
AN014105–1207
Abstract
This application note describes how to nest
interrupts when developing a project with Zilog’s
Z8 Encore! XP® MCU. It explains a method of
nesting interrupts which includes how to initialize
interrupts, set interrupt priorities, and initialize
interrupt vectors. This application note also
provides a brief introduction of the Z8 Encore! XP
interrupt controller.

Three source code files (in WinZip format) associ-
ated with this application note are listed below:

• AN0141-SC01—For 64 KB Z8 Encore! XP
MCU (Z8F640x)

• AN0141-SC02—For 8 KB Z8 Encore! XP
MCU (Z8F082x)

• AN0141-SC03—For 64 KB Z8 Encore! XP
MCU (Z8F642x)

Z8 Encore! XP® Flash MCU
Overview
Z8 Encore! XP products are based on new eZ8
CPU and introduce Flash memory to Zilog’s
extensive line of 8-bit microcontrollers. Flash
memory in-circuit programming capability allows
faster development time and program changes in
the field. The high-performance register-to-regis-
ter based architecture of the eZ8 core maintains
backward compatibility with Zilog’s popular Z8®

MCU.

The new Z8 Encore! XP microcontrollers combine
a 20 MHz core with Flash memory, linear-register
SRAM, and an extensive array of on-chip periph-
erals. These peripherals make the Z8 Encore! XP

suitable for various applications including motor
control, security systems, home appliances,
personal electronic devices, and sensors.

Discussion
This section briefly discusses following topics
associated with interrupts:

• Interrupts

• Prioritizing Interrupts

• Nesting Interrupts

• Interrupt Latency

Interrupts
An interrupt is an external/internal stimulus that
informs a processor that an event has occurred.
Interrupts can be hardware- or software-generated.
The use of interrupts frees the processor from poll-
ing for events that require attention, and from
service events as and when required in real time.

The processor’s architecture provides a method to
selectively enable or disable an interrupt source.
When an interrupt source is identified, the inter-
rupt is serviced by vectoring to a software routine
designed to handle the interrupt. Program flow
then returns to the original point of interruption.

Prioritizing Interrupts
A processor can manage a single interrupt at any
time. However, it is possible that several interrupts
can be simultaneously generated from several
enabled interrupt sources. In such instance, setting
an interrupt priority schema assumes importance.
Some microcontrollers and microprocessors
provide an option to set priorities for interrupts.
Application Note
Nesting Interrupts with Z8 Encore! XP® MCUs
Copyright ©2007 by Zilog®, Inc. All rights reserved.
www.zilog.com

http://www.ZiLOG.com

Nesting Interrupts with Z8 Encore! XP® MCUs
In MCU/MPUs that do not feature this option, the
interrupts are handled either by the order of their
occurrence or by their position in an interrupt vec-
tor priority table (see Table 2 in Appendix C—Z8
Encore! XP® Interrupt Controller Overview on
page 15).

An interrupt controller is a hardware device that
feeds interrupts to the microprocessor/controller
based on a set priority level.

The Z8 Encore! XP® MCU features an on-chip
interrupt controller (for an overview of Z8 Encore!
XP interrupt controller, see Appendix C—Z8
Encore! XP® Interrupt Controller Overview on
page 15).

Nesting Interrupts
An interrupt is serviced completely before the next
interrupt is serviced. However, sometimes it is
necessary to process a higher-priority interrupt
that can occur while a lower priority interrupt is
being serviced. The mechanism by which a higher-
priority interrupt preempts a lower-priority inter-
rupt is called nesting.

The handling of nested interrupts can be
unpredictable and therefore leads to variable
amount of delay prior to servicing a low-priority
interrupt, or a higher program stack size
requirement.

Interrupt Latency
Interrupt latency is the time interval measured
from the instant an interrupt occurs until the
corresponding ISR begins to execute. The worst-
case latency for any given interrupt is a sum of the
following:

• Time taken to finish program instructions in
progress, save a current program context, and
begin an ISR

• Longest time elapsed before an Enable
Interrupt (EI) instruction is encountered

• Time taken to execute all higher-priority
interrupts if they occur simultaneously

It follows that higher-priority interrupts exhibit
much lower latencies. In simple cases, latency can
be calculated from instruction cycle times. Inter-
rupt latency must be considered at design time,
along with nesting interrupts, whenever
responsiveness matters.

Nesting Interrupts with
Z8 Encore! XP MCUs
This section describes how to nest interrupts with
Z8 Encore! XP MCU and also demonstrates
nesting up to three levels.

When an interrupt occurs, the CPU performs
certain activities by default. To nest interrupts,
some additional activities need to be performed.
Follow the steps below to nest the interrupts to
perform the operations involved when an interrupt
occurs:

1. By default, the CPU completes the instruction
currently being executed.

2. By default, the CPU saves the address of the
next instruction to be executed in the inter-
rupted routine by pushing Low and High bytes
of the Program Counter onto the stack. It also
pushes the Flags Register on the stack and
branches to the interrupt vector address
pointed to by the instruction pointer.

Follow the steps below to nest the interrupts:

1. If Assembly code1 is used then save the
context of the Working Register Group

2. Save the priority for the set interrupts

1. The software implementation to nest interrupts in this
application note is written in C; Assembly language is
used as necessary.
AN014105–1207 Page 2 of 19

Nesting Interrupts with Z8 Encore! XP® MCUs
3. Mask the interrupts that are at the same and
lower priority levels

4. Enable interrupts

5. Execute the application-specific user code

6. Disable the interrupts

7. Restore the priority for the set interrupts

On completing the above tasks, the CPU can
perform an operation when an Interrupt Return
(IRET) instruction is encountered. By default, it
restores the address of the next instruction in the
routine that was interrupted, and enables the inter-
rupts. Program execution resumes in the routine
that was interrupted.

The steps you must perform for nesting interrupts
are discussed in detail in the following sections.

Saving Context of Working Register Group
During normal program execution, the CPU uses
the Working Register Group (WRG) to store inter-
mediate data. The WRG is selected by loading the
appropriate value to the register pointer (RP).
When program execution jumps to an ISR, the
context of the existing WRG must be stored and
another WRG must be selected. Save the interme-
diate data by loading a new WRG address to the
RP. When the execution of ISR completes, select
the original WRG.

If the program is written in C language, then the
compiler automatically takes care of switching
between WRGs. Therefore, saving the context of
the WRG must be done only when programming
completely in Assembly language.

Saving Priority for Set Interrupts
Based on the application, only the priority
registers of the required interrupt must be stored
on the stack.

The function _store_priority, provided in this
application note, illustrates saving the Interrupt
Priority Control Registers on the stack.

This function is written in Assembly language and
called from within a C routine. For one level of
nesting depth, a stack size of six bytes is required
to store the priorities set for all the interrupts, two
bytes are required to store the Program Counter
(PC) that holds the address of the next instruction
to be executed in the interrupted routine, and one
byte is required to store the Register Pointer (RP).

_store_priority:
POP R1; Store return address to Register
R1
POP R2; Store return address to Register
R2
PUSHX IRQ0ENH; Push IRQ0ENH to stack
PUSHX IRQ0ENL; Push IRQ0ENL to stack
PUSHX IRQ1ENH; Push IRQ1ENH to stack
PUSHX IRQ1ENL; Push IRQ1ENL to stack
PUSHX IRQ2ENH; Push IRQ2ENH to stack
PUSHX IRQ2ENL; Push IRQ2ENL to stack
PUSH R2; Push return address on the stack
PUSH R1; Push return address on the stack
RET;

In the above Assembly program, Program Counter
(PC) that holds the address of the next instruction
in the calling routine (that is on the stack) is
popped onto registers R1 and R2. Next, all the
Interrupt Priority Registers are pushed onto the
stack. Next, the PC is placed back on top of the
stack using the PUSH R2 and PUSH R1 instruc-
tions so that the stack pointer points to the valid
address of the next instruction in the interrupted
routine.

Masking Interrupts of the Same and Low
Priority
Masking interrupts of the same and lower priority
ensures that only higher-priority interrupts are
serviced within the lower-priority tasks. The API
void mask_equal_low_priority(unsigned
char vector_no), provided in this application
note, performs this operation.

The interrupt source and the priority of the
interrupts must be determined before masking.
The priority for interrupts must be decided
carefully based on application requirements.
AN014105–1207 Page 3 of 19

Nesting Interrupts with Z8 Encore! XP® MCUs
An array of unsigned characters called priority
is used to store the priority of all the selected inter-
rupts. See Table 1 in Appendix C—Z8 Encore!
XP® Interrupt Controller Overview on page 15 to
disable selected interrupts.

Enabling Interrupts to Allow Nesting
The EI instruction is a macro that enables all the
set interrupts by setting the Interrupt Request Bit
in the Interrupt Control Register to 1 (see Appen-
dix C—Z8 Encore! XP® Interrupt Controller
Overview on page 15).

Executing Application-Specific User Code
The application-specific user code is inserted at
this point. If there are any critical sections to be
executed in the user code, the interrupt must be
enabled after the critical section.

Disabling Interrupts
The interrupts are disabled at this point, using the
DI macro to restore the contents of the Interrupt
Priority Control Registers.

Restoring Set Priority for Interrupts
The function _restore_priority_status,
provided in this application note, restores the
priority of the set interrupts. This function is
written in Assembly language and called from
within a C routine.

_restore_priority_status:

POP R1; Store the Return address to
Register R1
POP R2; Store the Return address to
Register R2
POPX IRQ2ENL; Pop IRQ2ENL from stack

POPX IRQ2ENH; Pop IRQ2ENH from stack
POPX IRQ1ENL; Pop IRQ1ENL from stack
POPX IRQ1ENH; Pop IRQ1ENH form Stack
POPX IRQ0ENH; Pop IRQ0ENH from stack
POPX IRQ0ENH; Pop IRQ0ENH from stack
PUSH R2; Push the return address on the
stack

PUSH R1; Push the return address on the
stack
RET;

Finally, before returning from the ISR, the CPU
restores the PC, and program execution resumes in
the routine that was interrupted.

Figure 1 on page 5 displays the graphical repre-
sentation of interrupt nesting up to 3 levels. In this
figure, Task 3 holds the highest priority, Task 2
holds a medium priority, and Task 1 holds a low
priority.

Hardware Implementation to
Demonstrate Nesting of Interrupts
To demonstrate the nesting of interrupts,
Z8 Encore! XP Development Board is used along
with a number of LEDs and resistors.

Figure 2 on page 5 displays the block diagram for
the hardware implementation using Z8F64xx
MCU.

Figure 3 on page 6 displays the block diagram for
the hardware implementation using Z8F0822
MCU.

For a complete schematic of the Z8 Encore! XP
Development Board, refer to Z8 Encore! XP®

Flash Microcontroller Development Kit User
Manual (UM0146).
AN014105–1207 Page 4 of 19

Nesting Interrupts with Z8 Encore! XP® MCUs
Figure 1. Graphical Representation of Nesting Interrupts up to Three Levels

Figure 2. LED and Switch Connections to Z8F64xx MCU

TIME

TA
S

K
S

TASK 1

TASK 2

TASK 3

MAIN TASK

Main task interrupted

 Level 1
interrupt

 Level 2
interrupt

 Level 3
interrupt

ISR2

ISR1

Task 1 interrupted

Task 2 interrupted

Task 3 cannot be
interrupted, completes

execution; Task 2
resumes

Task 2 completed; Task 1 resumes

Task 1 completed; Main resumes

ISR1=ISR for task priority 1
ISR2=ISR for task priority 2
ISR3=ISR for task priority 3

ISR3

Main task in infinite loop

PC7

PC6

PC5

PC4

PD2

PD1

PD0

R0

R4

S1

R5

LED2

R1

S2

R6

R2

LED1

S3

LED0

R3LED3

Z8F64xx MCU

VDD
(3.3 Vdc)

R0 - R3 = 180 ohms 1/4 watt
R4 - R6 = 2.2 Kohms 1/4 watt
AN014105–1207 Page 5 of 19

Nesting Interrupts with Z8 Encore! XP® MCUs
Figure 2 on page 5 displays a block diagram for
the Z8F64xx devices, in which the port pins PD0,
PD1, and PD2 are configured as interrupt pins.

In Figure 3, which displays the Z8F0822 device,
port pins PA4, PA6, and PA7 are configured as
interrupt pins. In both setups, switches S1, S2, and
S3 are used to generate interrupts.

Figure 3. LED and Switch Connections to Z8F0822 MCU

Demonstration Setup
Three interrupt sources are simulated using
switches to allow a nesting depth of three levels.
Additionally, four externally-connected LEDs to
Port C are used in the demonstration setup.

Equipment Used
The equipment used to demonstrate the nesting of
interrupts are listed below:

• Z8 Encore! XP Development Kit
(Z8ENCORE000ZC0-D) featuring
Z8F640x MCU

• Z8 Encore! XP Development Kit
(Z8F08200100) featuring Z8F082x MCU

• Z8 Encore! XP Development Kit
(Z8F64200100KIT) featuring Z8F642x
MCU

• ZDS II IDE for Z8F640x MCU v4.5.1

• ZDS II IDE for Z8F08xx MCU v4.5.1

• ZDS II IDE for Z8F642x MCU v4.5.1

Demonstration Procedure
The demonstration procedure includes configuring
the ZDS II–Z8 Encore! IDE and then executing
the Nesting Interrupts demonstration.

Configuring ZDS II
Follow the steps below to configure ZDS II:

1. Launch ZDS II2. Navigate to Project Settings
dialog box.

PB 3

PB 2

PB 1

PB 0

PA7

PA6

PA4

D3 R3

S3

D2

R0

D1

R6

R1

R4

S1

D0

R2

R5

S2

Z8F082x MCU

VDD
(3.3 Vdc)

R0 - R3 = 180 ohms 1/4 watt
R4 - R6 = 2.2 Kohms 1/4 watt

2.Refer to readme.txt file included with the ZDS II–
Z8 Encore! IDE for more details. This file is also
available within the ZDS II–Z8 Encore! User Manual
(UM0130).
AN014105–1207 Page 6 of 19

Nesting Interrupts with Z8 Encore! XP® MCUs
2. Click the Target tab. Set RData to 40h-FFh
for three levels of nesting.

For the remaining project settings, refer to
ZDS II–Z8 Encore!® User Manual (UM0130).

Executing Nesting Interrupts
Demonstration
Follow the steps below to nest the interrupts:

1. The Z8 Encore! XP Target Board is labelled as
either a Z8F64xx MCU-based board, a
Z8F0822 MCU-based board, or a Z8F642x
MCU-based board. Download the appropriate
source code to the appropriate target board.

2. Execute the program. LED0 starts blinking and
all other LEDs are switched ON.

3. While LED0 continues to blink, simulate an
interrupt of Priority Level 1 by pressing switch
S1 (see Figure 4 on page 8). Observe that the
LED0 stops blinking and LED1 starts blinking,
indicating that the program is executing the
ISR for Priority Level 1, ISR1.

4. While LED1 blinks, simulate a Level 2
interrupt by pressing switch S2. LED1 stops
blinking and LED2 starts blinking, indicating
that the program has moved from ISR1 to the
ISR for Priority Level 2, ISR2.

5. While LED2 blinks, simulate a Level 3
interrupt by pressing switch S3. LED2 stops
blinking and LED3 starts blinking, indicating
that the program has moved from ISR2 to the
ISR for Priority Level 3, ISR3.

After a brief delay, LED3 stops blinking, indicat-
ing that ISR3 has completed executing and the
program has moved to ISR2, which causes LED2
to resume blinking. After a brief delay, LED2
stops blinking, indicating that ISR2 has completed
execution. The program moves to ISR1, and LED1
resumes blinking. LED1 stops blinking after a
brief delay, and LED0 starts blinking, indicating
that the program has moved back to main().

Figure 4 on page 8 graphically displays this
demonstration.

The C Compiler in ZDS II automati-
cally generates a Disable Interrupt
instruction at the beginning of an
ISR and generates an Enable
Interrupt instruction when exiting
an ISR.

Ensure to avoid stack overflow
while nesting interrupts.

Summary
This application note demonstrates the nesting of
interrupts on Z8 Encore! XP MCU up to a depth of
three levels. The stack requirement for nesting
interrupts up to three levels is only 27 bytes. Nest-
ing up to four levels is also possible when any
nonmaskable interrupt preempts a Priority Level 3
interrupt. When nesting up to four levels, the stack
requirement is 36 bytes.

As Z8 Encore! XP MCU operates at 20 MHz and
most of the instructions are one or two cycles, its
architecture is ideally suited for real-time applica-
tions requiring fast response time. While nesting
interrupts, keeping the number of instructions
within the ISR to a minimum reduces interrupt
latency. The source code contains ISRs for all the
24 vectors. You must insert application-specific
user code in the area specified within these ISRs.

Note:

Caution:
AN014105–1207 Page 7 of 19

Nesting Interrupts with Z8 Encore! XP® MCUs
Figure 4. Graphical Representation of Nesting Interrupts Demo

References
The documents associated with Z8 Encore! XP
Flash Microcontrollers, eZ8 CPU, and ZDS II
Development Tool available at www.zilog.com
are provided below:

• Z8 Encore! XP® 64K Series Flash Microcon-
trollers Product Specification (PS0199)

• Z8 Encore!® 8K and 4K Series Product
Specification (PS0243)

• Z8 Encore! XP® Flash Microcontroller
Development Kit User Manual (UM0146)

• eZ8 CPU User Manual (UM0128)

• Zilog Developer Studio II–Z8 Encore!®
User Manual (UM0130)

TIME

TA
S

K
S

TASK 1

TASK 2

TASK 3

MAIN TASK

Main task interrupted; LED0
stops; Task 1 starts; LED1 blinks

Press S1 for
Level 1
interrupt

Press S2 for
Level 2
interrupt

Press S3 for
Level 3
interrupt ISR2, LED2

blinking

ISR1, LED1
blinking

Task 1 interrupted; LED1 stops;
Task 2 starts; LED2 blinks

Task 2 interrupted; LED2 stops;
Task 3 starts; LED3 blinks

Task 3 cannot be
interrupted, completes

execution.; LED3 stops;
Task 2 resumes; LED2

blinks

Task 2 completed; LED2
stops; LED1 blinks

Task 1 completed; LED1 stops ;
LED0 blinks

ISR1=ISR for task priority 1
ISR2=ISR for task priority 2
ISR3=ISR for task priority 3

ISR3; LED3
blinking

Main task; LED0
blinks in infinite loop
AN014105–1207 Page 8 of 19

http://www.zilog.com

http://www.zilog.com

http://www.zilog.com
http://www.zilog.com
http://www.zilog.com

http://www.zilog.com
http://www.zilog.com

Nesting Interrupts with Z8 Encore! XP® MCUs
Appendix A—Flowcharts
Figure 5 displays the initialization routine for nested interrupts.

Figure 5. Initialization Routine with Interrupt Nesting

START

Initialize port pins for external
interrupts.

Set interrupt priorities.
Select interrupt type
(falling/rising edge)

Enable Interrupt

RETURN
AN014105–1207 Page 9 of 19

Nesting Interrupts with Z8 Encore! XP® MCUs
Figure 6 displays the Interrupt Service Routine (ISR) for nested interrupts.

Figure 6. ISR Routine with Interrupt Nesting

START

Disable interrupt.
Save priority status.

Mask same and lower priority
interrupts.

Enable interrupts

Execute Interrupt Handler.
Add Application specific/User

code

Disable interrupts.
Restore priority status

RETURN from Interrupt
(RETI)
AN014105–1207 Page 10 of 19

Nesting Interrupts with Z8 Encore! XP® MCUs
Figure 7 displays the ISR without nested interrupts.

Figure 7. ISR Routine without Interrupt Nesting

START

Disable interrupts

Execute Interrupt Handler
Add Application specific /user

code

RETURN from interrupt
(RETI)

Enable Interrupt
AN014105–1207 Page 11 of 19

Nesting Interrupts with Z8 Encore! XP® MCUs
Appendix B—Support Functions
This appendix describes two support functions for nesting interrupts using Z8 Encore! XP MCU.

set_priority (VECTOR, level)

Description
This routine sets the required interrupt VECTOR to the user-defined priority level. Three
levels of priorities can be set with Z8 Encore! XP MCU. For more details, see Interrupts
on page 1.

Argument(s)

 Example

set_priority (TIMER1, 03)—In this example, this API sets the priority of the
TIMER1 interrupt to Priority Level 3, which is the highest priority.

In Demonstration Setup on page 6, the GPIO pins D0, D1, and D2 are used for
demonstrating the nested interrupts in Z8F6403 device. D0 is set to Priority Level 1
(lowest priority), D2 is set to Level 2 (medium priority), and D3 is set to Level 3 (highest
priority).

set_priority (P0AD, 1)—In this example, this API sets the priority of PORTD pin 0
to priority level 1, which is the lowest priority.

VECTOR The interrupt vector to be assigned a priority.

level Priority to be set for interrupt.
AN014105–1207 Page 12 of 19

Nesting Interrupts with Z8 Encore! XP® MCUs
SET_VECTOR (VECTOR, interrupt handler)

Description
Interrupts are set in C using the SET_VECTOR macro specific to the Z8 Encore! XP MCU,
which embeds assembly language to C source code to specify the address of an interrupt
handler.

The interrupt vectors of the Z8 Encore! XP MCU exist in Flash memory and cannot be
initialized at run time. The SET_VECTOR macro places the address of the interrupt handler
at the proper VECTOR address.

Argument(s)

Example
The following code illustrates the use of SET_VECTOR macro:

SET_VECTOR (P0AD, isr_PORTD0);
SET_VECTOR (P1AD, isr_PORTD1);
SET_VECTOR (P2AD, isr_PORTD2);

In the above example, the interrupt vectors are P0AD, P1AD, and P2AD. The interrupt
handlers for these vector interrupts are isr_PORTD0, isr_PORTD1, and isr_PORTD2,
respectively.

The address of the interrupt handler isr_PORTD0 is written to Flash memory location
0026h, which is the vector address for the POAD interrupt.

The address of the interrupt handler isr_PORTD1 is written to Flash memory location
0024h, which is the vector address for the P1AD interrupt.

The address of the interrupt handler isr_PORTD2 is written to Flash memory location
0022h, which is the vector address for the P2AD interrupt.

The SET_VECTOR macro can be added anywhere in the C program and does not generate
any code. It can be placed within any function of the user program where the interrupt
handler function is in scope. However, for clarity, it is preferred to place the SET_VECTOR
macro within the interrupt handler itself.

VECTOR Interrupt vector
interrupt handler ISR routine to be used
AN014105–1207 Page 13 of 19

Nesting Interrupts with Z8 Encore! XP® MCUs
The following code segment provides an example:

#pragma interrupt
void isr_TIMER1 (void)
{
 SET_VECTOR (TIMER1, isr_TIMER1); // Set up the vector

// for the TIMER1
// interrupt;
// enter user code

}

During compile time, the compiler resolves the address of function isr_TIMER1 and
maps it to the TIMER1 vector address space.
AN014105–1207 Page 14 of 19

Nesting Interrupts with Z8 Encore! XP® MCUs
Appendix C—Z8 Encore! XP® Interrupt Controller Overview

The Z8 Encore! XP interrupt controller includes
the following features:

• 24 unique interrupt vectors:
– 12 GPIO port pin interrupt sources
– 12 on-chip peripheral interrupt sources

• Flexible GPIO interrupts:
– 8 selectable rising- and falling-edge

GPIO interrupts
– 4 dual-edge interrupts

• 3 levels of individually-programmable
interrupt priority

• A Watchdog Timer that can be configured to
generate an interrupt

Interrupt requests (IRQs) allow peripheral devices
to request a CPU operation in an orderly manner to
force the CPU to start an Interrupt Service Routine
(ISR) ahead of its current activity.

Usually, an ISR is involved with the exchange of
data, status information, or control information
between the CPU and the interrupting peripheral.
When the ISR is completed, the CPU returns to the
operation from which it was interrupted.

Figure 8. Interrupt Controller Block Diagram

The eZ8 CPU supports both vectored and polled
interrupt handling. For polled interrupts, the
interrupt control has no effect on the operation.

For more information regarding interrupt servicing
by the eZ8 CPU, refer to eZ8 CPU User Manual
(UM0128). Figure 8 displays a block diagram of
the Z8 Encore! XP interrupt controller.

In
te

rr
u

p
t

R
e

q
u

e
s

t
L

a
tc

h
e

s
 a

n
d

 C
o

n
tr

o
l

Po r t In te r rup ts

Internal Interrupts

HIGH

Pr io r i t y

MEDIUM

Pr io r i t y

Pr io r i t y

LOW

Pr io r i t y

MUX

Ve c t o r

I R Q R e q u e s t
AN014105–1207 Page 15 of 19

http://www.zilog.com

Nesting Interrupts with Z8 Encore! XP® MCUs
Interrupt Vectors and Priority
The Z8 Encore! XP interrupt controller supports
three levels of interrupt priority. Level 3 holds the
highest priority and Level 1 holds the lowest prior-
ity. If all the interrupts are enabled with identical
interrupt priority (all as Level 2 interrupts, for
example), then priority is assigned from highest to
lowest, as specified in Table 2 on page 17. The
Reset, Illegal Instruction Trap, and Watchdog
Timer (if enabled) interrupts always hold Level 3
priority.

Interrupt Control Registers
For all interrupts other than the Watchdog Timer
interrupt, the interrupt control registers enable
individual interrupts, set interrupt priorities, and
indicate interrupt requests.

Interrupt Request Registers
There are three Interrupt Request Registers,
which include:

• Interrupt Request 0 Register (IRQ0)

• Interrupt Request 1 Register (IRQ1)

• Interrupt Request 2 Register (IRQ3)

These registers hold a pending interrupt request.
When an interrupt occurs, the relevant bit in the
corresponding register is set to 1. This bit is reset to
0 when the CPU acknowledges the interrupt
controller after executing the first instruction in the
ISR that corresponds to the interrupt.

Interrupt Enable High and Low Bit Registers.

There are six Interrupt Enable High and Low Bit
Registers, which include:

• IRQ0 Enable High Bit Register (IRQ0ENH)

• IRQ0 Enable Low Bit Register (IRQ0ENL)

• IRQ1 Enable High Bit Register (IRQ0ENH)

• IRQ1 Enable Low Bit Register (IRQ0ENL)

• IRQ2 Enable High Bit Register (IRQ0ENH)

• IRQ2 Enable Low Bit Register (IRQ0ENL)

These registers form a priority-encoded enabling
for interrupts in the corresponding Interrupt
Request Registers. Setting the bits in the Interrupt
Enable High and Low bit registers generates prior-
ity. Table 1 describes the priority control for IRQ0,
where x indicates the register bits 0 through 7.

For further details on setting interrupt priority,
enabling interrupts, and other interrupt control
registers, refer to Z8 Encore! XP® 64K Series
Flash Microcontrollers Product Specification
(PS0199).

Interrupt Vector Listing
Table 2 lists all the interrupts supported on the
Z8 Encore! XP in the order of their priority. The
interrupt vector is stored with the most significant
byte (MSB) at the even Program Memory address
and the least significant byte (LSB) at the follow-
ing odd Program Memory address.

Table 1. IRQ0 Enable and Priority Encoding

IRQ0ENH
[x]

IRQ0ENL
[x] Priority Description

0 0 Disabled Disabled

0 1 Level 1 Low

1 0 Level 2 Nominal

1 1 Level 3 High
AN014105–1207 Page 16 of 19

Nesting Interrupts with Z8 Encore! XP® MCUs
Table 2. Z8 Encore! XP Interrupt Vectors in Order of Priority

Priority

Program
Memory
Vector
Address Interrupt Source Interrupt Assertion Type

Highest 0002h Reset (not an interrupt) Not applicable

0004h Watchdog Timer Continuous assertion

0006h Illegal Instruction Trap (not an interrupt) Not applicable

0008h Timer 2 Single assertion (pulse)

000Ah Timer 1 Single assertion (pulse)

000Ch Timer 0 Single assertion (pulse)

000Eh UART 0 receiver Continuous assertion

0010h UART 0 transmitter Continuous assertion

0012h I2C Continuous assertion

0014h SPI Continuous assertion

0016h ADC Single assertion (pulse)

0018h Port A7 or Port D7, rising or falling
input edge

Single assertion (pulse)

001Ah Port A6 or Port D6, rising or falling
input edge

Single assertion (pulse)

001Ch Port A5 or Port D5, rising or falling
input edge

Single assertion (pulse)

001Eh Port A4 or Port D4, rising or falling
input edge

Single assertion (pulse)

0020h Port A3 or Port D3, rising or falling
input edge

Single assertion (pulse)

0022h Port A2 or Port D2, rising or falling
input edge

Single assertion (pulse)

0024h Port A1 or Port D1, rising or falling
input edge

Single assertion (pulse)

0026h Port A0 or Port D0, rising or falling
input edge

Single assertion (pulse)

0028h Timer 3 (not available in 40-/44-pin
packages)

Single assertion (pulse)

002Ah UART 1 receiver Continuous assertion

002Ch UART 1 transmitter Continuous assertion

002Eh DMA Single assertion (pulse)

0030h Port C3, both input edges Single assertion (pulse)
AN014105–1207 Page 17 of 19

Nesting Interrupts with Z8 Encore! XP® MCUs
0032h Port C2, both input edges Single assertion (pulse)

0034h Port C1, both input edges Single assertion (pulse)

Lowest 0036h Port C0, both input edges Single assertion (pulse)

Table 2. Z8 Encore! XP Interrupt Vectors in Order of Priority (Continued)

Priority

Program
Memory
Vector
Address Interrupt Source Interrupt Assertion Type
AN014105–1207 Page 18 of 19

AN014105–1207 Page 19 of 19

Nesting Interrupts with Z8 Encore! XP® MCUs

DO NOT USE IN LIFE SUPPORT

LIFE SUPPORT POLICY
ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)
support or sustain life and whose failure to perform when properly used in accordance with instructions for
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A
critical component is any component in a life support device or system whose failure to perform can be
reasonably expected to cause the failure of the life support device or system or to affect its safety or
effectiveness.

Document Disclaimer
©2007 by Zilog, Inc. All rights reserved. Information in this publication concerning the devices,
applications, or technology described is intended to suggest possible uses and may be superseded. ZILOG,
INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY
OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT.
ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY
INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR
TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this
document has been verified according to the general principles of electrical and mechanical engineering.

Z8, Z8 Encore!, and Z8 Encore! XP are registered trademarks of Zilog, Inc. All other product or service
names are the property of their respective owners.

Warning:

	Nesting Interrupts with Z8 Encore! XP® MCUs
	Abstract
	Z8 Encore! XP® Flash MCU Overview
	Discussion
	Interrupts
	Prioritizing Interrupts
	Nesting Interrupts
	Interrupt Latency
	Nesting Interrupts with Z8 Encore! XP MCUs
	Hardware Implementation to Demonstrate Nesting of Interrupts
	Demonstration Setup
	Demonstration Procedure

	Summary
	References
	Appendix A-Flowcharts
	Appendix B-Support Functions
	Appendix C-Z8 Encore! XP® Interrupt Controller Overview
	Interrupt Vectors and Priority
	Interrupt Control Registers
	Interrupt Vector Listing

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

