
ZiLOG Worldwide Headquarters • 532 Race Street • San Jose, CA 95126
Telephone: 408.558.8500 • Fax: 408.558.8300 • www.zilog.com

White Paper

Using the Z8 Encore!®
Linker

WP000701-1103

http://www.zilog.com

White Paper
Using the Z8 Encore!® Linker
Abstract
The ZiLOG Z8 Encore! Linker takes object files and libraries as input and links
them together to generate an executable load file. This document provides an
overview of the functionality of the linker and how it can be used along with the
compiler/assembler provided in ZDSII to generate an output load file which can be
downloaded into the target system. Please refer to the ZDSII User's Manual wher-
ever details of the linker command syntax are needed.

The linker performs two major functions:

• Links together object modules and libraries into one executable load file by
resolving external references.

• Locates the relocatable segments and assigns absolute addresses to them.

ZiLOG microcontrollers, including the Z8 Encore!, support multiple address
spaces. The ZiLOG Xtools C compiler, assembler and linker together provide a
mechanism to use these address spaces. The compiler provides language exten-
sions to declare variables in different address spaces. The assembler provides a
means to associate a segment with an address space, and the linker has the abil-
ity to link multiple segments associated with an address space and locate them.

Z8 Encore! Microcontroller Address Spaces
The Z8 Encore! microcontroller has two address spaces:

1. Rom: This represents the processor flash. The maximum range for this
address space is 0-FFFF.

2. Register File: This represents the processor RAM. The maximum range for
this address space if 0-FFF.

The Register File can be addressed using 4, 8 and 12 bit addresses by using
instructions with appropriate addressing modes.

Z8 Encore! Assembler Address Spaces
The Z8 Encore! assembler provides three address spaces:

1. Rom: This corresponds to the micro controller address space Rom.

2. RData: This represents the first page of Register File which is 8 bit
addressable.

3. EData: This represents the entire Register File which is 12 bit addressable.

Both RData and EData together make the Register File address space of the
microcontroller.
Using the Z8 Encore!® Linker WP000701-1103

White Paper
Using the ZiLOG Xtools eZ80Acclaim!™ C Compiler

3

In Z8 Encore! assembly, users can associate segments with any of the above
three address spaces.

The Z8 Encore! assembler provides the following pre-defined segments:

• code : The address space is Rom. Contains program code.

• near_bss: The address space is RData. Contains uninitialized data.

• near_data: The address space is RData. Contains initialized data.

• far_bss: The address space is EData. Contains uninitialized data.

• far_data: The address space is EData. Contains initialized data.

• text: The default address space is RData. Contains constant data.

• rom_text: The address space is Rom. Contains constant data.

• __vectors: The address space is Rom. Contains the interrupt vector table.

Note the distinction between the segments "code", which is given to executable
code, and "text", used for constant data. We point this out because some com-
monly used object file formats use the term "text" to indicate executable code.

Z8 Encore! Compiler Address Spaces
The Z8 Encore! compiler provides language extensions to place variables in dif-
ferent address spaces. These language extensions are provided through storage
class specifiers which can be used on individual data objects similar to the const
and volatile keywords in the ANSI standard. The storage class specifiers pro-
vided by the compiler are:

1. rom : The variable is to be allocated in a segment with Rom address space.

2. near : The variable is to be allocated in a segment with RData address
space.

3. far : The variable is to be allocated in a segment with EData address space.

Some examples are:
near int nvar;
far int fvar;
rom int rvar;

The compiler places variables into assembler segments as follows:

• fname_text: Used for executable code, where fname is the function to which
the code belongs. The address space is Rom.

• near_bss: Un-initialized global and static variables with near storage specifiers
are assigned to this segment. The address space is RData.
Using the Z8 Encore!® Linker WP000701-1103

White Paper
Using the ZiLOG Xtools eZ80Acclaim!™ C Compiler

4

• near_data: Initialized globals and statics with near storage specifiers are
assigned to this segment. The address space is RData.

• far_bss: Un-initialized globals and statics with far storage specifiers are
assigned to this segment. The address space is EData.

• far_data: Initialized globals and statics with far storage specifiers are assigned
to this segment. The address space is EData.

• text: Globals and statics with the const storage qualifier are assigned to this
segment. This segment is later mapped to RData, EData or Rom address
space based on the compilation memory model selected and the option
whether const is placed in ram or rom. The compiler memory models are
discussed in the Using the ZiLOG Xtools Z8 Encore! C Compiler white paper
(WP0006), available in the Xtools ZDS II distribution.

• rom_text: The global and statics with rom storage specifiers are assigned to
this segment. The address space is Rom.

• __vectors: All the interrupt definitions, defined using the C SET_VECTOR
directive, are assigned to this segment.

The globals and statics for which the storage class specifier is not given by the
user are assigned to a default space by the compiler. The default space is decided
based on the memory model (Large or Small) selected by the user for the compi-
lation. The memory model also dictates whether local variables and function
parameters would be located in RData or in EData.

Linking Z8 Encore! Applications
The Z8 Encore! linker is used to link compiled and assembled object module files,
compiler libraries, user created libraries, and special object module files used for
C runtime initializations. The details of how these files are linked are controlled by
the commands given in the linker command file (LCF).

The default LCF is automatically generated by ZDSII IDE whenever a build com-
mand is issued. It has information about the ranges of various address spaces for
the selected device, the assignment of segments to spaces, order of linking, etc.
The default LCF can be overridden by the user as explained below.

The linker processes the object modules (in the order in which they are specified
in the linker command file), resolves the external references between the mod-
ules, and then locates the segments into the appropriate address spaces as per
the LCF.

The linker depicts the memory of the microcontroller using a hierarchical memory
model containing spaces and segments. The various memory regions of a micro-
controller are associated with spaces. Multiple segments can belong to a given
space. Each space has a range associated with it that identifies valid addresses
Using the Z8 Encore!® Linker WP000701-1103

White Paper
Using the ZiLOG Xtools eZ80Acclaim!™ C Compiler

5

for that space. The hierarchical memory model for Z8 Encore! is shown in
Figure 1. Figure 2 depicts how the linker links and locates segments in different
object modules.

Figure 1. Z8 Encore! Hierarchical Memory Model

Figure 2. Multiple File Linking

 Z8 Encore! Memory
Spaces

Rom Space
(Flash)

RData Space
(Register File)

EData Space
(Register File)

Code
Segment

Rom_text
Segment

Near_bss
Segment

Near_data
Segment

Far_bss
Segment

Far_data
Segment

U1 V1 X1 U2 X2 V2 U3 V3

Linker

U1 V1 U3 U2 V2 X2 X1 V3

Module one.obj Module two.obj Module three.obj

Space Rom Space RData Space EData
Using the Z8 Encore!® Linker WP000701-1103

White Paper
Using the ZiLOG Xtools eZ80Acclaim!™ C Compiler

6

Linker Referenced Files
The default LCF generated by the ZDSII IDE references system object files and
libraries based on the compilation memory model selected by the user. A list of
the system object files and libraries is given in the Table 1. The LCF automatically
selects and links to the appropriate version of the C run time and (if necessary)
floating point libraries, from the list shown in Table 1, based on the user's project
settings.

Linker Symbols
The default LCF defines some system symbols, which are used by the C startup
file to initialize the stack pointer, clear the un-initialized variables to zero, set the
initialized variables to their initial value, set the heap base, etc. Table 2 below

Table 1. Linker Referenced Files

File Description
Startups.obj C Startup for small model.

Startupl.obj C Startup for large model.

Fpdumys.obj Floating point do nothing stubs for small model.

Fpdumyl.obj Floating point do nothing stubs for large model.

Crtld.lib C Run time library for large dynamic model, no debug information.

Crtldd.lib C Run time library for large dynamic model, with debug information.

Fpld.lib Floating point library for large dynamic model, no debug information.

Fpldd.lib Floating point library for large dynamic model, with debug information.

Crtls.lib C Run time library for large static model, no debug information.

Crtlsd.lib C Run time library for large static model, with debug information.

Fpls.lib Floating point library for large static model, no debug information.

Fplsd.lib Floating point library for large static model, with debug information.

Crtsd.lib C Run time library for small dynamic model, no debug information.

Crtsdd.lib C Run time library for small dynamic model, with debug information.

Fpsd.lib Floating point library for small dynamic model, no debug information.

Fpsdd.lib Floating point library for small dynamic model, with debug information.

Crtss.lib C Run time library for small static model, no debug information.

Crtssd.lib C Run time library for small static model, with debug information.

Fpss.lib Floating point library for small static model, no debug information.

Fpssd.lib Floating point library for small static model, with debug information.
Using the Z8 Encore!® Linker WP000701-1103

White Paper
Using the ZiLOG Xtools eZ80Acclaim!™ C Compiler

7

shows the list of symbols that may be defined in the LCF, depending on the com-
pilation memory selected by the user.

A Sample Linker Command File
The sample default LCF for large dynamic compilation model is discussed here as
a good example of the contents of an LCF in practice and how the linker com-
mands it contains work to configure the user's load file. The default LCF is auto-
matically generated by the ZDSII IDE. If the project name is test.pro, for example,
the default LCF name is test.lnk. The user can add additional directives to linking
process by specifying them under Project -> Settings -> Linker -> Input -> Add
Directives. The user can alternatively define his own LCF by using Project ->
Settings -> Linker -> Input -> Use Existing or Project -> Settings -> Linker ->
Input -> Custom option.

The most important of the linker commands and options in the default LCF will
now be discussed individually, in the order in which they would typically be found:

-FORMAT=OMF695
-NOigcase -map -quiet -warn -NOwarnoverlap -NOxref

In this command, the linker output file format is selected to be OMF695 which is
based on the IEEE 695 object file format. This setting is generated from options

Table 2. Linker Symbols

Symbol Description
_low_neardata Base of near_data segment after linking

_len_neardata Length of near_data segment after linking

_low_near_romdata Base of the rom copy of near_data segment after linking

_low_fardata Base of far_data segment after linking

_len_fardata Length of far_data segment after linking

_low_far_romdata Base of the rom copy of far_data segment after linking

_low_nearbss Base of near_bss segment after linking

_len_nearbss Length of near_bss segment after linking

_low_farbss Base of far_bss segment after linking

_len_farbss Length of far_bss segment after linking

_far_stack Top of stack for large model is set as highest address of EData.

_near_stack Top of stack for small model is set as highest address of RData.

_far_heapbot Base of heap for large model is set as highest allocated EData address

_near_heapbot Base of heap for small model is set as highest allocated RData address
Using the Z8 Encore!® Linker WP000701-1103

White Paper
Using the ZiLOG Xtools eZ80Acclaim!™ C Compiler

8

selected in Project -> Settings -> Linker -> Output. The other options shown
here are all generated from the settings selected in Project -> Settings -> Linker
-> General.

RANGE ROM $0 : $FFFF
RANGE RDATA $20 : $FF
RANGE EDATA $100 : $EFF

The ranges for the three address spaces are defined here. These ranges are
taken from the settings in Project -> Settings -> Target -> Memory.

CHANGE TEXT=EDATA
CHANGE TEXT=FAR_DATA

The TEXT section is assigned to EDATA address space by the above command.
Recall that the TEXT section contains the C const variables and can be remapped
into any of the three available spaces (Rdata, Edata, or Rom) based on project
settings. In this example, the Large model is in effect and so the TEXT segment
will be assigned either to the Edata or Rom space, depending on whether RAM or
ROM, respectively, is selected in Project -> Settings -> C -> Code Generation -
> Const Variable Placement. The second command adds the const data of
TEXT to the list FAR_DATA that must be initialized from ROM by the initialization
code.

ORDER FAR_BSS, FAR_DATA
ORDER NEAR_BSS,NEAR_DATA

These ORDER commands specify the link order of these segments. The
FAR_BSS segment will be placed at lower addresses with the FAR_DATA seg-
ment immediately following it in the EData space. Similarly, NEAR_DATA will fol-
low after NEAR_BSS in RData space.

COPY NEAR_DATA ROM
COPY FAR_DATA ROM

This COPY command is a linker directive to make the linker place a copy of the
initialized data segments NEAR_DATA and FAR_DATA into the ROM address
space. At run time, the C startup module will then copy the initialized data back
from the ROM address space to the RData and EData address spaces. This is
the standard method to ensure that variables get their required initialization from a
non-volatile stored copy, in a typical embedded application where there is no
offline memory such as disk storage from which initialized variables can be
loaded.

define _low_near_romdata = copy base of NEAR_DATA
define _low_neardata = base of NEAR_DATA
define _len_neardata = length of NEAR_DATA
define _low_far_romdata = copy base of FAR_DATA
define _low_fardata = base of FAR_DATA
define _len_fardata = length of FAR_DATA
define _low_nearbss = base of NEAR_BSS
Using the Z8 Encore!® Linker WP000701-1103

White Paper
Using the ZiLOG Xtools eZ80Acclaim!™ C Compiler

9

define _len_nearbss = length of NEAR_BSS
define _low_farbss = base of FAR_BSS
define _len_farbss = length of FAR_BSS
define _far_heaptop = highaddr of EDATA
define _far_stack = highaddr of EDATA
define _near_stack = highaddr of RDATA
define _far_heapbot = top of EDATA

These are the linker symbol definitions described in Table 2. They allow the com-
piler to know the bounds of the different memory areas that must be initialized in
different ways by the C startup module.

"c:\sample\test"= \
 C:\PROGRA~1\ZiLOG\ZD3E4C~1.0\lib\startupL.obj, \
 .\foo.obj, \
 C:\PROGRA~1\ZiLOG\ZD3E4C~1.0\lib\crtLDD.lib, \
 C:\PROGRA~1\ZiLOG\ZD3E4C~1.0\lib\fpLDD.lib

This final command shows that in this example, the linker output file will be named
test.lod. The source object file (foo.obj) is to be linked with the other modules that
will be required to make a complete executable load file. In this case, those other
modules are the C startup modules for the large model (startupl.obj), the C run
time library for the large model with dynamic frames (crtldd.lib) and the floating
point library for that same configuration (fpldd.lib).

An important point to understand in using the linker is that the linker intelligently
links in only those functions from a given module that are necessary to resolve its
list of unresolved symbols. For example, while the C run time library contains a
very large number of functions from the C Standard Library, if your application only
calls two of those functions then only those two will be linked into your application
(plus any functions that are called by those two functions in turn). This means it's
safe for the user to simply link in a large library or module, like crtLDD.lib and
fpLDD.lib in this example. The user doesn't have to worry about bloat caused by
unnecessary code being linked in, and doesn't have to do the extra work of pains-
takingly finding the unresolved symbols for themselves and linking only to those
specific functions.
Using the Z8 Encore!® Linker WP000701-1103

White Paper
Using the ZiLOG Xtools eZ80Acclaim!™ C Compiler

10
This publication is subject to replacement by a later edition. To determine whether a later edition
exists, or to request copies of publications, contact:

ZiLOG Worldwide Customer Support Center
532 Race Street
San Jose, CA 95126
USA
Telephone: 408.558.8500
Fax: 408.558.8300
www.zilog.com

ZiLOG is a registered trademark of ZiLOG Inc. in the United States and in other countries. All other
products and/or service names mentioned herein may be trademarks of the companies with which
they are associated.

Information Integrity
The information contained within this document has been verified according to the general
principles of electrical and mechanical engineering. Any applicable source code illustrated in the
document was either written by an authorized ZiLOG employee or licensed consultant. Permission
to use these codes in any form, besides the intended application, must be approved through a
license agreement between both parties. ZiLOG will not be responsible for any code(s) used
beyond the intended application. Contact the local ZiLOG Sales Office to obtain necessary license
agreements.

Document Disclaimer
©2003 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices, applications,
or technology described is intended to suggest possible uses and may be superseded. ZiLOG, INC. DOES
NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZiLOG ALSO DOES
NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER
TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE.
Devices sold by ZiLOG, Inc. are covered by warranty and limitation of liability provisions appearing in the
ZiLOG, Inc. Terms and Conditions of Sale. ZiLOG, Inc. makes no warranty of merchantability or fitness for any
purpose Except with the express written approval of ZiLOG, use of information, devices, or technology as
critical components of life support systems is not authorized. No licenses are conveyed, implicitly or
otherwise, by this document under any intellectual property rights.
Using the Z8 Encore!® Linker WP000701-1103

http://www.zilog.com

	Abstract
	Z8 Encore! Microcontroller Address Spaces
	Z8 Encore! Assembler Address Spaces
	Z8 Encore! Compiler Address Spaces
	Linking Z8 Encore! Applications
	Linker Referenced Files
	Linker Symbols
	A Sample Linker Command File

	Using the Z8 Encore!® Linker

