
AN027202-0312
Abstract

Zilog’s Z8 Encore! XP® F1680 Series incorporates a best-in-class feature set that is opti-
mized for stepper motor microstepping controls. The features of Z8 Encore! XP F1680
include:

• A fast 11 MHz internal oscillator

• Two analog comparators

• 10-bit Analog-to-Digital Converter (ADC)

• Multichannel PWM timer

• Three general-purpose timers

This Application Note describes how to drive a unipolar stepper motor using the Z8
Encore! XP F1680 MCU’s onboard analog comparators for one-shot feedback current
limiting. It also describes the F1680’s multichannel timer as a microstepper sine/cosine
current generator.

The source code file associated with this application note, AN0272-SC01.zip, is available
for download on zilog.com. This source code has been tested with version 5.0.0 of ZDS II
for Z8 Encore! XP-powered MCUs. Subsequent releases of ZDS II may require you to
modify the code supplied with this application note.

Theory of Operation

Microstepping, or sine/cosine microstepping, is a stepper motor drive technique in which
the current in the motor windings is controlled to approximate a sinusoidal waveform.
Microstepping produces a much smoother rotation than that of a full step drive, plus it pro-
vides greater resolution and freedom from resonance problems because it involves more
steps per revolution.

In a conventional full step drive, an equal amount of current is applied to each of a motor’s
stator coils. The magnetic rotor aligns itself in the coil’s magnetic field. With each motor
step, current is reversed in one of the coils and the rotor realigns to the new magnetic field
to move the rotor one motor step, i.e., 90 degrees. See Figure 1.

Notes:
AN027202-0312
Application Note
Z8 Encore! XP® F1680
Microstepping Controller
 Page 1 of 15

http://www.zilog.com/docs/z8encorexp/appnotes/AN0272-SC01.zip

Z8 Encore! XP® F1680 Microstepping Controller
Application Note
With microstepping, varying amounts of current are applied to a motor’s coils so that the
magnetic field smoothly transitions from one polarity to the next. Each full step is divided
into several microsteps of varying current to produce a larger number of magnetic fields
that the rotor can align with. The result is smoother motor rotation, quieter operation and
greater motor resolution. See Figure 2.

Figure 1. Microstepping

Figure 2. Microsteps of Varying Current
AN027202-0312 Page 2 of 15

Z8 Encore! XP® F1680 Microstepping Controller
Application Note
Hardware Architecture

To proceed from theory to demonstration, we developed an application for a motor that
requires two current generators, one for each coil. This application includes the following
elements:

• A potentiometer for adjusting motor speed

• A switch to turn the motor ON and OFF

• A switch to reverse the direction of the motor

• A switch to advance the motor one step

User Interface

Switches SW1, SW2 and SW3 are pulled down when pressed, and are pulled up by the
F1680 MCU’s internal pull-ups. Speed potentiometer R1 is read by the F1680 MCU’s
internal Successive Approximation Register (SAR) ADC, using VDD as a reference.

Current Generator

The motor’s two current generators use several of the Z8 Encore! XP F1680 MCU’s fea-
tures. Figure 3 displays one of the two current generators.

Figure 3. Current Generator
AN027202-0312 Page 3 of 15

Z8 Encore! XP® F1680 Microstepping Controller
Application Note
The F1680 MCU provides a PWM signal that is averaged by R7 and C5. The PWM duty
cycle represents the desired current to be produced by the generator. R6 and R8 attenuate
the averaged PWM signal so that the PWM signal is scaled properly for the noninverting
input of the F1680’s comparator. R12 is a current sense resistor for the motor’s winding,
while R10 and C6 provide a small amount of delay for the comparator. When Q1 or Q2 is
turned ON, current starts building in the motor winding, and the voltage drop across R12
also builds until the F1680 MCU’s comparator trips at the desired motor current. In some
applications, an additional diode may be required to protect the body diode of each of the
field effect transistors (FETs) from excessive dissipation. A simulation of this process is
shown in Figure 4.

The DisableS and DisableN signals determine the coil’s polarity. These I/O pins are con-
figured as open-drain. Therefore, when the port pin is High, the appropriate transistor is
turned ON with the PWM signal from the comparator, whereas when the port pin is pulled
Low, it turns OFF the coil by pulling the transistor’s gate Low.

Multichannel Timer

The F1680 MCU’s multichannel timer provides two PWMs required for the current gener-
ator’s reference. The multichannel timer has a 16-bit up/down counter with a prescaler and
four independent capture/compare channels that can be used for ONE-SHOT, CONTINU-
OUS, PWM or CAPTURE modes. In PWM output operation, the channel generates a
PWM output signal on the channel output pin (TOutA, B, C or D). The channel output
toggles whenever the timer count matches the channel compare value in the match regis-
ters (MCTCHyH and MCTCHyL) and when the count terminates. See Figure 5.

Figure 4. Simulation
AN027202-0312 Page 4 of 15

Z8 Encore! XP® F1680 Microstepping Controller
Application Note
The MCTCHyH and MCTCHyL match registers are buffered and are written to at any
time without corrupting the PWM. Any changes to the registers are delayed until the next
timer end count.

Comparator

Z8 Encore! XP F1680 MCU features two onboard comparators with programmable inter-
nal references. In this application the comparators are used as freestanding comparators
that free the design from an additional external hardware.

Open-Drain Outputs

An additional feature of the Z8 Encore! Series microcontrollers is the ability for the ports
to be configured as open-drain. This means that the output port pin will not source any
current when it is High but will sink current when it is Low. The ability to use port pins as
open-drain helps to solve awkward design problems that would otherwise require addi-
tional external hardware.

Software Implementation

The application requires the configuration of timers, ports and interrupts, as described in
this section.

Figure 5. Multichannel Timer
AN027202-0312 Page 5 of 15

Z8 Encore! XP® F1680 Microstepping Controller
Application Note
IdleTimers()

The IdleTimers() function configures the following three timers, which are required to
run the microstepper application.

Timer0. Timer0 runs in CONTINUOUS Mode and is used for main loop timing with a
frequency of 60 Hz.

Timer1. Timer1 executes in CONTINUOUS Mode; its frequency is varied for use with
the motor’s speed control. This timer triggers the interrupt service routine (ISR) that
changes the current which is applied to the motor’s windings.

Multichannel Timer. The multichannel timer is used to generate the two PWM signals
used for the motor’s current regulators.

IdlePorts()

The IdlePorts() function configures the ports’ direction, pull-ups, and any alternate
functions that the ports require.

RefreshPorts()

Similar to IdlePorts(), the RefreshPorts() function also configures the ports’
direction, pull-ups and any alternate functions. In noisy environments, port directions can
be corrupted; therefore, it is preferred that the port direction register is refreshed regularly.

MotorISR()

The actual driving of the motor is performed within a single interrupt function which ser-
vices the motor’s current generators and coil enablers. The MotorISR() function is the
Timer1 ISR and is serviced when Timer1 expires, or when requested manually by pressing
the Step key.

This MotorISR() function first reloads Timer1’s reload register with the current speed.
Because this interrupt is serviced when Timer1 expires, Timer1 is close to zero and is
safely reloaded with a new value. If the timer is reloaded with a value lower than its cur-
rent value, then the timer continues to count up until it overflows past 0xFFFF. It then
returns to the value that is currently loaded in the reload register. This overflow momen-
tarily stalls the motor; in effect, the timer must be loaded with its new value at the start of
the ISR.

Next, this function uses the motorFwd variable to determine the direction in which the
motor is turned; i.e., forward or backward. The forward direction increments the pointers
used for driving the motor steps; a reverse direction decrements the pointers. There are
three pointers: two for the current generators and one for the coil enablers. CoilPtr
points to the ROM table Coils[], which defines the coil enablers for each full step.
CoilPtr is changed whenever the polarity of a coil changes. PhaseAPtr and PhaseBPtr
point at ROM tables PhaseA[] and PhaseB[], which each contain timer values corre-
sponding to each microstep. These PhaseA[] and PhaseB[] table values are selected to
AN027202-0312 Page 6 of 15

Z8 Encore! XP® F1680 Microstepping Controller
Application Note
produce a sine and cosine current function for the motor’s coils; these values are loaded
into the multichannel Timer Match registers to generate a PWM signal that is averaged
and used as the comparator’s reference. Including interrupt latency, the entire ISR requires
23.5 µs (minimum) to execute, allowing for fine microsteps and a high pulse-per-minute
speed.

Main Loop

The Main loop cycles at 60 Hz and performs all of the tasks required for the application.
First, all of the port modes are refreshed to insure that they are always in the correct direc-
tion, pull-ups are enabled, alternate functions are selected, open-drain pins are correctly
configured, and interrupts are enabled. Next, the functions for reading the keyboard and
pot are called, and then the User Interface function is called. The Main loop then waits for
the 60 Hz timer to expire before repeating.

DebounceKeyboard()

The DebounceKeyboard() function is called once during every Main loop to read and
debounce the keyboard. This function is highly flexible and can be used in a wide variety
of applications. The function first calls the ReadKeyboard() function to return the status
of any key that is pressed. Before considering any keypress valid, the keyboard must be
enabled by debouncing the condition of all open keys. After the keyboard is enabled, the
same key must be closed for a number of Main loop cycles before it is considered a valid
keypress. After the keypress is considered valid, the keyboard is disabled to prevent the
system from seeing repeat keypresses. The keyboard is not enabled again until all keys
have been debounced in the open condition again. Certain keys are allowed to repeat if
they are held closed; in this application, the Step key repeats if it is held down. The speed
of the repeat, or slewing, has two rates: when the key is first closed it repeats at a slow rate
for a number of cycles and then speeds up and repeats at a much higher rate.

UserInterface()

The UserInterface() function is called once per Main loop. This function acts upon
the keys that are pressed and determines if the motor should turn ON, turn OFF, change
speed, change direction, or step.

ReadKeyboard()

The ReadKeyboard() function is called once per Main loop by the DebounceKey-
board() function. This function performs the keyboard read at the I/O level.

ReadPot()

The ReadPot() function is called once per Main loop by the DebounceKeyboard()
function. This function uses the ADC to read the position of the speed potentiometer.
AN027202-0312 Page 7 of 15

Z8 Encore! XP® F1680 Microstepping Controller
Application Note
Wait()

The Wait() function polls the Timer0 interrupt flag and pauses execution until the timer
trips the flag. The interrupt flag is reset again before exiting.

Testing

A circuit board is built (see the schematic diagram in Schematics on page 10), and a Nip-
pon PF35T-48L4 motor is used as the load. See Figure 6.

The motor is tested from a minimum speed of 19 pulses per second to a speed of 190
pulses per second in both directions, at full speed and single-stepped. The coil current is
measured for proper operation by reading the voltage drop across R12 and R14 with an
oscilloscope; see Figure 7.

The execution time of the Main loop is measured at 47 µs; the execution time of the ISR is
measured at 21 µs. The maximum software microstep speed in this application is calcu-
lated using the following equation:

Figure 6. Printed Circuit Board Connected to Motor

Figure 7. Coil Current
AN027202-0312 Page 8 of 15

Z8 Encore! XP® F1680 Microstepping Controller
Application Note
Modifications

A motor other than the Nippon PF35T-48L4 motor used in this application may require a
different drive voltage and current. Changing the value of sense resistors R12 and R14
changes the motor current. Larger motors may also require a change to the Q1–Q4 values
or additional diodes to protect the body diodes of these transistors.

Additional Microsteps

Additional microsteps can be added by changing the definition of MicroSteps in the
StepperIO.h file and by inserting additional entries into the PhaseA[] and PhaseB[]
tables.

Compensated Sine/Cosine Profiles

As written, the software generates ideal sine/cosine current profiles for the motor. How-
ever, an ideal current profile does not guarantee the best step accuracy. Because of a vary-
ing air gap area, air gap distance, and/or magnetic hysteresis, flux vector direction and
magnitude can deviate from the ideal sine/cosine behavior in the motor. Accuracy can be
improved for a particular motor by altering the entries in the PhaseA[] and PhaseB[]
tables to tailor the sine/cosine profile to the motor.

Summary

The Z8 Encore! XP® F1680 Series MCUs have an ideal set of peripherals for low-cost
microstepping motor control. The F1680’s onboard comparators can be configured for
one-shot feedback current limiting, while the multichannel timer provides a PWM refer-
ence for a sine/cosine current generator. The compact solution developed for the purpose
of this application note requires only 12 I/O pins and a single interrupt for all microstep-
ping functions.

References

The following documentation supports this application note and/or further describes the
Z8 Encore! XP F1680 Series MCU.

• Z8 Encore! XP F1680 Series Product Specification (PS0250)

• eZ8 CPU User Manual (UM0128)

• Zilog Developer Studio II – Z8 Encore! User Manual (UM0130)

• Control of Stepper Motors (http://www.cs.uiowa.edu/~jones/step/)

1 sec – (47 µs * 60)
= 47485 microsteps per second

21 µs
AN027202-0312 Page 9 of 15

http://www.zilog.com/docs/z8encorexp/ps0250.pdf
http://www.cs.uiowa.edu/~jones/step/
http://www.zilog.com/docs/um0128.pdf
http://www.zilog.com/docs/devtools/um0130.pdf

AN0272 Page 10 of 15

® F1680 Microstepping Controller
Application Note

 Appe
02-0312

Z8 Encore! XP

ndix A. Schematics
Figure 8 displays the schematic for the Z8 Encore! XP F1680 MCU-based microstepping controller.

Figure 8. Schematic for Z8 Encore! XP F1680 Microstepping Controller

Z8 Encore! XP® F1680 Microstepping Controller
Application Note
 Appendix B. Project Settings in ZDS II

Figure 9 shows the required debug configuration within the ZDS II Project Settings dialog
for the source code associated with this application note.

Figure 9. Microstepper Motor Debug Configuration
AN027202-0312 Page 11 of 15

Z8 Encore! XP® F1680 Microstepping Controller
Application Note
 Appendix C. Flowcharts

Figures 10 through 16 display the flowcharts for the API functions.

Figure 10. MotorISR() Function Flow
AN027202-0312 Page 12 of 15

Z8 Encore! XP® F1680 Microstepping Controller
Application Note
Figure 11. Main() Function Flow
AN027202-0312 Page 13 of 15

Z8 Encore! XP® F1680 Microstepping Controller
Application Note
Figure 12. DebounceKeyboard() Function Flow
AN027202-0312 Page 14 of 15

Z8 Encore! XP® F1680 Microstepping Controller
Application Note
Figure 13. UserInterface() Function Flow
AN027202-0312 Page 15 of 15

Z8 Encore! XP® F1680 Microstepping Controller
Application Note
Figure 14. ReadKeyboard() Function Flow
AN027202-0312 Page 16 of 15

Z8 Encore! XP® F1680 Microstepping Controller
Application Note
Figure 15. ReadPot() Function Flow
AN027202-0312 Page 17 of 15

Z8 Encore! XP® F1680 Microstepping Controller
Application Note
Figure 16. Wait() Function Flow
AN027202-0312 Page 18 of 15

Z8 Encore! XP® F1680 Microstepping Controller
Application Note
Customer Support

To share comments, get your technical questions answered, or report issues you may be
experiencing with our products, please visit Zilog’s Technical Support page at
http://support.zilog.com.

To learn more about this product, find additional documentation, or to discover other fac-
ets about Zilog product offerings, please visit the Zilog Knowledge Base at http://
zilog.com/kb or consider participating in the Zilog Forum at http://zilog.com/forum.

This publication is subject to replacement by a later edition. To determine whether a later
edition exists, please visit the Zilog website at http://www.zilog.com.

DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.

LIFE SUPPORT POLICY

ZILOG’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)
support or sustain life and whose failure to perform when properly used in accordance with instructions for
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A
critical component is any component in a life support device or system whose failure to perform can be
reasonably expected to cause the failure of the life support device or system or to affect its safety or
effectiveness.

Document Disclaimer

©2012 Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications,
or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES
NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO
DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED
IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED
HEREIN OR OTHERWISE. The information contained within this document has been verified according
to the general principles of electrical and mechanical engineering.

Z8, Z8 Encore! and Z8 Encore! XP are trademarks or registered trademarks of Zilog, Inc. All other product
or service names are the property of their respective owners.

Warning:
AN027202-0312 Page 19 of 15

http://support.zilog.com
http://zilog.com/kb
http://zilog.com/kb
http://zilog.com/forum
http://www.zilog.com

	Z8 Encore! XP® F1680 Microstepping Controller
	Abstract
	Theory of Operation
	Hardware Architecture
	User Interface
	Current Generator
	Multichannel Timer
	Comparator
	Open-Drain Outputs

	Software Implementation
	IdleTimers()
	IdlePorts()
	RefreshPorts()
	MotorISR()
	Main Loop
	DebounceKeyboard()
	UserInterface()
	ReadKeyboard()
	ReadPot()
	Wait()

	Testing
	Modifications
	Summary
	References
	Appendix A. Schematics
	Appendix B. Project Settings in ZDS II
	Appendix C. Flowcharts
	Customer Support

