
User Manual
DEC

Definition

Decrement

Syntax

DEC dst

Operation

dst dst – 1

Description

The contents of the destination operand are decremented by one.

Flags

Flags are set based on the memory destination size, or 32 bits for register destinations.

Syntax and Opcodes

7 6 5 4 3 2 1 0
C Z S V B CIRQE IRQE
* * * * * – – –

Legend

C = Set to 1 if the result generated a borrow; otherwise set to 0.

Z = Set to 1 if the result is zero; otherwise, set to 0.

S = Set to 1 if the result msb is 1; otherwise set to 0.

V = Set to 1 if an arithmetic overflow occurs; otherwise set to 0.

B = Set to 1 if the initial destination value was 0; otherwise set to 0.

CIRQE = No change.

IRQE = No change.

Instruction, Operands Word 0 Word 1 Word 2

DEC Rd1 {AA1H, Rd} 01H

DEC addr16 {ADAH, 1x11B} addr16

DEC addr32 {ADBH, 1x11B} addr[31:16] addr[15:0]

DEC (Rd) {ACH, 1x11B, Rd}

Note:
DEC Instruction UM018809-0611

ZNEO® CPU Core
User Manual

97
Examples

Before: R3=FFFF_B024H, FFFF_B02CH=702EH

DEC.W 8(R3) ;Object Code: ADF3 4008

After: FFFF_B02CH=702CH, Flags C, S, Z, V, B=0

Before: FFFF_B034H=2EH

DEC.B B034H:RAM ;Object Code: ADA3 B034

After: FFFF_B034H = 2DH, Flags C, Z, S, V, B =0

DEC soff14(Rd) {ADFH, Rd} {1xB, soff14}

DEC.W addr16 ADA7H addr16

DEC.W addr32 ADB7H addr[31:16] addr[15:0]

DEC.W (Rd) {AC7H, Rd}

DEC.W soff14(Rd) {ADFH, Rd} {01B, soff14}

DEC.B addr16 ADA3H addr16

DEC.B addr32 ADB3H addr[31:16] addr[15:0]

DEC.B (Rd) {AC3H, Rd}

DEC.B soff14(Rd) {ADFH, Rd} {00B, soff14}

Note:
1. The ZNEO CPU assembler uses a SUB opcode to implement DEC Rd. The one-word instruction

ADD Rd, #-1 can be used if ADD Flags behavior is acceptable.

Instruction, Operands Word 0 Word 1 Word 2
UM018809-0611 DEC Instruction

98

ZNEO® CPU Core
User Manual
DI

Definition

Disable Interrupts

Syntax

DI

Operation

FLAGS[0] 0

Description

The Master Interrupt Enable (IRQE) bit in the Flags register is cleared to 0 to prevent the ZNEO
CPU from responding to interrupt requests.

Flags

Syntax and Opcodes

Example

Before: IRQE=1 (Interrupt requests are enabled or disabled by their individual control
registers.)

DI ;Object code: FFFB

7 6 5 4 3 2 1 0
C Z S V B CIRQE IRQE
– – – – – – – 0

Legend

C = No change.

Z = No change.

S = No change.

V = No change.

B = No change.

CIRQE = No change.

IRQE = Cleared to 0.

Instruction, Operands Word 0 Word 1 Word 2

DI FFFBH
DI Instruction UM018809-0611

ZNEO® CPU Core
User Manual

99
After: IRQE=0 (Vectored interrupt requests are globally disabled.)
UM018809-0611 DI Instruction

100

ZNEO® CPU Core
User Manual
DJNZ

Definition

Decrement and Jump if Non-Zero

Syntax

DJNZ dst, urel4

Operation

dst dst – 1
if dst 0 {
 PC PC + {FFFF_FFH, 111B, urel4, 0B}
}

Description

This instruction decrements the destination register and then performs a conditional jump if the
result is nonzero. Otherwise, the instruction following the DJNZ instruction is executed.

In assembly language, the jump destination is typically specified as a label or 32-bit address
operand. The ZNEO CPU assembler automatically calculates a relative offset and generates the
appropriate DJNZ opcode. The jump destination address is the PC value plus the calculated off-
set.

In object code, the offset operand is a 4-bit unsigned value corresponding to bits [4:1] of a nega-
tive PC offset. In practical terms, if urel4=0, the offset is –16 words. If urel4=FH, the offset is –1
word. The offset is measured from the instruction following DJNZ.

Flags

7 6 5 4 3 2 1 0
C Z S V B CIRQE IRQE
* * * * * – – –

Legend

C = Set to 1 if the result generated a borrow; otherwise set to 0.

Z = Set to 1 if the result is zero; otherwise, set to 0.

S = Set to 1 if the result msb is 1; otherwise set to 0.

V = Set to 1 if an arithmetic overflow occurs; otherwise set to 0.

B = Set to 1 if the initial destination value was 0; otherwise set to 0.

CIRQE = No change.

IRQE = No change.
DJNZ Instruction UM018809-0611

ZNEO® CPU Core
User Manual

101
Flags are set based on the 32-bit decrement register value.

Syntax and Opcodes

Example

DJNZ controls a loop of instructions. In the following example, 9 words (18 bytes) are moved
from one buffer area in memory to another.

Instruction, Operands Word 0 Word 1 Word 2

DJNZ Rd, urel4 {FDH, urel4, Rd}

LD R6, #9H ;Load word counter with 9H Object Code: 3609

LEA R5, B024H:RAM ;Load source pointer Object Code: 4515 B024

LEA R4, B036H:RAM ;Load destination pointer Object Code: 4514 B036

LOOP: LD.UW R3, (R5++) ;Load word and inc R5 Object Code: 1B53

LD.W (R4++), R3 ;Write word and inc R4 Object Code: 1734

DJNZ R6, LOOP ;Dec R6 and loop until
count=0

Object Code: FDD6

Note:
UM018809-0611 DJNZ Instruction

102

ZNEO® CPU Core
User Manual
EI

Definition

Enable Interrupts

Syntax

EI

Operation

FLAGS[0] 1

Description

The Master Interrupt Enable (IRQE) bit of the Flags register is set to 1. This allows the ZNEO
CPU to respond to interrupt requests.

Flags

Syntax and Opcodes

Example

Before: IRQE=0 (Vectored interrupt requests are globally disabled.)

 EI ;Object code: FFFA

After: IRQE=1 (Interrupt requests are enabled or disabled by their individual control registers.)

7 6 5 4 3 2 1 0
C Z S V B CIRQE IRQE
– – – – – – – 1

Legend

C = No change.

Z = No change.

S = No change.

V = No change.

B = No change.

CIRQE = No change.

IRQE = Set to 1.

Instruction, Operands Word 0 Word 1 Word 2

EI FFFAH
EI Instruction UM018809-0611

ZNEO® CPU Core
User Manual

103
EXT

Definition

Extend

Syntax

EXT dst, src

Operation

dst src

Description

This instruction loads an 8-bit or 16-bit value from the source register into the destination register
with Signed or Unsigned extension. Byte (8-bit) or Word (16-bit) data size is selected by adding
a .B or .W, suffix, respectively, to the EXT mnemonic. A “U” in the mnemonic suffix selects zero
(unsigned) extension. An “S” in the mnemonic suffix selects signed extension. See LD for
instructions to read memory values with extension.

Flags

Syntax and Opcodes

7 6 5 4 3 2 1 0
C Z S V B CIRQE IRQE
– * * – * – – –

Legend

C = No change.

Z = Set to 1 if the result is zero; otherwise, set to 0.

S = Set to 1 if the result msb is 1; otherwise set to 0.

V = No change.

B = Cleared to 0.

CIRQE = No change.

IRQE = No change.

Instruction, Operands Word 0 Word 1 Word 2

EXT.SW Rd, Rs {43H, Rs, Rd}

EXT.UW Rd, Rs {41H, Rs, Rd}

EXT.SB Rd, Rs {42H, Rs, Rd}

EXT.UB Rd, Rs {40H, Rs, Rd}
UM018809-0611 EXT Instruction

104

ZNEO® CPU Core
User Manual
Examples

Before: R11=xxxx_xx86H

EXT.SB R3, R11 ;Object code: 42B3

After: R3=FFFF_FF86H, Flags S=1; Z, B=0

Before: R11=xxxx_xx76H

EXT.UB R3, R11 ;Object code: 40B3

After: R3=0000_0076H, Flags S=1, Z, B=0
EXT Instruction UM018809-0611

ZNEO® CPU Core
User Manual

105
HALT

Definition

Halt Mode

Syntax

HALT

Operation

Enter Halt mode.

Description

The HALT instruction places the ZNEO CPU into HALT mode.

Refer to the ZNEO product specification that is specific to your device for information
about HALT mode operation.

Flags

Flags are not affected by this instruction.

Syntax and Opcodes

Instruction, Operands Word 0 Word 1 Word 2

HALT FFF9H

Note:
UM018809-0611 HALT Instruction

106

ZNEO® CPU Core
User Manual
ILL

Definition

Illegal Instruction

Operation

SP SP – 2
(SP) {00H, FLAGS[7:0]}
SP SP – 4
(SP) PC
PC (0000_0008H)

Description

This operation is performed whenever the CPU encounters an unimplemented instruction.
Because an unprogrammed memory element typically contains FFH, the opcode FFFFH (ILL) is
defined as an explicit Illegal Instruction Exception.

When the Program Counter encounters an illegal instruction, the Flags and Program Counter
value are pushed on the stack. The Program Counter does not increment, so the Program Counter
value that is pushed onto the stack points to the illegal instruction.

The ILL exception uses the System Exception vector quad at 0000_0008H in memory. The vec-
tor quad contains a 32-bit address (service routine pointer). When an exception occurs, the
address in the vector quad replaces the value in the Program Counter (PC). Program execution
continues with the instruction pointed to by the new PC value.

After an ILL exception occurs, the ILL bit in the System Exception register (SYSEXCP) is set to
1. After the first ILL exception has executed, additional ILL exceptions do not push the Stack
Pointer until the ILL bit is cleared. Writing a 1 to the ILL bit clears the bit to 0.

Refer to the ZNEO product specification that is specific to your device for detailed infor-
mation regarding the System Exception register (SYSEXCP).

The Break opcode (BRK, 00H) operates as an ILL exception if On-Chip Debugger breaks
are disabled. For details about the On-Chip Debugger, see the device-specific Product
Specification.

Note:

Note:
ILL Instruction UM018809-0611

ZNEO® CPU Core
User Manual

107
An IRET instruction must not be used to end an Illegal Instruction exception service rou-
tine. Because the stack contains the Program Counter value of the illegal instruction, an
IRET instruction returns code execution to this illegal instruction.

Flags

Flags are not affected by this instruction.

Syntax and Opcodes

Example

Before: PC=00FD_044EH, SP=FFFF_DB22H, 0000_0008H=0000_FE00H

ILL ;Object Code: FFFF

After: PC=0000_FE00H, SP=FFFF_DB1CH, FFFF_DB1CH=00FD_044EH,
FFFF_DB20H=00H, FFFF_DB21H=Flags[7:0]

Instruction, Operands Word 0 Word 1 Word 2

ILL FFFFH

Caution:
UM018809-0611 ILL Instruction

108

ZNEO® CPU Core
User Manual
INC

Definition

Increment

Syntax

INC dst

Operation

dst dst + 1

Description

The contents of the destination operand are incremented by one.

Flags

Flags are set based on the memory destination size, or 32 bits for register destinations.

Syntax and Opcodes

7 6 5 4 3 2 1 0
C Z S V B CIRQE IRQE
* * * * * – – –

Legend

C = Set to 1 if the result generated a carry; otherwise set to 0.

Z = Set to 1 if the result is zero; otherwise, set to 0.

S = Set to 1 if the result msb is 1; otherwise set to 0.

V = Set to 1 if an arithmetic overflow occurs; otherwise set to 0.

B = Set to 1 if the initial destination value was 0; otherwise set to 0.

CIRQE = No change.

IRQE = No change.

Instruction, Operands Word 0 Word 1 Word 2

INC Rd {8H, Rd, 01H}1

INC addr16 {ADAH, 1x10B} addr16

INC addr32 {ADBH, 1x10B} addr[31:16] addr[15:0]

INC (Rd) {ACH, 1x10B, Rd}

Note:
INC Instruction UM018809-0611

ZNEO® CPU Core
User Manual

109
Examples

Before: R3=FFFF_B024H, FFFF_B02CH=702EH

INC.W 8(R3) ;Object Code: ADE3 4008

After: FFFF_B02CH=702FH, Flags C, S, Z, V, B=0

Before: FFFF_B034H=2EH

INC.B B034H:RAM ;Object Code: ADA2 B034

After: FFFF_B034H = 2FH, Flags C, Z, S, V, B =0

INC soff14(Rd) {ADEH, Rd} {1xB, soff14}

INC.W addr16 ADA6H addr16

INC.W addr32 ADB6H addr[31:16] addr[15:0]

INC.W (Rd) {AC6H, Rd}

INC.W soff14(Rd) {ADEH, Rd} {01B, soff14}

INC.B addr16 ADA2H addr16

INC.B addr32 ADB2H addr[31:16] addr[15:0]

INC.B (Rd) {AC2H, Rd}

INC.B soff14(Rd) {ADEH, Rd} {00B, soff14}
1The ZNEO CPU assembler uses an ADD opcode to implement INC Rd.

Instruction, Operands Word 0 Word 1 Word 2
UM018809-0611 INC Instruction

110

ZNEO® CPU Core
User Manual
IRET

Definition

Interrupt Return

Syntax

IRET

Operation

Normal IRET Chained IRET
PC (SP) PC Pending Interrupt Vector
SP SP + 4 FLAGS[0] 0
FLAGS[7:0] +1(SP)
SP SP + 2

Description

This instruction is issued at the end of an interrupt service routine. It performs one of the follow-
ing two operations:

• If no interrupts are pending or the Chained Interrupt Enable flag (CIRQE) is 0, execu-
tion of IRET restores the Program Counter and the Flags register from the stack.

• If one or more vectored interrupts are pending and the CIRQE flag is 1, executing the
IRET instruction passes execution directly to the highest-priority pending interrupt
service routine. The contents of the stack are not changed.

For details about chained interrupts, see the Returning From a Vectored Interrupt section on
page 44.

Any Push or other instructions in the service routine that decrement the stack pointer
must be followed by matching Pop or increment instructions to ensure the Stack Pointer
is at the correct location when IRET is executed. Otherwise, the wrong address loads into
the Program Counter and the program cannot operate properly.

Flags

If IRET executes normally, it restores the Flags register to its state prior to the first interrupt in
the chain.

Caution:
IRET Instruction UM018809-0611

ZNEO® CPU Core
User Manual

111
If IRET chains to another interrupt service routine, it clears the IRQE flag and leaves all other
flags unchanged.

Syntax and Opcodes

Example

Before: PC=0035_292EH, SP=FFFF_DB1CH, FFFF_DB21H=Pre-interrupt Flags,
FFFF_DB20H=00H, FFFF_DB1CH=0000_0454H

IRET ;Object Code: FFFD

After: PC=0000_0454H, Flags=Pre-interrupt state, SP=FFFF_DB22H

Instruction, Operands Word 0 Word 1 Word 2

IRET FFFDH
UM018809-0611 IRET Instruction

112

ZNEO® CPU Core
User Manual
JP

Definition

Jump

Syntax

JP dst

Operation

PC destination address

Description

The unconditional jump replaces the contents of the Program Counter with the destination
address. Program control then passes to the instruction addressed by the Program Counter.

In assembly language, the destination is typically specified as a label or 32-bit address operand.
When possible, the ZNEO CPU assembler automatically calculates a relative offset and generates
relative JP opcodes to produce more efficient object code. For a relative JP, the destination
address is the PC value plus two times the relative operand value.

In the JP (Rs) syntax, if the contents of Rs are odd the least significant bit is discarded, so that the
call destination address is always an even number.

To invoke a 32-bit addressed jump explicitly, use the JPA instruction.

Flags

Flags are not affected by this instruction.

Syntax and Opcodes

Example

Before: PC=0000_0472H, R7=0000_3521H

JP (R7) ;Object Code: F207

After: PC=0000_3520

Instruction, Operands Word 0 Word 1 Word 2

JP (Rs) {F20H, Rs}

JP rel12 {CH, rel12}

JP rel24 {F0H, rel[23:16]} rel[15:0]
JP Instruction UM018809-0611

ZNEO® CPU Core
User Manual

113
JPA

Definition

Jump Absolute

Syntax

JP dst

Operation

PC dst

Description

JPA replaces the contents of the Program Counter with the 32-bit immediate operand. Program
control then passes to the instruction addressed by the Program Counter.

If the immediate operand is odd, the least significant bit is discarded so that the call destination
address is always an even number.

The JPA instruction is used to explicitly invoke the 32-bit immediate jump opcode in situations
when a fixed opcode size is desired, such as a jump table.

Flags

Flags are not affected by this instruction.

Syntax and Opcodes

Example

Before: PC=0000_044EH

 JPA 00352920H ;Object Code: F230 0035 2920

After: PC=0035_2920

Instruction, Operands Word 0 Word 1 Word 2

JPA imm32 F230H imm[31:16] imm[15:0]
UM018809-0611 JPA Instruction

114

ZNEO® CPU Core
User Manual
JP CC

Definition

Jump Conditionally

Syntax

JP cc, dst

Operation

if cc (condition code) is true (1){
 PC destination address
}

Description

A conditional jump transfers program control to the destination address if the condition specified
by cc is true. Otherwise, the instruction following the JP instruction is executed. See the the Con-
dition Codes section on page 11 for more information.

In assembly language, the destination is typically specified as a label or 32-bit address operand.
The ZNEO CPU assembler automatically calculates a relative offset and generates the appropri-
ate JP cc opcode.

To specify an explicit relative offset, use the expression $+offset_in_bytes. The ‘$’ symbol
returns the address of the current instruction. The assembler converts this expression into the
appropriate object code operand.

Flags

Flags are not affected by this instruction.

Syntax and Opcodes

Example

The following instructions loop through successive memory addresses (pointed to by register R2)
until the LD instruction loads an 00H value.

LOOP:
 LD.UB R0, (R2++) ;Object Code: 1920
 JP B, LOOP ;Object Code: E0FE

Instruction, Operands Word 0 Word 1 Word 2

JP cc, rel8 {EH, cc4, rel8}

JP cc, rel16 {F22H, cc4} rel[15:0]
JP cc Instruction UM018809-0611

ZNEO® CPU Core
User Manual

115
LD

Definition

Load

Syntax

LD dst, src

Operation

dst src

Description

The contents of the source operand are loaded into the destination operand. The contents of the
source operand are unaffected. The default data size is 32 bits. Byte (8-bit) or Word (16-bit) data
size can usually be selected by adding a .B or .W, suffix, respectively, to the LD mnemonic.

When a 32-bit value is loaded into an 8- or 16-bit memory location, the value is truncated to fit
the destination size.

When an 8- or 16-bit value is loaded into a larger location, it must be extended to fill all the des-
tination bits. A “U” in the mnemonic suffix selects zero (unsigned) extension. An “S” in the mne-
monic suffix selects signed extension. An immediate source operand is always sign extended.

A “--” prefix in a register-indirect operand indicates that the address register is decremented
before the operation. A “++” suffix indicates that the address register is incremented after the
operation. Register predecrement and postincrement do not affect flags. See EXT for instructions
to load register values with extension.

See LEA for synonyms to LD opcodes that are useful for loading an effective address.

See PUSH and POP for instructions that store and retrieve stack data.
UM018809-0611 LD Instruction

116

ZNEO® CPU Core
User Manual
Flags

Syntax and Opcodes

7 6 5 4 3 2 1 0
C Z S V B CIRQE IRQE
– – – – * – – –

Legend

C = No change.

Z = No change.

S = No change.

V = No change.

B = Set to one if the source is in memory and the source value is 0. Cleared to 0 if the source is in
memory and the source value is nonzero. No change if the source is a register or immediate value.

CIRQE = No change.

IRQE = No change.

Instruction, Operands Word 0 Word 1 Word 2

LD Rd, #imm32 {452H, Rd} imm[31:16] imm[15:0]

LD Rd, #simm17 {45H, 000B,
simm[16], Rd}

simm[15:0]

LD Rd, #simm8 {3H, Rd, simm8}

LD Rd, Rs {44H, Rs, Rd}

LD Rd, addr16 {034H, Rd} addr16

LD Rd, addr32 {03CH, Rd} addr[31:16] addr[15:0]

LD Rd, (Rs) {12H, Rs, Rd}

LD Rd, (Rs++) {13H, Rs, Rd}

LD Rd, soff14(Rs) {48H, Rs, Rd} {0xB, soff14}

LD Rd, soff14(PC) {002H, Rd} {0xB, soff14}

LD Rd, soff6(FP) {5H, 11B, soff6, Rd}

LD addr16, Rs {037H, Rs} addr16

LD addr32, Rs {03FH, Rs} addr[31:16] addr[15:0]

LD (Rd), #imm32 {09DH, Rd} imm[31:16] imm[15:0]

LD (Rd), #simm16 {097H, Rd} simm16

LD (Rd), Rs {0BH, Rs, Rd}

LD soff14(Rd), Rs {4AH, Rs, Rd} {xxB, soff14}

LD soff6(FP), Rs {5H, 10B, soff6, Rs}

LD (––Rd), #imm32 {09EH, Rd} imm[31:16] imm[15:0]

LD (––Rd), #simm16 {099H, Rd} simm16
LD Instruction UM018809-0611

ZNEO® CPU Core
User Manual

117
LD (––Rd), Rs {10H, Rs, Rd}

LD (Rd++), #imm32 {09FH, Rd} imm[31:16] imm[15:0]

LD (Rd++), #simm16 {09BH, Rd} simm16

LD (Rd++), Rs {11H, Rs, Rd}

LD.W addr16, Rs {036H, Rs} addr16

LD.W addr32, Rs {03EH, Rs} addr[31:16] addr[15:0]

LD.W (Rd), #imm16 {096H, Rd} imm16

LD.W (Rd), Rs {0FH, Rs, Rd}

LD.W soff14(Rd), Rs {4BH, Rs, Rd} {x1B, soff14}

LD.W soff6(FP), Rs {5H, 01B, soff6, Rs}

LD.W (––Rd), #imm16 {098H, Rd} imm16

LD.W (––Rd), Rs {16H, Rs, Rd}

LD.W (Rd++), #imm16 {09AH, Rd} imm16

LD.W (Rd++), Rs {17H, Rs, Rd}

LD.SW Rd, addr16 {033H, Rd} addr16

LD.SW Rd, addr32 {03BH, Rd} addr[31:16] addr[15:0]

LD.SW Rd, (Rs) {1EH, Rs, Rd}

LD.SW Rd, (Rs++) {1FH, Rs, Rd}

LD.SW Rd, soff14(Rs) {49H, Rs, Rd} {11B, soff14}

LD.SW Rd, soff14(PC) {003H, Rd} {11B, soff14}

LD.SW Rd, soff6(FP) {6H, 11B, soff6, Rd}

LD.UW Rd, addr16 {032H, Rd} addr16

LD.UW Rd, addr32 {03AH, Rd} addr[31:16] addr[15:0]

LD.UW Rd, (Rs) {1AH, Rs, Rd}

LD.UW Rd, (Rs++) {1BH, Rs, Rd}

LD.UW Rd, soff14(Rs) {49H, Rs, Rd} {01B, soff14}

LD.UW Rd, soff14(PC) {003H, Rd} {01B, soff14}

LD.UW Rd, soff6(FP) {6H, 01B, soff6, Rd}

LD.B addr16, Rs {035H, Rs} addr16

LD.B addr32, Rs {03DH, Rs} addr[31:16] addr[15:0]

LD.B (Rd), #imm8 {09CH, Rd} {xxH, imm8}

LD.B (Rd), Rs {0EH, Rs, Rd}

LD.B soff14(Rd), Rs {4BH, Rs, Rd} {x0B, soff14}

LD.B soff6(FP), Rs {5H, 00B, soff6, Rs}

LD.B (––Rd), #imm8 {094H, Rd} {xxH, imm8}

LD.B (––Rd), Rs {14H, Rs, Rd}

LD.B (Rd++), #imm8 {095H, Rd} {xxH, imm8}

Instruction, Operands Word 0 Word 1 Word 2
UM018809-0611 LD Instruction

118

ZNEO® CPU Core
User Manual
Examples

Before: R13=xxxx_xxxxH

LD R13, #34H ;Object Code: 3D34

After: R13=0000_0034H

Before: R13=xxxx_xxxxH

LD R13, #–4H ;Object Code: 3DFC

After: R13=FFFF_FFFCH

Before: FFFF_B034H=FCH

LD.UB R12, B034H:RAM;Object Code: 030C B034

After: R12= 0000_00FCH, Flag B=0

Before: R12=xxxx_xx45H

LD.B B034H:RAM, R12 ;Object Code: 035C B034

After: FFFF_B034H=45H

LD.B (Rd++), Rs {15H, Rs, Rd}

LD.SB Rd, (Rs++) {1DH, Rs, Rd}

LD.SB Rd, addr16 {031H, Rd} addr16

LD.SB Rd, addr32 {039H, Rd} addr[31:16] addr[15:0]

LD.SB Rd, (Rs) {1CH, Rs, Rd}

LD.SB Rd, soff14(Rs) {49H, Rs, Rd} {10B, soff14}

LD.SB Rd, soff14(PC) {003H, Rd} {10B, soff14}

LD.SB Rd, soff6(FP) {6H, 10B, soff6, Rd}

LD.UB Rd, (Rs++) {19H, Rs, Rd}

LD.UB Rd, addr16 {030H, Rd} addr16

LD.UB Rd, addr32 {038H, Rd} addr[31:16] addr[15:0]

LD.UB Rd, (Rs) {18H, Rs, Rd}

LD.UB Rd, soff14(Rs) {49H, Rs, Rd} {00B, soff14}

LD.UB Rd, soff14(PC) {003H, Rd} {00B, soff14}

LD.UB Rd, soff6(FP) {6H, 00B, soff6, Rd}

Instruction, Operands Word 0 Word 1 Word 2
LD Instruction UM018809-0611

ZNEO® CPU Core
User Manual

119
Before: R12=FFFF_B034H, FFFF_B034H=FFH

LD.SB R13, (R12) ;Object Code: 1CCD

After: R13=FFFF_FFFFH, Flag B=0

Before: R13=FFFF_B07FH

LD.W (R13), #00FCH ;Object Code: 096D 00FC

After: FFFF_B07FH=00FCH

Before: R13=FFFF_B07FH, FFFF_B079H=F723H

LD.SW R12, –6(R13) ;Object Code: 49DC FFFA

After: R12=FFFF_F723HH, Flag B=0

Before: PC=0000_B07FH, 0000_B079H=F723H

LD.SW R12, –6(PC) ;Object Code: 003C FFF6

After: R12=FFFF_F723HH, Flag B=0

Before: FP=FFFF_B07FH, FFFF_B079H=F723H

LD.SW R12, –6(FP) ;Object Code: 6FAC

After: R12=FFFF_F723HH, Flag B=0

Before: R13=FFFF_DB24H, R6=FFFF_8642

LD.W (––R13), R6 ;Object Code: 166D

After: FFFF_DB22H=8642, R13=FFFF_DB22H

Before: R13=FFFF_DB22H

LD (––R13), #42H ;Object Code: 099D 0042

After: FFFF_DB1EH=0000_0042H, R13=FFFF_DB1EH

Before: R13=FFFF_DB22H, FFFF_DB22H=8642

LD.SW R6, (R13++) ;Object Code: 1FD6

After: R6=FFFF_8642, R13=FFFF_DB24H, Flag B=0
UM018809-0611 LD Instruction

120

ZNEO® CPU Core
User Manual
LD CC

Definition

Load Condition Code

Syntax

LD cc, dst

Operation

dst cc

Description

This instruction loads the destination register with a 1 if the specified condition is currently True.
Otherwise, it clears the destination register to 0.

Flags

Flags are not affected by this instruction.

Syntax and Opcodes

Examples

Before: S=1, V=0

LD GE, R13 ;Object Code: 019D

After: R13=1

Before: S=1, V=1

LD GE, R13 ;Object Code: 019D

After: R13=0

Instruction, Operands Word 0 Word 1 Word 2

LD cc, Rd {01H, cc4, Rd}
LD cc Instruction UM018809-0611

ZNEO® CPU Core
User Manual

121
LDES

Definition

Load and Extend Sign

Syntax

LDES dst

Operation

dst[31:0] S

Description

This instruction loads the destination register with FFFF_FFFFH if the S flag is 1. Otherwise, it
clears the destination register to 0000_0000H. This instruction can be used in multiprecision
arithmetic to extend the sign of a low-order result into a register used for high-order values.

Flags

Flags are not affected by this instruction.

Syntax and Opcodes

Examples

Before: S=1

LDES R13 ;Object Code: 453D

After: R13=FFFF_FFFFH

Before: S=0

LDES R13 ;Object Code: 453D

After: R13=0000_0000H

Instruction, Operands Word 0 Word 1 Word 2

LDES Rd {453H, Rd}
UM018809-0611 LDES Instruction

122

ZNEO® CPU Core
User Manual
LEA

Definition

Load Effective address

Syntax

LEA dst, src

Operation

dst effective address

Description

The LEA instruction is used to load the destination register with a pointer to a memory location.
If an indirect-register source operand is used, the effective address pointed to by the operand is
loaded into the destination register.

The LEA opcodes that take an immediate source operand are assembler synonyms for LD
instructions with the same opcodes. Programs can use LEA with an address operand when the
intention is to load a base address into the destination register. For more information, see the
Loading an Effective Address section on page 33.

When the assembler encounters an LD instruction with an immediate source operand, it attempts
to use the shortest possible form, so it may be possible for some LD instructions to disassemble
as LEA.

If the offset required for the PC-based addressing mode exceeds the 14-bit signed range for that
addressing mode, the assembler may silently convert the instruction to use the 32-bit immediate
addressing mode.

Flags

Flags are not affected by this instruction.

Syntax and Opcodes

Instruction, Operands Word 0 Word 1 Word 2

LEA Rd, soff14(PC) {002H, Rd} {1xB, soff14}

LEA Rd, soff14(Rs) {48H, Rs, Rd} {1xB, soff14}

LEA Rd, soff6(FP) {4H, 11B, soff6, Rd}

LEA Rd, imm32 {452H, Rd} imm[31:16] imm[15:0]

LEA Rd, simm17 {45H, 000B, simm[16], Rd} simm[15:0]
LEA Instruction UM018809-0611

ZNEO® CPU Core
User Manual

123
Example

Before: FP=FFFF_B016H

LEA R11, 15H(FP) ;Object code: 4D5B

After: R11=FFFF_B02BH
UM018809-0611 LEA Instruction

124

ZNEO® CPU Core
User Manual
LINK

Definition

Link Frame Pointer

Syntax

LINK #uimm8

Operation

SP SP – 4
(SP) R14
R14 SP
SP SP– uimm8

Description

This instruction establishes an argument frame pointer in register R14 and allocates local variable
space on the stack. The FP register can then be used for efficient indirect access to subroutine
arguments and variables.

The LINK instruction performs the following steps:

1. Preserve the existing contents of R14 by pushing it onto the stack.

2. Load the contents of the stack pointer into R14.

3. Subtract the value contained in the source operand from the stack pointer.

Flags

Flags are not affected by this instruction.

Syntax and Opcodes

Instruction, Operands Word 0 Word 1 Word 2

LINK #uimm8 {08H, uimm8}
LINK Instruction UM018809-0611

ZNEO® CPU Core
User Manual

125
MUL

Definition

Multiply

Syntax

MUL dst, src

Operation

dst dst src

Description

This instruction performs a multiplication of two 32-bit values with an 32-bit result. The 32-bit
result is written to the destination register. The source register is not changed. Results larger than
FFFF_FFFFH are truncated to 32 bits. If a larger result is required, use SMUL or UMUL.

Flags

Flags are set based on the 32-bit destination register value.

Syntax and Opcodes

7 6 5 4 3 2 1 0
C Z S V B CIRQE IRQE
– * * 0 0 – – –

Legend

C = No change.

Z = Set to 1 if the result is zero; otherwise, set to 0.

S = Set to 1 if bit [31] of the result is 1; otherwise set to 0.

V = Cleared to 0.

B = Cleared to 0.

CIRQE = No change.

IRQE = No change.

Instruction, Operands Word 0 Word 1 Word 2

MUL Rd, Rs {B2H, Rs, Rd}

Note:
UM018809-0611 MUL Instruction

126

ZNEO® CPU Core
User Manual
Example

Before: R4=0000_0086H, R5=8000_0053H

MUL R4, R5 ;Object Code: B254

After: R4=0000_2B72H, Flags Z, S, V, B=0
MUL Instruction UM018809-0611

ZNEO® CPU Core
User Manual

127
NEG

Definition

Negate

Syntax

 NEG dst

Operation

dst 0 – dst

Description

The contents of the destination operand are subtracted from zero, and the result is written to the
destination. This effectively performs a two’s complement negation.

Flags

Flags are set based on the 32-bit destination register value.

Syntax and Opcodes

7 6 5 4 3 2 1 0
C Z S V B CIRQE IRQE
* * * * * – – –

Legend

C = Set to 1 if the result generated a borrow; otherwise set to 0.

Z = Set to 1 if the result is zero; otherwise, set to 0.

S = Set to 1 if the result msb is 1; otherwise set to 0.

V = Set to 1 if an arithmetic overflow occurs; otherwise set to 0.

B = Set to 1 if the initial destination value was 0; otherwise set to 0.

CIRQE = No change.

IRQE = No change.

Instruction, Operands Word 0 Word 1 Word 2

NEG Rd {455H, Rd}

Note:
UM018809-0611 NEG Instruction

128

ZNEO® CPU Core
User Manual
Example

Before: R7=7F37_B2D3H (0111_1111_0011_0111_1011_0010_1101_0011B)

NEG R7 ;Object code: 4557

After: R7=80C8_4D2DH (1000_0000_1100_1000_0100_1101_0010_1101B), Flags S,
C=1; Z, V, B=0
NEG Instruction UM018809-0611

ZNEO® CPU Core
User Manual

129
NOFLAGS

Definition

No Flags Modifier

Syntax

NFLAGS

Operation

Modify the next instruction to suppress setting flags as a result of the operation.

Description

This modifier prefix suppresses the setting of condition flags as a result of the next instruction.
The operation is performed and a result (if any) is written, but the result does not affect the Flags
register.

The NOFLAGS modifier does not suppress IRET, POPF, or any LD or POP instruction that
overwrites the FLAGS register directly, for example, LD.B FLAGS:IODATA, R0.

Flags

Flags are not affected by this instruction or the next instruction, unless the next instruction over-
writes the FLAGS register directly.

Syntax and Opcodes

Example

Before: R3=16H, R11=20H

NOFLAGS ;Object Code: 0005
SUB R3, R11 ;Object code: A1B3

After: R3=FFFF_FFF6H, Flags unchanged

Instruction, Operands Word 0 Word 1 Word 2

NOFLAGS 0005H

Note:
UM018809-0611 NOFLAGS Instruction

130

ZNEO® CPU Core
User Manual
NOP

Definition

No Operation

Syntax

NOP

Operation

None

Description

No action is performed by this instruction. It is typically used as a cycle timing delay.

Flags

Flags are not affected by this instruction.

Syntax and Opcodes

Instruction, Operands Word 0 Word 1 Word 2

NOP FFFEH
NOP Instruction UM018809-0611

ZNEO® CPU Core
User Manual

131
OR

Definition

Logical OR

Syntax

OR dst, src

Operation

dst dst OR src

Description

The source operand is logically ORed with the destination operand and the destination operand
stores the result. The contents of the source operand are unaffected. An OR operation stores 1 in
the destination bit when either of the corresponding bits in the two operands is a 1. Otherwise, the
OR operation stores a 0 bit. Table 22 summarizes the OR operation.

Flags

Table 22. Truth Table for OR

dst src Result (dst)

0 0 0

1 0 1

0 1 1

1 1 1

7 6 5 4 3 2 1 0
C Z S V B CIRQE IRQE
– * * 0 * – – –

Legend

C = No change.

Z = Set to 1 if the result is zero; otherwise, set to 0.

S = Set to 1 if the result msb is 1; otherwise set to 0.

V = Cleared to 0.

B = Set to 1 if the initial destination or source value is 0; otherwise set to 0.

CIRQE = No change.

IRQE = No change.
UM018809-0611 OR Instruction

132

ZNEO® CPU Core
User Manual
Flags are set based on the memory destination size, or 32 bits for register destinations.

Syntax and Opcodes

Instruction, Operands Word 0 Word 1 Word 2

OR Rd, #imm32 {AABH, Rd} imm[31:16] imm[15:0]

OR Rd, #uimm16 {AA3H, Rd} uimm16

OR Rd, Rs {A3H, Rs, Rd}

OR Rd, addr16 {734H, Rd} addr16

OR Rd, addr32 {73CH, Rd} addr[31:16] addr[15:0]

OR Rd, soff13(Rs) {7BH, Rs, Rd} {100B, soff13}

OR addr16, Rs {737H, Rs} addr16

OR addr32, Rs {73FH, Rs} addr[31:16] addr[15:0]

OR (Rd), #imm32 {ABBH, Rd} imm[31:16] imm[15:0]

OR (Rd), #simm16 {AD3H, Rd} simm16

OR soff13(Rd), Rs {7BH, Rs, Rd} {111B, soff13}

OR.W addr16, Rs {736H, Rs} addr16

OR.W addr32, Rs {73EH, Rs} addr[31:16] addr[15:0]

OR.W (Rd), #imm16 {AB3H, Rd} imm16

OR.W soff13(Rd), Rs {7BH, Rs, Rd} {110B, soff13}

OR.SW Rd, addr16 {733H, Rd} addr16

OR.SW Rd, addr32 {73BH, Rd} addr[31:16] addr[15:0]

OR.SW Rd, soff13(Rs) {7BH, Rs, Rd} {011B, soff13}

OR.UW Rd, addr16 {732H, Rd} addr16

OR.UW Rd, addr32 {73AH, Rd} addr[31:16] addr[15:0]

OR.UW Rd, soff13(Rs) {7BH, Rs, Rd} {010B, soff13}

OR.B addr16, Rs {735H, Rs} addr16

OR.B addr32, Rs {73DH, Rs} addr[31:16] addr[15:0]

OR.B (Rd), #imm8 {AD9H, Rd} {xH, x011B, imm8}

OR.B soff13(Rd), Rs {7BH, Rs, Rd} {101B, soff13}

OR.SB Rd, addr16 {731H, Rd} addr16

OR.SB Rd, addr32 {739H, Rd} addr[31:16] addr[15:0]

OR.SB Rd, soff13(Rs) {7BH, Rs, Rd} {001B, soff13}

OR.UB Rd, addr16 {730H, Rd} addr16

OR.UB Rd, addr32 {738H, Rd} addr[31:16] addr[15:0]

OR.UB Rd, soff13(Rs) {7BH, Rs, Rd} {000B, soff13}

Note:
OR Instruction UM018809-0611

ZNEO® CPU Core
User Manual

133
Examples

Before: R1[7:0]=38H (0011_1000B), R14[7:0]=8DH (1000_1101B)

OR R1, R14 ;Object Code: A3E1

After: R1[7:0]=BDH (1011_1101), Flags Z, V, S, B=0

Before: R4[31:8]=FFFF_FFH, R4[7:0]=79H (0111_1001B), FFFF_B07BH=EAH
(1110_1010B)

OR.SB R4, B07BH:RAM ;Object Code: 7314 B07B

After: R4[31:8]=FFFF_FFH, R4[7:0]=FBH (1111_1011B), Flags S=1; Z, V, B=0

Before: R4[31:8]=FFFF_FFH, R4[7:0]=79H (0111_1001B), FFFF_B07BH=EAH
(1110_1010B)

OR.UB R4, B07BH:RAM ;Object Code: 7304 B07B

After: R4[31:8]=FFFF_FFH, R4[7:0]=FBH (1111_1011B), Flags S=1; Z, V, B=0

Before: R13=FFFF_B07AH, FFFF_B07AH=C3F7H (1100_0011_1111_0111B)

OR.W (R13), #80F0H ;Object Code: AB3D 80F0

After: FFFF_B07AH=C3F7H (1100_0011_1111_0111B), Flags S=1; Z, V, B=0
UM018809-0611 OR Instruction

134

ZNEO® CPU Core
User Manual
POP

Definition

POP Value

Syntax

POP dst

Operation

Description

The POP instruction loads the destination with the byte, word, or quad pointed to by the Stack
Pointer, and then increments the Stack Pointer (R15) by 1, 2, or 4.

The default data size is 32 bits. Byte (8-bit) or Word (16-bit) data size can be selected by adding
an .SB, .UB, .SW, or .UW suffix to the POP mnemonic. The “U” and “S” symbols in the suffix
select Unsigned or Signed extension, respectively.

POP is implemented using LD register-indirect opcodes with postincrement. See LD for more
instructions that load and store data.

Flags

POP:

 dst (SP)
 SP SP + 4

POP.B:

 dst (SP)
 SP SP + 1

POP.W:

 dst (SP)
 SP SP + 2

7 6 5 4 3 2 1 0
C Z S V B CIRQE IRQE
– – – – * – – –

Legend

C = No change.

Z = No change.

S = No change.

V = No change.

B = Set to 1 if the popped value is 0. Cleared to 0 if the popped value is nonzero.

CIRQE = No change.

IRQE = No change.
POP Instruction UM018809-0611

ZNEO® CPU Core
User Manual

135
Syntax and Opcodes

Example

Before: SP=FFFF_DB22H, FFFF_DB22H=8642

POP.SW R6 ;Object Code: 1FF6

After: R6=FFFF_8642, SP=FFFF_DB24H, Flag B=0

Instruction, Operands Word 0 Word 1 Word 2

POP Rd {13FH, Rd}

POP.SW Rd {1FFH, Rd}

POP.UW Rd {1BFH, Rd}

POP.SB Rd {1DFH, Rd}

POP.UB Rd {19FH, Rd}
UM018809-0611 POP Instruction

136

ZNEO® CPU Core
User Manual
POPF

Definition

POP Flags

Syntax

POPF

Operation

FLAGS[7:0] + 1(SP)
SP SP + 2

Description

The POPF instruction increments the Stack Pointer (R15), loads the byte pointed to by the Stack
Pointer into the Flags register, and increments the Stack Pointer. POPF increments the Stack
Pointer twice so its alignment is not changed.

Flags

The Flags register is overwritten by the popped byte.

Syntax and Opcodes

Example

Before: SP=FFFF_DB22H, FFFF_DB22H=00H, FFFF_DB23H=B1H (1011_0001B)

 POPF ;Object Code: 0003

After: SP=FFFF_DB24H, Flags=B1H (C, S, V, IRQE=1; Z, B=0)

Instruction, Operands Word 0 Word 1 Word 2

POPF 0003H
POPF Instruction UM018809-0611

ZNEO® CPU Core
User Manual

137
POPMLO

Definition

Syntax

Operation

Description

Flags

Syntax and Opcodes

Example
UM018809-0611 POPMLO Instruction

138

ZNEO® CPU Core
User Manual
POPMHI

Definition

POP Multiple

Syntax

POPMLO mask
POPMHI mask

Operation

Description

Execution of the POPMLO or POPMHI instruction loads multiple 32-bit values from the stack to
the registers indicated by the 8-bit immediate mask operand. Each bit in the mask represents an
ALU register in the range R0–R7 or R8–R15, respectively, for POPMLO or POPMHI. Values are
popped to registers in numerical order to maintain symmetry with the PUSHM instructions.

The ZNEO CPU assembler allows mask bits for this instruction to be enumerated in a list delim-
ited by angle brackets. The list can be in any order.

For example, the following statements pop the values of R0, R5, R6, R7, and R13 in numerical
order:

 POPMLO <R5–R7, R0>
 POPMHI <R13>

The assembler implements a combined POPM mnemonic that generates appropriate POPMLO
and POPMHI opcodes based on a single assembly language statement.

For example, the following statement produces the same object code as the previous two-line
example:

 POPM <R5–R7, R0, R13>

POPMLO:

for n=0 to 7
 if mask[n]=1
 SP) Rn
 SP SP + 4
 endif
endfor

POPMHI:

for n=8 to 15
 if mask[n–8]=1
 (SP) Rn
 SP SP + 4
 endif
endfor
POPMHI Instruction UM018809-0611

ZNEO® CPU Core
User Manual

139
The assembler also accepts statements using the combined POPM mnemonic with an immediate
mask operand.

Flags

Syntax and Opcodes

Example

Before: SP=FFFF_DB22H,
 FFFF_DB22H=0000_1234,
 FFFF_DB26H=0005_5678,
 FFFF_DB2AH=0006_9ABC,
 FFFF_DB2EH=0007_DEF0,
 FFFF_DB34H=000D_4321

POPM <R0, R5–R7, R13>;Object Code: 06E1 0720

After: SP=FFFF_DB38H,
 R0=0000_1234,
 R5=0005_5678,
 R6=0006_9ABC,
 R7=0007_DEF0,
 R13=000D_4321, Flag B=0

The following syntax produces the same object code as the previous example:

POPM #20E1H ;Object Code: 06E1 0720

7 6 5 4 3 2 1 0
C Z S V B CIRQE IRQE
– – – – * – – –

Legend

Z = No change.

S = No change.

V = No change.

B = Set to 1 if the last value popped is 0. Cleared to 0 if the last value popped is nonzero.

CIRQE = No change.

IRQE = No change.

Instruction, Operands Word 0 Word 1 Word 2

POPMLO mask {06H, imm8}

POPMHI mask {07H, imm8}
UM018809-0611 POPMHI Instruction

140

ZNEO® CPU Core
User Manual
PUSH

Definition

PUSH Value

Syntax

PUSH src

Operation

Description

The PUSH instruction decrements the Stack Pointer (R15) by 1, 2, or 4 and loads the source
value into the byte, word, or quad pointed to by the Stack Pointer.

The default data size is 32 bits. Byte (8-bit) or Word (16-bit) data size can be selected by adding
a .B or .W, suffix, respectively, to the PUSH mnemonic.

When a 32-bit value is pushed into an 8- or 16-bit stack location, the value is truncated to fit the
destination size. When an 8- or 16-bit immediate value is pushed into a larger location, it is
always sign extended.

PUSH is implemented using LD register-indirect opcodes with predecrement. See LD for more
instructions that load and store data.

Flags

Flags are not affected by this instruction.

PUSH:

 SP SP – 4
 (SP) src

PUSH.B:

 SP SP – 1
 (SP) src

PUSH.W:

 SP SP – 2
 (SP) src
PUSH Instruction UM018809-0611

ZNEO® CPU Core
User Manual

141
Syntax and Opcodes

Examples

Before: SP=FFFF_DB24H, R6=FFFF_8642

PUSH.W R6 ;Object Code: 166F

After: FFFF_DB22H=8642, SP=FFFF_DB22H

Before: SP=FFFF_DB22H

PUSH #42H ;Object Code: 0D42

After: FFFF_DB20H=00H, FFFF_DB21H=42H, FFFF_DB1EH=00H,
FFFF_DB1FH=00H, SP=FFFF_DB1EH

Before: SP=FFFF_DB22H

PUSH.B #42H ;Object Code: 0A42

After: FFFF_DB21H=42H, SP=FFFF_DB21H

Before: SP=FFFF_DB22H

PUSH.W #42H ;Object Code: 0C42

After: FFFF_DB20H=00H, FFFF_DB21H=42H, SP=FFFF_DB20H

Instruction, Operands Word 0 Word 1 Word 2

PUSH #imm32 {09EFH} imm[31:16] imm[15:0]

PUSH #simm16 {099FH} simm16

PUSH #simm8 {0DH, simm8}

PUSH Rs {10H, Rs, FH}

PUSH.W #imm16 {098FH} imm16

PUSH.W #simm8 {0CH, simm8}

PUSH.W Rs {16H, Rs, FH}

PUSH.B #imm8 {0AH, imm8}

PUSH.B #imm8 {094FH} {xxH, imm8}

PUSH.B Rs {14H, Rs, FH}
UM018809-0611 PUSH Instruction

142

ZNEO® CPU Core
User Manual
PUSHF

Definition

PUSH Flags

Syntax

PUSHF

Operation

SP SP – 2

(SP) {00H, FLAGS[7:0]}

Description

The PUSHF instruction decrements the Stack Pointer (R15), loads the Flags register into the byte
pointed to by the Stack Pointer, and then decrements the Stack Pointer again. PUSHF decrements
the Stack Pointer twice so its alignment is not changed.

Flags

Flags are not affected by this instruction.

Syntax and Opcodes

Example

Before: SP=FFFF_DB24H, Flags=B1H (C, S, V, IRQE=1; Z, B=0)

PUSHF ;Object Code: 0002

After: SP=FFFF_DB22H, FFFF_DB22H=00H, FFFF_DB23H=B1H (1011_0001B)

Instruction, Operands Word 0 Word 1 Word 2

PUSHF 0002H
PUSHF Instruction UM018809-0611

ZNEO® CPU Core
User Manual

143
PUSHMHI

Definition

Syntax

Operation

Description

Flags

Syntax and Opcodes

Example
UM018809-0611 PUSHMHI Instruction

144

ZNEO® CPU Core
User Manual
PUSHMLO

Definition

PUSH Multiple

Syntax

PUSHMHI mask
PUSHMLO mask

Operation (Assembly Language)

Description

Execution of the PUSHMHI or PUSHMLO instruction stores multiple 32-bit values to the stack
from the registers indicated by the 8-bit immediate mask operand.In assembly language, each bit
in the mask represents an ALU register in the range R8–R15 or R0–R7, respectively, for PUSH-
MHI or PUSHMLO. Values are pushed from registers in reverse-numerical order.

In object code, the PUSHMHI/LO operand mask bit positions are reversed from those of POP-
MHI/LO. The ZNEO CPU assembler reverses the PUSHM mask in object code so the same
mask operand can be used in assembly language for both PUSHM and POPM. The ZNEO CPU
assembler allows mask bits for this instruction to be enumerated in a list delimited by angle
brackets. The list can be in any order.

For example, the following statements push the values of R13, R7, R6, R5, and R0 in reverse-
numerical order:

 PUSHMHI <R13>
 PUSHMLO <R5–R7, R0>

The assembler also implements a combined PUSHM mnemonic that generates appropriate
PUSHMHI and PUSHMLO opcodes based on a single assembly language statement.

PUSHMHI:

for n=15 to 8
 if mask[n–8]=1
 SP SP – 4
 (SP) Rn
 endif
endfor

PUSHMLO:

for n=7 to 0
 if mask[n]=1
 SP SP – 4
 (SP) Rn
 endif
endfor
PUSHMLO Instruction UM018809-0611

ZNEO® CPU Core
User Manual

145
For example, the following statement produces the same object code as the previous two-line
example:

 PUSHM <R5–R7, R0, R13>

The assembler also accepts statements using the combined PUSHM mnemonic with an immedi-
ate mask operand.

Flags

Flags are not affected by this instruction.

Syntax and Opcodes

Example

Before: SP=FFFF_DB38H,
 R13=000D_4321,
 R7=0007_DEF0,
 R6=0006_9ABC,
 R5=0005_5678,
 R0=0000_1234

PUSHM <R0, R5–R7, R13>;Object Code: 0504 0487

After: SP=FFFF_DB22H,
 FFFF_DB34H=000D_4321,
 FFFF_DB2EH=0007_DEF0,
 FFFF_DB2AH=0006_9ABC,
 FFFF_DB26H=0005_5678,
 FFFF_DB22H=0000_1234

The following syntax produces the same object code as the previous example:

PUSHM #20E1H ;Object Code: 0504 0487

Instruction, Operands Word 0 Word 1 Word 2

PUSHMLO mask {04H, imm8}

PUSHMHI mask {05H, imm8}
UM018809-0611 PUSHMLO Instruction

146

ZNEO® CPU Core
User Manual
RET

Definition

Return

Syntax

RET

Operation

PC (SP)
SP SP + 4

Description

This instruction returns from a procedure entered by a CALL instruction. The contents of the
location addressed by the Stack Pointer are loaded into the Program Counter. The next statement
executed is the one addressed by the new contents of the Program Counter. The Stack Pointer
also increments by four.

Any Push or other instructions in the subroutine that decrements the stack pointer must
be followed by matching Pop or increment instructions to ensure the Stack Pointer is at
the correct location when RET is executed. Otherwise, the wrong address loads into the
Program Counter and the program cannot operate properly.

Flags

Flags are not affected by this instruction.

Syntax and Opcodes

Example

Before: PC=0035_292EH, SP=FFFF_DB1EH, FFFF_DB1CH=0000_0454H

RET ;Object Code: FFFC

After: PC=0000_0454H, SP=FFFF_DB22H

Instruction, Operands Word 0 Word 1 Word 2

RET FFFCH

Caution:
RET Instruction UM018809-0611

ZNEO® CPU Core
User Manual

147
RL

Definition

Rotate Left

Syntax

RL dst, src

Operation

Description

The destination operand contents rotate to the left by the number of bit positions (0–31) specified
in bits [4:0] of the source operand. On each bit rotate iteration, the value of Bit 31 is moved to Bit
0 and also into the Carry (C) flag. The source register value is not changed.

Flags

Flags are set based on the 32-bit destination register value.

7 6 5 4 3 2 1 0
C Z S V B CIRQE IRQE
* * * * 0 – – –

Legend

C = Set to 1 if the last bit shifted out is 1; otherwise set to 0.

Z = Set to 1 if the result is zero; otherwise, set to 0.

S = Set to 1 if the result msb is 1; otherwise set to 0.

V = Set to 1 if the Carry and Sign flags are different; otherwise set to 0.

B = Cleared to 0.

CIRQE = No change.

IRQE = No change.

dst
C

 src

31 0

Note:
UM018809-0611 RL Instruction

148

ZNEO® CPU Core
User Manual
Syntax and Opcodes

Example

Before: R7=7F37_B2D3H (0111_1111_0011_0111_1011_0010_1101_0011B)

RL R7, #4 ;Object code: BE47

After: R7=F37B_2D37H (1111_0011_0111_1011_0010_1101_0011_0111B), Flags C,
S=1; Z, V, B=0

Instruction, Operands Word 0 Word 1 Word 2

RL Rd, #uimm5 {BH, 111B, uimm5, Rd}

RL Rd, Rs {B7H, Rs, Rd}
RL Instruction UM018809-0611

ZNEO® CPU Core
User Manual

149
SBC

Definition

Subtract with Carry

Syntax

SBC dst, src

Operation

dst dst – src – C

Description

This instruction subtracts the source operand and the Carry (C) flag from the destination. The
result is stored in the destination address or register. The contents of the source operand are unaf-
fected. The ZNEO CPU performs subtraction by adding the two’s-complement of the source
operand to the destination operand. This instruction is used in multiple-precision arithmetic to
include the carry (borrow) from the subtraction of low-order operands into the subtraction of
high-order operands.

The Zero flag is set only if the initial state of the Zero flag is 1 and the result is 0.

This instruction is generated by using the Extend prefix, 0007H, with the SUB opcodes.

Flags

7 6 5 4 3 2 1 0
C Z S V B CIRQE IRQE
* * * * * – – –

Legend

C = Set to 1 if the result generated a borrow; otherwise set to 0.

Z = Set to 1 if Z is initially 1 and the result is zero; otherwise set to 0.

S = Set to 1 if the result msb is 1; otherwise set to 0.

V = Set to 1 if an arithmetic overflow occurs; otherwise set to 0.

B = Set to 1 if the initial destination or source value is 0; otherwise set to 0.

CIRQE = No change.

IRQE = No change.
UM018809-0611 SBC Instruction

150

ZNEO® CPU Core
User Manual
Flags are set based on the memory destination size, or 32 bits for register destinations.

Syntax and Opcodes

Instruction, Operands
Extend
Prefix Word 0 Word 1 Word 2

SBC Rd, #imm32 0007H {AA9H, Rd} imm[31:16] imm[15:0]

SBC Rd, #uimm16 0007H {AA1H, Rd} uimm16

SBC Rd, Rs 0007H {A1H, Rs, Rd}

SBC Rd, addr16 0007H {714H, Rd} addr16

SBC Rd, addr32 0007H {71CH, Rd} addr[31:16] addr[15:0]

SBC Rd, soff13(Rs) 0007H {79H, Rs, Rd} {100B, soff13}

SBC addr16, Rs 0007H {717H, Rs} addr16

SBC addr32, Rs 0007H {71FH, Rs} addr[31:16] addr[15:0]

SBC (Rd), #imm32 0007H {AB9H, Rd} imm[31:16] imm[15:0]

SBC (Rd), #simm16 0007H {AD1H, Rd} simm16

SBC soff13(Rd), Rs 0007H {79H, Rs, Rd} {111B, soff13}

SBC.W addr16, Rs 0007H {716H, Rs} addr16

SBC.W addr32, Rs 0007H {71EH, Rs} addr[31:16] addr[15:0]

SBC.W (Rd), #imm16 0007H {AB1H, Rd} imm16

SBC.W soff13(Rd), Rs 0007H {79H, Rs, Rd} {110B, soff13}

SBC.SW Rd, addr16 0007H {713H, Rd} addr16

SBC.SW Rd, addr32 0007H {71BH, Rd} addr[31:16] addr[15:0]

SBC.SW Rd, soff13(Rs) 0007H {79H, Rs, Rd} {011B, soff13}

SBC.UW Rd, addr16 0007H {712H, Rd} addr16

SBC.UW Rd, addr32 0007H {71AH, Rd} addr[31:16] addr[15:0]

SBC.UW Rd, soff13(Rs) 0007H {79H, Rs, Rd} {010B, soff13}

SBC.B addr16, Rs 0007H {715H, Rs} addr16

SBC.B addr32, Rs 0007H {71DH, Rs} addr[31:16] addr[15:0]

SBC.B (Rd), #imm8 0007H {AD9H, Rd} {xH, x001B, imm8}

SBC.B soff13(Rd), Rs 0007H {79H, Rs, Rd} {101B, soff13}

SBC.SB Rd, addr16 0007H {711H, Rd} addr16

SBC.SB Rd, addr32 0007H {719H, Rd} addr[31:16] addr[15:0]

SBC.SB Rd, soff13(Rs) 0007H {79H, Rs, Rd} {001B, soff13}

SBC.UB Rd, addr16 0007H {710H, Rd} addr16

SBC.UB Rd, addr32 0007H {718H, Rd} addr[31:16] addr[15:0]

SBC.UB Rd, soff13(Rs) 0007H {79H, Rs, Rd} {000B, soff13}

Note:
SBC Instruction UM018809-0611

ZNEO® CPU Core
User Manual

151
Examples

Before: R3=16H, R11=20H, C=0

SBC R3, R11 ;Object code: 0007 A1B3

After: R3=FFFF_FFF6H, Flags C, S=1; Z, V, B=0

Before: R3=16H, R11=20H, C=1

SBC R3, R11 ;Object code: 0007 A1B3

After: R3=FFFF_FFF5H, Flags C, S=1; Z, V, B=0
UM018809-0611 SBC Instruction

152

ZNEO® CPU Core
User Manual
SDIV

Definition

Signed Divide

Syntax

SDIV dst, src

Operation

src Remainder (dst/src)
dst Integer Part (dst/src)

Description

This instruction performs signed binary divide operation with a 32-bit dividend and 32-bit divi-
sor. The 32-bit integer part is stored in the destination register. The 32-bit remainder is stored in
the source register with the same sign as the dividend.

There are 3 possible outcomes of the SDIV instruction, depending upon the divisor and the
resulting quotient:

Case 1: If the integer part is in the range –2,147,483,648 to +2,147,483,647, then the quo-
tient and remainder are written to the destination and source registers, respectively. Flags
are set according to the result of the operation.

Case 2: If the divisor is zero, the destination, source, and flags registers are unchanged,
and a Divide-by-Zero system exception is executed.

Case 3: If the initial destination value is –2,147,483,648 (8000_0000H) and the initial source
value is –1 (FFFF_FFFFH), the unsigned value 2,147,483,648 (8000_0000H) is written to
the destination register, the source register is cleared, and the Sign and Overflow flags are
set to 1. In this case the Sign flag is incorrect, but the result can be used as an unsigned
value. A Divide Overflow exception is not executed.
SDIV Instruction UM018809-0611

ZNEO® CPU Core
User Manual

153
Flags

Syntax and Opcodes

Example

Before: R4=FFFF_FFE5H (–27), R5=0000_0005H

SDIV R4, R5 ;Object code AF54

After: R4=FFFF_FFFBH (–5), R5=FFFF_FFFEH, Flags S=1; Z, V, B=0

7 6 5 4 3 2 1 0
C Z S V B CIRQE IRQE
– * * * 0 – – –

Legend

C = No change.

Z = Set to 1 if bits [31:0] of the integer part are zero; otherwise set to 0.

S = Set to 1 if bit [31] of the integer part is 1; otherwise set to 0.

V = Set if an overflow causes the Sign flag to be incorrect. The result can still be used as an
unsigned value.

B = Cleared to 0.

CIRQE = No change

IRQE = No change.

Instruction, Operands Word 0 Word 1 Word 2

SDIV Rd, Rs {AFH, Rs, Rd}
UM018809-0611 SDIV Instruction

154

ZNEO® CPU Core
User Manual
SLL

Definition

Shift Left Logical

Syntax

SLL dst, src

Operation

Description

The destination operand contents shift left logical by the number of bit positions (0–31)
specified in bits [4:0] of the source operand. On each bit shift iteration, the value of the
most significant bit moves into the Carry (C) flag, and Bit 0 clears to 0. The source register
value is not changed.

Flags

Flags are set based on the 32-bit destination register value.

7 6 5 4 3 2 1 0
C Z S V B CIRQE IRQE
* * * * 0 – – –

Legend

C = Set to 1 if the last bit shifted out is 1; otherwise set to 0.

Z = Set to 1 if the result is zero; otherwise, set to 0.

S = Set to 1 if the result msb is 1; otherwise set to 0.

V = Set to 1 if the Carry and Sign flags are different; otherwise set to 0.

B = Cleared to 0.

CIRQE = No change.

IRQE = No change.

C 0 src
dst31 0

Note:
SLL Instruction UM018809-0611

ZNEO® CPU Core
User Manual

155
Syntax and Opcodes

Example

Before: R7=7F37_B2D3H (0111_1111_0011_0111_1011_0010_1101_0011B)

SLL R7, #4 ;Object code: BC47

After: R7=F37B_2D30H (1111_0011_0111_1011_0010_1101_0011_0000B), Flags C,
S=1; Z, V, B=0

Instruction, Operands Word 0 Word 1 Word 2

SLL Rd, #uimm5 {BH, 110B, uimm5, Rd}

SLL Rd, Rs {B6H, Rs, Rd}
UM018809-0611 SLL Instruction

156

ZNEO® CPU Core
User Manual
SLLX

Definition

Shift Left Logical, Extended

Syntax

SLLX dst, src

Operation

Description

The destination operand contents shift left logical by the number of bit positions (0–31) specified
in bits [4:0] of the source operand. On each bit shift iteration, the value of the most significant bit
moves into the Carry (C) flag, and Bit 0 clears to 0.

The source register is cleared, and bits shifted out of the destination are shifted into the source
register. This instruction is generated by using the Extend prefix, 0007H, with the SLL opcode.

Flags

7 6 5 4 3 2 1 0
C Z S V B CIRQE IRQE
* * * * 0 – – –

Legend

C = Set to 1 if the last bit shifted out of the destination register is 1; otherwise set to 0.

Z = Set to 1 if the 32-bit destination register contains zero; otherwise set to 0.

S = Set to 1 if bit [31] of the destination register is 1; otherwise set to 0.

V = Set to 1 if the Carry and Sign flags are different; otherwise set to 0.

B = Cleared to 0.

CIRQE = No change.

IRQE = No change.

C 0 src
dst31 0

src31 0
SLLX Instruction UM018809-0611

ZNEO® CPU Core
User Manual

157
Flags are set based on the 32-bit destination register value.

Syntax and Opcodes

Example

Before: R7=7F37_B2D3H (0111_1111_0011_0111_1011_0010_1101_0011B), R8=4

SLLX R7, R8 ;Object code: 0007 B687

After: R7=F37B_2D30H (1111_0011_0111_1011_0010_1101_0011_0000B),
R8=0000_0007H (0000_0000_0000_0000_0000_0000_0000_0111B), Flags C, S=1; Z, V,
B=0

Instruction, Operands
Extend
Prefix Word 0 Word 1 Word 2

SLLX Rd, Rs 0007H {B6H, Rs, Rd}

Note:
UM018809-0611 SLLX Instruction

158

ZNEO® CPU Core
User Manual
SMUL

Definition

Signed Multiply

Syntax

SMUL dst, src

Operation

dst (dst src)[31:0]

src (dst src)[63:32]

Description

This instruction performs a multiplication of two signed 32-bit values with a signed 64-bit result.
Result bits [31:0] are written to the destination register. Result bits [63:32] are written to the
source register.

Flags

Syntax and Opcodes

7 6 5 4 3 2 1 0
C Z S V B CIRQE IRQE
– * * 0 0 – – –

Legend

C = No change.

Z = Set to 1 if bits [63:0] of the result are zero; otherwise set to 0.

S = Set to 1 if bit [63] of the result is 1; otherwise set to 0.

V = Cleared to 0.

B = Cleared to 0.

CIRQE = No change.

IRQE = No change.

Instruction, Operands Word 0 Word 1 Word 2

SMUL Rd, Rs {B1H, Rs, Rd}
SMUL Instruction UM018809-0611

ZNEO® CPU Core
User Manual

159
Example

Before: R4=FFFF_FFE5H (–27), R5=0000_0005H

SMUL R4, R5 ;Object code B154

After: R4=FFFF_FF79H (–135), R5=FFFF_FFFFH, Flags S=1; Z, V, B=0
UM018809-0611 SMUL Instruction

160

ZNEO® CPU Core
User Manual
SRA

Definition

Shift Right Arithmetic

Syntax

SRA dst, src

Operation

Description

This instruction performs an arithmetic shift to the right on the destination operand by the num-
ber of bit positions (0–31) specified in bits [4:0] of the source operand. On each bit shift iteration,
Bit 0 replaces the Carry (C) flag. The value of Bit 31 (the Sign bit) does not change, but its value
shifts into Bit 30 on each iteration. The source register value is not changed.

Flags

Flags are set based on the 32-bit destination register value.

7 6 5 4 3 2 1 0
C Z S V B CIRQE IRQE
* * * * 0 – – –

Legend

C = Set to 1 if the last bit shifted out is 1; otherwise set to 0.

Z = Set to 1 if the result is zero; otherwise, set to 0.

S = Set to 1 if the result msb is 1; otherwise set to 0.

V = Set to 1 if the Carry and Sign flags are different; otherwise set to 0.

B = Cleared to 0.

CIRQE = No change.

IRQE = No change.

C

 src

dst31 030

Note:
SRA Instruction UM018809-0611

ZNEO® CPU Core
User Manual

161
Syntax and Opcodes

Examples

Before: R7=7F37_B2D3H (0111_1111_0011_0111_1011_0010_1101_0011B)

SRA R7, #4 ;Object code: B847

After: R7=07F3_7B2DH (0000_0111_1111_0011_0111_1011_0010_1101B), Flags C, Z,
S, V, B=0

Before: R7=8F37_B2D3H (1000_1111_0011_0111_1011_0010_1101_0011B)

SRA R7, #4 ;Object code: B847

After: R7=F8F3_7B2DH (1111_1000_1111_0011_0111_1011_0010_1101B), Flags S,
V=1; C, Z, B=0

Instruction, Operands Word 0 Word 1 Word 2

SRA Rd, #uimm5 {BH, 100B, uimm5, Rd}

SRA Rd, Rs {B4H, Rs, Rd}
UM018809-0611 SRA Instruction

162

ZNEO® CPU Core
User Manual
SRAX

Definition

Shift Right Arithmetic, Extended

Syntax

SRAX dst, src

Operation

Description

This instruction performs an arithmetic shift to the right on the destination operand by the num-
ber of bit positions (0–31) specified in bits [4:0] of the source operand. On each bit shift iteration,
Bit 0 replaces the Carry (C) flag. The value of Bit 31 (the Sign bit) does not change, but its value
shifts into Bit 30 on each iteration.

The source register is cleared, and bits shifted out of the destination are shifted into the source
register.

This instruction is generated by using the Extend prefix, 0007H, with the SRA opcode.

C

 src

dst31 030

src31 0
SRAX Instruction UM018809-0611

ZNEO® CPU Core
User Manual

163
Flags

Flags are set based on the 32-bit destination register value.

Syntax and Opcodes

Example

Before: R7=8F37_B2D3H (1000_1111_0011_0111_1011_0010_1101_0011B), R8=4

SRAX R7, R8 ;Object code: 0007 B487

After: R7=F8F3_7B2DH (1111_1000_1111_0011_0111_1011_0010_1101B),
R8=3000_0000H (0011_0000_0000_0000_0000_0000_0000_0000B), Flags S, V=1; C,
Z, B=0

7 6 5 4 3 2 1 0
C Z S V B CIRQE IRQE
* * * * 0 – – –

Legend

C = Set to 1 if the last bit shifted out of the destination register is 1; otherwise set to 0.

Z = Set to 1 if the 32-bit destination register contains zero; otherwise set to 0.

S = Set to 1 if bit [31] of the destination register is 1; otherwise set to 0.

V = Set to 1 if the Carry and Sign flags are different; otherwise set to 0.

B = Cleared to 0.

CIRQE = No change.

IRQE = No change.

Instruction, Operands
Extend
Prefix Word 0 Word 1 Word 2

SRAX Rd, Rs 0007H {B4H, Rs, Rd}

Note:
UM018809-0611 SRAX Instruction

164

ZNEO® CPU Core
User Manual
SRL

Definition

Shift Right Logical

Syntax

SRL dst, src

Operation

Description

The destination operand contents shift right logical by the number of bit positions (0–31) speci-
fied in bits [4:0] of the source operand. On each bit shift iteration, the value of Bit 0 moves into
the Carry (C) flag, and Bit 31 clears to 0. The source register value is not changed.

Flags

Flags are set based on the 32-bit destination register value.

7 6 5 4 3 2 1 0
C Z S V B CIRQE IRQE
* * * * 0 – – –

Legend

C = Set to 1 if the last bit shifted out is 1; otherwise set to 0.

Z = Set to 1 if the result is zero; otherwise, set to 0.

S = Set to 1 if the result msb is 1; otherwise set to 0.

V = Set to 1 if the Carry and Sign flags are different; otherwise set to 0.

B = Cleared to 0.

CIRQE = No change.

IRQE = No change.

C0 src
dst31 0

Note:
SRL Instruction UM018809-0611

ZNEO® CPU Core
User Manual

165
Syntax and Opcodes

Example

Before: R7=8F37_B2D3H (1000_1111_0011_0111_1011_0010_1101_0011B)

SRL R7, #4 ;Object code: BA47

After: R7=08F3_7B2DH (0000_1000_1111_0011_0111_1011_0010_1101B), Flags C, Z,
S, V, B=0

Instruction, Operands Word 0 Word 1 Word 2

SRL Rd, #uimm5 {BH, 101B, uimm5, Rd}

SRL Rd, Rs {B5H, Rs, Rd}
UM018809-0611 SRL Instruction

166

ZNEO® CPU Core
User Manual
SRLX

Definition

Shift Right Logical, Extended

Syntax

SRLX dst, src

Operation

Description

The destination operand contents shift right logical by the number of bit positions (0–31) speci-
fied in bits [4:0] of the source operand. On each bit shift iteration, the value of Bit 0 moves into
the Carry (C) flag, and Bit 31 clears to 0.

The source register is cleared, and bits shifted out of the destination are shifted into the source
register.

This instruction is generated by using the Extend prefix, 0007H, with the SRL opcode.

Flags

7 6 5 4 3 2 1 0
C Z S V B CIRQE IRQE
* * * * 0 – – –

Legend

C = Set to 1 if the last bit shifted out of the destination register is 1; otherwise set to 0.

Z = Set to 1 if the 32-bit destination register contains zero; otherwise set to 0.

S = Set to 1 if bit [31] of the destination register is 1; otherwise set to 0.

V = Set to 1 if the Carry and Sign flags are different; otherwise set to 0.

B = Cleared to 0.

CIRQE = No change.

IRQE = No change.

C0 src
dst31 0

src31 0
SRLX Instruction UM018809-0611

ZNEO® CPU Core
User Manual

167
Flags are set based on the 32-bit destination register value.

Syntax and Opcodes

Example

Before: R7=8F37_B2D3H (1000_1111_0011_0111_1011_0010_1101_0011B), R8=4

SRLX R7, R8 ;Object code: 0007 B587

After: R7=08F3_7B2DH (0000_1000_1111_0011_0111_1011_0010_1101B),
R8=3000_0000H (0011_0000_0000_0000_0000_0000_0000_0000B), Flags C, Z, S, V,
B=0

Instruction, Operands
Extend
Prefix Word 0 Word 1 Word 2

SRLX Rd, Rs 0007H {B5H, Rs, Rd}

Note:
UM018809-0611 SRLX Instruction

168

ZNEO® CPU Core
User Manual
STOP

Definition

STOP Mode

Syntax

STOP

Operation

Stop Mode

Description

This instruction puts the ZNEO CPU in Stop mode.

Refer to the ZNEO product specification that is specific to your device for details about
Stop mode operation.

Flags

Flags are not affected by this instruction.

Syntax and Opcodes

Instruction, Operands Word 0 Word 1 Word 2

STOP FFF8H

Note:
STOP Instruction UM018809-0611

ZNEO® CPU Core
User Manual

169
SUB

Definition

Subtract

Syntax

SUB dst, src

Operation

dst dst – src

Description

This instruction subtracts the source operand from the destination operand. The result is stored in
the destination address or register. The contents of the source operand are unaffected. The ZNEO
CPU performs subtraction by adding the two’s complement of the source operand to the destina-
tion operand.

Flags

Flags are set based on the memory destination size, or 32 bits for register destinations.

7 6 5 4 3 2 1 0
C Z S V B CIRQE IRQE
* * * * * – – –

Legend

C = Set to 1 if the result generated a borrow; otherwise set to 0.

Z = Set to 1 if the result is zero; otherwise, set to 0.

S = Set to 1 if the result msb is 1; otherwise set to 0.

V = Set to 1 if an arithmetic overflow occurs; otherwise set to 0.

B = Set to 1 if the initial destination or source value is 0; otherwise set to 0.

CIRQE = No change.

IRQE = No change.

Note:
UM018809-0611 SUB Instruction

170

ZNEO® CPU Core
User Manual
Syntax and Opcodes

Instruction, Operands Word 0 Word 1 Word 2

SUB Rd, #imm32 {AA9H, Rd} imm[31:16] imm[15:0]

SUB Rd, #uimm161 {AA1H, Rd} uimm16

SUB Rd, Rs {A1H, Rs, Rd}

SUB Rd, addr16 {714H, Rd} addr16

SUB Rd, addr32 {71CH, Rd} addr[31:16] addr[15:0]

SUB Rd, soff13(Rs) {79H, Rs, Rd} {100B, soff13}

SUB addr16, Rs {717H, Rs} addr16

SUB addr32, Rs {71FH, Rs} addr[31:16] addr[15:0]

SUB (Rd), #imm32 {AB9H, Rd} imm[31:16] imm[15:0]

SUB (Rd), #simm16 {AD1H, Rd} simm16

SUB soff13(Rd), Rs {79H, Rs, Rd} {111B, soff13}

SUB.W addr16, Rs {716H, Rs} addr16

SUB.W addr32, Rs {71EH, Rs} addr[31:16] addr[15:0]

SUB.W (Rd), #imm16 {AB1H, Rd} imm16

SUB.W soff13(Rd), Rs {79H, Rs, Rd} {110B, soff13}

SUB.SW Rd, addr16 {713H, Rd} addr16

SUB.SW Rd, addr32 {71BH, Rd} addr[31:16] addr[15:0]

SUB.SW Rd, soff13(Rs) {79H, Rs, Rd} {011B, soff13}

SUB.UW Rd, addr16 {712H, Rd} addr16

SUB.UW Rd, addr32 {71AH, Rd} addr[31:16] addr[15:0]

SUB.UW Rd, soff13(Rs) {79H, Rs, Rd} {010B, soff13}

SUB.B addr16, Rs {715H, Rs} addr16

SUB.B addr32, Rs {71DH, Rs} addr[31:16] addr[15:0]

SUB.B (Rd), #imm8 {AD9H, Rd} {xH, x001B, imm8}

SUB.B soff13(Rd), Rs {79H, Rs, Rd} {101B, soff13}

SUB.SB Rd, addr16 {711H, Rd} addr16

SUB.SB Rd, addr32 {719H, Rd} addr[31:16] addr[15:0]

SUB.SB Rd, soff13(Rs) {79H, Rs, Rd} {001B, soff13}

SUB.UB Rd, addr16 {710H, Rd} addr16

SUB.UB Rd, addr32 {718H, Rd} addr[31:16] addr[15:0]

SUB.UB Rd, soff13(Rs) {79H, Rs, Rd} {000B, soff13}

Note:
1. The one-word instruction ADD Rd, #–simm8 can be used for 8-bit immediate-to-register sub-

traction if ADD Flags behavior is acceptable.
SUB Instruction UM018809-0611

ZNEO® CPU Core
User Manual

171
Examples

Before: R3=16H, R11=20H

SUB R3, R11 ;Object code: A1B3

After: R3=FFFF_FFF6H, Flags C, S=1; Z, V, B=0

Before: R3=FFFF_B0D4H, FFFF_B0D4H=800FH

SUB.W (R3), #FFFFH ;Object Code: AB13 FFFF

After: FFFF_B0D4H=8010H, Flags C, S=1; Z, V, B=0

Before: R3=FFFF_B0D4H, FFFF_B0D4H=800FH

SUB.W (R3), #800FH ;Object Code: AB13 800F

After: FFFF_B0D4H=0000H, Flags Z=1; C, S, V, B=0

Before: R12=16H, R10=FFFF_B020H, FFFF_B020H=91H

SUB.UB R12, (R10) ;Object Code: 79AC 0000

After: R12=FFFF_FF85H, Flags C, Z, S, V, B = 0

Before: R12=16H, R10=FFFF_B020H, FFFF_B020H=91H

SUB.SB R12, (R10) ;Object Code: 79AC 2000

After: R12=0000_0085H, Flags S=1; C, Z, V, B = 0

Before: FFFF_B034H=2EH, R12=1BH

SUB.B B034H:RAM, R12;Object Code: 715C B034

After: FFFF_B034H = 13H, Flags C, Z, S, V, B =0
UM018809-0611 SUB Instruction

172

ZNEO® CPU Core
User Manual
TCM

Definition

Test Complement Under Mask

Syntax

TCM dst, src

Operation

~dst AND src

Description

This instruction tests selected bits in the destination operand for a logical 1 value. Specify the bits
to be tested by setting a 1 bit in the corresponding bit position in the source operand (the mask).
The TCM instruction complements the value from the destination operand and ANDs it with the
source value (mask). Check the Zero flag to determine the result. If the Z flag is set, all of the
tested bits are 1. TCM does not alter the contents of the destination or source.

Flags

Flags are set based on the memory destination size, or 32 bits for register destinations.

7 6 5 4 3 2 1 0
C Z S V B CIRQE IRQE
– * * 0 * – – –

Legend

C = No change.

Z = Set to 1 if the result is zero; otherwise, set to 0.

S = Set to 1 if the result msb is 1; otherwise set to 0.

V = Cleared to 0.

B = Set to 1 if the initial destination or source value is 0; otherwise set to 0.

CIRQE = No change.

IRQE = No change.

Note:
TCM Instruction UM018809-0611

ZNEO® CPU Core
User Manual

173
Syntax and Opcodes

Instruction, Operands Word 0 Word 1 Word 2

TCM Rd, #imm32 {AAFH, Rd} imm[31:16] imm[15:0]

TCM Rd, #uimm16 {AA7H, Rd} uimm16

TCM Rd, Rs {A7H, Rs, Rd}

TCM Rd, addr16 {774H, Rd} addr16

TCM Rd, addr32 {77CH, Rd} addr[31:16] addr[15:0]

TCM Rd, soff13(Rs) {7FH, Rs, Rd} {100B, soff13}

TCM addr16, Rs {777H, Rs} addr16

TCM addr32, Rs {77FH, Rs} addr[31:16] addr[15:0]

TCM (Rd), #imm32 {ABFH, Rd} imm[31:16] imm[15:0]

TCM (Rd), #simm16 {AD7H, Rd} simm16

TCM soff13(Rd), Rs {7FH, Rs, Rd} {111B, soff13}

TCM.W addr16, Rs {776H, Rs} addr16

TCM.W addr32, Rs {77EH, Rs} addr[31:16] addr[15:0]

TCM.W (Rd), #imm16 {AB7H, Rd} imm16

TCM.W soff13(Rd), Rs {7FH, Rs, Rd} {110B, soff13}

TCM.SW Rd, addr16 {773H, Rd} addr16

TCM.SW Rd, addr32 {77BH, Rd} addr[31:16] addr[15:0]

TCM.SW Rd, soff13(Rs) {7FH, Rs, Rd} {011B, soff13}

TCM.UW Rd, addr16 {772H, Rd} addr16

TCM.UW Rd, addr32 {77AH, Rd} addr[31:16] addr[15:0]

TCM.UW Rd, soff13(Rs) {7FH, Rs, Rd} {010B, soff13}

TCM.B addr16, Rs {775H, Rs} addr16

TCM.B addr32, Rs {77DH, Rs} addr[31:16] addr[15:0]

TCM.B (Rd), #imm8 {AD9H, Rd} {xH, x111B, imm8}

TCM.B soff13(Rd), Rs {7FH, Rs, Rd} {101B, soff13}

TCM.SB Rd, addr16 {771H, Rd} addr16

TCM.SB Rd, addr32 {779H, Rd} addr[31:16] addr[15:0]

TCM.SB Rd, soff13(Rs) {7FH, Rs, Rd} {001B, soff13}

TCM.UB Rd, addr16 {770H, Rd} addr16

TCM.UB Rd, addr32 {778H, Rd} addr[31:16] addr[15:0]

TCM.UB Rd, soff13(Rs) {7FH, Rs, Rd} {000B, soff13}
UM018809-0611 TCM Instruction

174

ZNEO® CPU Core
User Manual
Examples

Before: R1[7:0]=38H (0011_1000B), R14[31:8]=0000_00H, R14[7:0]=08H
(0000_1000B)

TCM R1, R14 ;Object Code: A7E1

After: Flags Z=1; V, S, B=0; R1 bit 3 tests as a 1.

Before: R4[31:8]=0000_00H, R4[7:0]=79H (0111_1001B), FFFF_B07BH=12H
(0001_0010B)

 TCM.UB R4, B07BH:RAM;Object Code: 7704 B07B

After: Flags Z, S, V, B=0; R4 bit 1 or bit 4 tests as a 0.

Before: R13=FFFF_B07AH, FFFF_B07AH=C3F7H (1100_0011_1111_0111B)

TCM.W (R13), #0001000000000000B;Object Code: AB7D 1000

After: Flags Z, S, V, B=0, Bit 12 of the addressed word tests as a 0.
TCM Instruction UM018809-0611

ZNEO® CPU Core
User Manual

175
TM

Definition

Test Under Mask

Syntax

TM dst, src

Operation

dst AND src

Description

This instruction tests selected bits in the destination operand for a 0 logical value. Specify the bits
to be tested by setting a 1 bit in the corresponding bit position in the source operand (the mask).
The TM instruction ANDs the value from the destination operand with the source value (mask).
Check the Zero flag can to determine the result. If the Z flag is set, all of the tested bits are 0. TM
does not alter the contents of the destination or source.

Flags

Flags are set based on the memory destination size, or 32 bits for register destinations.

7 6 5 4 3 2 1 0
C Z S V B CIRQE IRQE
– * * 0 * – – –

Legend

C = No change.

Z = Set to 1 if the result is zero; otherwise, set to 0.

S = Set to 1 if the result msb is 1; otherwise set to 0.

V = Cleared to 0.

B = Set to 1 if the initial destination or source value is 0; otherwise set to 0.

CIRQE = No change.

IRQE = No change.

Note:
UM018809-0611 TM Instruction

176

ZNEO® CPU Core
User Manual
Syntax and Opcodes

Instruction, Operands Word 0 Word 1 Word 2

TM Rd, #imm32 {AAEH, Rd} imm[31:16] imm[15:0]

TM Rd, #uimm16 {AA6H, Rd} uimm16

TM Rd, Rs {A6H, Rs, Rd}

TM Rd, addr16 {764H, Rd} addr16

TM Rd, addr32 {76CH, Rd} addr[31:16] addr[15:0]

TM Rd, soff13(Rs) {7EH, Rs, Rd} {100B, soff13}

TM addr16, Rs {767H, Rs} addr16

TM addr32, Rs {76FH, Rs} addr[31:16] addr[15:0]

TM (Rd), #imm32 {ABEH, Rd} imm[31:16] imm[15:0]

TM (Rd), #simm16 {AD6H, Rd} simm16

TM soff13(Rd), Rs {7EH, Rs, Rd} {111B, soff13}

TM.W addr16, Rs {766H, Rs} addr16

TM.W addr32, Rs {76EH, Rs} addr[31:16] addr[15:0]

TM.W (Rd), #imm16 {AB6H, Rd} imm16

TM.W soff13(Rd), Rs {7EH, Rs, Rd} {110B, soff13}

TM.SW Rd, addr16 {763H, Rd} addr16

TM.SW Rd, addr32 {76BH, Rd} addr[31:16] addr[15:0]

TM.SW Rd, soff13(Rs) {7EH, Rs, Rd} {011B, soff13}

TM.UW Rd, addr16 {762H, Rd} addr16

TM.UW Rd, addr32 {76AH, Rd} addr[31:16] addr[15:0]

TM.UW Rd, soff13(Rs) {7EH, Rs, Rd} {010B, soff13}

TM.B addr16, Rs {765H, Rs} addr16

TM.B addr32, Rs {76DH, Rs} addr[31:16] addr[15:0]

TM.B (Rd), #imm8 {AD9H, Rd} {xH, x110B, imm8}

TM.B soff13(Rd), Rs {7EH, Rs, Rd} {101B, soff13}

TM.SB Rd, addr16 {761H, Rd} addr16

TM.SB Rd, addr32 {769H, Rd} addr[31:16] addr[15:0]

TM.SB Rd, soff13(Rs) {7EH, Rs, Rd} {001B, soff13}

TM.UB Rd, addr16 {760H, Rd} addr16

TM.UB Rd, addr32 {768H, Rd} addr[31:16] addr[15:0]

TM.UB Rd, soff13(Rs) {7EH, Rs, Rd} {000B, soff13}
TM Instruction UM018809-0611

ZNEO® CPU Core
User Manual

177
Examples

Before: R1[7:0]=38H (0011_1000B), R14[31:8]=0000_00H, R14[7:0]=08H
(0000_1000B)

TM R1, R14 ;Object Code: A6E1

After: Flags Z, V, S, B=0; R1 bit 3 tests as nonzero.

Before: R4[31:8]=0000_00H, R4[7:0]=79H (0111_1001B), FFFF_B07BH=12H
(0001_0010B)

TM.UB R4, B07BH:RAM ;Object Code: 7604 B07B

After: Flags Z=1; V, S, B=0; R4 bit 1 or bit 4 tests as nonzero.

Before: R13=FFFF_B07AH, FFFF_B07AH=C3F7H (1100_0011_1111_0111B)

TM.W (R13), #0001000000000000B;Object Code: AB6D 1000

After: Flags Z=1, S, V, B=0, Bit 12 of the addressed word tests as a 0.
UM018809-0611 TM Instruction

178

ZNEO® CPU Core
User Manual
TRAP

Definition

Software Trap

Syntax

TRAP Vector

Operation

SP SP – 2
(SP) {00H, FLAGS[7:0]}
SP SP – 4
(SP) PC
PC (Vector)

Description

This instruction executes a software trap. The Flags and Program Counter are pushed onto the
stack. The ZNEO CPU loads the Program Counter with the value stored in the Trap Vector quad.
Execution begins from the new value in the Program Counter. Execute an IRET instruction to
return from a software trap.

There are 256 possible Trap Vector quads. The Trap Vector Quads are numbered from 0 to 255.
The base addresses of the Trap Vector Quads begin at 0000_0000H and end at 0000_03FCH.
The base address of the Trap Vector Quad is calculated by multiplying the vector by 4.

Refer to the ZNEO product specification that is specific to your device for a list of vectors
used by the CPU and peripherals. A TRAP instruction can be used with these vectors, but
the TRAP does not set any of the exception or interrupt register bits that the corresponding
service routine is likely to inspect.

Flags

Flags are not affected by this instruction.

Syntax and Opcodes

Instruction, Operands Word 0 Word 1 Word 2

TRAP #vector8 {FEH, vector8}

Note:
TRAP Instruction UM018809-0611

ZNEO® CPU Core
User Manual

179
Example

Before: PC=0000_044EH, SP=FFFF_DB22H, 0000_03FCH=0000_EE00H

TRAP #FFH ;Object Code: FEFF

After: PC=0000_EE00H, SP=FFFF_DB1CH, FFFF_DB1CH=0000_0450H,
FFFF_DB20H=00H, FFFF_DB21H=Flags[7:0]
UM018809-0611 TRAP Instruction

180

ZNEO® CPU Core
User Manual
UDIV

Definition

Unsigned Divide

Syntax

UDIV dst, src

Operation

src Remainder (dst/src)
dst Integer Part (dst/src)

Description

This instruction performs an unsigned binary divide operation with a 32-bit dividend and 32-bit
divisor. The resulting 32-bit unsigned integer part is stored in the destination register. The 32-bit
remainder is stored in the source register.

There are 2 possible outcomes of the UDIV instruction, depending upon the divisor:

Case 1: If the divisor is nonzero, then the quotient and remainder are written to the desti-
nation and source registers, respectively. Flags are set according to the result of the opera-
tion.

Case 2: If the divisor is zero, the destination, source, and flags registers are unchanged,
and a Divide-by-Zero system exception is executed.

Flags

7 6 5 4 3 2 1 0
C Z S V B CIRQE IRQE
– * * 0 0 – – –

Legend

C = No change.

Z = Set to 1 if bits [31:0] of the integer part are zero; otherwise set to 0.

S = Set to 1 if bit [31] of the integer part is 1; otherwise set to 0.

V = Cleared to 0.

B = Cleared to 0.

CIRQE = No change.

IRQE = No change.
UDIV Instruction UM018809-0611

ZNEO® CPU Core
User Manual

181
Syntax and Opcodes

Example

Before: R4=FFFF_FFE5H, R5=0000_0005H

UDIV R4, R5 ;Object code AE54

After: R4=3333_332DH, R5=0000_0004H, Flags Z, S, V, B=0

Instruction, Operands Word 0 Word 1 Word 2

UDIV Rd, Rs {AEH, Rs, Rd}
UM018809-0611 UDIV Instruction

182

ZNEO® CPU Core
User Manual
UDIV64

Definition

Unsigned 64-bit Divide

Syntax

UDIV dst, src

Operation

dst[63;32] Integer Part (dst/src)
dst[31:0] Remainder (dst/src)

Description

This instruction performs an unsigned binary divide operation with a 64-bit dividend and 32-bit
divisor.

The destination operand is a 64-bit register pair, RRd, where d is 0 to 15. Register pair RR0 com-
prises ALU registers {R0, R1}, pair RR1 comprises {R1, R2}, and so on up to RR15, which
comprises {R15, R0}. The first register in each pair contains the high-order quad and the second
register contains the low-order quad of the 64-bit value.

The use of register pair RR14 or RR15 conflicts with the Stack Pointer Register R15 and is
not recommended. The use of register pair RR13 or RR14 conflicts with the Frame Pointer
Register R14 if it is in use.

Before the operation, RRd should contain the 64-bit dividend and the src register Rs should con-
tain the 32-bit divisor.

The operation stores the result’s 32-bit unsigned integer part in the high-order quad of the RRd
register pair, and the 32-bit remainder in the low-order quad.

The source register, Rs, is not changed.

There are 3 possible outcomes of the UDIV64 instruction, depending upon the divisor and the
resulting quotient:

Case 1: If the result’s unsigned integer part is less than 4,294,967,296, then the quotient is
written to RRd[63:32] and remainder is written to RRd[31:0]. Flags are set according to
the result of the operation.

Note:
UDIV64 Instruction UM018809-0611

ZNEO® CPU Core
User Manual

183
Case 2: If the divisor is zero, the destination, source, and flags registers are unchanged,
and a Divide-by-Zero system exception is executed.

Case 3: If the integer part is greater than or equal to 4,294,967,296, the destination, source,
and flags registers are unchanged, and a Divide Overflow system exception is executed.

This instruction is generated by using the Extend prefix, 0007H, with the UDIV opcode.

Flags

Syntax and Opcodes

Example

Before: R3=0000_00FFH, R4=FFFF_FFE5H, R5=0000_0555H

UDIV64 RR3, R5 ;Object code 0007 AE53

After: R3=3003_002F, R4=0000_054AH, Flags Z, S, V, B=0

7 6 5 4 3 2 1 0
C Z S V B CIRQE IRQE
– * * 0 0 – – –

Legend

C = No change.

Z = Set to 1 if bits [31:0] of the integer part are zero; otherwise set to 0.

S = Set to 1 if the bit [31] of the integer part is 1; otherwise set to 0.

V = Cleared to 0.

B = Cleared to 0.

CIRQE = No change.

IRQE = No change.

Instruction, Operands
Extend
Prefix Word 0 Word 1 Word 2

UDIV64 RRd, Rs 0007H {AEH, Rs, RRd}
UM018809-0611 UDIV64 Instruction

184

ZNEO® CPU Core
User Manual
UMUL

Definition

Unsigned Multiply

Syntax

UMUL dst, src

Operation

dst (dst src)[31:0]
src (dst src)[63:32]

Description

This instruction performs a multiplication of two unsigned 32-bit values with an unsigned 64-bit
result. Result bits [31:0] are written to the destination register. Result bits [63:32] are written to
the source register.

Flags

Syntax and Opcodes

7 6 5 4 3 2 1 0
C Z S V B CIRQE IRQE
– * * 0 0 – – –

Legend

C = No change.

Z = Set to 1 if bits [63:0] of the result are zero; otherwise set to 0.

S = Set to 1 if bit [63] of the result is 1; otherwise set to 0.

V = Cleared to 0.

B = Cleared to 0.

CIRQE = No change.

IRQE = No change.

Instruction, Operands Word 0 Word 1 Word 2

UMUL Rd, Rs {B0H, Rs, Rd}
UMUL Instruction UM018809-0611

ZNEO® CPU Core
User Manual

185
Example

Before: R4=FFFF_FFE5H, R5=0000_0005H

UMUL R4, R5 ;Object code B054

After: R4=FFFF_FF79H, R5=0000_0004H, Flags Z, S, V, B=0
UM018809-0611 UMUL Instruction

186

ZNEO® CPU Core
User Manual
UNLINK

Definition

Unlink Frame Pointer

Syntax

UNLINK

Operation

SP R14
R14 (SP)
SP SP + 4

Description

This instruction releases variable space previously allocated on the stack by a LINK instruction
and restores the R14 register (frame pointer) to its state prior to the LINK. For more details, see
the LINK section on page 124.

Flags

Flags are not affected by this instruction.

Syntax and Opcodes

Instruction, Operands Word 0 Word 1 Word 2

UNLINK 0001H
UNLINK Instruction UM018809-0611

ZNEO® CPU Core
User Manual

187
WDT

Definition

Watchdog Timer Refresh

Syntax

WDT

Operation

None

Description

Enable the Watchdog Timer by executing the WDT instruction. Each subsequent execution of the
WDT instruction refreshes the timer and prevents the Watchdog Timer from timing out. For more
information about the Watchdog Timer, refer to the ZNEO product specification that is specific to
your device.

Flags

Flags are not affected by this instruction.

Syntax and Opcodes

Examples

Before: Watchdog Timer disabled.

WDT ;Object code FFF7

After: Watchdog Timer enabled.

Before: Watchdog Timer enabled.

WDT;Object code FFF7

After: Watchdog Timer still enabled. Time-out counter is reset.

Instruction, Operands Word 0 Word 1 Word 2

WDT FFF7H
UM018809-0611 WDT Instruction

188

ZNEO® CPU Core
User Manual
XOR

Definition

Logical Exclusive OR

Syntax

XOR dst, src

Operation

dst dst XOR src

Description

The source operand value is logically exclusive-ORed with the destination operand. An XOR
operation stores a 1 in a destination operand bit when the original destination bit differs from the
corresponding source operand bit; otherwise XOR stores a 0. The contents of the source operand
are unaffected. Table 23 summarizes the XOR operation.

Flags

Table 23. Truth Table for XOR

dst src Result (dst)

0 0 0

1 0 1

0 1 1

1 1 0

7 6 5 4 3 2 1 0
C Z S V B CIRQE IRQE
– * * 0 * – – –

Legend

Z = Set to 1 if the result is zero; otherwise, set to 0.

S = Set to 1 if the result msb is 1; otherwise set to 0.

V = Cleared to 0.

B = Set to 1 if the initial destination or source value is 0; otherwise set to 0.

CIRQE = No change.

IRQE = No change.
XOR Instruction UM018809-0611

ZNEO® CPU Core
User Manual

189
Flags are set based on the memory destination size, or 32 bits for register destinations.

Syntax and Opcodes

Instruction, Operands Word 0 Word 1 Word 2

XOR Rd, #imm32 {AACH, Rd} imm[31:16] imm[15:0]

XOR Rd, #uimm16 {AA4H, Rd} uimm16

XOR Rd, Rs {A4H, Rs, Rd}

XOR Rd, addr16 {744H, Rd} addr16

XOR Rd, addr32 {74CH, Rd} addr[31:16] addr[15:0]

XOR Rd, soff13(Rs) {7CH, Rs, Rd} {100B, soff13}

XOR addr16, Rs {747H, Rs} addr16

XOR addr32, Rs {74FH, Rs} addr[31:16] addr[15:0]

XOR (Rd), #imm32 {ABCH, Rd} imm[31:16] imm[15:0]

XOR (Rd), #simm16 {AD4H, Rd} simm16

XOR soff13(Rd), Rs {7CH, Rs, Rd} {111B, soff13}

XOR.W addr16, Rs {746H, Rs} addr16

XOR.W addr32, Rs {74EH, Rs} addr[31:16] addr[15:0]

XOR.W (Rd), #imm16 {AB4H, Rd} imm16

XOR.W soff13(Rd), Rs {7CH, Rs, Rd} {110B, soff13}

XOR.SW Rd, addr16 {743H, Rd} addr16

XOR.SW Rd, addr32 {74BH, Rd} addr[31:16] addr[15:0]

XOR.SW Rd, soff13(Rs) {7CH, Rs, Rd} {011B, soff13}

XOR.UW Rd, addr16 {742H, Rd} addr16

XOR.UW Rd, addr32 {74AH, Rd} addr[31:16] addr[15:0]

XOR.UW Rd, soff13(Rs) {7CH, Rs, Rd} {010B, soff13}

XOR.B addr16, Rs {745H, Rs} addr16

XOR.B addr32, Rs {74DH, Rs} addr[31:16] addr[15:0]

XOR.B (Rd), #imm8 {AD9H, Rd} {xH, x100B, imm8}

XOR.B soff13(Rd), Rs {7CH, Rs, Rd} {101B, soff13}

XOR.SB Rd, addr16 {741H, Rd} addr16

XOR.SB Rd, addr32 {749H, Rd} addr[31:16] addr[15:0]

XOR.SB Rd, soff13(Rs) {7CH, Rs, Rd} {001B, soff13}

XOR.UB Rd, addr16 {740H, Rd} addr16

XOR.UB Rd, addr32 {748H, Rd} addr[31:16] addr[15:0]

XOR.UB Rd, soff13(Rs) {7CH, Rs, Rd} {000B, soff13}

Note:
UM018809-0611 XOR Instruction

190

ZNEO® CPU Core
User Manual
Examples

Before: R1[7:0]=38H (0011_1000B), R14[7:0]=8DH (1000_1101B)

XOR R1, R14 ;Object Code: A4E1

After: R1[7:0]=B5H (1011_0101), Flags Z, V, S, B=0

Before: R4[31:8]=FFFF_FFH, R4[7:0]=79H (0111_1001B), FFFF_B07BH=EAH
(1110_1010B)

XOR.SB R4, B07BH:RAM;Object Code: 7414 B07B

After: R4[31:8]=FFFF_FFH, R4[7:0]=93H (1001_0011B), Flags S=1; Z, V, B=0

Before: R4[31:8]=FFFF_FFH, R4[7:0]=79H (0111_1001B), FFFF_B07BH=EAH
(1110_1010B)

XOR.UB R4, B07BH:RAM;Object Code: 7404 B07B

After: R4[31:8]=0000_00H, R4[7:0]=93H (1001_0011B), Flags Z, S, V, B=0

Before: R13=FFFF_B07AH, FFFF_B07AH=C3F7H (1100_0011_1111_0111B)

XOR.W (R13), #80F0H ;Object Code: AB4D 80F0

After: FFFF_B07AH=4307H (0100_0011_0000_0111B), Flags S=1; Z, V, B=0
XOR Instruction UM018809-0611

ZNEO® CPU Core
User Manual

19
Index

Numerics
16-bit addressing 16, 29
32-bit addressing 29

A
abbreviations

miscellaneous 66
opcode 55
symbolic 66
syntax 66

ADC instruction 68
ADD instruction 71
addition instruction 71
addition with carry 68
address

effective 29, 32
map 16
offset 32
space 15

addressing
16-bit 29
32-bit 29
indirect 32
jump 39
memory 29
register 28

alignment
address 19
memory 20
stack 36

ALU
description 4
registers 4

AND instruction 37, 74
arbiter, bus 6
arguments, frame 37
arithmetic instruction class 23
arithmetic logic unit, ALU 4
arithmetic shift right 160, 162

assembler, meaning of 2
assembly language

example 21
introduction 21
meaning of 2

ATM instruction 77
atomic instruction 77
audience xiii

B
B condition code 12
B suffix 30, 32
base address register 32
big endian data order 19
binary notation xiv
bit field

concatenation xv
symbols 55

bit manipulation
instruction class 24
set, clear, test 37

bit numbering xv
bit range xv
blank flag 11
block diagram, CPU 2
braces, meaning of xv
brackets, meaning of xv
BRK instruction 78
bus arbiter 6
bus widths 19
bus_time symbol 7
byte data size 32

C
C condition code 12
CALL instruction 79
call subroutine

absolute 81
UM018809-0611 Index

19

ZNEO® CPU Core
User Manual
instruction 79
CALLA instruction 81
carry flag 10
caution, meaning of xvi
ceiling function 7
clear register instruction 82
clear, meaning of xv
clearing bits 37, 38
CLR instruction 82
COM instruction 84
comment, assembly language 21
compare instruction

description 86
to zero with carry 92
with carry 89

complement instruction 84
concatenation, bits xv
condition code

blank 12
carry 12
descriptions 11
equal 12
greater than 12
greater than or equal 12
less than 12
less than or equal 12
minus 12
no carry 12
no overflow 12
non-zero 12
not blank 12
not equal 12
overflow 12
plus 12
unsigned greater than 12
unsigned greater than or equal 12
unsigned less than 12
unsigned less than or equal 12
zero 12

control
program 2
registers 8

conventions, general xiv
counter, program 4

courier typeface, meaning of xiv
CP instruction 86
CPC instruction 89
CPCZ instruction 92
CPU

block diagram 2
control instruction class 25
control register 13

CPUCTL register 13
CPZ instruction 94
Customer Support 199
cycles, execution 6
cycles, fetch 5

D
data bus width 19
data size 30, 31, 32
DEC instruction 96
decimal range 32
decoding, opcode 3
decrement

base address 35
instruction 96

delay cycle
execution 8
fetch 6

destination operand 21, 27
DI instruction 98
direct address

jump 39
memory 29

directive, assembly language 21
disable interrupts 41, 98
divide

by zero 51
overflow 51
signed 152
unsigned 180
unsigned 64-bit 182

DJNZ instruction 100
double-minus, meaning of 35
Index UM018809-0611

ZNEO® CPU Core
User Manual

19
E
effective address

16-bit 29
loading 33
register indirect 32

EI instruction 41, 102
enable interrupt 41, 102
endianness 19
EQ condition code 12
ERAM space mnemonic 18
EROM space mnemonic 17, 18
even address 19
exception

system 49
vector 49

exclusive-OR instruction 188
execution cycles 6
execution unit 2, 4
expression notation 65
EXT instruction 32, 103
extend register instruction 103
extended shift left 156
extended shift right 162, 166
extension

data 31, 32
signed 31
unsigned 31

external memory
description 18
map 16

F
features, CPU 1
fetch

cycles 5
opcode and operand 3
unit 2, 3

flags
blank 11
carry 10
IRQE 11
overflow 10
POPF instruction 136

PUSHF instruction 142
register 9
sign 10
zero 10

FP register 37
frame pointer 37

G
GE condition code 12
GT condition code 12

H
HALT instruction 105
hash mark, meaning of 28
hexadecimal values

notation xiv
range 32

I
I/O memory 18
ILL instruction 52, 106
illegal instruction 52, 106
immediate data

description 28
fetch 3

INC instruction 108
increment

base address 35
register 108

indirect addressing 32
instruction

classes 22
cycles 5
notation 65
set 65

internal memory 17
internal RAM

description 17
map 16

interrupt
disable 41, 98
UM018809-0611 Index

19

ZNEO® CPU Core
User Manual
enable 41
nesting 45
polled 46
priority 45
processing 42
return 44, 110
software 46
stack behavior 43
vectored 41
vectoring example 44

IODATA space mnemonic 18
IRET instruction 44, 110
IRQE flag 11

J
JP cc instruction 114
JP instruction 112
JPA instruction 113
jump

absolute 113
addressing 39
conditional 114
instruction 112

L
label, assembly language 21
LD instruction

delay cycle 8
description 115
LD cc 120

LDES instruction 121
LE condition code 12
LEA instruction

addressing 33
delay cycle 8
description 122

left rotate 147
LINK instruction

description 124
FP register use 37

load
condition code 120

delay cycle 8
effective address 33, 122
instruction class 24
sign 121
value 115
with increment or decrement 35

local variables, frame 37
logical AND instruction 37, 74
logical instruction class 23
logical OR instruction 38, 131
logical shift

left 154
left, extended 156
right 164
right, extended 166

logical XOR instruction 188
LSB, meaning xv
lsb, meaning xv
LT condition code 12

M
map, memory 16
mapping, register to memory bytes 31
mask

AND 37
OR 38
POPM 137
PUSHM 144
TCM 39
TM 38

masked logic 38
master interrupt enable flag 11
memory

alignment 20
data size 30
external 18
internal 17
map 16
non-volatile 17
RAM 17

MI condition code 12
minus, double 35
mnemonic
Index UM018809-0611

ZNEO® CPU Core
User Manual

19
assembly language 21
meaning of 2

MSB, meaning xv
msb, meaning xv
MUL instruction 125
multiple pop instruction 137, 138
multiple push instruction 143, 144
multiply instruction

32-bit 125
signed 158
unsigned 184

N
NB condition code 12
NC condition code 12
NE condition code 12
NEG instruction 127
negate instruction 127
nesting interrupts 45
no suffix 30
NOFLAGS instruction 129
non-volatile memory

description 17
map 16

no-operation instruction 130
NOP instruction 130
notation

expression 65
instruction 65
numerical 65
operand 56

NOV condition code 12
numeric ranges 32
numerical notation 65
NZ condition code 12

O
object code, meaning of 2
odd address 19
offset

address 32
indirect, range 33

jump 40
LEA, range 34
PC, range 34

opcode list 56
operand

addressing 27
destination 21, 27
meaning of 2
source 21, 27
symbols 56

option bits 16, 17
OR instruction 38, 131
order, bit numbers xv
OV condition code 12
overflow

divide 51
flag 10
PC 50
stack 50

P
PC register 4, 34
PCOV register 9, 50
peripheral bus width 19
pipeline

fetch 3
meaning of 5

PL condition code 12
polled interrupt 46
POP instruction

description 134
postincrement 35
stack usage 36

POPF instruction 136
POPMHI instruction 138
POPMLO instruction 137
postincrement 35
pound sign, meaning of 28
predecrement 35
priority, interrupt 45
processing, interrupt 42
processor block diagram 2
program control instruction class 25
UM018809-0611 Index

19

ZNEO® CPU Core
User Manual
program counter
as base address 34
description 4
loading 34
overflow 50

program, processor 2
pseudo-op 21
PUSH instruction

description 140
predecrement 35
stack usage 36

PUSHF instruction 142
PUSHMHI instruction 143
PUSHMLO instruction 144

Q
quad data size 32

R
RAM space 17
range

indirect offset 33
jump offset 40
LEA offset 34
numeric value 32
of bits xv
PC offset 34

reference, instruction 65
register-indirect addressing 32
registers

addressing 28
ALU 4
base address 32
control 8
CPUCTL 13
FLAGS 9
map 16
PCOV 9
SPOV 9
SYSEXCP 50

relative address, jump 40
relative jump ranges 40

reserved memory 17
RESET vector

location 4
reserved 17
with TRAP 53

reset, meaning of xv
resizing data 31
RET instruction 44, 146
return from interrupt 44, 110
RL instruction 147
ROM space mnemonic 17
rotate instruction class 24
rotate left 147

S
S suffix 31, 32
safeguards xvi
SBC instruction 149
SDIV instruction 152
semicolon, meaning of 21
set, meaning of xv
setting bits 38
shift

instruction class 24
left 154, 156
right 160, 164
right extended 162, 166

sign flag 10
signed

divide instruction 152
extension 31
multiply instruction 158
value 32

size
immediate data 28
memory data 32

SLL instruction 154
SLLX instruction 156
SMUL instruction 158
software interrupt 46
software trap 53, 178
source operand 21, 27
source, assembly language 21
Index UM018809-0611

ZNEO® CPU Core
User Manual

19
SP register 36
space, address 15
SPOV register 9, 50
SRA instruction 160
SRAX instruction 162
SRL instruction 164
SRLX instruction 166
stack

allocating space 37
interrupt effect 43
overflow 50
pointer (SP) 36

state machine 2, 4
statement, assembly language 21
STOP instruction 168
SUB instruction 169
subroutine call

absolute 81
instruction 79

subroutine link, unlink 37
subtract instruction 169
subtract with carry 149
suppressing flag changes 129
symbols

bit field 55
expression 65
instruction 65
operand 56

SYSEXCP register 50
system exceptions 49

T
TCM instruction 38, 172
test compliment under mask instruction 38, 172
test under mask instruction 38, 175
testing bits 38
time

execution 6
fetch 5

TM instruction 38, 175
TRAP instruction 53, 178
truncation, data 31
truth table

AND 74
OR 131
XOR 188

two’s complement notation 32

U
U suffix 31, 32
UDIV instruction 180
UDIV64 instruction 182
UGE condition code 12
UGT condition code 12
ULE condition code 12
ULT condition code 12
UMUL instruction 184
unaligned access time 7
unaligned address 19
underscore, meaning of xiv
UNLINK instruction 186
UNLINK, and FP register 37
unsigned

divide instruction 180
divide, 64-bit 182
extension 31
multiply instruction 184

uppercase letters, meaning xvi
user flags 11

V
V flag 10
variables, frame 37
vector

exception 49
interrupt 41, 44
map 16, 17
RESET 4, 17, 53
trap 53

W
W suffix 30, 32
wait states, bus 7
watch-dog timer instruction 187
UM018809-0611 Index

19

ZNEO® CPU Core
User Manual
WDT instruction 187
width, bus 19
word data size 32

X
XOR instruction 188

Z
Z condition code 12
zero extension 31
zero flag 10
Index UM018809-0611

ZNEO® CPU Core
User Manual

199
Customer Support

To share comments, get your technical questions answered, or report issues you may be
experiencing with our products, please visit Zilog’s Technical Support page at
http://support.zilog.com.

To learn more about this product, find additional documentation, or to discover other fac-
ets about Zilog product offerings, please visit the Zilog Knowledge Base at http://
zilog.com/kb or consider participating in the Zilog Forum at http://zilog.com/forum.

This publication is subject to replacement by a later edition. To determine whether a later
edition exists, please visit the Zilog website at http://www.zilog.com.
UM018809-0611 Customer Support

http://support.zilog.com
http://www.zilog.com
http://zilog.com/kb
http://zilog.com/kb
http://zilog.com/forum

200

ZNEO® CPU Core
User Manual
Customer Support UM018809-0611

	ZNEOCPU Core User Manual
	Revision History
	Table of Contents
	List of Figures
	List of Tables
	Manual Objectives
	About This Manual
	Intended Audience
	Manual Organization
	Manual Conventions

	Safeguards

	Architectural Overview
	Features
	Program Control
	Processor Block Diagram
	Fetch Unit
	Execution Unit

	Instruction Cycle Time
	Instruction Fetch Cycles
	Execution Cycles

	Control Registers
	Program Counter Overflow Register
	Stack Pointer Overflow
	Flags Register (FLAGS)
	CPU Control Register (CPUCTL)

	Address Space
	Memory Map
	Internal Nonvolatile Memory
	Internal RAM
	I/O Memory
	I/O Memory Precautions

	External Memory
	Endianness
	Bus Widths

	Assembly Language Introduction
	ZNEO CPU Instruction Classes

	Operand Addressing
	Immediate Data
	Register Addressing
	Direct Memory Addressing
	Memory Data Size
	Resizing Data

	Register-Indirect Memory Addressing
	Loading an Effective Address
	Using the Program Counter as a Base Address
	Memory Address Decrement and Increment
	Using the Stack Pointer (R15)
	Using the Frame Pointer (R14)

	Bit Manipulation
	Clearing Bits (Masked AND)
	Setting Bits (Masked OR)
	Testing Bits (TM and TCM)

	Jump Addressing

	Interrupts
	Vectored Interrupts
	Interrupt Enable and Disable
	Interrupt Processing
	Returning From a Vectored Interrupt
	Interrupt Priority and Nesting
	Software Interrupt Generation

	Polled Interrupts

	System Exceptions
	Program Counter Overflow
	Stack Overflow
	Divide-by-Zero
	Divide Overflow
	Illegal Instruction

	Software Traps
	Instruction Opcodes
	Instruction Set Reference
	Instruction Notation
	Numerical and Expression Notation
	Miscellaneous Abbreviations

	Example Description

	Index
	Customer Support

