
AN015202-1207
Abstract
This Application Note describes an Infrared Data
Association (IrDA) Framer implementation for
Zilog’s Z8 Encore! XP® Flash microcontroller using
the IrDA encoder and decoder (endec) and Universal
Asynchronous Receiver and Transmitter (UART)
that are integrated with the Z8 Encore! XP MCU.

The IrDA Framer implements data transmission
speeds between 9600 bps and 115.2 kbps (slow
infrared speeds). The Framer implementation
includes a service abstraction layer to transmit and
receive the IrDA frames through the IrDA physical
media, along with routines to initialize the UART
device and set the transmission rate. Slow infrared
(SIR-IrLAP) implementations can take advantage of
the Framer services provided in this Application
Note.

The source code file associated with
this Application Note, AN0152-
SC01.zip is available for
download on www.zilog.com.

Z8 Encore! XP® Flash
Microcontrollers
Zilog’s Z8 Encore! XP products are based on the new
eZ8 CPU to introduce Flash memory to Zilog’s
extensive line of 8-bit microcontrollers. Flash mem-
ory in-circuit programming capability allows for
faster development time and program changes in the
field. The high-performance register-to-register
based architecture of the eZ8 core maintains back-
ward compatibility with Zilog’s popular Z8® MCU.

The new Z8 Encore! XP microcontrollers combine a
20 MHz core with Flash memory, linear-register

SRAM, and an extensive array of on-chip peripher-
als. These peripherals make the Z8 Encore! XP MCU
suitable for a variety of applications including motor
control, security systems, home appliances, personal
electronic devices, and sensors.

Zilog IrDA Transceivers
Designed for applications in which space is at a pre-
mium, Zilog IrDA transceivers are the best choice for
a wide range of applications such as inventory con-
trol, vending, portable scanners, portable medical,
diagnostic and measurement products, as well as
mobile phones, digital cameras, notebooks, personal
digital assistants (PDAs), and handheld computers.

Zilog IrDA transceivers interact with IrDA-ready
appliances and offer the lowest-power options avail-
able in the market. The same transceiver can be used
with a variety of power supplies. As a result, lower
power consumption and the ability to multisource
power supply components saves component costs
and development time.

Discussion
IrDA is a robust, proximity-based, line-of-sight infra-
red protocol defined by the Infrared Data Association
for general use. IrDA communication is a widely
adopted, short-range, wireless technology allowing
secured, reliable, and low cost point-to-point com-
munication among devices such as PDAs, digital
cameras, pagers, set-top boxes, machinery, and com-
puter peripherals.

The IrDA protocol defines multiple standards for use
in data communication, control applications, local
area network (LAN) applications, etc. The standard
supports a number of communications types, includ-
ing slow infrared, or SIR, for speeds in the range of

Note:Note:
Application Note
IrDA Framer Implementation on the
Z8 Encore! XP® MCU
Copyright ©2007 by Zilog®, Inc. All rights reserved.
www.zilog.com

http://www.ZiLOG.com
http://www.zilog.com

IrDA Framer Implementation on the Z8 Encore! XP® MCU
9600 bps to 115.2 kbps. IrDA supports faster speeds
with the MIR and FIR types for medium and fast
infrared communications, which operate in the Mbps
range.

IrDA Protocol Layers
An IrDA protocol stack is a layered set of protocols
particularly aimed at point-to-point infrared commu-
nications, and packaged with the applications
required for the infrared communications environ-
ment.

Figure 1 displays an example of different layers
(starting from the Physical Layer of the OSI Model)
that comprise the IrDA protocol stack. This applica-
tion note focuses on the Physical Layer and the
IrLAP layer that sandwich the Framer implementa-
tion. For more details on other standard IrDA stacks,
see References on page 11.

Figure 1. IrDA Stack Organization

Physical Layer
The Physical Layer includes a UART and an optical
transceiver. In this Framer implementation, the
UART-associated IrDA endec and the IR transceiver
constitute the IrDA Physical Layer. These devices
beam and receive IR signals. The typical distance for

IrDA communications is from 5 cm to 60 cm away
from the transceiver.

IrDA data links always operate in HALF-DUPLEX
mode for the simple reason that while transmitting, a
device’s receiver is blinded by its transmitter.

Zilog® manufactures and sells a wide range of IR
transceivers. For details, refer to www.zilog.com.

IrLAP Layer
The IrLAP layer implements the Link Access Proto-
col that establishes a basic, reliable connection.
IrLAP services include the following:

• Device discovery

• Address conflict resolution

• Connectionless data transfer

• Connection establishment

• Connection-oriented data transfer

IrLAP Frame
All data and control transmissions on an IrLAP data
link are organized in a specific format called a frame.
This format carries control information and user data
between a transmitting station and a receiving sta-
tion, and it allows a receiving station to:

• Determine where the frame begins and ends

• Determine whether the frame is intended for a
the receiving station

• Determine what actions to perform with the
information received

• Detect the occurrence of transmission errors in
received frames

• Acknowledge its receipt of frames to the trans-
mitting station

Each IrLAP frame (see Figure 2 on page 3) is pre-
ceded and succeeded by fields which constitute the

PHYSICAL LAYER

IrLAP

IrLMP

IAS TINY TP IrCOMM

IrOBEX

FRAMER - DRIVER
AN015202-1207 Page 2 of 25

http://www.zilog.com�./

IrDA Framer Implementation on the Z8 Encore! XP® MCU
wrapping layer. The wrapping layer implements a
Physical Layer scheme that serves to reliably trans-
mit the payload data.

The wrapping layer fields serve to mark the begin-
ning and end of the frame and to check for the reli-
able transmission of data. The format of the wrapper
fields vary according to the Physical Layer scheme
used, but every frame wrapper includes at least three
components:

• A start Flag, BOF, that marks the beginning of
the frame

• A frame check sequence field that allows the
receiving station to check the transmission
accuracy of the frame

• A stop Flag, EOF, that signals the end of the
frame

A wrapper’s design and function are independent of
the payload frame’s function.

Figure 2. IrLAP Frame-Wrapper Added by
Framer Around IrLAP Payload Data

These three parts of the IrLAP Frame are described
below.

BOF—The Beginning of Frame (BOF) character
identified by the hexadecimal character, 0xC0.

IrLAP Payload—The actual data to be transmitted.
The format for the IrLAP payload data is provided
below:

• An address (A) field that identifies a secondary
station connection address

• A control (C) field that specifies the function
of the particular frame

• An optional information (I) field that contains
the information data

Each of these fields contains 8 bits or multiple of 8
bits.

FCS—The frame check sequence (FCS) is a 16-bit
sequence that is specified according to the CRC-
CCITT algorithm on IrLAP payload data. It contains
a 16-bit cyclic redundancy check that follows the
CRC-CCITT standard. The FCS is valid only for
IrLAP payload data comprising the A, C, and I fields.
The FCS inevitably follows the IrLAP payload data
sequence. The purpose of the FCS is to check for
errors in the received frame produced during frame
transmission.

CRC computation is performed on the IrDA payload
data. For details on the algorithm to calculate CRC,
refer to www.irda.org.

The CRC computation is performed prior to the
transparency check performed by the transmitting
and receiving stations. For information on transpar-
ency checking, see Transparency Character Check
by Framer on page 4.

EOF—The End of Frame (EOF) character, identified
by the 0xC1 hexadecimal character.

Framer
The Framer is a software function that acts as the
data frame formatter (wrapper), and it can optionally
function as the device driver for the system’s trans-
ceiver controller. The Framer performs the following
tasks:

• Initializes the infrared hardware device

• Sets the transmission speed

• Adds a wrapper around the IrLAP payload data

• Transmits the data to the Physical Layer

While receiving the data from the IR transceiver, the
Framer removes the wrapper from the IrLAP payload

BOF IrLAP Payload FCS EOF

A C I
AN015202-1207 Page 3 of 25

http://www.irda.org
http://www.irda.org/standards/specifications.asp
http://www.irda.org/standards/specifications.asp

IrDA Framer Implementation on the Z8 Encore! XP® MCU
data and sends the received data to the IrLAP layer
for further processing.

The Framer generates a wrapper for the IrLAP
frames, by adding a BOF character before the IrLAP
data followed by the frame check sequence and the
EOF.

Frame Transmission
All the bytes of an IrLAP Frame are transmitted as
low order bit first. The two-byte FCS is transmitted
as least-significant byte first. Every byte transmitted
in the asynchronous/SIR mode consists of exactly
one start bit, 8 data bits, and one stop bit; there is no
parity bit.

The characters used to indicate the
BOF (0xC0), EOF (0xC1), and
Control Escape (0x7D) are
designated as control characters. The
Control Escape character (0x7D) is
used for character transparency,
which is discussed in the next section.

Transparency Character Check by Framer
Because there are no restrictions on the content of an
IrLAP payload, problems arise during frame recep-
tion when the payload data contains control charac-
ters as actual data. To workaround this problem, the
Framer implementation defines a character transpar-
ency check that transforms information/data bytes,
which would otherwise be interpreted as control
characters, into noncontrol characters prior to trans-
mission.

Prior to transmitting the IrLAP payload data, the
Framer examines each byte present in the IrLAP pay-
load data. The Framer performs the following tasks
when it encounters a data byte that is a designated
control character (0xCO, 0xC1, or 0x7D):

1. Inserts a Control Escape(0x7D)byte before
the control character.

2. Complements bit 5 of the byte, which means
that it performs an exclusive OR operation

(XOR) on the byte with 0x20 .

Example
Assume that the IrLAP payload data comprises of the
following bytes:

0x20, 0xAB, 0x89, 0xC0, 0x98

In this example, the first three characters following
the BOF character are transmitted without any modi-
fication because they are not control characters. The
fourth character, 0xC0, which also represents the
control character for BOF, is transmitted as two char-
acters—0x7D , followed by 0xE0 (0xC0 XOR
0x20=0xE0). The next character, 0x98, is transmit-
ted as it is.

The Framer performs the transparency check for the
FCS in a similar way. The resulting transmission
sequence is represented as:

(BOF)0xC0, 0x20, 0xAB, 0x89, 0x7D,
0xE0, 0x98, FCS, (EOF)0xC1

The Framer performs the following tasks, to receive
the IrLAP Frame:

1. First receives the BOF.

2. Discards 0x7D (the first Control Escape char-
acter).

3. The character (0xE0)following the Control
Escape character is XORed with 0x20 to
obtain the actual character, 0xC0.

4. The Framer then receives other data until it
encounters an EOF.

The resulting reception sequence is represented as:

(BOF)0xC0, 0x20, 0xAB, 0x89, 0xC0,
0x98, FCS, (EOF)0xC1

Note:
AN015202-1207 Page 4 of 25

IrDA Framer Implementation on the Z8 Encore! XP® MCU
Developing the Framer
Application for the
Z8 Encore! XP® MCU
The Z8 Encore! XP® Framer implementation specifi-
cations are listed below.

• The Framer implementation is based on the
IrDA Lite protocol (see Appendix C—IrDA
Lite on page 24 for more details on this proto-
col)

• The Framer implementation forms an abstrac-
tion layer between the IrLAP layer and the
Physical Layer

• The Physical Layer for this implementation
utilize the following Z8 Encore! XP MCU
peripherals:

– UART0
– IrDA endec0

• The Framer performs the usual wrapper func-
tion on IrLAP frames. adding the BOF, FCS,
and EOF characters.

• The Framer implementation includes APIs that
initialize the hardware devices, set the trans-
mission rate, and provide a time-out function-
ality using the Z8 Encore! XP timer.

The block diagram in Figure 3 displays the connec-
tions between the Z8 Encore! XP MCU peripheral,
UART0, the IrDA endec0, and the IR Slim SIR trans-
ceiver.

In Figure 3, the Port A GPIO pins of the Z8F6403
MCU, PA4 and PA5, are connected to the IrDA trans-
ceiver, Zilog® part number ZHX1810. Setting the
IREN (IR enable) bit in the UART0’s Control 1 Reg-
ister enables the IrDA endec0.

For details on the UART registers, refer to Z8
Encore! XP® 64K Series Flash Microcontrollers
Product Specification (PS0199). For details on the IR
transceiver, refer to Slim Series SIR Transceiver
Product Specification (PS0093).

Framer Operation
An important design feature of the Framer imple-
mentation is buffer management because the RAM
size is limited when using IrDA Lite. The IrDA Lite
protocol specifies that the maximum data size is 64
bytes, implying that the optional information field (I)
of IrLAP must be between 0 to 64 bytes, and the
IrLAP must form the frame length with a maximum
of 64 bytes. The Address field (A) and Control field
(C) are one byte each. Therefore, the transmit buffer

Figure 3. UART0 Connected to an IR Transceiver

UART0

RxD

TxD

 Infrared
Encoder/Decoder
 (Endec0)

PA4

PA5

Ir Transceiver
 ZHX1810

 Ir out

Ir in

Z8 Encore! XP® Development Board
 (Z8F6403 module)

H
alf duplex com

m
unication
AN015202-1207 Page 5 of 25

IrDA Framer Implementation on the Z8 Encore! XP® MCU
in this application uses 66 bytes of RAM space,
which is shared between the IrLAP layer and the
Framer.

The IrLAP layer initiates and controls the functions
of the Framer. The IrLAP layer forms the IrLAP pay-
load data and writes the payload data into the trans-
mit buffer. The transmit buffer is a shared resource
between the IrLAP layer and the Framer, therefore,
an inter-locking mechanism is implemented restrict-
ing both IrLAP and Framer from using the transmit
buffer at the same time.

The Framer operation can be viewed as functioning
in three distinct modes, as described below.

IDLE Mode—The Framer operates in IDLE mode
under two circumstances—when it is initialized by
the IrLAP layer and operates neither in RECEIVE
mode nor TRANSMIT mode; or when the Framer is
issued a shutdown command by the IrLAP layer.

TRANSMIT Mode—T h e F r a me r op e r a t e s i n
TRANSMIT mode when it receives an indication
from the IrLAP layer to transmit data. In TRANS-
MIT mode, the Framer transitions through different
states to transmit the IrLAP payload data.

RECEIVE Mode—T h e F r a me r op e r a t e s i n
RECEIVE mode when it receives an indication from
the IrLAP layer to receive data. The Framer transi-
tions through different states to receive the data from
the UART0 peripheral.

The Framer does not operate in
RECEIVE mode by default.

The following sections explain these modes in detail.

IDLE Mode
During initialization by the IrLAP layer, the Framer
exists in IDLE mode. In this mode, the RECEIVE
and TRANSMIT modes are disabled. When
RECEIVE mode is enabled, the Framer enters the
IN_BOF RECEIVE state, which indicates that it is

ready to receive data. Similarly, when TRANSMIT
mode is enabled, the Framer enters the BOF
TRANSMIT state and transmits the BOF character.

TRANSMIT Mode
In TRANSMIT mode, the Framer transitions from
one state to the next in a sequence starting from the
BOF state, as described below.

1. BOF—The Framer transmits the BOF charac-
ter.

2. DATA state—The Framer transmits the IrLAP
payload data. If the Framer encounters a con-
trol character while transmitting the payload
data, it transmits a Control Escape character
(0x7D). The control character is XORed with
0x20 and then transmitted. The FCS is calcu-
lated for each byte of data transmitted.

3. FCS state —The resulting two bytes of the
Frame Check Sequence (FCS) are transmitted.

4. EOF state—The Framer transmits the EOF
character.

The Framer then resets back to the BOF state.

RECEIVE Mode
In RECEIVE mode, the Framer transitions from one
state to another, starting from the IN_BOF state, as
described below.

1. IN_BOF state—When the Framer receives the
BOF character from the UART0 device, it is in
the IN_BOF state. While in this state, it can
receive other BOF characters. If the Framer
receives an EOF character after the BOF char-
acter, it remains in the IN_BOF state. If the
Framer receives any other character it transi-
tions to the IN_DATA state.

2. IN_DATA state—While in this state, the
Framer performs CRC check as characters are
received. When the Control Escape character is
received, the Framer performs the transparency
check on the following character. When an
EOF character is received, the Framer checks

Note:
AN015202-1207 Page 6 of 25

IrDA Framer Implementation on the Z8 Encore! XP® MCU
the validity of the data by comparing the FCS
calculated with the FCS received. Upon verify-
ing the validity of the data, the Framer invokes
a callback function to inform the IrLAP layer
that the data reception was successful. The
Framer then transitions to the IN_BOF state to
wait for any incoming BOF character. If a BOF
character is received while in the IN_DATA
state, the Framer transitions to the
RECEIVE_ERROR state.

The FCS data is also considered as
normal data sequence.

3. RECEIVE_ERROR state—If a BOF character
is received in the IN_DATA state, the Framer
transitions to the RECEIVE_ERROR state. In
this state, all previously-received data is dis-
carded and the Framer transitions to the
IN_BOF state.

In the state machine diagram displayed in Figure 4,
the columns indicate the events and the rows indicate
the receive states.

Software Implementation
Based on the description of the Framer Operation on
page 5, the software is implemented as a set of APIs
and a callback function that the IrLAP layer can use
to send and receive data. The functionality of these
APIs and callbacks are described in this section. For
other details, such as parameters and return values,
see Appendix B—API Descriptions on page 17.

Initialization
The IrLAP layer invokes the Framer by calling the
Z_irda_lite_init_phy() API. This API ini-

tializes the IrDA Physical Layer device—in this case,
the UART0. This API performs the following tasks:

• Sets the GPIO pins for alternate function of
UART0

• Sets the UART baud rate to 9600bps

• Initializes the status flags for the receive and
transmit modes

• Initializes TIMER0

• Enables the IrDA endec

• Initializes the transmit buffer

Note:

Figure 4. IrDA Framer Receiver State Machine

S
T
A
T
E
S

(CHARACTERS RECEIVED)

BOF Character Any other
Character

EOF CharacterControl
Escape

"CE" (0x7D)

IN_BOF

IN_DATA

RECEIVE_ERROR

Remain in
IN_BOF

Transit to
IN_DATA
Read and
Store data
byte

Remain in
IN_BOF

IN_DATA
Transparency
Character
Check done.
Read and
store data byte

Transit to
RECEIVE_

ERROR

Transit to
IN_DATA

Transit to
IN_BOF
Intimate IrLAP
about data
reception

Flush the Received data and transit to IN_BOF state

IN_DATA
Read and
Store data
byte

EVENTS
AN015202-1207 Page 7 of 25

IrDA Framer Implementation on the Z8 Encore! XP® MCU
• Disables the transmit and receive interrupts

IrDA communication always occurs
in half-duplex mode. The receive and
transmit interrupts are not
concurrently enabled. The transmit
interrupt is enabled only when the
Framer is initialized to TRANSMIT
mode and the receive interrupt is
enabled only when the Framer is
initialized to RECEIVE mode.

Data Transmission
Th e I r LAP l a y e r c a l l s t h e
Z_irda_lite_get_tx_buffer(), before send-
ing the IrLAP payload data to the transmit buffer.
Because the transmit buffer is shared between IrLAP
layer and the Framer, this API is used by the IrLAP
layer to determine the status of the transmit buffer.
Upon receiving an indication that the transmit buffer
is free, IrLAP fills the payload data into the transmit
buffer. When the IrLAP receives an indication that
the transmit buffer is not free (implying that the
Framer is transmitting data from the transmit buffer it
waits until the buffer is free.

Then, IrLAP calls the Z_irda_lite_transmit()
API, to start data transmission. This API initializes
the Framer transmit mode states, enables TRANS-
MIT mode and disables RECEIVE mode. The
UART0 transmit interrupts are also enabled. The data
transmission is managed by the transmit interrupt
handler.

Transmit Interrupt Handler—The Framer uses the
interrupt method to transmit the IrLAP payload data.
The transmit interrupt handler takes care of loading
the data to the UART0 transmit data register, sets the
status flags according to the data transmitted, checks
for transparency characters, and calculates the FCS
for each byte transmitted. The generate_crc()
function calculates the CRC value.

Data Reception—T he I r L A P l a y e r c a l l s t h e
Z_irda_lite_receive() API to receive data.
This API disables the transmit interrupt, enables the

Framer receive mode, and enables the receiver inter-
rupt.

Receive Interrupt handler—The Framer uses the
interrupt method to receive the IrLAP payload data.
The receive interrupt handler reads the data from the
UART0 receive data register, sets the status flags
according to the data bytes received, checks for trans-
parency characters, and calculates and compares the
FCS. The generate_crc() function calculates the
CRC value.

Callback Functions—The IrLAP layer calls the
Z_init_callback() API, which initializes a
Framer receive_callback() function.

The Framer invokes the receive_callback()
function within its do_rx_upcall() function to
provide information (address of the receive buffer
and the length of the data received) to the IrLAP
layer upon successfully receiving data. The IrLAP
layer uses this information to process the data
received.

Receive Time-Out—Timer0 is used to provide the
time-out feature for the Framer. At initialization,
TIMER0 is loaded with an initial value to generate
interrupts every 10ms. When a character is received,
TIMER0 is enabled and begins counting. If the next
character is received within 10 ms, TIMER0 is reset
to zero.

If the next character is not received within 10ms,
then TIMER0 generates an interrupt and the program
jumps to the TIMER0 ISR. This ISR sets the
Receive_Timeout Flag. The Framer ignores the
entire packet of data in the receive buffer and sets the
receiver status Flag to the IN_BOF state.

Shutdown—When the IrLAP layer receives a shut-
down command from the higher IrDA stack layers, it
calls the Z_irda_lite_shutdown() API to dis-
able the TRANSMIT and RECEIVE modes of the
Framer. The Framer enters IDLE mode, wherein no
transaction is possible. In IDLE mode, the status Flag
for RECEIVE mode is set to IDLE, while the status

Note:
AN015202-1207 Page 8 of 25

IrDA Framer Implementation on the Z8 Encore! XP® MCU
Flag for TRANSMIT mode is set to BOF. To exit
I D L E (s hu t d own) mod e , t h e
Z_irda_lite_init_phy() API is invoked by
the IrLAP layer.

Testing
This section describes the setup, equipment, and pro-
cedures to test the IrDA Framer implementation on
the Z8 Encore! XP® MCU.

Test Setup
Two Z8 Encore! XP development kits and two PCs
are used for testing the Framer. Figure 5 displays the
test setup. The power supply connection is not
included in the block diagram.

The Z8 Encore! XP Development Board features a
console port (P1, not displayed in Figure 5), which is
normally used to connect to the PC’s COM port to
communicate with the HyperTerminal application.
However, this console port cannot be used if an IrDA
endec is being used. Therefore, for this test setup, the
MODEM port (P2) is used to connect to HyperTermi-
nal by using a connecting cable as displayed in Fig-
ure 6 on page 10.

Figure 5. Test Setup for the Framer Implementation

Station A

Station B

COM 2

COM 1

COM 2

COM 1

DEVELOPMENT BOARD 1
(Z8ENCORE000ZC0)

Ir Transceiver

PC

PC

Connection to
Debug port

Connecting cable
(See Figure 6)

Connection to
Debug port

P2

P4

P2

P4

Ir Transceiver

DEVELOPMENT BOARD 2
(Z8ENCORE000ZC0)

Connecting cable
(See Figure 6)

P2 and P4 are Connectors

Half duplex communication
AN015202-1207 Page 9 of 25

IrDA Framer Implementation on the Z8 Encore! XP® MCU
The HyperTerminal settings are as follows:

• 57600 bps baud rate

• 8 data bits

• No parity

• 1 stop bit

• No flow control

To enable the IR transceivers for
IrDA communication, short jumper
J10 on the Z8 Encore! XP®
Development Board.

Equipment Used
The following equipments are used to test the IrDA
Framer implementation:

• Two Z8 Encore! XP® Development Kits
(Z8ENCORE000ZC0) featuring the Z8F6403
MCU

• ZDSII IDE for Z8 Encore!® v4.2.1

• HyperTerminal

Test Procedure
Follow the steps below to test the IrDA Framer
implementation on Z8 Encore! XP MCU.

1. Using the ZDSII IDE, download the object
files onto both of the Z8 Encore! XP Develop-
ment Boards.

2. On the two PCs—Station A and Station B,
launch the HyperTerminal application with the
settings provided in the Test Setup on page 9.

3. Execute the program using ZDSII on Station A
and Station B.

4. Follow the HyperTerminal menu to set Station
A as the receiver and Station B as the transmit-
ter.

5. Enter the length of the data to be transmitted
from the transmitting station (Station B).
Length of data is specified as a hexadecimal
value; the maximum value is 0x40 (for 64
bytes).

6. Station B transmits five packets of data,
sequentially, with each packet length equal to
the number of bytes specified. Station A
receives these packets and displays them in the
HyperTerminal window.

7. Set Station B as receiver and Station A as
transmitter and repeat the test.

The test.c file (available in the
AN0152-SC01.zip file) contains
hard-coded data that can be used to
simulate IrLAP payload data. This
data is stored in the form of a two-
dimensional array. The first element
of the array in each row indicates the
packet number (0, 1, 2, ...) and the
remainder are data bytes. When the
Framer receives the data, it is

Figure 6. Connection Cable between the COM2 Port and the P2 Connector

(CONNECTOR DB9 - - FEMALE)
TO PC COM PORT

(CONNECTOR DB9 - - FEMALE)
TO EVAL BOARD MODEM CONNECTOR - P2

Rx

Tx
CTS

GND

GND

Tx

Rx

RTS

5
9
4
8
3
7
2
6
15

9
4
8
3
7
2
6
1

Note:

Note:
AN015202-1207 Page 10 of 25

http://www.zilog.com/docs/z8encore/appnotes/an0152-sc01.zip

IrDA Framer Implementation on the Z8 Encore! XP® MCU
compared with the transmitted data
and is displayed in the
HyperTerminal window, only if both
of them match.

8. The data bytes in the array const unsigned
char transmit_array [ROW][COLUMN],
defined in the test.c file, can be modified (if
required) to test for the transmission and recep-
tion of different data. After this change, the
project must be compiled and rebuilt to gener-
ate new object files. The same object file is
loaded into both of the target boards under test.

Test Results
The testing of the IrDA Framer between the two Z8
Encore! XP® Development Boards was found to be
satisfactory. The data transmitted from the transmit-
ting station was displayed correctly in the receiving
station’s HyperTerminal window.

Testing on Other Target Platforms
The Framer implementation was additionally tested
on the following devices:

• A Z8 Encore! XP Board and an eZ80® Devel-
opment Platform equipped with the eZ80L92
Module, which features a full IrDA stack

• A Z8 Encore! XP Board and a laptop computer
with the IrDA port enabled

• A Z8 Encore! XP Board and an IR dongle
(IrDA COM port serial adaptors)

With the eZ80L92 Module and a laptop computer,
the Framer is caused to respond to one of the discov-
ery frames and receive the remainder of the discov-
ery frames transmitted by the sender. Because the Z8
Encore! XP Board features only a Framer, these tests
illustrate that the Framer is able to communicate with
IrDA-compatible devices, assuming that appropriate
modifications are made.

The IR dongle receives the data sent by the Framer.
This data is captured in a file, using HyperTerminal,
and compared with the transmitted data.

Summary
This Application Note describes a Z8 Encore! XP®

MCU-based Framer implementation for the IrDA
Lite stack. This Framer implementation can be used
to develop other protocol layers for IrDA Lite with
little or no modification. The Z8 Encore! XP MCU
features on-chip integration of 64 KB of Flash mem-
ory, 4 KB of RAM, UARTs, and an IrDA endec.
These features make the Z8 Encore! XP MCU an
ideal choice to implement the IrDA Lite protocol
stack because it can help to avoid the use of external
components—thereby reducing cost and design time.

References
The documents associated with IrDA specifications,
protocols, Z8 Encore! XP Flash Microcontrollers, the
eZ8 CPU, and the ZDS II Development Tool for Z8
Encore! available on www.zilog.com are provided
below:

• IrLAP—IrDA Serial Infrared Link Access Pro-
tocol, version 1.1 (IrLAP); www.irda.org

• Z8 Encore!® Flash Microcontroller Develop-
ment Kit User Manual (UM0146)

• Slim Series SIR Transceiver Product Specifi-
cation (PS0093)

• eZ8 CPU Core User Manual (UM0128)

• Zilog Developer Studio II (ZDS II)–Z8
Encore!® User Manual (UM0130)
AN015202-1207 Page 11 of 25

http://www.zilog.com

http://www.zilog.com

http://www.zilog.com
http://www.zilog.com
http://www.zilog.com

http://www.zilog.com
http://www.zilog.com
http://www.irda.org

IrDA Framer Implementation on the Z8 Encore! XP® MCU
Appendix A—Flowcharts
This Appendix displays the flowcharts for the IrDA Framer implementation (see Figure 7 through
Figure 12).

Figure 7. The START-TRANSMIT Routine

START

Store INTERRUPT_STATUS

END

Yes

No

Lock Tx buffer

Disable Rx Interrupts

Set transmitter_state flag = BOF

Set receiver_state flag = IDLE

Initialize CRC values

Is

Tx buffer

locked?

Enable Transmit mode

Enable Tx Interrupts

Restore INTERRUPT_ STATUS

Return "SUCCESS"

Return "FAILED"
AN015202-1207 Page 12 of 25

IrDA Framer Implementation on the Z8 Encore! XP® MCU
Figure 8. The START-RECEIVER Routine

START

Store INTERRUPT_STATUS

END

No

Yes

Is

receiver_state

= IDLE?

Disable Tx Interrupt

Disable TIMER0

Initialize CRC values

Set receiver_state = IN_BOF

Enable receiver mode

Restore INTERRUPT_STATUS
AN015202-1207 Page 13 of 25

IrDA Framer Implementation on the Z8 Encore! XP® MCU
Figure 9. The Transmit Interrupt Handler

Check for
transparency
characters

Check for
transparency
characters

Calculate CRC

Send DATA Send CRC

Set transmitter_
state = EOF

RETI

RETI

Send EOF
character

Set transmitter_
state =
INVALID

Disable
Tx interrupts

Set transmitter_
state = BOF

Unlock
Tx buffer

All
Data Bytes

sent?

Set transmitter_
status = FCS

START

Yes No
Is

transmitter
_state
= BOF?

No

No

No

No

Send BOF character

Set transmitter_state =
DATA

Yes

Yes

Yes

Is
transmitter

_state
= DATA?

Is
transmitter

_state
= FCS?

Is
transmitter

_state
= EOF?

Yes
AN015202-1207 Page 14 of 25

IrDA Framer Implementation on the Z8 Encore! XP® MCU
Figure 10. The Receive Interrupt Handler

START

Disable TIMER0

Reload TIMER0

Is

timeout

flag = 0x01?

Yes

No

Read Characters

Check for Transparency

Check CRC

Store Data Received

Enable TIMER if entire

packet is not received
RETI

Yes

Yes
No RETI

Is

DATA

received?

Set RECEIVER_ERROR flag

Call reset_receiver function

EOF

character

received?

No

Call reset_receiver function
AN015202-1207 Page 15 of 25

IrDA Framer Implementation on the Z8 Encore! XP® MCU
Figure 11. The Receive Time-Out Interrupt Routine

START

Set the receive timeout flag

Call reset_receiver function

RETI

Figure 12. The Reset Receiver Function

START

Disable TIMER0
Reload TIMER0
Reload Registers

Initialize CRC and
transparency values

END

Set receive_state = IN_BOF
Enable receiver mode
AN015202-1207 Page 16 of 25

IrDA Framer Implementation on the Z8 Encore! XP® MCU
Appendix B—API Descriptions
This Appendix describes the following APIs provided for the IrDA Framer implementation on the Z8 Encore!
XP® MCU.

• void Z_irda_lite_init_phy (void)

• void Z_init_callback (PHY_RX_CALLBACK
rx_callback)

• char Z_irda_lite_get_tx_buffer (void)

• void Z_irda_lite_shutdown (void)

• BYTE Z_irda_lite_transmit (BYTE length)

• void z_irda_lite_receive (void);
AN015202-1207 Page 17 of 25

IrDA Framer Implementation on the Z8 Encore! XP® MCU
void Z_irda_lite_init_phy (void)

Prototype

Z_irda_lite_init_phy (void)

Description
This API executes the following tasks:

• Selects the GPIO pins for the alternate function of UART0

• Sets the UART baud rate to 9600 bps

• Disables the Transmit and Receive interrupts

• Initializes the receiver to the IDLE state

• Initializes the transmitter to the BOF state

• Initializes TIMER0

Argument (s)

Return Value (s)

None

None
AN015202-1207 Page 18 of 25

IrDA Framer Implementation on the Z8 Encore! XP® MCU
void Z_init_callback (PHY_RX_CALLBACK rx_callback)
Prototype

Z_init_callback (&test_callback_function)

The address of test_callback_function is passed as an argument.

Description
This API initializes the Rx (Receive) callback function.

Argument (s)

Return Value (s)

PHY_RX_CALLBACK Type definition of a function pointer.

None
AN015202-1207 Page 19 of 25

IrDA Framer Implementation on the Z8 Encore! XP® MCU
char Z_irda_lite_get_tx_buffer (void)

Prototype

Z_irda_lite_get_tx_buffer (void)

Description
This API checks the status of the transmit buffer. When the Framer is transmitting data from
the transmit buffer, this API returns BUSY, signifying that the buffer is not available to IrLAP.
Otherwise, this API returns FREE, signifying that the transmit buffer is free for the IrLAP to
load the buffer with new IrLAP payload data.

Argument (s)

Return Value (s)

None

char The status of the transmit buffer is BUSY or FREE.
AN015202-1207 Page 20 of 25

IrDA Framer Implementation on the Z8 Encore! XP® MCU
void Z_irda_lite_shutdown (void)

Prototype

Z_irda_lite_get_tx_buffer(void)

Description
This API disables all of the UART interrupts (Rx and Tx). The Framer is set to the IDLE
state. Specifically, this API sets the receive_state Flag to IDLE and the
transmit_state Flag to the BOF state.

Argument (s)

Return Value (s)

void

void
AN015202-1207 Page 21 of 25

IrDA Framer Implementation on the Z8 Encore! XP® MCU
BYTE Z_irda_lite_transmit (BYTE length)

Prototype

Z_irda_lite_transmit (length)

Description
IrLAP calls this API when data is required to be transmitted. This API locks the Tx buffers,
disables the receive interrupt and enables the transmit interrupt. It also checks the Framer state
which is set to transmit mode. This API returns ‘SUCCESS’ if setup for transmission takes
place properly.

Argument (s)

Return Value (s)

BYTE (type def for char) The length of the buffer to be transmitted.

char SUCCESS when the transmission is successful.
AN015202-1207 Page 22 of 25

IrDA Framer Implementation on the Z8 Encore! XP® MCU
void z_irda_lite_receive (void);

Prototype

z_irda_lite_receive (void)

Description
IrLAP calls this API to receive data. The API checks the Framer state and sets it to RECEIVE
mode. This API also checks the receiver status Flag. If the receiver status Flag is set to IDLE,
the receiver is enabled. This API disables the Tx interrupts and enables the Rx interrupts.

Argument (s)

Return Value (s)

void

void
AN015202-1207 Page 23 of 25

AN015202-1207 Page 24 of 25

IrDA Framer Implementation on the Z8 Encore! XP® MCU

Appendix C—IrDA Lite
This Appendix describes the IrDA Lite protocol.

IrDA Lite is a minimal implementation of the com-
plete IrDA stack. However, it interoperates with the
full-featured IrDA stacks by sacrificing speed and
throughput, among other attributes. A majority of the
devices incorporating IrDA Lite are embedded
devices. Most of these devices provide less memory
than laptop or desktop PCs.

The Framer implementation design for the Z8
Encore! XP® MCU is based on the following IrDA
Lite specifications and is compliant to the IrDA
Physical Specification version 1.3.

Baud Rate—The communication speed between
two IrDA-compatible devices is always fixed at 9600
bps. This speed is not negotiable during communica-
tion.

Data Size—The maximum length of the IrLAP pay-
load data that can be transmitted or received in one
frame is 64 bytes.

Window Size—At any given time, IrLAP can form
only one IrLAP payload data packet to send to the
Framer for transmission.

Additional BOFs—The number of BOF characters
allowed ranges from 1 character to a maximum of 11
characters.

AN015202-1207 Page 25 of 25

IrDA Framer Implementation on the Z8 Encore! XP® MCU

DO NOT USE IN LIFE SUPPORT

LIFE SUPPORT POLICY
ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)
support or sustain life and whose failure to perform when properly used in accordance with instructions for
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A
critical component is any component in a life support device or system whose failure to perform can be
reasonably expected to cause the failure of the life support device or system or to affect its safety or
effectiveness.

Document Disclaimer
©2007 by Zilog, Inc. All rights reserved. Information in this publication concerning the devices,
applications, or technology described is intended to suggest possible uses and may be superseded. ZILOG,
INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY
OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT.
ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY
INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR
TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this
document has been verified according to the general principles of electrical and mechanical engineering.

Z8, Z8 Encore!, and Z8 Encore! XP are registered trademarks of Zilog, Inc. All other product or service
names are the property of their respective owners.

Warning:

	IrDA Framer Implementation on the Z8 Encore! XP® MCU
	Abstract
	Z8 Encore! XP® Flash Microcontrollers
	Zilog IrDA Transceivers
	Discussion
	IrDA Protocol Layers
	Physical Layer
	IrLAP Layer

	Developing the Framer Application for the Z8 Encore! XP® MCU
	Framer Operation
	Software Implementation

	Testing
	Test Setup
	Test Procedure
	Test Results
	Testing on Other Target Platforms

	Summary
	References
	Appendix A-Flowcharts
	Appendix B-API Descriptions
	void Z_irda_lite_init_phy (void)
	void Z_init_callback (PHY_RX_CALLBACK rx_callback)
	char Z_irda_lite_get_tx_buffer (void)
	void Z_irda_lite_shutdown (void)
	BYTE Z_irda_lite_transmit (BYTE length)
	void z_irda_lite_receive (void);

	Appendix C-IrDA Lite

