
ZiLOG Worldwide Headquarters • 532 Race Street • San Jose, CA 95126
Telephone: 408.558.8500 • Fax: 408.558.8300 • www.zilog.com

White Paper

Implementation of
Class B Software

WP001601-0706

http://www.zilog.com

Implementation of Class B Software
White Paper

2

Abstract

The ZiLOG’s Motor Control (MC) Library v1.1.0 is a software library developed
following the International Electrotechnical Commission (IEC, www.iec.ch)
Class B standard. The MC Library v1.1.0 helps to develop applications that run a
sensorless brushless DC (BLDC) motor in constant speed and constant torque
mode. The intent of this white paper is to explain the design, coding, testing, and
configuration management required to comply with the Class B standard. This
white paper provides an example of lift door controller which uses the Class B
standard and guidelines to implement the standard.

Introduction to Class B Software
Class B software detects any fault occurring in the appliance and includes
exception handling to prevent unintended operation of an appliance. Many
household appliances use Class B software. Some common examples are listed
below:

• Microwave oven: Microwave ovens have door locking mechanism that is
interlocked with the operation of the device. The interlock feature ensures
that until the door is locked, you cannot run the appliance. Earlier microwave
ovens were designed using complex mechanical/electrical system, which
had many interlocks. Now these complex interlocking is replaced by
microcontroller and sensor.

• Washing machine: Washing machines have door locking and water-level
sensor interlocked with the operation of the drum through sensor and
microcontroller. When you try to operate the washing machine, it checks if
the door is locked and adequate water level is present in the machine. Only
when both these criteria are satisfied, the machine starts operating. After the
washing is complete, the system ensures that the door does not open until
the drum has stopped completely and all the water has been drained out
from the drum.

Nowadays, household appliances usually inhibit high power inside it and uses this
high power to make things work faster. Some of the examples are listed below:

• High speed—Spinning drum in washing machine and lift doors.

• High voltage—Internal power supply for klystron tube in microwave oven,
photocopying machine, and laser printer.

• Radiation—Microwave and laser in CD recording.
WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper

3

IEC publishes standards for electronic industries and related technologies. Details
on Class B standard and their implementation procedure is obtained from the
following standards:

• IEC 60335-1/ A-1
Household and similar electrical appliances—Safety
Annex—R Part 1: General requirements.

• IEC 60730-1 Copil:20031
Automatic electrical controls for household and Annex—H
Similar use—Part 1: General requirements

General Guidelines for Developing Class B Software
The initial analysis for developing Class B software is to identify the possible faults
that occurs in the system. An effective analysis tool for evaluating faults in a
system is the fault tree analysis. For detailed information on fault tree analysis,
refer the following link.

http://www.uscg.mil/hq/gm/risk/e-guidelines/rbdm/html/vol3/00/v3-00.htm

Lift door controller is considered as an example for carrying out fault tree analysis
to find out the various faults and the ways to mitigate them.

Initially the normal operation of the lift door controller without Class B features is
explained in the following section. Figure 1 illustrates the lift door controller block
diagram. Figure 2 illustrates the flow chart for the lift door controller without
Class B features.
WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper

4

Figure 1. Lift Door Controller Block Diagram

RELAY

MICROCONTROLLER FOR
DOOR CONTROL

115 V,
60 Hz

DOOR OPERATING MOTOR

IR BEAM

MOTOR CIRCUIT

MASTER

FUSE
WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper

5

Figure 2. Flow Chart for Normal Operation of Lift Door Controller

Command from

MASTER to open door

Operate relay to close motor circuit

Wait T1 time for door to open completely

Release relay to open motor circuit

Wait T2 time for occupants to enter and exit

Activate IR-LED for starting IR beam

IR detected

at
detector?

Voice message: Please allow the door to close

Voice message: Please allow the door to close

Operate relay to close motor circuit

NO

YES

Start to wait T3 time for door to close completely

YES

NO
Release relay to open motor circuit

Is time T3

complete?

 IR detected

at

detector?

NO

YES

De-activate IR-LED for stopping IR beam

Command to MASTER that door is closed
WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper

6

Pseudocode for Lift Door Controller
The following list provides the pseudocode for normal operation of lift door
controller without Class B features:

1. Wait for command from MASTER to open the door.

2. Send command to relay to close motor circuit.

3. Wait for time T1, for the door to open completely.

4. Send command to relay to open the motor circuit.

5. Wait for time T2, for occupant to enter and exit.

6. Start the IR beam through IR-LED.

7. Check for IR beam detection at the detector.

8. If IR beam is not detected, then send voice message through a speaker as
‘Please allow the door to close’. The IR loop continues till IR beam is
detected.

9. If IR beam is detected, then send command to relay to close the motor
circuit.

10. Wait for a time T3, for the door to close completely.

11. Check for IR beam detection.

12. Stop the IR beam through IR-LED.

13. Send command to MASTER that door is closed.

Software Coding for Normal Operation of Lift Door Controller
/***

* Code for lift door controller without Class B features

***/
while(!(PORTA & MASTER_COMMAND))
{

/* wait for command input from MASTER to open door */
}

/* command received from MASTER to open door */

PORTA |= RELAY_ON;
/* relay energized to close motor circuit */

for(i = 0; i <= T1; i++)
WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper

7

{
/* wait for time T1, for the door to completely open */

}

PORTA &= ~RELAY_ON;
/* relay de-energized to open motor circuit */

for(i = 0; i <= T2; i++)
{

/* wait for time T2, for the occupants to enter or exit
*/

}

/* time to close the door. Check if the door is clear of
occupants */
PORTA |= LED_ON; /* start IR beam */

/* if IR not detected at sensor, announce through speaker
to clear the door */
while(!(PORTA & IR_DETECTED)) /* IR not detected */
{

send_voice();
/* function for speaker to announce ‘Please allow the
door to close’*/

}
/* IR detected by sensor and hence door is closed */

PORTA |= RELAY_ON;
/* relay energized to close motor circuit */

/* wait for time T3, for the door to get closed */
for(i = 0; i <= T3; i++)
{

/* During waiting time T3, check if IR beam is
interrupted */
while(!(PORTA & IR_DETECTED)) /* IR not detected */
{

PORTA &= ~RELAY_ON;
/* relay de-energized to open motor circuit */
send_voice();
/* function for speaker to announce ‘Please allow
the door to close’*/

}

WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper

8

}
/* door is closed now */
PORTA &= ~LED_ON; /* stop IR beam */

/* send command to MASTER that door is closed */

Fault Tree Analysis for Lift Door Controller
The following list describes the various steps involved in the fault tree analysis for
lift door controller.

1. Define the system of interest

- Intended function—To control the opening and closing of the lift door with-
out causing any inconvenience to occupants.

- Physical boundaries—Communication with MASTER.

- Analytical boundaries—Ignore wiring faults; ignore power supply failure.

- Initial conditions—Relay open, motor not operating and microcontroller
waiting for command from MASTER to open the door.

2. Define the top event for analysis

- Door fails to open completely.

- Door closes while the occupants are still at door.

- Door fails to close completely.

3. Define the treetop structure

Figure 3. Top Level Fault Analysis-1(Tree Top Structure 1)

Fuse blownRelay opensMotor fails

Door fails to open completely
WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper

9

Figure 4. Top Level Fault Analysis-2 (Tree Top Structure 2)

Figure 5. Top Level Fault Analysis-3 (Tree Top Structure 3)

Figure 6 through Figure 8 illustrates the detailed fault tree analysis for the lift door
controller.

Door closes while

occupant still at door

Relay closes

Fuse blown IR system failsRelay opensMotor fails

Door fails to close completely
WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper

10
Figure 6. Fault Tree for Entire System

Unintended operation of door

Door fails to
open completely

Door fails
 to close completely

Motor fails Relay opens Motor fails IR system failsRelay opens

Relay closes

Insul
Fail

Winding
broken

Bearing
Fail

Rotor
stator
stuck

Winding
broken

Contacts
faulty

Out -2Out -1

Fuse
blown

Fuse
blown

Door closes while
occupant still at door

Out-3

Electrical

fault
Mechanical

fault
Relay fault Relay

mis-triggered

Emitter
section
fault

Detector
section

fault

Register

fault

Memory
fault

Clock
fault

Interrupt

fault

PC
 Fault

Fault in
power

electronics
driver

Fault in

microcontroller

Fault in
LED

Fault in

microcontroller

Fault in
sensor

Fault in

microcontroller
WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper

11
Figure 7. Fault Tree for Non-Fault Detection Segment

Figure 8. Fault Tree for Fault Detection Segment

From the fault tree analysis, the following faults are identified, which results in an
unintended operation of the system:

• Motor insulation failure

• Motor winding broken

• Bearing failure

• Rotor and stator stuck

Fault in non-fault detection
segment

Register
fault

PC
fault

Interrupt
fault

Clock
fault

Flash
fault

RAM
fault

Analog
fault

OR

Non-compliance to software
Class B

Register
fault

WDT
module

fault

Clock
fault

Invariable
memory

fault

Variable
memory

fault

Analog
input
fault

Interrupt
related

fault

OR

PC
fault
WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper
• Fuse blown

• Relay winding broken

• Fault in relay contact

• Fault in power electronic driver

• Fault in IR-LED

• Fault in IR-sensor

• Memory fault in microcontroller

• Register fault in microcontroller

• Clock fault in microcontroller

• Interrupt fault in microcontroller

• Program counter fault in microcontroller

Acceptable Measures
The following measures detects the occurrence of fault in lift door controller:

• Current sensor (Hall sensor or current transformer or shunt resistor) placed
external to the motor circuit senses the flow of current. The output of current
sensor applied to the microcontroller. The software code is modified to
include feature that check the presence/absence of current in motor circuit.

• Redundant IR-sensor: This feature needs another IR-detector to be placed
beside the actual IR-sensor. The software code is modified to check both the
actual and redundant sensor; and when both are verified to be true, the
control moves to the next statement.

• Word protection with single bit redundancy1: This memory test is done
periodically during run time to detect any fault occurring in Flash (invariable
memory).

• Static memory test2: This memory test is done periodically during run time to
detect any fault in RAM (variable memory).

• Static memory test: This memory test is done periodically during run time to
detect any fault occurring in CPU register.

• Independent time slot monitoring3: Used for detecting fault in program
counter.

1.A fault/error control technique where a single bit is added to each word in the memory
area under test and saved, creating either even parity or odd parity. As each word is read,
a parity check is conducted.
2.A fault/error control technique which is intended to detect only static errors.
WP001601-0706

Implementation of Class B Software
White Paper

13
4. Primary clock monitor: Used for continuous monitoring of primary clock and
generate interrupt in case of failure. If an interrupt is generated, Watchdog
timer (WDT) takes control over the execution of code in ISR.

Table 1 summarizes the various faults and acceptable measures for the lift door
controller.

3.A fault/error control technique in which timing devices with an independent time base are
periodically triggered in order to monitor the program function and sequence.

Table 1. Fault and Acceptable Measures for Lift Door Controller

No Component Sub-component Fault/Error Acceptable Measures
1 CPU Register Stuck at Periodic self-test using static

memory test.

Program counter Stuck at Independent time slot
monitoring.

2 Interrupt handling
and execution

No interrupt or too
frequent interrupt

Time slot monitoring.

3 Clock Wrong frequency Time slot monitoring.

4 Memory Invariable memorya All single bit faults Word protection with single bit
redundancy.

Variable memoryb DC fault Word protection with single bit
redundancy.

Addressing (both
variable and
invariable memory)

Stuck at Word protection with single bit
parity including the address.

5 Input/Output
periphery

Analog MUX for
current sense

Wrong addressing Plausibility checkc

Digital input from
IR-sensor

Plausibility check

6 Motor circuit Motor Winding failure Current sense

Insulation failure Current sense

Bearing failure Current sense

Rotor and stator stuck Current sense

Fuse blown Current sense

7 Relay circuit Relay Winding failure Current sense

Faulty contact

Power electronics
driver

Current sense
WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper

14
As a requirement for Class B standard4,the fault detection and acceptable
measure for sub-system inside the microcontroller must be complying with the
measures listed in IEC standard.

Based on the functions performed by software code, the software code is divided
into two segments as:

• Fault detection segment: The fault detection segment detects and mitigates
each fault. The mitigation of each fault is carried out by completely shutting
down the system or by reducing the intensity of the cause of fault.

• Non-fault detection segment: The non-fault detection segment carries out
other function to take care of proper functioning of the apparatus, like, for
carrying out the function of running the motor.

If an exception occurs in the fault detection segment of
software without proper handling, then the software will no
longer comply to Class B standard. Exceptions like this must be
documented in manuals for the customer to know about them.

Control Response for Faults
Once the faults are detected, the designer needs to decide the way in which the
system must respond to a detected fault. The control response depends on the
application and the way the specification wants the system to perform.

Example—when a fault in IR circuit is detected, a designer might want that only
the lift to be stopped, while another designer might want an announcement
through the speaker for the specific fault that is detected.
Table 2 lists some of the probable responses that occurs in practical
application/requirement.

8 IR circuit IR LED Fault in LED Redundant sensor

IR sensor Fault in sensor Redundant sensor
a. Memory range in a processor system containing data which is not intended to vary during program execution.
b. Memory range in a processor system containing data which is intended to vary during program execution.
c. A fault/error control technique in which program execution, inputs or outputs are checked for inadmissible

program sequence, timing or data.

4.IEC60730-1/A1. Table-H.11.12.7 provides guidelines for identifying a list of faults and
acceptable measures to be included in the software code.

Table 1. Fault and Acceptable Measures for Lift Door Controller (Continued)

Note:
WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper

15
Software Coding for Non-Fault Detection Segment
/***/
The following Code is the modified version of existing
normal code for lift door controller for detecting and
responding to the fault.
/***/

while(!(PORTA & MASTER_COMMAND))
{

/* wait for command input from MASTER to open door */
}
/* command received from MASTER to open door */

PORTA |= RELAY_ON;
/* relay energized to close motor circuit */

for(i = 0; i <= T1; i++)
{

check_current_ON();
/* check for current in motor circuit, it helps in
detecting if the motor stops in between and the door
fails to open completely */

Table 2. Control Response for Faults

Fault Control Response for Fault
Fault in register Stop the lift and announce through

speaker as request for maintenance.Fault in program counter

Faulty interrupt

Faulty clock frequency

Single bit fault in Flash memory

Fault in RAM

Fault in motor circuit (winding broken,
insulation short, and fuse blown)

Stop the lift and announce through
speaker as request for maintenance on
motor circuit.

Fault in relay circuit or power
electronics driver

Stop the lift and announce through
speaker as request for maintenance on
relay circuit.

Fault in IR circuit Stop the lift and announce through
speaker as request for maintenance on
sensor and emitter.
WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper

16
/* wait for time T1, for the door to open completely*/
}

PORTA &= ~RELAY_ON;
/* relay de-energized to open motor circuit */

for(i = 0; i <= T2; i++)
{

check_current_OFF();
/* check that no current is flowing in the motor
circuit, so that motor does not start running while the
occupants are at the door */
/* wait for time T2, for the occupants to come out or
get in */

}

/* time to close the door. Check if the door is clear of
occupants */
PORTA |= LED_ON; /* start IR beam */

while(!(PORTA & IR_DETECTED))
/* IR not detected by primary sensor */

{
if(!(PORTA & IR_REDUNDANT_DETECTED))
/* IR not detected by redundant sensor also. It is true
that someone is at the door. Hence announce to
occupants to clear the door */

{
send_voice();
/* function for speaker to announce ‘Please allow
the door to close’ */
}
else
/* if redundant sensor detect IR, means primary
sensor is faulty */
{
send_voice();
/* announce that ‘IR_detector is faulty’ */
}

}
/* IR detected by sensor and hence door is closed */

PORTA |= RELAY_ON;
/* relay energized to close motor circuit */
WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper

17
/* wait for time T3, for the door to get closed */
for(i = 0; i <= T3; i++)
{

check_current_ON();
/* check for current in motor circuit, it helps in
detecting if the motor stops in between and the door
fails to close completely */
/* During waiting time T3, check if IR beam is
interrupted */
while(!(PORTA & IR_DETECTED)) /* IR not detected */
{
PORTA &= ~RELAY_ON;
/* relay de-energized to open motor circuit */
send_voice();
/* function for speaker to announce ‘Please allow the
door to close’ */
}

}
/* door is closed now */
PORTA &= ~LED_ON; /* stop IR beam */

/* send command to MASTER that door is closed */

Software Coding for Fault Detection Segment
/***
* This function checks if current is flowing in the motor
circuit and is within the limits. This function is to be
used during opening or closing lift door.
* This code will prevent unintended working of lift door.
If any fault occurs in
* 1. Motor, 2. Fuse 3. Relay circuit, 4. Power electronics
driver for relay coil, the working of door motor is
interrupted.
***/
unsigned char check_current_ON(void)
{
while (ADCCTL0 & 0x80);
/* Wait for end of conversion */
ADCCTL0 = (0x30 | CURRENTSENSE);
/* Enable ADC channel for bus voltage */
ADCCTL0 |= 0x80; /* Start conversion */
WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper

18
while (ADCCTL0 & 0x80);
/* Wait for end of conversion */
motor_current = ADCD_H;
/* load current value from ADC-register to another */
if((motor_current > MIN_CURRENT) && (motor_current <=
MAX_CURRENT))
{
return(0x00); /* 0x00 implies SUCCESS */
}
else
{
/* Emergency Stop and sound alarm accordingly */
}
}
/***
* This function checks if no current is flowing in the
motor circuit. This function ensures that the motor does
not start running when the occupants are at the lift door.
* This code will prevent the fault in relay contacts
shorted by external conducting material, when the relay is
still de-energized.
***/
unsigned char check_current_OFF(void)
{
while (ADCCTL0 & 0x80);
/* Wait for end of conversion */
ADCCTL0 = (0x30 | CURRENTSENSE);
/* Enable ADC channel for bus voltage */
ADCCTL0 |= 0x80;
/* Start conversion */
while (ADCCTL0 & 0x80);
/* Wait for end of conversion */
motor_current = ADCD_H;
/* load value of current from ADC-register to another */
if((motor_current == 0x00) && (motor_current <
MIN_CURRENT))
{
return(0x00); /* 0x00 implies SUCCESS */
}
else
{
/* Emergency Stop and sound alarm accordingly */
}
}

WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper

19
Software Coding for Fault Detection Segment
/***
* The function runs periodically through a timer interrupt
to detect fault in memory and CPU register.
***/
#pragma interrupt
timer0_interrupt_service_routine(void)
{
static unsigned char step = 0x00;

if(step == 0x00)
{
FLASH_memory_test();
/* check appendix for code implementation */
}
if(step == 0x00)
{
RAM_memory_test();
/* check appendix for code implementation */
}
if(step == 0x00)
{
register_test();
/* check appendix for code implementation */
}

}

/***
* Additionally initialize WDT, which takes care of
detection of faults like clock fault, interrupt fault,
program counter fault etc. See appendix for examples on
detection of these faults.
***/
void init_wdt(void)
{

WDTH = 0x55; /* unlock sequence - 1 */
WDTH = 0xAA; /* unlock sequence - 2 */
WDTH = 0x03; /* load 0x0300 = 77 ms */
WDTL = 0x00;

}

WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper

20
Software Testing
Like any standard software development process, the development of Class B
compliant software also flows through the testing phase. It comprise of:

1. Unit testing

2. Integration testing

3. System testing

Documents related to software testing
The following documents must be provided to the standard agency during
certification as a part of testing/validation phase of software:

• Unit test plan (UTP)—The UTP must cover the test case ID, description of the
test case (which particular module/feature of software will be tested using this
test case ID), test topology with details of hardware and software settings,
environment and external dependencies, procedure for conducting the test,
expected output, and pass/fail criteria. In addition, the test plan specifies the
point from where the test must be resumed if a test case fails in between.
The testing must cover all the possible modes of operation; memory models
etc., and each test case must be traceable to the software design specification
through a requirement traceable matrix.

• Unit test report (UTR)—The UTR must record the outcome of each test
cases, date and time of testing, person responsible for testing, and remark as
the test has passed or failed.

• System test plan (STP)—The content of STP is similar to UTP except the test
cases must be designed keeping in mind about the final application and how
individual modules interact with each other to make the final system.

• System test report (STR)—The format of STR is similar to UTR while the
content is based on the test cases as planned in the STP.

Tests to be carried out as a part of integration testing. Generating of related
documents like integration test plan and integration test report is skipped for
smaller applications with limited number of individual modules, where system test
itself handles all the cases of interconnection of modules to form the entire
application.

Unit testing
During unit testing, the features of Class B are tested. The faults identified through
the fault tree analysis are listed and during each test, the fault is simulated in the
system. Then the system response is recorded. If all the faults are detected and
WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper

21
there is no unintended operation of system due to the fault, then the implementa-
tion of Class B feature is declared to be passed. The following section explains
the unit test plan for testing each of the Class B features of software.

Test Case ID UT_Negative_001
Description This is a negative test case to detect the fault in motor circuit

when the motor stops half the way while opening the door.
Test topology Test set up is a simple connection of a switch in motor circuit

by which the motor circuit is broken (simulating a fault).
Precondition None
Inputs No input parameters.
Procedure When the door is opening and is half the way open, break the

motor circuit by opening the switch.
Outputs The door stops and specific message is announced through

the speaker that ‘motor circuit is broken and need
maintenance’.

Remarks if any
--
Test Case ID UT_Negative_002
Description This is a negative test case used to detect fault in motor circuit

when the motor starts and door starts closing while occupants
are still at door.

Test topology Test set up is a simple connection of a switch across the relay
contacts in motor circuit by which the motor circuit is closed
(simulating a fault).

Precondition None
Inputs No input parameters.
Procedure After the door opens and the occupants are suppose to move

in or out of lift, short the relay contact.
Outputs The door does not close and specific message is announced

through the speaker ‘that motor circuit has a fault and needs
maintenance’.

Remarks if any
--
Test Case ID UT_Negative_003
WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper

22
Description This is a negative test case used to detect the fault in IR
detection circuit when the sensor is faulty.

Test topology Access to the IR sensor is required.
Precondition None
Inputs No input parameters.
Procedure After the door opens and the occupants are suppose to move

in or out of lift, interrupt the IR beam to sensor by an opaque
object.

Outputs The door does not close and specific message is announced
through speaker that ‘IR sensor is faulty and needs
maintenance’.

Remarks if any
--

Test Case ID UT_Negative_004
Description This is a negative test case used to test the situation when the

IR beam is blocked by occupant in lift.
Test topology Access to the both IR sensor is required.
Precondition None
Inputs No input parameters.
Procedure After the door opens and the occupants are suppose to move

in or out of lift, interrupt both the IR beam to sensor by an
opaque object.

Outputs The door does not close and specific message is announced
through speakers that ‘please allow the door to close’.

Remarks if any
--
Test Case ID UT_Negative_005
Description This is a negative test case used to detect the fault in motor

circuit when the motor stops half the way while closing the
door.

Test topology Test set up is a simple connection of a switch in motor circuit
by which the motor circuit is broken (simulating a fault).

Precondition None
Inputs No input parameters.
WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper

23
Procedure When the door is closing and is half the way close, break the
motor circuit by opening the switch.

Outputs The door stops but specific message is announced through
the speaker that ‘motor circuit is broken and needs
maintenance’.

Remarks if any
--
Test Case ID UT_Negative_006
Description This is a negative test case used to detect fault in RAM of

microcontroller.
Test topology Test set up target board connected to PC through the

debugger.
Precondition None
Inputs No input parameters.
Procedure Simulate a static fault in RAM of microcontroller through a

separate software code.
Outputs The system stops.
Remarks if any
--
Test Case IDUT_Negative_007
Description This is a negative test case used to detect fault in Flash of

microcontroller.
Test topology Test set up target board connected to PC through the

debugger.
Precondition None
Inputs No input parameters.
Procedure Simulate a single bit fault in Flash of microcontroller through a

separate software code.
Outputs The system stops.
Remarks if any
--
Test Case IDUT_Negative_008
Description This is a negative test case used to detect fault in CPU regis-

ter of microcontroller.
Test topology Test set up target board connected to PC through the

debugger.
WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper

24
Precondition None
Inputs No input parameters.
Procedure Simulate a static fault in register of microcontroller through a

separate software code.
Outputs The system stops.
Remarks if any
--
Test Case ID UT_Negative_009
Description This is a negative test case used to detect fault in clock of

microcontroller.
Test topology Test set up target board connected to PC through the

debugger.
Precondition None
Inputs No input parameters.
Procedure Simulate a clock fault in microcontroller by shorting the XIN

pin to ground through a 1 K resistor.
Outputs The system stops.
Remarks if any
--
Test Case ID UT_Negative_010
Description This is a negative test case used to detect fault in program

counter of microcontroller.
Test topology Test set up target board connected to PC through the

debugger.
Precondition None
Inputs No input parameters.
Procedure Simulate a program counter fault in microcontroller by jumping

to an unknown location in memory.
Outputs The system stops (as the WDT does not get a chance to

refresh and hence resets the microcontroller).
Remarks if any
--
WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper

25
System Testing
During system testing, various modules are combined to provide the function of
the overall system. The plan for system testing is dependent on the application
and must also have test cases to test the performance of fault detection module of
software.

Configuration Management of Software
The following list provides the procedure for software configuration management:

1. Requirement change management: The requirement of each feature (like
detection of different faults) must be document in the form of a requirement
traceability matrix. Whenever there is a change in the requirement or any
feature is enhanced, there must be a proper documentation regarding the
reason for change, person responsible for updating the code to implement
the change, version number from which the change is implemented in code,
test cases and test results for testing the changed requirement.

2. Record documenting problems, changes made and phase of the life
cycle: Any issue of the software (or specific feature of software) must be
corrected by making record of changes made. The change starts with writing
a change-request (CR) on the version control system, which states the
symptoms of problem. The change process must follow the guidelines as
specified in the requirement change management. Once the problem is
resolved, the CR is closed.

3. Historical traceability: The traceability of each feature is possible from
design phase to testing phase through a requirement traceability matrix.
Once the software is released, the traceability must be possible by
implementing proper documentation of changes made, as specified in the
above points.

4. Configuration identification scheme: Whenever a change is employed
and newer version of software is released, it must be carried out by using
proper base-line and labeling scheme, which must follow a format as
decided and recorded in quality documents.

5. Methods and activities used to formally control receipt, storage,
handling and release of configurable items: Software to be configured
must have proper version control with adequate transparency on storage of
each version, testing and validation before release etc. There must be
proper documentation for each step to provide witness during the audit and
review process.
WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper

26
Outlined Steps for Class B Certification
After the completion of software testing, the software is audited by the agencies to
obtain Class B certification. Some of the agencies capable of performing Class B
certification test include:

• Underwriter's Laboratory (UL), Northbrook, IL, United states
(Anura.S.Fernando@us.ul.com, Francis.G.Ladonne@us.ul.com;
Joseph.S.Antony@us.ul.com).

• KEMA Quality B.V, The Netherlands (Nijhuis, Eddie
[Eddie.Nijhuis@kema.com]).

• LCIE S.A. France (michel.brenon@lcie.fr).

Figure 9 displays the general steps of UL certification process.

Figure 9. UL Certification Process

Optional consultation

Client request for certification

UL programmable systems certificate

Software maintenance review

Detailed design review
WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper

27
Optional Consultation

Optional consultation includes the following steps:

1. Informational seminar on relevant standards.

2. Assessment of preparedness (Initial review).

3. Design solutions for compliance.

4. Development of maintenance program.
WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper

28
Client Request for Certification

Client request for certification includes the following steps:

1. Design information provided to UL.

2. Identification of applicable standards.

Detailed Design Review
Detailed design review includes the following steps:

1. Documentation review.

2. Process walkthrough.

3. UL witness client testing of programmable system.

4. Review software and electronic system for compliance.

UL Programmable Systems Certificate
UL issues programmable system certification to specified US and international
standards to complement UL listing or recognition.

Software Maintenance Review
Periodic assessments of modification to software and programmable components.

ReCertification
When software is designed to be Class B compliant, the fault detection segment is
protected from user alteration. This implies that if the software segment is altered,
then the entire software has to go through a process of recertification. The same
rule applies for MC Library v1.1.0.

Developing Class B Compliant Software Using MC Library v1.1.0
The following steps provide instructions for developing Class B compliant
software using MC Library v1.1.0:

1. MCConfigLib()—When this API is called, it performs a static memory test
on RAM, CPU registers, writes redundant bits for Flash memory and
initializes WDT for an overflow period of 77 ms.

2. /***Call other APIs to initialize modules like ADC, Timer-0 ***/.

3. MCInitPwm()—When this API is called, it initializes the PWM module along
with the interrupt service routine for PWM. The PWM-ISR carries out the
tasks for fault detection during run-time.

4. EI()—The interrupt is globally enabled.
WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper

29
After completing the above steps, the motor starts functioning and the PWM-ISR
periodically runs each of the tests for fault detection.

The fault in clock frequency is detected by a special hardware module: Clock
failure detection. Whenever a fault in clock frequency is detected, the primary
clock source is switched to WDT clock source and an interrupt is generated.
The code inside the interrupt service routine then stops the motor.

From the above explanation, it is clear that developing of Class B compliant
software using MC Library v1.1.0 is very simple and straight forward. Since most
of the fault detection task runs in back ground, you do not notice a difference in
code. Some APIs are defined for detecting faults and their location in the library.

• MCGetLastError()—Retrieves the fault detected in the system.

• MCGetLastErrorLocation()—Retrieves the memory location where fault
is detected in the system (only for RAM and FLASH faults).

• MCCheckInterrupt()—Checks if interrupt is disabled globally and stops
the motor accordingly.

These APIs are used to know more about the fault during run-time.

The MC Library v1.1.0 falls under the category of Off the shelf software, which is
used to run a motor along with the fault detection feature of Class B directly after
purchasing it. Advantages of this feature include:

• Understanding the complexity of motor control and how to make it Class B
compliant is not required.

• Provides a quick turn around time for development of final product.

• Refer to the white paper/manuals provided with the software library and
develop your own Class B compliant application with ease.

• Certification process will be much easier than developing an entire code, as
the code for motor control is already certified through MC Library v1.1.0.

Even with the Off the shelf software feature of MC Library v1.1.0, you must
understand that just using the library will not make your software as Class B
compliant. Because during designing/testing MC Library v1.1.0, details regarding
user application were not known. Hence even after you develop your code using
MC Library v1.1.0, you have to go for a certification for your own code.

The certification process might be handled differently by each of standard
agencies. But basic steps are same before approaching the agencies for
certification:

• Proper understanding of fault detection and non-fault detection related
software sections.

• Carrying out rigorous risk analysis/fault tree analysis.
WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper

30
• Mitigation of identified faults in software.

• Proper documentation of project schedule, test plans, and test reports.

• Documentation of user manuals and specific documents for Class B
standard. Table 3 lists the documents required as a part of Class B standard.

• Carry out unit test and system test.

• Robust version management.

Conclusion
The information in this white paper clearly states that, using MC Library v1.1.0 you
can effectively develop a motor control solution which is Class B compliant. This
can be developed in minimum time and with minimum information on the
complexity of the product.

Table 3. Documents Required for Certification

No Document Name Content
1 Software sequence documentation Flow charts explaining the logic of each software

routine for detecting specific faults.

2 Program documentation Pseudocode explaining the logic of each software
routine for detecting specific faults.

3 Software fault analysis Documentation on risk analysis carried out in form of
“Fault tree analysis”, for drilling down various faults
that occurs in the system.

4 Analytical measure and
fault control techniques

How are faults controlled (mitigated) after their
detection, so that any unintended operation of the
system is prevented.

5 Software fault detection time The period of time between the occurrence of a
fault/error and the initiation by the software of a
declared control response.

6 Modular design Description of modules in software.
WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper

31
Appendix A—Fault Tree for MC Library v1.1.0
MC Library v1.1.0 is broadly classified into two software segments performing
different functionality:

1. Non-fault detection segment: Software segment which takes care of
normal functioning of motor.

2. Fault detection segment: Software segment which periodically checks for
any fault occurring in the non-fault detection segment.

The non-fault detection segment contains API, which are called in user application
to initialize the modules in controller. They in turn control the working of the motor.
Any fault which occurs in the system under non-fault detection software segment
results in deviation of operation of motor from the normal behavior.

The fault detection segment contains code, which is meant to detect any fault in
the non-fault detection segment of system. This software segment runs in
background (during startup or periodically during run-time). The startup test is
performed when the MCConfiglib() API is called by user application. The
periodic test is performed by PWM-interrupt. Any fault occurring in the fault
detection segment results in making MC library unable to detect faults occurring in
non-fault detection segment. Literally, it means that if a fault occurs in fault detec-
tion segment, any or all faults occurring in non-fault detection segment will go
undetected and hence make MC library non-compliant to software Class B.

Figure 10 through Figure 12 illustrates the fault tree analysis carried out on
MC Library v1.1.0 to detect different faults that might occur.

Figure 10: Fault tree analysis for non-fault detection software segment.

Figure 11: Detailed fault tree analysis for non-fault detection software segment.

Figure 12: Detailed fault tree analysis for fault detection software segment.
WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper

32
Figure 10. Fault Tree Analysis for Non-Fault Detection Segment

Basic Events
A—CPU Register fault

B—Program Counter fault

C—Interrupt handling and execution fault

D—Clock Fault

E—Invariable memory5 fault

F—Variable memory6 fault

G—Analog input fault

Top Events
Y—Fault in Non-fault detection segment.

5.Memory range in a processor system containing data which is not intended to vary during
program execution.
6.Memory range in a processor system containing data which is intended to vary during
program execution.

A B C D E F G

OR

Y

WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper

33
Figure 11. Detailed Fault Tree Analysis for Non-Fault Detection Segment

Basic Events
A—Register fault

B—Interrupt handling and execution fault

C—Clock Fault

D—Invariable memory fault

E—Variable memory fault

Intermediate Events
F—Timer0 module related fault

M—ADC module related fault

N—OpAmp module related fault

OR

Y Z

Performance of motor deviates from normal

OR

G

OR

F

A B C D D

OR

M

A B C D D

OR

A

F

 D E F A B C D E
WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper

34
Figure 12. Detailed Fault Tree Analysis for Fault Detection Segment

Basic Events
A—CPU register faults

B—WDT module faults

C—Clock Faults

D—Invariable memory faults

E—Variable memory faults

F—Analog input faults

Intermediate Events
M—Fault to detect a fault related to interrupt handling

A C D E F

B

OR

Non-compliance to software Class-B

M N
WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper

35
Appendix B—Acceptable Measures Adopted in MC Library v1.1.0
for Fault Detection
Table 4. Fault and Acceptable Measures
No Component Sub-component Fault/Error Acceptable Measures
1 CPU Register Stuck at Periodic self-test using static

memory test.

Program Counter Stuck at Time slot monitoring.

2 Interrupt handling
and execution

No interrupt or too
frequent interrupt

Time slot monitoring.

3 Clock Wrong frequency Clock failure detection module.

4 Memory Invariable memory All single bit faults Word protection with single bit
redundancy.

Variable memory DC fault Word protection with single bit
redundancy and static memory
test.

Addressing (both
variable and
invariable memory)

Not valid for Z8FMC16100, with internal memory.
Previous tests conducted on RAM and Flash memory
would highlight any fault.

5 Internal data path Not valid for Z8FMC16100, with internal memory. Previous tests conducted
on RAM and Flash memory would highlight any fault.

6 External
Communication

No external communication is used in MC Library v1.1.0.

7 Input/Output
Periphery

DC bus voltage Over voltage Plausibility check

Under voltage

Over current

8 Custom chips
(ASIC, GAL)

No ASIC, GAL MC 1.1.0.
WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper

36
Appendix C—Control Response for Faults in MC Library v1.1.0
Table 5. Faults and Control Response

Fault Detection of Fault
Control Response
for Fault

Struck at fault in CPU
register

Static Memory test is performed on the registers to
detect stuck at fault. Since, this fault can occur any
time when CPU is running, the test must be done
periodically to detect occurrence of faults.

Stop the motor if fault
is detected.

Stuck at fault in
program counter

A WDT is run and is set to Reset the CPU when it
overflows. When program counter is faulty, normal
program sequence is disturbed and hence WDT
overflows.

Reset the CPU.

Faulty Interrupt WDT to monitor interrupt occurrence. Stop the motor if fault
is detected.

Wrong clock frequency Detection of wrong clock frequency is done by an on-
chip hardware module that monitors the clock
frequency, periodically.

Stop the motor if fault
is detected.

Single bit fault in
Flash memory

During startup, check the content of Flash memory
and write redundant bit based on parity for each byte
at a different location.
During run-time, verify the parity bit for each byte.

Stop the motor if fault
is detected.

DC fault in RAM When writing data for a RAM variable, verify the
content and write redundant bit based on parity at a
different location. During read, verify the parity bit.

Stop the motor if fault
is detected.

Stuck at fault in
Flash and RAM

Carry out single redundant bit test. Stop the motor if fault
is detected.

Fault in analog input/
output and multiplexer

Periodically check if the values are within limits. Stop the motor if fault
is detected.
WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper

37
Appendix D—Unit Test
Unit test carried out on MC Library v1.1.0 is implemented through a unit test plan.
The unit test plan broadly covers the following sections:

Test Topology
This section explains the topology of test to be carried out. A schematic displays
the interconnection of ZiLOG’s Z8FMC16100 board, power supply, debugger, and
serial port to a PC. The topology is helpful for test engineers to understand the
test environment.

Hardware
The test is conducted on ZiLOG’s Z8FMC16100KIT along with the motor control
application board. Motor is Linix 3-phase BLDC motor supplied with the kit.
Program is downloaded through opto-isolated debugger and command for test
input sent through UART interfaced to COM2.

Software
The following software required for test on MC Library v1.1.0 —ZDS II Z8 Encore!
v4.10.0, HyperTerminal. The test-code is designed which includes initialization
routine for UART and it accepts input based on which a particular fault is
simulated.

Unit Test Case by Simulating CPU Register Fault
The code for MC Library v1.1.0 is loaded into the Flash memory of Z8FMC16100
and the motor starts functioning. Then the command is passed to the test-code
through HyperTerminal, which simulates a register fault condition. The fault
detection routine of MC Library v1.1.0 detects the fault conditions by performing
periodic static memory tests on register and brings the controller to STOP mode.
Hence, the motor stops.

Unit Test Case by Simulating Program Counter Fault
The code for MC Library v1.1.0 is loaded into the Flash memory of Z8FMC16100
and the motor starts functioning. The program counter is not accessible directly to
create a fault, a program counter fault is simulated by executing an infinite loop
through the command from the HyperTerminal. As per the acceptable measures
for MC Library v1.1.0, the WDT overflows after the specified time and Resets the
controller.
WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper

38
Unit Test Case by Simulating Interrupt Fault
The code for MC Library v1.1.0 is loaded into the Flash memory of Z8FMC16100
and the motor starts functioning. Interrupt fault condition is simulated by sending
command from HyperTerminal, which executes DI-instruction. The fault detection
routine of MC Library v1.1.0 detects the fault conditions and brings the controller
to STOP mode. Hence, the motor stops.

Unit Test Case by Creating Clock Fault
The code for MC Library v1.1.0 is loaded into the Flash memory of Z8FMC16100
and the motor starts functioning. A clock failure condition is created by shorting
the XIN pin to ground. The fault detection routine of MC Library v1.1.0 detects the
clock fault and generates an interrupt. The WDT then takes over as the clock
source and executes the interrupt service routine which brings the controller to
STOP mode. Hence, the motor stops.

Unit Test Case by Simulating Flash Fault
The code for MC Library v1.1.0 is loaded into the Flash memory of Z8FMC16100
and the motor starts functioning. Then the command is passed to the test-code
through HyperTerminal, which simulates a Flash fault condition at any five
different memory-locations which holds the code for MC Library. The fault
detection routine of MC Library v1.1.0 detects the fault condition by performing
single bit redundancy test and brings the controller to STOP mode. Hence, the
motor stops.

Unit Test Case by Simulating RAM Fault
The code for MC Library v1.1.0 is loaded into the Flash memory of Z8FMC16100
and the motor starts functioning. Then the command is passed to the test-code
through HyperTerminal, which simulates a RAM fault condition at any memory-
locations of RAM (0x00 to 0xFF for small memory model and 0x000 to 0x1FF for
large memory model). The fault detection routine of MC Library v1.1.0 detects the
fault conditions by performing static memory test and brings the controller to
STOP mode. Hence, the motor stops.

Unit Test Case by Creating Over Voltage Fault
The code for MC Library v1.1.0 is loaded into the Flash memory of Z8FMC16100
and the motor starts functioning. Then the supply voltage for DC-bus is suddenly
increased beyond 25 V creating a condition of over voltage fault. The fault
detection routine of MC Library v1.1.0 detects the fault conditions and brings the
controller to STOP mode. Hence, the motor stops.
WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper

39
Unit Test Case by Creating Over Voltage Fault
The code for MC Library v1.1.0 is loaded into the Flash memory of Z8FMC16100
and the motor starts functioning. Then the supply voltage for DC-bus is suddenly
reduced below 20 V creating a condition of under voltage fault. The fault detection
routine of MC Library v1.1.0 detects the fault conditions and brings the controller
to STOP mode. Hence the motor stops.

Unit Test Case by Creating Over Voltage Fault
The code for MC Library v1.1.0 is loaded into the flash memory of Z8FMC16100
and the motor starts functioning. Then the shaft of motor is loaded by holding it, by
which the current drawn by motor increases, creating a condition of over current
fault. The fault detection routine of MC Library v1.1.0 detects the fault conditions
and brings the controller to STOP mode. Hence the motor stops.

The above tests were repeated for SPEED mode and TORQUE mode of
MC library and for small memory model and large memory model.

The tests were retried on four different trials and results are recorded in unit test
report. The table below mentions the plan for test case for clock fault, as an
example for format:
--
Test Case ID UT_Clock_Fault_025
Description This is a negative test case for detecting a Wrong Frequency

fault in clock in SPEED mode and Small Memory model.
Test topology Test set up is described in test topology (section -3.1)
Precondition None
Inputs No input parameters for this API.
Procedure Once the motor starts running smoothly, the clock fault condi-

tion is created by shorting the XIN pin to GND.
Outputs Motor starts.
Remarks if any
--

The table below summarizes the tests carried out as a part of unit test plan on
MC Library v1.1.0 and the way each test is carried out to detect the faults as
described in the fault tree analysis (Appendix A).
WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper

40
Unit Test
Case for
Fault

Relation to Fault
Tree Analysis
(Appendix A)

Relation to
Acceptable Measure
(Appendix B)

Relation to
Control
Response

Unit Test Case ID

Register
fault

Basic event — 'A'
of Figure 11 of
Appendix A

Sl No 1 of Table 7 of
Appendix B

Stop the motor if
fault detected

UT_Register_Fault_005,
UT_Register_Fault_006,
UT_Register_Fault_007,
UT_Register_Fault_008

PC fault Basic event — 'B'
of Figure 11 of
Appendix A

Sl No 1 of Table 7 of
Appendix B

Reset CPU UT_PC_Fault_009,
UT_PC_Fault_010,
UT_PC_Fault_011,
UT_PC_Fault_012

Interrupt
fault

Basic event — 'C'
of Figure 11 of
Appendix A

Sl No 2 of Table 7 of
Appendix B

Stop the motor if
fault detected

UT_Interrupt_Fault_013,
UT_Interrupt_Fault_017,
UT_Interrupt_Fault_021,
UT_Interrupt_Fault_014,
UT_Interrupt_Fault_018,
UT_Interrupt_Fault_022,
UT_Interrupt_Fault_015,
UT_Interrupt_Fault_019,
UT_Interrupt_Fault_023,
UT_Interrupt_Fault_016,
UT_Interrupt_Fault_020,
UT_Interrupt_Fault_024

Clock fault Basic event — 'D'
of Figure 11 of
Appendix A

Sl No 3 of Table 7 of
Appendix B

Stop the motor
if fault detected

UT_Clock_Fault_025,
UT_Clock_Fault_026,
UT_Clock_Fault_027,
UT_Clock_Fault_028

Flash fault Basic event — 'E'
of Figure 11 of
Appendix A

Sl No 4 of Table 7 of
Appendix B

Stop the motor
if fault detected

UT_Flash_Fault_029,
UT_Flash_Fault_030,
UT_Flash_Fault_031,
UT_Flash_Fault_032

RAM fault Basic event — 'F'
of Figure 11 of
Appendix A

Sl No 4 of Table 7 of
Appendix B

Stop the motor
if fault detected

UT_RAM_Fault_033,
UT_RAM_Fault_037,
UT_RAM_Fault_034,
UT_RAM_Fault_038,
UT_RAM_Fault_035,
UT_RAM_Fault_039,
UT_RAM_Fault_036,
UT_RAM_Fault_040
WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper

41

Over
voltage
fault

Basic event — 'G'
of Figure 11 of
Appendix A

Sl No 7 of Table 7 of
Appendix B

Stop the motor
if fault detected

UT_Analog_Fault_044,
UT_Analog_Fault_041

Under
voltage
fault

Basic event — 'G'
of Figure 11 of
Appendix A

Sl No 7 of Table 7 of
Appendix B

Stop the motor
if fault detected

UT_Analog_Fault_045,
UT_Analog_Fault_042

Over
current
fault

Basic event — 'G'
of Figure 11 of
Appendix A

Sl No 7 of Table 7 of
Appendix B

Stop the motor
if fault detected

UT_Analog_Fault_046,
UT_Analog_Fault_043
WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper

42
Appendix E—Configuration Management of MC Library v1.1.0
The following steps describe the configuration management of MC Library v1.1.0:

1. Tool used for version control—Star Team v7.0.133.

2. Requirement Traceability—All requirements from software design
specification up to development and testing of code are maintained in
‘Requirement traceability matrix’.

3. Phases of software development—ZiLOG has a detailed process map
followed during the software development phase. The development process
has 5 phases from start to end. Each phase has a set of well-defined inputs,
tasks, deliverables, and responsibility. Figure 13 illustrates the phase wise
folders recorded in Star Team.

Figure 13. Process Map

4. Change management—Any change required to be made to the software
code has to go through the ‘Change Request’ (CR) process, available in Star
Team. Figure 14 illustrates the sample change request.
WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper

43
Figure 14. Sample Change Request

The CR process involves the following steps:

• Enter the CR on Star Team.

• Assign CR to person who will incorporate the change.

• Open status—Currently the change is not implemented and
hence CR is OPEN.

• Fixed status—Change is implemented.

• Fixed Verified—Confirmation

• Closed (fixed)—CR closed.

• Depending on the type of request, the status can be ‘Cannot Reproduce, As
Designed, Documented, Is Duplicate or Differed’ before the CR enters the
Closed status.

CR also records the test case ID and the version number for implemented
change, and through the CR process a complete control and monitoring of change
management is done.

5. Configuration identification scheme: ZiLOG core quality process specifies
the naming standard for each ‘base-line’, once the code is successfully
tested and is done during the exit of phase-4. The same process applies for
MC Library v1.1.0. This ‘base-line’ scheme ensures that the version of
software is frozen in the system and is recalled any time in future, based on
the ‘base-line’. Figure 15 illustrates the ‘base-line’ for MC Library v1.1.0.
WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper

44
Figure 15. Base-line for MC Library v1.1.0

6. Control receipt, storage, handling, and release of configurable items listed
below are stored in Star Team:

• Project plan.

• Software design specification.

• Software functional specification.

• Requirement traceability matrix.

• Unit test plan.

• System test plan.

• Unit test report.

• System test report.

• Phase exit checklist.

• Release checklist.

• Characterization report.

• User documents—User Manual, Reference Manual, Quick Start Guide,
and Product Brief.
WP001601-0706 Implementation of Class B Software

Implementation of Class B Software
White Paper

45
This publication is subject to replacement by a later edition. To determine whether a later edition exists, or
to request copies of publications, contact:

ZiLOG Worldwide Customer Support Center
532 Race Street
San Jose, CA 95126
USA
Telephone: 408.558.8500
Fax: 408.558.8300
www.zilog.com

ZiLOG is a registered trademark of ZiLOG Inc. in the United States and in other countries. All other
products and/or service names mentioned herein may be trademarks of the companies with which they are
associated.

Information Integrity
The information contained within this document has been verified according to the general principles of
electrical and mechanical engineering. Any applicable source code illustrated in the document was either
written by an authorized ZiLOG employee or licensed consultant. Permission to use these codes in any
form, besides the intended application, must be approved through a license agreement between both
parties. ZiLOG will not be responsible for any code(s) used beyond the intended application. Contact the
local ZiLOG Sales Office to obtain necessary license agreements.

Document Disclaimer
©2006 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices,
applications, or technology described is intended to suggest possible uses and may be superseded. ZiLOG,
INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZiLOG ALSO DOES
NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY
MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR
OTHERWISE. Devices sold by ZiLOG, Inc. are covered by warranty and limitation of liability provisions
appearing in the ZiLOG, Inc. Terms and Conditions of Sale. ZiLOG, Inc. makes no warranty of
merchantability or fitness for any purpose Except with the express written approval of ZiLOG, use of
information, devices, or technology as critical components of life support systems is not authorized. No
licenses are conveyed, implicitly or otherwise, by this document under any intellectual property rights.
WP001601-0706 Implementation of Class B Software

http://www.zilog.com

	Abstract
	Introduction to Class B Software
	General Guidelines for Developing Class B Software
	Pseudocode for Lift Door Controller
	Software Coding for Normal Operation of Lift Door Controller
	Fault Tree Analysis for Lift Door Controller
	Acceptable Measures
	Control Response for Faults
	Software Coding for Non-Fault Detection Segment
	Software Coding for Fault Detection Segment
	Software Coding for Fault Detection Segment
	Software Testing
	Documents related to software testing
	Unit testing
	System Testing

	Configuration Management of Software
	Outlined Steps for Class B Certification
	ReCertification
	Developing Class B Compliant Software Using MC Library v1.1.0
	Conclusion
	Appendix A-Fault Tree for MC Library v1.1.0
	Basic Events
	Top Events
	Basic Events
	Intermediate Events
	Basic Events
	Intermediate Events

	Appendix B-Acceptable Measures Adopted in MC Library v1.1.0 for Fault Detection
	Appendix C-Control Response for Faults in MC Library v1.1.0
	Appendix D-Unit Test
	Test Topology
	Hardware
	Software
	Unit Test Case by Simulating CPU Register Fault
	Unit Test Case by Simulating Program Counter Fault
	Unit Test Case by Simulating Interrupt Fault
	Unit Test Case by Creating Clock Fault
	Unit Test Case by Simulating Flash Fault
	Unit Test Case by Simulating RAM Fault
	Unit Test Case by Creating Over Voltage Fault
	Unit Test Case by Creating Over Voltage Fault
	Unit Test Case by Creating Over Voltage Fault

	Appendix E-Configuration Management of MC Library v1.1.0
	Implementation of Class B Software

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

