ZiLOG

Z80 Family

CPU Peripherals

User Manual

UM008101-0601

ZiLOG Worldwide Headquarters » 910 E. Hamilton Avenue « Campbell, CA 95008
Telephone: 408.558.8500 ¢ Fax: 408.558.8300 « www.ZiLOG.com

Z80 CPU Peripherals
User Manual

i

o
&

=
dlk0d

This publication is subject to replacement by a later edition. To determine whether a later
edition exists, or to request copies of publications, contact:

ZiLOG Worldwide Headquarters
910 E. Hamilton Avenue

Campbell, CA 95008

Telephone: 408.558.8500

Fax: 408.558.8300

www.ZiLOG.com

Windows is a registered trademark of Microsoft Corporation.

Document Disclaimer

©2001 by ZILOG, Inc. All rights reserved. Information in this publication concerning the devices,
applications, or technology described is intended to suggest possible uses and may be superseded.
ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF
ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS
DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY
INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR
TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Devices sold by ZiLOG, Inc. are covered
by warranty and limitation of liability provisions appearing in the ZiLOG, Inc. Terms and Conditions of
Sale. ZiLOG, Inc. makes no warranty of merchantability or fithess for any purpose Except with the
express written approval of ZiLOG, use of information, devices, or technology as critical components
of life support systems is not authorized. No licenses are conveyed, implicitly or otherwise, by this
document under any intellectual property rights.

UM008101-0601 Disclaimer

Z80 CPU Peripherals
User Manual

Table of Contents

Counter/Timer Channels

CTCFeaturest 1
CTC General Descriptioncoiuiuieiieinennen.. 1
CTC Architecturec.outnii i 2
OVEIVIEW . . oot e e 2
Structure of Channel Logic 3
Interrupt Control Logic 7
CTC Pin Descriptionouit it 9
Pin Functions 9
CTC Operating Modest 16
OVEIVIEW . . oot e 16
CTC Counter Modeo, 16
CTCTimerMode, 17
CTC Programminguuuunuenteeieneeeanenn. 18
OVEIVIEW . . oot e 18
Loading The Channel Control Register 19
Loading The Time Constant Register 22
Loading The Interrupt Vector Register 22
CTCTIMING ..ottt e e e e 24
OVEIVIEW . . oot e 24
CTCWrite Cycle ... i 24
CTCReadCycle ... e 25
CTC Counting and Timingo, 26
CTC Interrupt ServiCingvuit it 27
OVEIVIEW . . oot e 27
Interrupt Acknowledge Cycle 28
Return from Interrupt Cycle 29
Daisy-Chain Interrupt Servicing 30

UMO008101-0601 Table of Contents

Z80 CPU Peripherals
User Manual

Direct Memory Access

DMA OVEIVIEW . ..ttt e e e 33
CPU Data Transfers, 33
DMA Data Transfers 35
DMA CharacteristiCSuuvuteeeeieneennan. 37

DMA Functional Descriptiono, 43
Features 43
OVeIVIBW & ittt e e 44
Programming 45
Classes of Operation, 46
Modes of Operationottt 49
Transfer Speed 56
Address Generationvuit et 57
Byte Matching (Searching) 58
Interruptso 59
Auto Restart 60
Pulse Generationt 60
Variable Cycle i, 60
Eventsand Actions 61

Pin Description 62

Internal Structure 71
General Organizationouiuiiiniennenne... 71
Control And Status Registers 72
Address and Byte Counting i, 75
BusControl 77
Interrupts 79

Programming 89
OVeIVIBW & ettt e e e e 89
Write Registers i 91
Write Register OGroup 92
Write Register 1 Group 95
Write Register 2Group 97

UMO008101-0601 Table of Contents

Z80 CPU Peripherals
User Manual

Direct Memory Access (continued)
Write Register 3Group 97
Write Register 4 Group 99
Write Register SGroup 102
Write Register 6 Group 104
Read Registers i 113
Review of Programming Sequences 117
Applications 128
Z8ODMA and CPU 128
Z80 DMA and Z80 SIO Example 138
Using The Z80 DMA With Other Processors 142
Performance Limitations 148
BusContentiont 148
Control Overhead 149
TIMING . ..o 150
The CPUAsBusMaster ..., 150
The DMA AsBusMaster, 152
Register Bit Functions 170
Write Register Bit Functions 170
Read Register Bit Functions 174
Parallel Input/Output
OVeIVIBW .« ittt e e e e 175
Features 175
PIO Architecture 176
OVeIVIBW . ittt e e e 176
Pin Description i 180
Programming the PIO 187
Reset .. 187
Loading The Interrupt Vector 188
Selecting An Operating Mode 189
Setting The Interrupt Control Word 191

Table of Contents UMO008101-0601

Z80 CPU Peripherals
User Manual

Parallel Input/Output (continued)

TIMING . . .o 192
Output Mode (Mode 0) ..., 192
InputMode Mode 1) 193
Bidirectional Mode Mode 2) 194
Control Mode (Mode 3) 195

Interrupt Servicing 197

Applications 199
Extending The Interrupt Daisy-Chain 199
I/ODevicelnterface 200
Control Interface 202

Programming Summary 205
OVeIVIBW . ottt e e 205
Load Interrupt Vectoro, 205
SetMode 205
Set Interrupt Control i 206

Serial Input/Output

OVEIVIBW .« ittt e e e e e 207

Features 207

Pin Description i 210
PinFunctions 210
Bonding Options i 213

Architecturet e 222
OVeIVIBW . ittt e e 222
DataPath 223
Functional Description 226

Asynchronous Operationcouiiiuennennenn.. 230
OVeIVIBW . ittt e e 230
Asynchronous Transmito, 232
Asynchronous Receive 235

Synchronous Operationo ittt 238
OVeIVIBW . ittt e e 238

UMO008101-0601 Table of Contents

Z80 CPU Peripherals
User Manual

Synchronous Modes Of Operation 240

Serial Input/Output (continued)
Synchronous Transmit 244
Synchronous Receive 249
SDLC (HDLC) Operationvvuui e aeeenn 255
OVEIVIEW . . ottt e e e e 255
SDLC TranSmitottt e ee 256
SDLCReceive ...t 265
Programming 272
OVEIVIEW . . ottt e e e e 272
Write Registers i 272
Read Registers i 292
Applications 301
OVEIVIEW . . oottt e e e e e e 301
TIMING . . .o 305
ReadCycle 305
Write Cycle 305
Interrupt Acknowledge Cycle 306
Return From Interrupt Cycle 307
Daisy Chain Interrupt Nesting 308
UM008101-0601

Table of Contents

Vii

Z80 CPU Peripherals
User Manual

.
cew __'_l
VI ZiLoa

UMO008101-0601 Table of Contents

Z80 CPU Peripherals

List of Figures

User Manual
v
Counter/Timer Channels
Figure 1. CTC Block Diagram 3
Figure 2. Channel Block Diagram 4
Figure 3. Z80 16-Bit Pointer (Interrupt Starting Address) 8
Figure 4. CTC Pin Configuration 10
Figure 5. Package Configuration 10
Figure 6. 44-Pin Chip Carrier Pin Assignments 11
Figure 7. 44-Pin Quad Flat Pack Pin Assignments 12
Figure 8. Mode 2 Interrupt Operation 23
Figure 9. CTC WriteCycle, 25
Figure 10. CTCReadCycle, 26
Figure 11. CTC Counting and Timing 27
Figure 12. Interrupt Acknowledge Cycle 29
Figure 13. Return from InterruptCycle 30
Figure 14. Daisy-Chain Interrupt Servicing 31
Direct Memory Access
Figure 15. Typical CPUI/O Sequence, 34
Figure 16. Conceptual Comparison of Various I/O Transfer Methods 39
Figure 17. Modes of Operationc.coiienenon... 42
Figure 18. Classof Operation i, 47
Figure 19. Basic Functions of the ZSODMA 49
Figure 20. Transfer/SearchOneByte 51
Figure 21. ByteMode 52
Figure 22. BurstMode i 53
Figure 23. Continuous Mode 55

List of Figures

UM008101-0601

Z80 CPU Peripherals
User Manual

Direct Memory Access (continued)

Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.

Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.

UMO008101-0601

Variable Cycle Length 61
Pin Functions (CMOS PLCC Package Only) 67
40-Pin DIP Pin Assignments 68
44-Pin PLCC Pin Assignments (Z8410 NMOS) 69
44-Pin PLCC Pin Assignments (Z84C10 NMOS) 70
780 DMA Block Diagram 71
Write Register Organization (left) and Read Register Organi-
zation (right) 74
Bus-Requesting Daisy-Chain 79
Z80 Interrupt Sequence, 81
Interrupt Service Routine 83
Interrupt Pending (IP) Latch 84
Interrupt Under Service (IUS) Latch 84
Interrupt On Ready (IOR) Latch 86
Interrupt Daisy-Chain 88
Polling for a Service Request Bit &9
Write-Register Pointing Methods 92
Write Register O Groupooiiieienn. .. 94
Write Register 1 Group 96
Write Register 2Group, 97
Write Register 3Group 99
Write Register 4 Group, 102
Write Register SGroup 104
Write Register 6 Group, 107
Read Register 0 through Read Register 6 116
Z80/Z8000 Clock Driver 129
Chip Enable Decoding with Z8OCPU 131

List of Figures

Z80 CPU Peripherals

Direct Memory Access (continued)

List of Figures

Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.

Figure 62.
Figure 63.

Figure 64.
Figure 65.
Figure 66.
Figure 67.

Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.

User Manual
Sieou
CE/WAIT Multiplexer 133
Simultaneous Transfer Multiplexer 133
Simultaneous Transfer 134
Delaying the Leading Edge of MWR 135
Data Bus Buffer Control Example 138
DMA-SIO Environment 142
Connecting DMA to Demultiplexed Address/Data Buses 145
78000/Z80 Peripheral Interface 147
DMA Bus-Master Gate (Byte or Burst Modes Only)149
CPU-to-DMA Write Cycle Requirements 151
CPU-to-DMA Read Cycle Requirements 152
Sequential Memory-to-1/O Transfer, Standard Timing
(Searching is Optional) 154

Sequential I/O-to-Memory Transfer, Standard Timing
(Searchingis Optional) 155

Simultaneous Memory-to-1/0 Transfer (Burst and Continuous
Mode) ... 156

Simultaneous Memory-to-I/O Transfer (Byte Mode)157

Bus Request and Acceptance Timing 159
Bus Release in Byte Mode 160
Bus Release on End-of-Block (Burst and

Continuous Modes) 160
Bus Release on Match (Burst and Continuous Modes) . .161
Bus Release on Not Ready (Burst Mode) 162
RDY LineinByteMode 163
RDY Linein BurstMode 164
RDY Line in Continuous Mode 165
Variable-Cycle and Edge Timing 166

UM008101-0601

Xi

Xii

Z80 CPU Peripherals
User Manual

Direct Memory Access (continued)

Figure 74. WAIT Line Sampling in Variable-Cycle Timing 167
Figure 75. Interrupt Acknowledge 169
Figure 76. Write Register OGroup 170
Figure 77. Write Register L Group 170
Figure 78. Write Register 2Group, 171
Figure 79. Write Register 3Group 171
Figure 80. Write Register4 Group 172
Figure 81. Write Register 5Group 173
Figure 82. Write Register 6 Group 173
Figure 83. Read Register O through 6 Bit Functions 174
Parallel Input/Output

Figure 84. PIO Block Diagram 177
Figure 85. Port I/O Block Diagram 178
Figure 86. PIO Pin Functions 184
Figure 87. 44-Pin PLCC Pin Assignments 185
Figure 88. 44-Pin QFP Pin Assignments 186
Figure 89. 40-Pin DIP Pin Assignments 187
Figure 90. Mode O (Output) Timing 193
Figure 91. Mode 1 (Input) Timing 194
Figure 92. Port A, Mode 2 (Bidirectional) Timing 195
Figure 93. Control Mode (Mode 3) Timing 196
Figure 94. Interrupt Acknowledge Timing 198
Figure 95. Return from Interrupt Cycle 198
Figure 96. Daisy-Chain Interrupt Servicing 199
Figure 97. A Method of Extending the Interrupt Priority

UMO008101-0601

Daisy-Chain 200

List of Figures

Z80 CPU Peripherals

User Manual
v
Parallel Input/Output (continued)
Figure 98. Example of I/O Interface 201
Figure 99. Control Mode Application 204
Serial Input/Output
Figure 100. Z80 SIO Block Diagram 209
Figure 101. Z80 SIO/O Functionsouvuininn.... 214
Figure 102. Z80 ZIO/0 Pin Assignments 215
Figure 103. Z80 SIO/1 Pin Functions 216
Figure 104. Z80 ZI10O/1 Pin Assignments 217
Figure 105. Z80 SIO/2 Pin Functions 218
Figure 106. Z80 ZI10/2 Pin Assignments 219
Figure 107. Z80 SIO/3 Pin Assignments 220
Figure 108. Z80 SIO/4 Pin Assignments 221
Figure 109. Transmit and Receive DataPath 226
Figure 110. Interrupt Structure 230
Figure 111. Asynchronous Message Format 231
Figure 112. Synchronous Formats 239
Figure 113. Transmit/Receive SDLC/HDLC Message Format 256
Figure 114. Write Register O it 274
Figure 115. Write Register 1 279
Figure 116. Write Register 2 282
Figure 117. Write Register 3 284
Figure 118. Write Register4 286
Figure 119. Write Register 5 289
Figure 120. Write Register 6 290
Figure 121. Write Register 7, 291
Figure 122. Read Register O iio... 294
Figure 123. Read Register 1 iio... 299

List of Figures

UM008101-0601

Xiii

Xiv

Z80 CPU Peripherals
User Manual

Serial Input/Output (continued)

Figure 124.
Figure 125.

Figure 126.

Figure 127.
Figure 128.
Figure 129.
Figure 130.
Figure 131.
Figure 132.

UMO008101-0601

Read Register 2 (Channel BOnly) 301
Synchronous/Asynchronous Processor-to-Processor Commu-
nication (Direct Wire to Remote Locations) 302
Synchronous/Asynchronous Processor-to-Processor

Communication (Using Telephone Line) 302
Data Concentratorc.uuinevno... 304
Read Cycle Timing, 305
Write Cycle Timing, 306
Interrupt Acknowledge Cycle Timing 307
Return from Interrupt Cycle Timing 308
Typical Interrupt Service 309

List of Figures

Z80 CPU Peripherals

List of Tables

Counter/Timer Channels

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.

User Manual

e
Channel Values i, 4
Channel Control Register 5
Interrupt Vector Register 7
Channel Select Truth Table 13
Channel Control Register 19
Time Constant Register 22
Interrupt Vector Register 23

Direct Memory Access

List of Tables

Table 8.

Table 9.

Table 10.
Table 11.

Table 12.

Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.

Maximum Transfer and Search Speeds (Burst and Continuous

MoOdeS) oot e 57
Reduction in Z80 CPU Throughput per Kbaud

(Byte Mode Transfers), 57
Eventsand Actionso, 62
Contents of Counters After DMA Stops Because of End-of-
Block (Transfer Operations) 76
Contents of Counters After DMA Stops Due to Byte Match
(Search or Transfer/Search Operations) 76
DMA Statusot 90
Reinitialize Status Byte 110
Control Byte Order 118
Sample DMA Program 126
Receive Event Sequence 139
Transmit Event Sequence 139

UMO008101-0601

XV

XVi

Z80 CPU Peripherals

User Manual
e
Parallel Input/Output
Table 19. PIO Mode Selectioncovue.... 189
Serial Input/Output
Table 20. Write Register Functions 223
Table 21. Read Register Functions 223
Table 22. Contents of Write Registers 3, 4, and 5 in Asynchronous
Modes ... 232
Table 23. AsynchronousMode 233
Table 24. Contents of Write Registers 3, 4, and 6 In
Synchronous Modes 241
Table 25. Bisync Transmit Mode 242
Table 26. Bisync Receive Mode 252
Table 27. Contents of Write Registers 3, 4, and 5 in SDLC Modes 258
Table 28. SDLC TransmitMode 262
Table 29. SDLCReceive Mode 268
Table 30. Channel Select Functions 272
Table 31. Write Register O 273
Table 32. Z80 SIO Commandscovuiuvn... 275
Table 33. WriteRegister 1 277
Table 34. ResetCommandsciuieeneen... 277
Table 35. VectorResults 278
Table 36. Receive Interrupt Modes 279
Table 37. Wait/Ready Functions 280
Table 38. Write Register 2 Interrupt Vector 281
Table 39. Write Register 3 Logic Control 282
Table 40. Serial Bits/Character 284
Table 41. Write Register 4 Rx and Tx Control 285
Table 42. Stop Bits 285

UMO008101-0601

List of Tables

Z80 CPU Peripherals

Serial Input/Output (continued)

List of Tables

Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.

User Manual

Sieou
SyncModes 286
ClockRate i 287
Write Register 5 Transmitter Control 287
Transmit Bits 289
Data Character Format 290
Write Register 6 Transmit Sync 291
Write Register 7 Receive Sync 291
Read Register 0 Rx and Tx Buffers 292
Read Register 1 Special Receive Condition Status 297
Residue Codes, 297
Receive Character Length 298
Interrupt Vector o i 300

UMO008101-0601

XVii

Z80 CPU Peripherals
User Manual

XViii ZiLo4

UMO008101-0601 List of Tables

Z80 CPU Peripherals
User Manual

=

EZiLog

Counter/Timer Channels

CTC FEATURES

® Four independently programmable counter/timer channels (CTC),
each with a readable down-counter and a selectable 16 or 256
prescaler. Down-counters are reloaded automatically at zero count

® Selectable positive or negative trigger initiates timer operation

® Three channels have zero count/timeout outputs capable of driving
Darlington transistors

® NMOS version for high-cost performance solutions
® CMOS version for the designs requiring low power consumption
® NMOS 70843004 - 4 MHz, 20843006 - 6.17 MHz

® CMOS Z84C3006 - dc to 6.17 MHz, Z84C3008 dc to 8 MHz,
7284C3010 - dc to 10 MHz

® Interfaces directly to the Z80 CPU. Interfaces to the Z80 SIO for baud
rate generation

® Standard Z80 Family daisy-chain interrupt structure provides fully
vectored, prioritized interrupts without external logic. The CTC may
also be used as an interrupt controller

® A 6 MHz version supports 6.144 MHz CPU clock operation

CTC General Description

The Z80 CTC is a four-channel counter/timer that can be programmed by
system software for a broad range of counting and timing applications.
These four independently programmable channels satisfy common

UMO008101-0601 Counter/Timer Channels

2

Z80 CPU Peripherals

User Manual
e A
&
&
ZiLO O

microcomputer system requirements for event counting, interrupt and
interval timing, and general clock rate generation.

System design is simplified by connecting the CTC directly to both the
780 CPU and the Z80 S10 with no additional logic. In larger systems,
address decoders and buffers may be required.

The CTC allows easy programming: each channel is programmed with
two bytes; a third is necessary when interrupts are enabled. When started,
the CTC counts down, automatically reloads its lime constant, and
resumes counting. Software timing loops are eliminated. Interrupt
processing is simplified because only one vector needs to be specified; the
CTC internally generates a unique vector for each channel.

The Z80 CTC requires a single +5V power supply and the standard Z80
single-phase system clock. It is packaged in 28-pin DIPs, a 44-pin plastic
chip carrier, and a 44-pin Quad Flat Pack. The QFP package is only
available for CMOS versions.

CTC ARCHITECTURE

Overview

The internal structure of the Z80 CTC consists of:

® A Z80 CPU bus interface, internal control logic
® Four sets of Counter/Timer Channel logic

® Interrupt control logic

The four independent, counter/timer channels are identified by sequential
numbers from O to 3. The CTC can generate a unique interrupt vector for
each separate channel for automatic vectoring to an interrupt service
routine. The four channels can be connected in four contiguous slots in the
standard Z80 priority chain with channel number O having the highest

UMO008101-0601 Counter/Timer Channels

280 CPU Peripherals
User Manual
e A

priority. The CPU bus interface logic allows the CTC device to interface
directly to the CPU with no other external logic. However, port address
decoders and/or line buffers may be required for large systems. A block
diagram of the Z80 CTC is depicted in Figure 1.

Internal
Control
Logic

|

—3 INT
€— E|
3 IEO

Data 8 > CPU <
From Bl;és
280 CPU Control { 6 9

Interrupt
Logic

Y ¥

Counter/ 3 ZCITo

Timer
Logic < 4

RESET

Figure 1. CTC Block Diagram

Structure of Channel Logic
The structure of one of the four sets of Counter/Timer channel logic is
illustrated in Figure 2. This logic is composed of:
® Two registers
® Two counters
® Control logic

The registers consist of an 8-bit Time Constant register and an 8-bit
Channel Control register. The counters consist of an 8-bit CPU-readable
down-counter and an 8-bit prescaler.

UMO008101-0601 Counter/Timer Channels

4

Z80 CPU Peripherals

User Manual
e A
&
&
ZiLO O

In Channel Control Register and Logic

The Channel Control register (8-bit) and Logic is written to by the CPU to
select the modes and parameters of the channel. Within the CTC device,
four such registers correspond to the four Counter/Timer channels. The
register to be written to is determined by the encoding of two channel select
input pins: CS0 and CS1, which are usually attached to AO and A1 of the
CPU address bus. The channel values are described in Table 1.

Table 1. Channel Values

CSo CS1
Channel 0 0 0
Channel 1 0 1
Channel 2 1 0
Channel 3 1 1

In the control word, which is written to program each Channel Control
register, bit 0 is always set; the other seven bits are programmed to select
alternatives on the channel’s operating modes and parameters. These values
are described in Table 2. For a more complete discussion, see “CTC
Operating Modes” on page 16 and “CTC Programming” on page 18).

Channel
Control

Logic

Time
Internal Bus > Constant
Register
[—> et
Down

CLK/TRG ————— 3| Counter I zC/TO

CLK —»| Prescaler J

Figure 2. Channel Block Diagram

UMO008101-0601 Counter/Timer Channels

280 CPU Peripherals

User Manual
i s
£
A
'I-.. - ..l.
ZiLo@m
Table 2. Channel Control Register
7 6 5 4 3 2 1 0
Interrupt |Mode Prescaler |CLK/TRG |Time Time Reset Control or
Value* Section Trigger* |Constant Vector
R/W R/W R/W R/W R/W R/W R/W R/W
Bit Number |Field R/W |Value |Description
7 Interrupt R/W 1 |Enable Interrupt
0 |Disable Interrupt
6 Mode R/W 1 |COUNTER Mode
0 |TIMER Mode
5 Prescaler Value* | R/W 1 |256
0 |16
4 CLK/TRG Edge | R/'W 1 |Rising Edge
Section 0 |Falling Edge
3 Time Trigger* R/W 1 |CLK/TRG Pulse Starts Timer
0 |Automatic trigger when time constant is loaded
2 Time Constant R/W 1 |Time Constant Follows
0 |No Time Constant Follows
1 Reset R/W 1 |Software Reset
0 | Continue Operation
0 Control or Vector | R/'W 1 | Control
0 | Vector
*TIMER mode only

The Prescaler

The prescaler is an 8-bit device that is used in the TIMER mode only. The
prescaler is programmed by the CPU through the Channel Control register
to divide its input, the System clock (0), by 16 or 256. The output of the

prescaler is then fed as an input to clock the down-counter. Each time that

UMO008101-0601 Counter/Timer Channels

6

Z80 CPU Peripherals

User Manual
e A
&
&
ZiLO O

the down-counter counts to zero, the down-counter is automatically
reloaded with the contents of the Time Constant register. This process
divides the System clock by an additional factor of the time constant. Each
time the down-counter counts to zero, its output, Zero Count/Timeout (ZC/
TO), is pulsed High.

The Time Constant Register

The 8-bit Time Constant register is used in both Counter and Timer modes.
It is programmed by the CPU just after the channel control word, with an
integer time constant value of 1 through 256. This register loads the
programmed value to the down-counter when the CTC is first initialized
and reloads the same value into the down-counter automatically whenever
it counts down thereafter to zero. If a new time constant is loaded into the
Time Constant register while a channel is counting or timing, the present
down count is completed before the new time constant is loaded into the
down counter. For details about writing a time constant to a CTC channel,
see “CTC Programming” on page 18

The Down-Counter

The down-counter is an 8-bit register that is used in both COUNTER and
TIMER modes. This register is loaded by the Time Constant register both
initially, and when it counts down to zero. In the COUNTER mode, the
down-counter is decremented by each external clock edge. In the TIMER
mode, it is decremented by the clock output of the prescaler. By performing
a simple I/O Read at the port address assigned to the selected CTC channel,
the CPU can access the contents of the down-counter and obtain the number
of counts-to-zero. Any of the four CTC channels may be programmed to
generate an interrupt request sequence each time the zero count is reached.

In Channels 0, 1, and 2, a signal pulse appears at the corresponding ZC/TO
pin when the zero count condition is reached. Because of package pin
limitations, however, Channel 3 does not have this pin and so may be used
only in applications where this output pulse is not required.

UMO008101-0601 Counter/Timer Channels

280 CPU Peripherals
User Manual

Interrupt Control Logic

The Interrupt Control Logic insures that the CTC acts in accordance with
780 system interrupt protocol for Nested Priority Interrupting and Return
From Interrupt. The priority of any system device is determined by its
physical location in a daisy-chain configuration. Two signal lines, CIEI and
IEO, are provided in CTC devices to form this system daisy-chain. The
device closest to the CPU has the highest priority. Within the CTC,
interrupt priority is predetermined by channel number, with Channel 0
having highest and Channel 3 the lowest priority. See Table 3. The purpose
of a CTC-generated interrupt, as with any peripheral device, is to force the
CPU to execute an interrupt service routine. According to Z80 system
interrupt protocol, lower priority devices or channels may not interrupt
higher priority devices or channels that have not had their interrupt service
routines completed. However, high priority devices or channels may
interrupt the servicing of lower priority devices or channels.

Table 3. Interrupt Vector Register

7 6 5 4 3 2 1 0
Supplied by User Channel Identifier Word
R/W R/W R/W
Bit Number |Field R/W |Value |Description
7-3 Reserved R/W Supplied by User
2-1 Channel Identifier | R/W 11 |Channel 3
(Automatically 10 |Channel 2
inserted by CTC) 01 |Channel 1
00 |Channel O
0 Word R/W 1 |Control
0 |Interrupt Vector

UMO008101-0601 Counter/Timer Channels

Z80 CPU Peripherals
User Manual
e A
Jj{__.-"
8 ZiLB o

A CTC channel may be programmed to request an interrupt every time its
down-counter reaches a count of zero. However, using this feature requires
that the CPU be in INTERRUPT Mode 2. After the interrupt request, the
CPU sends out an interrupt acknowledge. The CTC’s interrupt control
logic determines the highest-priority channel requesting an interrupt. If
the CTC’s IEI input is active, indicating that it has priority within the
system daisy-chain, it places an 8-bit interrupt vector on the system data
bus as follows:

1. The high order five bits of this vector were written to the CTC earlier
as part of the CTC initial programming process.

2. The next two bits are provided by the CTC’s interrupt control logic as a
binary code corresponding to the highest-priority channel requesting an
interrupt.

3. The low-order bit of the vector is always zero according to a
convention (Figure 3).

This interrupt vector is used to form a pointer to a location in memory
where the address of the interrupt service routine is stored in a table. The
vector represents the least-significant eight bits. The CPU reads the
contents of the I register to provide the most-significant eight bits of the
16-bit pointer. The address pointed to in memory contains the low-order
byte and the next highest address contains the high-order byte of an
address, which in turn contains the first Op Code of the interrupt service
routine. Thus, in Mode 2, a single 8-bit vector stored in an interrupting
CTC can result in an indirect call to any memory location (Figure 3).

Z80 16-Bit Pointer (Interrupt Starting Address)

1 Reg 7 Bits from 0
Contents Peripheral

\ Vector

Figure 3. Z80 16-Bit Pointer (Interrupt Starting Address)

UMO008101-0601 Counter/Timer Channels

280 CPU Peripherals
User Manual
e A

According to Z80 system convention, all addresses in the interrupt service
routine table place their low-order byte in an even location in memory, and
their high-order byte in the next highest location in memory. This location is
always odd so that the least-significant bit of any interrupt vector is always
even. Therefore, the least-significant bit of any interrupt vector always zero.

The RETI instruction is used at the end of an Interrupt Service Routine to
initialize the Daisy Chain Enable line IEO for control of nested priority
interrupt handling. The CTC monitors the system data bus and decodes this
instruction when it occurs. Therefore, the CTC channel control logic knows
when the CPU has completed servicing an interrupt.

CTC PIN DESCRIPTION

Pin Functions
Diagrams of the Z80 CTC Pin Configuration and Z80 CTC Package

Configuration are illustrated in Figure 4 through Figure 7, respectively.
This section describes the function of each pin.

UMO008101-0601 Counter/Timer Channels

280 CPU Peripherals

User Manual
- F
&
r
o
10 ZiLo o
[<-»| DO CLK/TRGO |-gf—)
<> | DO ZCITOO |3
<> D1 CLK/TRG |<g—
~«»(D2 ZC/TO1{ gy \ Channel
Dat CBPU -«»|D3 Signals
ata Bus -€»| D4 CLK/TRG2 |-—
D5 ZCImo2 |y
<> D6 CLK/TRG3 |-—)
> E
r—»»| CE RESET |-€—
— 3| CSO
CTC
—3-|Cs1
Control < 1780 CTC
from CPU —»(M1
—-{IORQ
—»|RD
Daisy-Chain [— IEI
Interrupt -—IEO
Control «—|INT
CLK +5V GND
Figure 4. CTC Pin Configuration
D4a[]1 28]p3
D5[] 2 27 b2
D[] 3 26] p1
D7[]4 25 1 po
GND[] 5 24 +5v
RD[] 6 23[] CLK/TRGO
zcmoo [7 22 CLK/TRG1
. z8ocTC 22
zcmor [] 21 cLK/TRG2
1Izcrmo2[] 9 207 CLK/TRG3
IORQ[] 10 19 Jcs1
EO[]11 18] cso
INT[] 12 17 RESET
IEI] 13 16] CE
M1[] 14 15[] cLK
Figure 5. Package Configuration

UMO008101-0601

Counter/Timer Channels

GND
N/C

RD
ZCITOO0
N/C
ZCITO1
ZCITO2
I0RQ
N/C
IEO
N/C

10
11
12
13
14
15
16
17

Figure 6.

UMO008101-0601

M N o

o
[a]

Q

=

=z

@Y N/C
o1 (D7
& 1D6

Q wn «
Z 0n0odaoao
3 2 1

44 43 42 41 40

Z80 CTC

=
©

19

20 21 22 23 24 25 26

27 28

N/C

INT

1%
Z

Tlgg 3l

=
L
0
o

o

u ©

()]
=z

39
38

37
36
35
34
33
32
31
30
29

44-Pin Chip Carrier Pin Assignments

280 CPU Peripherals
User Manual

N/C
N/C
+5V
N/C
CLK/TRGO
N/C
CLK/TRG1
CLK/TRG2
CLK/TRG3
N/C
Cs1

Counter/Timer Channels

11

Z80 CPU Peripherals

User Manual
- A
Jj__.-"
12 ZIiLO0
@ ; X
O 040 - Q=
Jlgl6Z2c 22T 2z
34 22
N/C 1] 113 IEO
CS1 1] [I11 IORQ
CLK/TRG3 —TT—] [T NC
CLK/TRG2 —TT—] [zcrmo2
N/C 11— 11 ZC/To1
N/C 11 CMOS [
CLK/TRG1 T Z80 CTC [T zCrmoo
CLK/TRGO I N
N/C 1] [T RD
+5V I1T 1131 GND
N/C|:|:|: o Y4
12
OdNNMOOOTW VO
[apalalal >33 [aalya] >
Figure 7. 44-Pin Quad Flat Pack Pin Assignments
Bit 7-Bit 0

System Data Bus (bidirectional, tristate). This bus is used to transfer all
date and command words between the Z80 CPU and the Z80 CTC. There
are eight bits on this bus, of which bit 0 is the least-significant. CSI CSO
Channel Select (input, active High). These pins form a 2-bit binary address
code for selecting one of the four independent CTC channels for an I/O
Write or Read. (See Table 4).

UMO008101-0601 Counter/Timer Channels

280 CPU Peripherals
User Manual
e A

Table 4. Channel Select Truth Table

CS1 CSo
Channel 0 0 0
Channel 1 0 1
Channel 2 1 0
Channel 3 1 1

CE

Chip Enable (input, active Low). A Low level on this pin enables the
CTC to accept control words, interrupt vectors, or time constant data
words from the Z80 data bus during an I/O Write cycle; or to transmit the
contents or the down-counter to the CPU during an I/O Read cycle. In
most applications this signal is decoded from the eight least-significant
bits of the address bus for any of the four I/O port addresses that are
mapped to the four Counter/Timer channels.

Clock(®P)

System Clock (input). This single-phase clock is used by the CTC to
internally synchronize certain signals.

M1

Machine Cycle One Signal from CPU (input, active low). When M1 is
active and the RD signal is active, the CPU fetches an instruction from
memory. When M1 is active and the IORQ signal is active, the CPU
acknowledges an interrupt, alerting the CTC to place an interrupt vector on
the Z80 data bus if it has daisy-chain priority and one of its channels has
requested an interrupt.

UMO008101-0601 Counter/Timer Channels

Z80 CPU Peripherals
User Manual
e A
&

Y 4

= |

14| ziilos

IORQ

Input/Output Request from CPU (input, active Low). The IORQ signal
is used in conjunction with the CE and RD signals to transfer data and
channel control words between the Z80 CPU and the CTC. During a CTC
Write cycle, IORQ and CE must be true and RD false. The CTC does not
receive a specific write signal. Instead it generates one internally from the
inverse of a valid RD signal. In a CTC Read cycle, IORQ, CE, and RD
must be active to place the contents of the down-counter on the Z80 data
bus. If IORQ and M1 are both true, the CPU is acknowledging an interrupt
request, and the highest priority interrupting channel places its interrupt
vector on the Z80 data bus.

RD

Read Cycle Status from the CPU (input, active Low). The RD signal is
used in conjunction with the IORQ and CE signals to transfer data and
channel control words between the Z80 CPU and the CTC. During a CTC
Write Cycle, IORQ and CE must be true and RD false. The CTC does not
receive a specific write signal, instead it generates one internally from the
inverse of a valid RD signal. In a CTC Read cycle, IORQ CE, and RD must
be active to place the contents of the down-counter on the Z80 data bus.

IEI

Interrupt Enable In (input, active High). This signal is used to form a
system-wide interrupt daisy-chain which establishes priorities when more
than one peripheral device in the system has interrupting capability. A High
level on this pin indicates that no other interrupting devices of higher
priority in the daisy chain are being serviced by the Z80 CPU.

IEO

Interrupt Enable Out (output, active High. The IEO signal, in
conjunction with IEI, is used to form a system-wide interrupt priority
daisy-chain. IEO is High only if IEI is High and the CPU is not servicing

UMO008101-0601 Counter/Timer Channels

280 CPU Peripherals
User Manual
e A

an interrupt from any CTC channel. Therefore, this signal blocks lower-
priority devices from interrupting while a higher-priority interrupting
device is being serviced by the CPU.

INT

Interrupt Request (output, open-drain, active Low). This signal goes
true when a CTC channel, which has been programmed to enable
interrupts, has a zero-count condition in its down-counter.

RESET

Reset (input, active Low). This signal stops all channels from counting
and resets interrupt enable bits in all control registers, thereby disabling
CTC-generated interrupts. The ZC/TO and INT outputs go inactive, IEO
reflects IEI, and the CTC’s data bus output drivers go to the high-
impedance state.

CLK/TRG3-CLK/TRGO

External Clock/Timer Trigger (input, user-selectable active High or
Low). Four CLK/TRG pins correspond to the four independent CTC
channels. In the Counter mode, every active edge on this pin decrements
the down-counter. In the TIMER mode, an active edge on this pin initiates
the timing function. The user may select the active edge to be either rising
or falling.

ZC/TO2-AC/TOO

Zero Count/Timeout (output, active High). Three ZC/TO pins
correspond to CTC Channels 2 through 0. (Because of package pin
limitations Channel 3 has no ZC/TO pin.) In either COUNTER mode or
TIMER mode, when the down-counter decrements to zero, an active High
pulse appears at this pin.

UMO008101-0601 Counter/Timer Channels

16

Z80 CPU Peripherals

User Manual
e A
&
&
ZiLO O

CTC OPERATING MODES

Overview

At power-on, the Z80 CTC state is undefined. Asserting RESET puts the
CTC in a known state. Before a channel can begin counting or timing, a
channel control word and a time constant data word must be written to the
appropriate registers of that channel. Additionally, if a channel has been
programmed to enable interrupts, an interrupt vector word must be written
to the CTC’s interrupt control logic. (For further details, refer the “CTC
Programming” on page 18) When the CPU has written all of these words to
the CTC, all active channels are programmed for immediate operation in
either the COUNTER mode or the TIMER mode.

CTC COUNTER Mode

In CTC COUNTER mode, the CTC counts edges of the CLK/TRG input.
This mode is programmed for a channel when its Channel Control Word is
written with bit 6 set. The channel’s external clock (CLK/TRG) input is
monitored for a series of triggering edges. After each, in synchronization
with the next rising edge of @ (the System clock), the down-counter (which
is initialized with the Time Constant Data word at the start of each sequence
of down-counting) is decremented. Although there is no setup time
requirement between the triggering edge of the External clock and the
rising edge of @ (Clock), the down-counter is not decremented until the
following pulse. A channel’s External clock input is pre programmed by bit
4 of the channel control word to trigger the decrementing sequence with
either a high- or a low-going edge.

In Channels 0, 1, or 2, when the down-counter is successively decremented
from the original time constant (until it reaches zero), the Zero Count (ZC/
TO) output pin for that channel is pulsed active (High). Due to package pin
limitations, this pin does not exist on Channel 3 and so this pin may only be

UMO008101-0601 Counter/Timer Channels

280 CPU Peripherals
User Manual

used in applications where this output pulse is not required. Additionally, if
the channel is pre-programmed by bit 7 of the channel control word, an
interrupt request sequence is generated. For more details, see the CTC
Interrupt Servicing section

The zero-count condition also results in the automatic reload of the down-
counter with the original time constant data word in the Time Constant
register. There is no interruption in the sequence of continued down-
counting. If the Time Constant register is written with a new Time Constant
Data Word while the down-counter is decrementing, the present count is
completed before the new time constant is loaded into the down-counter.

CTC TIMER Mode

In CTC TIMER mode, the CTC generates timing intervals that are an
integer value of the system clock period. This mode is programmed for a
channel when its Channel Control Word is written with bit 6 reset. The
channel then may be used to measure intervals of time based on the System
clock period. The System clock is fed through the prescaler and the down-
counter. Depending on the pre programmed bit 5 in the Channel Control
Word, the prescaler divides the System clock by a factor of 16 or 256.

The output of the prescaler is then used as a clock to decrement the down-
counter, which may be pre programmed with any time constant integer
between 1 and 256. The time constant is automatically reloaded into the
down-counter at each zero-counter condition. At zero count, the channel’s
Time Cut (ZC/TO) output (which is the output of the down-counter) is
pulsed, resulting in a uniform pulse train of the precise period given by the
product as shown below.

t, *P *TC

Where t is the System clock, P is the prescaler factor of 16 or 256, and TC
is the pre-programmed time constant.

UMO008101-0601 Counter/Timer Channels

18

Z80 CPU Peripherals

User Manual
e A
&
&
ZiLO O

Timing may be initialized automatically or with a triggering edge at the
channel’s Timer Trigger (CLK/TRG) input. This timing is determined by
programming bit 3 of the channel control word. If bit 3 is reset?, the timer
automatically begins operation at the start of the CPU cycle following the I/
O Write machine cycle that loads the time constant data word to the
channel.

If bit 3 is set, the timer begins operation on the second succeeding rising
edge of @ after the Timer Trigger edge following the loading of the time
constant data word.

If no time constant word is to follow, the timer begins operation on the
second succeeding rising edge of ® after the Timer Trigger edge and
following the control word write cycle. Bit 4 of the channel control word is
pre programmed to select whether the Timer Trigger is sensitive to a rising
or falling edge. There is no setup requirement between the active edge of
the Timer Trigger and the next rising edge of ®.

If the Timer Trigger edge occurs closer than a specified minimum setup
time to the rising edge of @, the down-counter does not begin decrementing
until the following rising edge of ®. If bit 7 in the channel control word is
set, the zero-count condition in the down-counter causes a pulse at the
channel’s Time Out pin, and initiates an interrupt request sequence. (For
more details, see “CTC Interrupt Servicing” on page 27).

CTC PROGRAMMING

Overview

To begin counting or timing operations, a Channel Control Word and Time
Constant Data Word are written to the appropriate channel by the CPU.
These words are stored in the Channel Control or Time Constant registers
of each channel. If a channel has been programmed to enable interrupts, an
interrupt vector is written to the appropriate register in the CTC. Because of

UMO008101-0601 Counter/Timer Channels

280 CPU Peripherals
User Manual

automatic features in the interrupt control logic, one pre-programmed
interrupt vector suffices for all four channels.

Loading The Channel Control Register

To load a Channel Control Word, the CPU performs a normal I/O Write
sequence to the port address corresponding to the desired CTC channel. The
CTC input pins CSO and CS1 are used to form a 2-bit binary address to select
one of four channels within the device. (See Table 2 on page 5.) In many
system architectures, these two input pins are connected to Address Bus lines
A0 and A1, respectively, so that the four channels in a CTC device occupy
contiguous I/O port addresses. A word written to a CTC channel is
interpreted as a channel control word, and loaded into the channel control
register (bit O is a logic 1). The other seven bits of this word select operating
modes and conditions as indicated in Table 2.

Table 5. Channel Control Register

7 6 5 4 3 2 1 0
Interrupt |Mode Prescaler |CLK/TRG |Time Time Reset Control or
Value* Section Trigger* |Constant Vector

R/W R/W R/W R/W R/W R/W R/W R/W
Bit
Number |Field R/W |Value |Description
7 Interrupt R/W 1 |Enable Interrupt

0 |Disable Interrupt
6 Mode R/W 1 |COUNTER Mode

0 |TIMER Mode
5 Prescaler Value* | R/W 1 |256

0 |16

*TIMER mode only

UMO008101-0601 Counter/Timer Channels

20

Z80 CPU Peripherals
User Manual

-

.

E. fLa I:

Bit

Number |Field R/W |Value |Description

4 CLK/TRG Edge | R/W 1 Rising Edge

Section 0 |Falling Edge

3 Time Trigger* R/W 1 |CLK/TRG Pulse Starts Timer
0 |Automatic trigger when time constant is loaded

2 Time Constant R/W 1 |Time Constant Follows
0 |No Time Constant Follows

1 Reset R/W 1 |Software Reset
0 |Continue Operation

0 Control or Vector | R/W 1 |Control
0 |Vector

*TIMER mode only

Bit 7 = 1. Each channel is enabled to generate an interrupt request sequence
when the down-counter reaches a zero-count condition. To set the interrupt
bit to 1 in any of the four Channel Control registers an interrupt vector is
written to the CTC before operation begins. Channel interrupts may be
programmed in either Counter or Timer mode. If an updated channel
control word is written to a channel in operation, with bit 7 set, the interrupt
enable selection is not retroactive to a preceding zero-count condition.

Bit 7 = 0. Channel interrupts disabled.

Bit 6 = 1. Counter mode selected. The down-counter is decremented by
each triggering edge of the External clock (CLK/TRG) input. The prescaler

is not used.

Bit 6 = 0. Timer mode selected. The prescaler is clocked by the System
clock @, and the output of the prescaler in turn clocks the down-counter.
The output of the down-counter (the channel’s ZC/TO output) is a uniform
pulse train of period given by the product as shown below

UMO008101-0601

t*P*TC

Counter/Timer Channels

280 CPU Peripherals
User Manual
e A

where t, is the period of System clock, P is the prescaler factor of 16 or 256,
and TC is the time constant data word.

Bit 5 = 1. Defined for Timer mode only. Prescaler factor is 256.

Bit 5 = 0. Defined for Timer mode only. Prescaler factor is 16.

Bit 4 = 1. TIMER Mode: positive edge trigger starts timer operation.
COUNTER Mode: positive edge decrements the down-counter.

Bit 4 = 0. TIMER Mode: negative edge trigger starts timer operation.
COUNTER Mode: negative edge decrements the down-counter.

Bit 3 = 1. TIMER Mode only. External trigger is valid for starting timer
operation after rising edge of T2 of the machine cycle following the one
that loads the tune constant. The prescaler is decremented two clock cycles
later if the setup tune is met, otherwise three clock cycles.

Bit 3 = 0. TIMER Mode only. Timer begins operation on the rising edge of
T2 of the machine cycle following the one that loads the time constant.

Bit 2 = 1. The time constant data word for the Time Constant register is the
next word written to this channel. If an updated channel control word and
time constant data word are written to a channel while it, is already in
operation, the down-counter continues decrementing to zero before the new
time constant is loaded.

Bit 2 = 0. No time constant date word for the Time Constant register is to
follow. The channel control word updates the status of a channel already in
operation to channel will not operate without a correctly programmed data
word in the lime Constant register. Bit 2 in the channel control word must
be set in order to write to the Time Constant register.

Bit 1 = 1. Counting and/or timing operation is terminated and the channel is
reset. This is not a stored condition. The bits in the Channel Control register
are unchanged. If bits 1 and 2 are set to 1, the channel resumes operation
upon loading a time constant.

Bit 1 = 0. Channel continues current operation.

UMO008101-0601 Counter/Timer Channels

22

Z80 CPU Peripherals
User Manual

-

ZiLDOGC

Loading The Time Constant Register

A Time Constant Data Word is written to the Time Constant register by the
CPU. This event occurs on the /O Write Cycle following that of the
channel control word. The Time Constant Data Word may be any integer
value in the range 1-256 (Table 6). If all eight bits in this word are zero, it is
interpreted as 256. If a Time Constant Date Word is loaded to a channel
already in operation, the down-counter continues decrementing to zero
before the new time constant is loaded.

Table 6. Time Constant Register

7 6 5 4 3 2 1 0
TC7 TC6 TCS5 TC4 TC3 TC2 TCl1 TCO
R/W R/W R/W R/W R/W R/W R/W R/W

UMO008101-0601

Loading The Interrupt Vector Register

The Z80 CTC operates with the Z80 CPU programmed for mode 2
interrupt response. When a CTC interrupt request is acknowledged, a 16-bit
pointer is formed to obtain a corresponding interrupt service routine
starting address (Figure 8). The upper eight bits of this pointer are provided
by the CPU’s I register; the lower eight bits are provided by the CTC in the
form of an interrupt vector unique to the requesting channel (Figure 8). For
further details, see “CTC Interrupt Servicing” on page 27.

The five high-order bits of the interrupt vector are written to the CTC in
advance as part of the initial programming sequence. The CPU writes to the
I/0O port address corresponding to the CTC Channel 0. A 0 in bit O signals
the CTC to load the incoming word into the interrupt vector register. When
the interrupt vector is placed on the Z80 data bus, the interrupt control logic
of the CTC automatically supplies a binary code in bits 1 and 2 identifying
which of the four CTC channels is to be serviced.

Counter/Timer Channels

280 CPU Peripherals
User Manual

Desired starting address pointed to by:

- #
£

-

;

ZiLDOGC

Service Interrupt Routine< Low Order % 1 Reg 7 Bits from |
Starting Address High Order Contents Peripheral
Figure 8. Mode 2 Interrupt Operation
Table 7. Interrupt Vector Register
7 6 5 4 3 2 1 0
Supplied by User Channel Identifier Word
R/W R/W R/W
Bit
Number |Field R/W |Value |Description
7-3 Reserved R/W Supplied by User
2-1 Channel R/W 11 |Channel 3
Identifier 10 |Channel 2
01 |Channel 1
00 |Channel 0
0 Word R/W 1 |Control
0 |Interrupt Vector

UMO008101-0601

Counter/Timer Channels

23

24

Z80 CPU Peripherals

User Manual
e A
&
&
ZiLO O

CTC TIMING

Overview

This section describes the timing relationships of the relevant CTC pins for
the following types of operation:

® Writing a word to the CTC
® Reading a word from the CTC
® Counting and timing

A timing diagram, Figure 12, relating to interrupt servicing is found in
“Interrupt Acknowledge Cycle” on page 28.

CTC Write Cycle

Figure 9 illustrates the timing associated with the CTC Write cycle. This
sequence is applicable to loading a channel control word, an interrupt
vector, or a time constant data word.

In the sequence shown, during clock cycle T1, the Z80 CPU prepares for
the Write cycle with a false (High) signal at CTC input pin RD (Read).
Because the CTC has no separate Write signal input, it generates its own
input internally from the false RD input. During clock cycle T2, the Z80
CPU initiates the Write cycle with true (Low) signals at CTC input pins
IORQ (I/0 Request) and CE (Chip Enable). (See Note below.) A 2-bit
binary code appears at CTC inputs CS1 and CSO (Channel Select 1 and 0),
specifying which of the four CTC channels is being written to. At this time,
a channel control, interrupt vector, or time constant data word may be
loaded to the appropriate CTC internal register in synchronization with the
rising edge beginning clock cycle T3.

Note: MI must be false to distinguish the cycle from an interrupt
acknowledge.

UMO008101-0601 Counter/Timer Channels

L T2 Twa

280 CPU Peripherals
User Manual

i s
s

o

4

E. I L-ﬂ- E 25

L] L]

|

Cs0. CS1, CE X Channel Address X
RD
M1
Figure 9. CTC Write Cycle

CTC Read Cycle

Figure 10 illustrates the timing associated with the CTC Read cycle. This
sequence is used when CPU reads the current contents of the down counter.
During clock cycle T2, the Z80 CPU initiates the Read cycle with true
signals at input pins RD (Read), IORQ (I/O Request), and CE (Chip
Enable). A 2-bit binary code appears at CTC inputs CS1 and CSO (Channel
Select 1 and 0), specifying which of the four CTC channels is being read
from. (See Note below.) On the rising edge of the cycle T3, the valid
contents of the down-counter rising edge of cycle T2 is available on the
780 data bus. No additional wait states are allowed.

} Note: MI must be false to distinguish the cycle from an interrupt

acknowledge.

UMO008101-0601

Counter/Timer Channels

26

Z80 CPU Peripherals

User Manual
e A
&
&
ZiLO O

Ty T2 Twa T3 Ty
CLK J I_I I_I
CS0. CS1, CE X Channel Address X
IORQ \ /
RD —\ /7
M1
DATA ouT

Figure 10. CTC Read Cycle

CTC Counting and Timing

Figure 11 illustrates the timing diagram for the CTC Counting and Timing
modes.

In the Counter mode, the edge (rising edge is active in this example) from
the external hardware connected to pin CLK/TRG, decrements the down-
counter in synchronization with the System Clock ®. This CLK/TRG pulse
must have a minimum width and the minimum period must not be less than
twice the System clock period. Although there is no setup time requirement
between the active edge of the CLK/TRG and the rising edge of @, if the
CLK/TRG edge occurs closer than a specified minimum time, the
decrement of the down-counter will be delayed one cycle of ®.
Immediately after the 1 to O decrement of the down-counter, the ZC/TO
output is pulsed true.

In the Timer mode, a pulse trigger (user selectable as either active High or
active Low) at the CLK/TRG pin enables the timing function on the second
succeeding rising edge of ®. As in the Counter mode, the triggering pulse is

UMO008101-0601 Counter/Timer Channels

280 CPU Peripherals
User Manual
e A

detected asynchronously and must have a minimum width. The timing
function is initiated in synchronization with ®. A minimum setup time is
required between the active edge of the CLK/TRG and the rising edge of .
If the CLK/TRG edge occurs closer than this, the initiation of the timer
function will be delayed one cycle of ®.

CLK/TRG

Internal
Counter

ZCITO

Figure 11. CTC Counting and Timing

CTC INTERRUPT SERVICING

Overview

Each CTC channel may be individually programmed to request an
interrupt every time its down-counter reaches zero. The purpose of a CTC-
generated interrupt is to force the CPU to execute an interrupt service
routine. To use this feature the Z80 CPU must be programmed for Mode 2
interrupt response. In this mode, when a CTC channel interrupt request is
acknowledged, a 16-bit pointer must be formed to obtain a corresponding
interrupt service routine. The lower eight bits of the pointer are provided
by the CTC in the form of an interrupt vector unique to the requesting
channel. For further details, refer to the Z80 CPU User’s Manual.

UMO008101-0601 Counter/Timer Channels

28

Z80 CPU Peripherals

User Manual
e A
&
&
ZiLO O

The CTC’s interrupt control logic ensures that it acts in accordance with
780 system interrupt protocol for nested priority interrupt and proper return
from interrupt. The priority of any system device is determined by its
physical location in a daisy-chain configuration. Two signal lines (IEI and
IEO) are provided in the CTC to form the system daisy chain. The device
closest to the CPU has the highest priority. Interrupt priority is
predetermined by channel number, with Channel 0 having highest priority.
According to Z80 system interrupt protocol, low priority devices or
channels may not interrupt higher priority devices or channels that have not
had their interrupt service routines completed. High priority devices or
channels may interrupt the servicing of lower priority devices or channels.
(For further details, see “CTC Architecture” on page 2.)

“Return from Interrupt Cycle” on page 29 and “Daisy-Chain Interrupt
Servicing” on page 30 describe the nominal timing relationships of the
relevant CTC pins for the Interrupt Acknowledge cycle and the Return
from Interrupt cycle. “Daisy-Chain Interrupt Servicing” on page 30
discusses a typical example of daisy-chain interrupt servicing.

Interrupt Acknowledge Cycle

Figure 12 illustrates the timing associated with the Interrupt Acknowledge
cycle. After an interrupt is requested by the CTC, the CPU sends out an
interrupt acknowledge (M1 and IORQ). To insure that the daisy-chain
enable lines stabilize, channels are inhibited from changing their interrupt
request status when M1 is active. M1 is active two clock cycles earlier than
TORQ and RD is false to distinguish the cycle from an instruction fetch.
During this time, the interrupt logic of the CTC determines the highest
priority channel requesting an interrupt. If the CTC Interrupt Enable input
(IED) is active, the highest priority interrupting channel within the CTC
places its interrupt vector onto the data bus when IORQ goes active. Two
Wait States (TW*) are automatically inserted at this time to allow the daisy-
chain to stabilize. Additional Wait States may be added.

UMO008101-0601 Counter/Timer Channels

280 CPU Peripherals
User Manual
e A

w LU LT
. j
IORQ \ [

IEI / \
INT

Figure 12. Interrupt Acknowledge Cycle

Return from Interrupt Cycle

Figure 13 illustrates the timing associated with the RETI Instruction. This
instruction is used at the end of an Interrupt Service Routine to initialize
the daisy-chain enable lines for control of nested priority interrupt
handling. The CTC decodes the two-byte RETI code internally and
determines whether it is intended for a channel being serviced.

When several Z80 peripheral chips are in the daisy-chain, IEI becomes
active on the chip currently under service when an EDH Op Code is
decoded. If the following Op Code is 4DH, the peripheral being serviced is
re-initialized and its IEO becomes active.

UMO008101-0601 Counter/Timer Channels

Z80 CPU Peripherals

User Manual
Fa A
&
30 EiLODO
T, T, Ts T, T T, T, T, T,
w T\ [\ J
RD __/—_/
D;-Dg ‘, ED) { 4D \
IEI
IEO /
INT

*INT goes Low if more interrupts are pending on the RTC.

Figure 13. Return from Interrupt Cycle

Daisy-Chain Interrupt Servicing

Figure 14 illustrates a typical nested interrupt sequence that may occur in
the CTC. In this example, Channel 2 interrupts and is granted service.
While this channel is being serviced, higher priority Channel 1 interrupts
and is granted service. The service routine for the higher priority channel is
completed, and a RETT instruction is executed to signal the channel that its
routine is complete (see “Return from Interrupt Cycle” on page 29 for
further details). At this time, the service routine of the lower priority
Channel 2 is resumed and completed.

UMO008101-0601 Counter/Timer Channels

280 CPU Peripherals
User Manual

/
ZiLoao
Highest Priority Channel
X Channel 0 Channel 1 Channel 2 Channel 3
+
LH IEI IEO HI IEI IEO all IEI IEO HI IEI IEO L
1. Priority interrupt daisy chain before any interrupt occurs.
+ Under Service
LO
LH] IEI IEO al IEI IEO all IEI IEO Lo IEI IEO |——
2. Channel 2 requests an interrupt and is acknowledged.
+ Under Service Service Suspended
LO
LH | IEI IEO al IEI IEO LO IEI IEO LO IEI IEO [——
3. Channel 1 interrupts, suspends servicing of Channel 2.
. Service Complete Service Resumed
HI LO
L™ e IEO all IEI IEO all IEI IEO Lo IEI IEO |————
4. Channel 1 service routine complete, ‘RET!" issued, Channel 2 serviced resumed.
Service Complete
+
HI
LH] IEI IEO all IEI IEO all IEI IEO Hl IEI IEO [—

5. Second ‘RET!’ instruction issued on completion of Channel 2 Service Routine.

Figure 14. Daisy-Chain Interrupt Servicing

UMO008101-0601 Counter/Timer Channels

280 CPU Peripherals
User Manual

- #
£
-

ol
32 ZiLO O

UMO008101-0601

Counter/Timer Channels

280 CPU Peripherals
User Manual
e A

Direct Memory Access

DMA OVERVIEW

Direct Memory Access (DMA) and DMA Controllers are dedicated to
controlling high-speed block transfers of data independently of the CPU.

DMA data transfers are usually between memory and I/O, or vice versa.
A DMA controller (DMAC) also performs some transfers that have tradi-
tionally been done by the CPU. For example, the Z80 DMA can perform
memory-to-memory, memory-to-I/O, and I/O-to-memory transfers, as
well as search for particular patterns of bits in a byte either simulta-
neously with or independently of transfers.

The advantages of DMA transfers are:
® Transfers bypass the CPU

® Transfers are fast

CPU Data Transfers

In systems without DM A, data transfers must pass through the CPU and be
implemented in software. Data transfers through the CPU include
executing an instruction sequence for input and output, and tracking each
byte of data in the block to be transferred.

Figure 15 illustrates the minimum sequence of instructions that must be
fetched from memory and executed by conventional CPUs to transfer a
block of data one byte at a time. Most CPUs require many more instructions.

CPU transfers are relatively slow and tie up the CPU. In addition response
time (startup time for the first byte) is also usually slow because the I/O
device typically uses interrupts to signal its readiness, and the CPU interrupt
service routine causes a significant time lag in transferring the first byte.

UMO008101-0601 Direct Memory Access

Z80 CPU Peripherals

User Manual
o~ s
/

oy

34 ZiLDGo
3 Read

Source Port

Write to

Destination Port

L]

Increment
Address Counter

L]

Increment
Byte Counter

Byte Count
Equal
Block Length
?

Figure 15. Typical CPU I/O Sequence

The Z80 and Z8000 CPUs both have block-transfer and string-search
instructions that can operate on up to 64 Kbytes of data with a single
instruction.

A single block transfer instruction repetitively performs all of the functions
illustrated in Figure 15 on an entire sequence of bytes. Therefore, transfer
rates are significantly faster. The 4 MHz Z80A CPU can transfer at about
200 Kbytes/sec and the 4 MHz Z8000 CPU can reach 800 Kbytes/sec.

The problem with CPU block transfers in the Z80 and Z8000 devices is not
transfer speed but response time at startup. One of the following methods is
normally used to set up executing a block transfer instruction:

UM008101-0601 Direct Memory Access

280 CPU Peripherals
User Manual
e A

® The I/O device interrupts the CPU and the block transfer instruction
is executed in the CPU interrupt service routine. This method has a
response time of at least 5 to 10 us, even in 4 MHz Z80A and
78000 devices.

® The CPU begins executing the device service routine before the I/O
device is ready, and a flag bit is constantly polled by the CPU. When
the flag bit indicates that the device is ready, the CPU jumps to the
block transfer instruction. This method sometimes produces a response
time of less than 5 s, but it uses the entire capability of the CPU.

® The CPU begins executing the block transfer instruction in an interrupt
service routine before the I/O device is actually ready. The I/O device
idles the CPU with the Wait line just after the Read and Chip-Select
lines become active. When the 1/O device is ready, it releases the wait
line and the transfer is completed. This method gives the best response
time (250 ns in a 4 MHz Z80A or Z8000 CPU) but ties up the bus.

Both transfer and response times on most CPUs are often too slow. While
transfer speed can be quite high with the Z80 and Z8000 CPUs, the
response time can be too long in interrupt-driven transfer situations.

DMA Data Transfers

A DMA controller (DMAC) performs direct data transfers between the
source and destination without going through the CPU, and without the
instruction fetches required by the CPU. It performs all of the steps illus-
trated in Figure 15 through hardware.

for example, in a memory-to-1/O transfer, the starting address in memory
and the length of the block to be transferred are written to the DMA by the
CPU before to the transfer. The DMAC begins transferring data when the
CPU enables the DMAC and the Ready line I/O of the device becomes
active. In most cases, the CPU is idle during a DMA transfer. When the
transfer is complete, the DMAC signals the CPU and releases control.

UMO008101-0601 Direct Memory Access

36

Z80 CPU Peripherals

User Manual
e A
&
&
ZiLO O

DMAC:s are used when one or more of the following situations or require-
ments are present:

® CPU has too much I/O and cannot perform other tasks properly
® Data transfer must be faster than the CPU can perform
® Transfer response tune (startup) must be faster than the CPU can provide

Small and low-performance systems generally run without DMA.
Medium-performance systems can also be designed without DMA if the
CPU can handle transfers fast enough and still perform other operations.

When systems require fast transfers or fast response, DMACs are strong
candidates for performance enhancement. Not only do DM AC:s transfer
faster than most CPUs, but the response time is better. Response times can
even be improved using the techniques described above for CPU response.

The following examples are cases in which DMA is usually the best choice:
® Disk and diskette controllers

® Scanning operations, such as CRT I/O

® Data acquisition

® Memory-to-memory transfers

® Memory searches

® Backup storage (I/0-to-1/O)

® Parallel bus systems such as the IEEE 488

® Fiber optic links

® Block transfers in networking, multiprocessing, or multiprogramming

The trade-off for speed is that the CPU typically remains idle and lacks full
or partial control of the system bus while the DMA is operating. This
condition can affect total system throughput, and can also affect such things
as memory refresh and other interrupts.

UM008101-0601 Direct Memory Access

280 CPU Peripherals
User Manual
e A

DMA Characteristics

All DMAC:S are programmable because the CPU must at least write a
block length (byte count) and starting memory address to a DMAC before
they can begin managing a data transfer. The starting address is incre-
mented or decremented as the transfer proceeds, and the byte counter is
incremented from zero up to the specified block length.

In addition to being programmable, DMACs vary in characteristics and
capabilities.

Ports and Channels

Every data transfer has a source and a destination. For example, in
memory-to-1/0 transfers, memory is the source and I/O is the destination
port. The means of controlling and tracking the data exchange between the
two ports is called a channel. A channel includes the hardware for address
and byte counting, bus control, and coordination of the entire transfer
process.

The location for each source and destination for a channel is specified
either by the DMA address-generation mechanism or by hardwiring. The
780 DMA generates addresses for both memory and I/O ports during each
byte transfer.

Some DMACSs have multiple channels, which means that they can keep
track of multiple interleaved transfers, and that one DM A can be hardwired
to multiple I/O devices. However, because any DMA can execute only one
read and/or write cycle at a time, multiple channels do not mean higher
throughput than single channels in a given speed. The Z80 DMA is a
single-channel device that can generate addresses to perform memory-to-
memory data transfers. I/O port addresses on the address bus.

The Z80 DMA can also perform internal byte searches. When the Z80 DMA
loads bytes to an internal DMAC register during transfers, the result is that,
when a byte is loaded, it can be compared with a maskable control byte.

UMO008101-0601 Direct Memory Access

38

Z80 CPU Peripherals

User Manual
e A
&
&
ZiLO O

Transfer Methods

Figure 16 compares conventional CPU instructions and the Z80 and Z8000
CPU block transfer instructions as well as two different methods of DMA
transfer. This figure compares the read and write cycles to the transfer of a
single byte of data.

Figure 16a illustrates conventional CPU I/O instruction activity. The
number of read and write cycles is approximate, some CPUs require more
cycles. The CPU instruction executes all the steps illustrated in Figure 15,
plus additional housekeeping tasks.

Figure 16b illustrates Z80 and Z8000 CPU block transfer instructions.
These instructions are approximate and require more activity than one read
cycle and one write cycle after initiation, especially with the Z80 CPU. A
single block transfer instruction is capable of transferring up to 64 Kbytes
of data.

Figure 16c¢ illustrates sequential or flow-through DMA transfer where a
byte is read from the source port to the DMA and then written to the desti-
nation port. This method can be implemented on the Z80 DMA with no
external logic in a Z80 CPU environment. Sequential transfer provides
speeds that match or exceed the capability of most serial communication
processors and many other I/O or memory devices.

Figure 16d illustrates simultaneous or flyby DMA transfer where a byte is
both read and written in the same machine cycle. Read and Write control
lines are both active. Source and destination are determined by signals that
specify either a memory-read with an I/O-write or an I/O read/memory-
write. This is the fastest transfer method, but the external logic required
makes timing interfaces to memory and I/O somewhat more complicated.

Another method used for some DMAC:s is called a Transparent or Cycle-
stealing transfer. This technique is similar to the instruction in Figure 16c,
except that control of the bus causes the DMA data transfers to be inter-

leaved with CPU cycles (dynamic memory is not refreshed). This method

UM008101-0601 Direct Memory Access

280 CPU Peripherals
User Manual

also requires external logic and inhibits memory refresh. Additionally, it
reduces DMA throughput.

All DMA transfers interrupt dynamic memory refresh by the CPU and
most of them idle the CPU. It is, therefore, important to consider these
implications when making the trade-off for higher DMA transfer speed.

Fetch and Read Cycles
Write Cycle BUS
A.
Conventional
Programmed | |
Instruction
Sequence
CPU MEMORY 110 DMA
Write Cycle
5 Read Cycle BUS
Z80/28000
Block Transfer | |
Instruction
CPU MEMORY 110 DMA
Read Cycle
C. Write Cycle BUS
DMA
Sequential |
Instruction
CPU MEMORY 110 DMA
b Read/Write Cycle BUS
DMA
Simultaneous | |
Transfers
CPU MEMORY 110 DMA

Figure 16. Conceptual Comparison of Various I/0 Transfer Methods

UMO008101-0601 Direct Memory Access

40

Z80 CPU Peripherals

User Manual
e A
&
&
ZiLO O

Modes of Operation

Within each of the methods illustrated in Figure 16c and Figure 16d there
are up to three modes of operation. These are termed Byte, Burst, and
Continuous modes in this manual, although they are also sometimes
referred to as Single, Demand, and Block modes. Figure 17 illustrates the
typical sequence of events for each mode, when the 1/O device’s Ready
signal to the DMAC becomes active and before the DM A process reaches
an end-of-block or other terminating condition. (These figures are
expanded in Figure 20 through Figure 23.)

In Byte mode, the DMAC transfers only one byte at a time while the I/O
device Ready line is active. Control of the system bus is released back to
the CPU between each byte. The CPU can then interleave its other activ-
ities, until the DM A makes a new request to the CPU for system bus control
before transferring the next byte. Byte mode is related to the transparent
method of transfer in that both cause interleaving of CPU and DMA func-
tions. The Byte mode, however, includes the protocol of requesting and
releasing the bus for each byte transfer.

In Burst mode, which is the most common mode, the DMAC continues to
transfer bytes after gaining control of the system bus until the I/O device
Ready line goes inactive. During this time, the CPU typically remains idle.
When the Ready line goes inactive, the DMAC releases system bus control
back to the CPU.

In Continuous mode, the DMAC holds the system bus until the entire block
of data has been transferred. If the I/O device Ready line goes inactive
before the block is completely transferred, the DMAC waits until it
becomes active again, but the system bus is not released as in Burst mode.
The Continuous mode is the fastest mode because it has the least response-
time overhead when the Ready line momentarily goes inactive and returns
active again. However, this mode does not allow any CPU activity for the
duration of the transfer.

UM008101-0601 Direct Memory Access

280 CPU Peripherals
User Manual
e A

Bus Control

Most DMACs do not control the system bus in the same way that a CPU
controls it. For example, many DMACs do not have a straightforward
interface to the system data bus but rather multiplex a portion of the
memory address onto the data bus, from which it must be latched by
external logic. Nor do most DMACs generate all of the bus control
signals that the CPU generates, and therefore they lack some degree of
bus control when they operate.

The Z80 DMA is unique among 8-bit DMACs because it generates
exactly the same bus control signals for read and write cycles that the Z80
CPU does, and also because it has exactly the same logical and electrical
interface to the data and address buses as the CPU. This means the other
system components cannot discern the difference between the Z80 DMA
and CPU; control by these devices is totally interchangeable. In the
sequential DMA transfer method (a read cycle followed by a write cycle),
it also means that the Z80 DMA pins can be tied directly to the corre-
sponding Z80 CPU pins without any of the external interfacing logic that
some DMACs require. This property considerably simplifies design and
lowers part counts.

Programmability

How a DMAC starts, transfers data, and stops is determined by control
information written to the DMAC by the CPU prior to the transfer. Status
registers, which can be read by the CPU to determine the transfer condition
after the DMAC stops transferring, are also typically provided.

The degree of programmability is directly related to the DMAC:s flexibility
in handling a variety of transfer tasks. Most DMACs are limited in their
programmability. The Z80 DMA, by contrast, has over 140 bits of control
information used to tailor the device (and retailor it between operations) for
a wide variety of tasks and environments.

UMO008101-0601 Direct Memory Access

Z80 CPU Peripherals
User Manual
e A
&

Y 4

= |

42 | ziLos

For example, the Z80 DMA can be programmed either to stop, interrupt the
CPU, continue, or repeat a transfer when a target event such as an end-of-
block, byte match, or Ready-line condition is reached. Alternatively, its
buffered address counters can be reloaded during one byte-mode transfer so
that the next transfer can begin quickly at a new location. Also, entire read
and write cycle timings can be modified independently for each port to fit
the requirements of other CPUs, memory, or I/O devices that are faster or
slower than the standard Z80 Family timing.

This topic, as well as the others described earlier, are expanded in following
chapters. They are introduced here to give a generalized framework from
which to launch a more detailed discussion of the Z80 DMA.

(See also Figure 20 through Figure 23).

BYTE BURST CONTINUOUS
(Single) (Demand) (Block)
» Request Request Request
Control Control Control
Transfer Transfer Transfer
Byte Byte Byte
Release RDY RDY
Control Active Active
* 2 YES ?

RDY

Active
?

Release

YES
Control

Figure 17. Modes of Operation

UM008101-0601 Direct Memory Access

280 CPU Peripherals
User Manual

i s
s

o

4

E. I L-ﬂ- E 43

DMA FUNCTIONAL DESCRIPTION

Features

UM008101-0601

Single Highly Versatile Channel

Dual Port Address Generation with Incrementing, Decrementing, or
Fixed Address in Both Ports

Buffered Address and Block-Length Registers

64 Kbyte Maximum Block Length

2.4 or 4 MHz Clock Rates (Z80 or Z80OA DMA)

1.25 or 2 MB/s Data Rate (Z80 or Z80A DMA)

Transfer, Search, or Transfer/Search Operations

Bit-Maskable Byte Searching

Sequential (Flow-Through) or Simultaneous (Flyby) Transfers
Compatible with Z80 and Many Other CPUs

Byte, Burst, and Continuous Modes

Auto Restart Capability

Variable Cycle Timing

Wait-Line Cycle Extension

Internally Modifiable Interrupt Vectors

Programmable Interrupts on Ready, End-of-Block, Byte Match
Hardware Priority Daisy-Chains for Bus Requests and Interrupts
Periodic Pulse Generation for External Device

21 Writeable Control Registers

Seven Readable Status Registers

Direct Memory Access

44

Z80 CPU Peripherals

User Manual
e A
&
&
ZiLO O

® Programmable Force Ready Condition

® Programmable Active State for Ready Line
® Programmable DMA Enable

® Complete System Bus Mastering

® No External Logic Needed for Sequential Transfers in Z80
Environments

Overview

The Z80 DMA performs data transfers and searches in a wide variety of
8-bit CPU environments. This DMA is unique among DMACs because it
takes full control of the system address, data, and control buses, and is
therefore a special-purpose processor when enabled by the CPU to
function in this unique way. The DMA also provides complete interfacing
to the system bus. For example, in a Z80 CPU environment, the Z80
DMA generates the same signal levels and timings, including tristate
control, which the Z80 CPU generates to accomplish a transfer. It
normally does this without external TTL packages, which other DM As
may require.

For this reason, and because of its extensive programmability for operating
on data and dataflow, the Z80 DMA can be called a special-purpose transfer
processor. It unburdens not only the CPU but also the system designer.

The Z80 DMA is also unique in other respects. First, it generates two port
addresses instead of one. Because both addresses can be either variable or
fixed, the memory-to-memory or I/O-to-1/O transfers can be done with a
single channel, whereas other DM ACs may require more than one
channel or may not do such transfers at all.

The capability of the Z80 DMA’s channel surpasses the capability of any
other available monolithic DMAC channel to service either fast or slow
devices. In addition to having a Wait line for extending cycles, the basic

UM008101-0601 Direct Memory Access

280 CPU Peripherals
User Manual
e A

read and write cycles can be programmed for different timing requirements.
If multiple channels are needed, multiple Z80 DMAs can be easily inte-
grated. The interrupt structure is fast and versatile. Interrupt signals and
vectors can be generated under several conditions. Finally, the Z80 DMA
passes data through itself and can therefore compare bytes against a bit-
maskable match byte. An overview of Z80 DMA features are listed below
and each point is described more thoroughly in this and other chapters.

Throughout the remainder of this manual the Z80 DMA is referred to as the
DMA. This DMA is available as either the 2.4 MHz Z80 DMA or the 4 MHz
Z80A DMA. Both parts have the same features and differ only in speed.

Programming

The Z80 DMA has 21 writeable 8-bit control registers and 7 readable 8-bit
status registers available to the CPU. Control bytes can be written to the
DMA or status bytes can be read from the DMA whenever the DMA is not
controlling the bus.

Control bytes writeable to the DMA include those that effect immediate
command actions such as enable, disable, reset, load starting addresses,
continue transferring or searching, clear byte and address counters, clear
status bits, and more. In addition, many mode-setting control bytes can be
written, including the class and mode of operation, port configuration,
starting addresses, block length, address-counting rule, match and match-
mask bytes, interrupt conditions, interrupt vector, end-of-block rule, Ready-
line and Wait-line rules, and others.

Readable status registers include a general status byte that reflects Ready-
line, end-of-block, byte-match, and interrupt conditions, as well as registers
for the current byte count and port addresses. There is a full chapter on
programming on page 90 that explains these functions in detail, and most of
them are described in general terms on the pages that follow.

UMO008101-0601 Direct Memory Access

46

Z80 CPU Peripherals

User Manual
e A
&
&
ZiLO O

Classes of Operation

The Z80 DMA has three basic classes of operation, and two of the classes
are each broken into subclasses as follows:

® Transfers of data between any two DMA ports:
— Sequential transfers (flow-through)
— Simultaneous transfers (flyby)

® Searches for a particular bit pattern within a byte at a single DMA port

® Combined transfers and searches between any two DMA ports:
— Sequential transfer/search

— Simultaneous transfer/search

Figure 18 illustrates these classes. The two subclasses of transfers are illus-
trated at the top; the search-only class is depicted in the middle, and the two
subclasses of transfer-while-searching are featured at the bottom. In all
cases, the DMA assumes full control of the system address, data, and
control buses while transferring or searching a given byte. The DMA ports
are the source and destination of data; a port is used here to mean either
memory or an I/O device.

In sequential transfers, which are sometimes called flow-through transfers,
each byte transfer includes a read cycle followed by a write cycle. The DMA
reads the byte via the data bus to an internal register and sustains the byte on
the data bus into the subsequent write cycle. In a Z80 CPU environment, as
well as in certain other CPU environments, sequential DMA transfers can be
implemented with no external logic between the DMA and the CPU.

In simultaneous transfers, which are sometimes called flyby transfers,
each byte is simultaneously read from the source into the DMA and
written from the source directly to the destination in a single machine
cycle. These transfers, therefore, occur at twice the rate of sequential
transfers, but they require at least one external logic package to cause the
proper signals to appear simultaneously on the control bus (see “The
actual number of bytes transferred is one more than specified by the block

UM008101-0601 Direct Memory Access

Z80 CPU Peripherals
User Manual

2iLD@o 47

length. * These entries are necessary only in the case of a fixed
destination address.” on page 129).

In the search only class, each byte is read through the data bus from the
source port into the DMA, where it is compared with a match byte. The
match byte can optionally be masked with another byte so that only
certain bits in the data and match bytes are compared. The search only
class needs no external logic between the DMA and CPU in Z80 systems
and certain other CPU environments.

Read Write

Sequential — —
Transfer 1
(Flow through)
CPU MEMORY DMA 110
Read/Write
Simultaneous I— — —
Transfer
(Flyby)
CPU MEMORY DMA 110
Read
Search L I
Only
CPU MEMORY DMA 110
Read v Write
Sequential — []
ransfer/Search
CPU MEMORY DMA 110
Read lll Write !|!
Simultaneous — I]
ransfer/Search

CPU MEMORY DMA 110

Figure18. Classof Operation
UMO008101-0601 Direct Memory Access

280 CPU Peripherals
User Manual
. ra
r

In sequential transfer/searches, data is transferred in the same way as in
the sequential transfer class and simultaneously searched, as in the search
only class. This class also requires no external logic in Z80 and some
other environments.

In simultaneous transfer/searches, data is transferred just as in the simulta-
neous transfer class and simultaneously searched just as in the search only
class. In this case, at least one additional external logic package is needed to
obtain the doubling of speed.

Figure 19 summarizes the functions of each class of Z80 DMA operation
with respect to the two types of addressable ports that can be selected as a
source and destination. The most common applications of DMA are
transfers from memory-to-1/0 or I/O-to-memory, without search, and most
DMA devices are limited to these operations. The simultaneous searching
function is unique to the Z80 DMA. Simultaneous transfers (flyby) are
limited to transfers between memory and 1/0.

Transfers from memory-to-memory are useful in relocating memory
contents. They can also be used in supporting memory-mapped 1/0. A
Ready condition can be programmed into the DMA to simulate an active
I/0 Ready line for memory-to-memory transfers. Read more about this in
the “Programming” section.

Transfers from 1/0O-to-1/0O can be used in applications such as real-time
data acquisition where backup storage of the incoming data is required.
The optional search capability allows branching to various other actions
when a byte match is found as in memory-to-memory transfers. Memory
searches and /O searches, without transfer, are unique to the Z80 DMA
and are useful in locating an end-of-block, check character, or other
special byte in a block.

UMO008101-0601 Direct Memory Access

280 CPU Peripherals

User Manual
o~ s
/
ZiLoao 49
Memory DMA lfe}
1. Transfer Memory-to-1/O (optional search) ~
2. Transfer I/O-to-Memory (optional search) ©, >
3. Transfer Memory-to-Memory (optional search) -)
4. Transfer 1/0-to-1/0 (optional search) \&J
5. Search Memory
6. Search I/O @
= ®
» (5 110
'
®=

Figure 19. Basic Functions of the Z80 DMA

Modes of Operation

Within any class of operation, the Z80 DMA can be programmed to operate
in one of three Transfer and/or, Search modes:

Byte Mode

Data operations are performed one byte at a time. Between each byte oper-
ation the system bus is released to the CPU. The bus is requested again for
each succeeding byte operation. This is also sometimes called Single mode
or byte-at-a-time mode.

Burst Mode

Data operations continue until a port’s Ready line to the DMA goes
inactive. The DMA then stops (releases the system bus) after completing its
current byte operation. This is also called demand mode.

Continuous Mode

Data operations continue until the end of the programmed block of data or a
stop-on-match condition is reached before the system bus is released. If a

UMO008101-0601 Direct Memory Access

50

Z80 CPU Peripherals

User Manual
e A
&
&
ZiLO O

port’s Ready line goes inactive before this occurs, the DMA pauses until
the Ready line comes active again. This is also called Block mode.

In all modes, the operation on the byte is completed in an orderly fashion
when a byte of data is read into the DMA, regardless of the state of other
signals (including a port’s Ready line). Figure 20 illustrates the sequence of
events that occur in a sequential transfer/search of one byte, whatever of the
mode of operation. First, the source port address is incremented or decre-
mented, if it was programmed to be a variable-address port. Then, the byte
is read from that port to the DMA. Next, the destination port address is
incremented or decremented, if it was programmed to be a variable. The
byte is then written to the destination port. If a search capability is included,
the byte is compared to the match byte. When no byte match occurs, the
DMA increments the byte counter and continues. When a byte is found, a
status bit is set and the DMA either continues by incrementing the byte
counter, stops (releases the bus), or interrupts the CPU, depending on its
initial programming. The next three figures illustrate how the three modes
function before, during, and after the single-byte operation, which is shown
in Figure 20.

Operation in the Byte mode (Figure 21) begins with an enabling command
from the CPU and a test of the I/O device’s Ready line. When the Ready
line is active, the DM A requests the system bus (address, data, and control
buses) through the Bus Request line, and the CPU acknowledges and
releases control to the DMA. The transfer of and/or search of one byte takes
place as in Figure 20. Then, a test is made for end-of-block by checking to
see if the byte counter has reached the programmed block length. If the end
is not reached, the DMA releases the bus back to the CPU. If the end is
reached, a status bit is set and some terminating action occurs, according to
the initial programming. Releasing the bus between each byte allows the
CPU to execute at least one machine cycle before releasing the bus again to
the DMA for the next byte transfer. This means that while the DMA
operates more slowly than it could in other modes, CPU activities like
interrupt acknowledgement, polling, and memory refresh can be inter-
leaved with DMA transfers in the Byte mode.

UM008101-0601 Direct Memory Access

Y

Increment/Decrement
Source-Port Address

Y

Read

Source-Port Data

Y

Increment/Decrement
Destination Port Address

Y

Write Data

to Destination Port

Y

Increment
Byte Counter

Set
Status Flag

Y

Y

« Continue
* Release Bus
« Interrupt

Figure 20. Transfer/Search One Byte

UM008101-0601

280 CPU Peripherals
User Manual

Direct Memory Access

Z80 CPU Peripherals
User Manual

Release Bus

(CPU Executes
at least one
Machine Cycle)

Active

YES

Request Bus

Y

R
2

Transfer/Search One Byte
(See Figure 20)

End
of Block
?
YES
Set Status Flag

Y

« Interrupt
* Release Bus
« Auto Restart

Figure 21. Byte Mode

UM008101-0601

Direct Memory Access

Request Bus

R

Active

Request Bus

Y

Transfer/Search One Byte
(See Figure 20)

End

of Block

Set Status Flag

Y

« Interrupt
« Release Bus
« Auto Restart

Figure 22. Burst Mode

280 CPU Peripherals
User Manual

In the Burst mode (Figure 22), the bus is requested in the same manner as
previously, but when the DMA has control of the bus it continues to transfer
bytes until it encounters either an inactive Ready signal from an I/O port, an
end-of-block, or a byte match as in Figure 20. If the Ready line goes
inactive before end-of-block is reached, the DMA releases the bus to the
CPU and repetitively tests the Ready signal until it comes active again.
Then it requests the bus again and continues its transfers. Because of this,
the Burst mode is often the most useful one for general-purpose applica-
tions. It does not request the bus until it actually can use it, but once it

UM008101-0601

Direct Memory Access

54

Z80 CPU Peripherals

User Manual
e A
&
&
ZiLO O

attains the bus, the transfers are made at maximum speed. If the transfers
are long, however, this mode can interfere with other CPU activities, which
come to a halt for the entire duration of DMA transfers.

In the Continuous mode (Figure 23), the DMA requests the bus in the same
manner as other modes and repetitively transfers bytes in the same manner
as Burst mode. However, unlike the Burst mode the bus is retained by the
DMA whenever an inactive Ready signal is encountered prior to a stop on
end-of-block or byte match. The DMA simply idles, while holding onto the
bus, until Ready becomes active again. Then it completes the transfer
sequence. This is the fastest of the three modes because it eliminates the
necessity of releasing the bus and requesting it again between complete
block transfers. In this mode, however, the system bus is continuously
preempted by the DMA. This mode is usually used only when very fast
transfers are required and when the impact on CPU activities can be
tolerated. This might be the case, for instance, when an operating system is
being loaded to memory from disk.

Due to the DMA’s high-speed buffered method of reading data, operations
on one byte are not completed until the next byte is read in. This means that
total transfer or search block lengths must be two or more bytes, even in the
Byte mode, and that block lengths programmed into the DMA must be one
less than the desired block length. This characteristic is described in detail
in Internal Structure under the section entitled, “Address and Byte
Counting” on page 75.”

UM008101-0601 Direct Memory Access

NO

RDY

Active
?

b

YES

Request Bus

Y

Transfer/Search One Byte
(See Figure 20)

End

Figure 23.

UM008101-0601

of Block
?

YES

Set Status Flag

Y

« Interrupt
* Release Bus
« Auto Restart

Continuous Mode

280 CPU Peripherals
User Manual

Direct Memory Access

55

56

Z80 CPU Peripherals

User Manual
e A
&
&
ZiLO O

Transfer Speed

The Z80 DMA has one of the fastest maximum transfer rates of any 8-bit
DMAC device. This rate is achieved in the simultaneous transfer class of
operation and, unlike the more common sequential transfer class, it requires
at least one external TTL package. But because some other 8-bit DM As
require some external logic, this constitutes a legitimate speed comparison.

Table 8 describes the maximum rates that can be achieved in different
classes of DMA operation. Maximum CPU block-transfer rates are also
given for comparison. All DMA transfers assume the uninterrupted use of
Burst or Continuous mode, and they assume read and write cycles that last
two cycles (see “Variable Cycle” on page 60).

Transfer speed in Byte mode depends on how long the CPU keeps the bus
between each byte transfer of the DMA. Therefore, the speed is best
expressed from the CPU viewpoint.

Table 9 describes the reduction in Z80 throughput (per Kilobaud trans-
ferred) caused by byte-mode DMA transfers, and this rate is compared with
the reduction in throughput that would occur if the CPU did its own byte
transfers using an interrupt service routine of six instructions (a practical
lower limit). “Z80 DMA and Z80 SIO Example” on page 139 contains
more detail on this data. This data assumes sequential DMA transfers with
longer cycle timing than the minimum of two clock cycles per read or
write. Simultaneous transfers of two clock cycles would, therefore, result in
even lower impact on CPU throughput.

Table 8 describes that DMA transfer rates in Burst and Continuous modes
can be up to ten times faster than Z80 CPU rates. Table 9 describes that the
reduction of CPU throughput with Byte mode DMA transfers is about five
times less than the reduction that results when the CPU handles its own
byte-mode /O in the normal interrupt mode.

UM008101-0601 Direct Memory Access

280 CPU Peripherals

User Manual

Table 8. Maximum Transfer and Search Speeds (Burst and Continuous

Modes)
780 780Z
Action (2.4 MHz) (4.0 MHz)
DMA Simultaneous Transfer 1.25 2.0
DMA Search Only MB/s MB/s
DMA Simultaneous Transfer/Search
DMA Sequential Transfer 0.625 1.0
DMA Sequential Transfer/Search MB/s MB/s
CPU Block Transfer Instruction 0.125 0.200
MB/s MB/s
Table 9. Reduction in Z80 CPU Throughput per Kbaud
(Byte Mode Transfers)
780 7807
Action (2.4 MHz) (4.0 MHz)
DMA Sequential Transfer 0.085% 0.041%
DMA Sequential Transfer/Search
CPU Interrupt Driven Transfer 0.340% 0.213%

Address Generation

Two 26-bit addresses are generated by the DMA for every transfer oper-
ation: one address for the source port and another for the destination port.
The two addresses are multiplexed onto the address bus, according to
whether the DMA is reading the source or writing to the destination.

The two ports are arbitrarily named Port A and Port B. Both A and B can be

either source or destination, either memory or I/O, and have fixed or

variable addresses.

UM008101-0601

Direct Memory Access

Z80 CPU Peripherals
User Manual
e A
&

Y 4

= |

58 | ziLoo

Variable addresses can either increment or decrement automatically from
the programmed starting address. Fixed addresses are useful for I/O devices
and the DMAs capability to generate fixed addresses eliminates the need
for transfer/search enabling wires to the I/0 device (although Chip Enable
hardwiring is still required, as it is with all peripheral circuits).

Two readable address counters keep the current address of each port. These
counters are distinct from the starting address registers for each port, that is,
the counters are buffered by the registers. Therefore, new starting addresses
can be written to the DMA whenever the DMA is not holding the bus, for
example, between byte transfers in Byte mode. New starting addresses for a
new block of data can be loaded into the DM A before the transfer of the
current block is finished. Loading new starting addresses does not disturb
the contents of the associated port address counters.

DMA address generation capabilities can be used in the following ways:
® Start at a base address and count up or down.

® Automatically step back to the beginning at the completion of an
address sequence.

® Load new starting addresses or reload previous ones for the next
sequence.

Byte Matching (Searching)

Searches for byte matches can be performed either as a sole function or
simultaneously with transfers. When a byte match is found, a status bit in
the readable status register is set and the DMA can be programmed to do
one of the following:

® Stop (release the bus) immediately upon byte match.
® Stop and interrupt the CPU immediately upon byte match.
® Interrupt the CPU when the DMA stops at the end of a block.

UM008101-0601 Direct Memory Access

280 CPU Peripherals
User Manual
e A

The match byte written into the DMA is masked with another byte so that
only certain bits within the match byte can be compared with the corre-
sponding bits in the data bytes being searched.

Interrupts

The DMA can be programmed to interrupt the CPU on three conditions:
® Interrupt on Ready

® Interrupt on Byte Match

® Interrupt on End-of-Block

The first condition (I/O-port Ready line becoming active) causes an
interrupt before the DMA requests the bus. The other two conditions
cause the DMA to interrupt the CPU after the DMA stops (releases the
bus). Stopping the DMA on byte match or end-of-block is separately
programmed.

Any of these conditions (Ready line becoming active, byte match, or end-
of-block) causes a readable status bit to be set. In addition, when an
interrupt on any of these conditions is programmed, an interrupt-pending
status bit is also set, and each type of interrupt can optionally alter the
DMAs interrupt vector.

The DMA shares the Z80 Family’s versatile interrupt scheme, which
provides fast interrupt service in real-time applications. In a Z80 CPU
environment where the CPU is using its Mode 2 interrupts, the DMA
passes its internally modifiable 8-bit interrupt vector to the CPU, which
attaches an additional eight bits to form the memory address of the
interrupt routine table. This table contains the address of the beginning of
the interrupt routine. In this process, CPU control is transferred to the
interrupt routine, so that the next instruction executed after an interrupt
acknowledge is the first instruction of the interrupt routine.

UMO008101-0601 Direct Memory Access

60

Z80 CPU Peripherals

User Manual
e A
&
&
ZiLO O

Auto Restart

Block transfers can be repeated automatically by the DMA. This function
causes the byte counter to be cleared and the address counters to be
reloaded with the contents of the starting-address registers.

The Auto Restart feature relieves the CPU of software overhead for repet-
itive operations such as CRT refresh and many others. Moreover, the CPU
can write different starting addresses into the buffer registers during
transfers in the Byte mode (or Burst mode when the Ready line is inactive
and the bus is released) causing the Auto Restart to begin at a new location.

Pulse Generation

External devices can keep track of how many bytes have been transferred
by using the DMA’s Pulse output, which provides a signal at 256-byte
intervals. The interval sequence may be offset at the beginning by 1 to
255 bytes.

The interrupt line carries the Pulse signal in a manner that prevents inter-
pretation by the Z80 CPU as an interrupt request, because the signal only
appears when the Bus Request and Bus Acknowledge lines are both
active. Under these conditions, the Z80 CPU does not monitor the
Interrupt (INT) line.

Variable Cycle

The Z80 DMA offers the unique feature of programmable operation-cycle
length. This is valuable in tailoring the DMA to the particular requirements
of various CPUs and other system components (fast or slow), and in maxi-
mizing the data-transfer rate. Also, it often eliminates external logic and
reduces CPU software overhead.

There are two aspects to the variable cycle feature. First, the entire read and
write cycles (periods) associated with the source and destination ports can

UM008101-0601 Direct Memory Access

280 CPU Peripherals
User Manual
e A

be independently programmed as 2, 3, or 4 clock cycles long (more if Wait
cycles are used), thereby increasing or decreasing the speed at which all
DMA signals change.

Second, the four signals in each port (I/O Request, Memory Request, Read,
and Write) can each have its active trailing edge terminated one-half clock
cycle early. This adds a further flexibility by allowing functions such as
shorter-than-normal Read or Write signals to go inactive before data starts
to change. Figure 24 illustrates the general capability, which is described
later in “Timing” on page 1517

| 1. | T, | T | T

€— 2-Cycle ; | Early Ending

l— 3-Cycle I >| for Control Signals

CLK

<— 4-Cycle l '

Figure 24. Variable Cycle Length

Events and Actions

Table 10 gives an overview of the events that can cause specific actions by
the DMA, depending on how it is programmed. The events are conditions
in the DMA’s internal registers, signals from the I/O device, or instructions
on the data bus for which the DMA watches.

UMO008101-0601 Direct Memory Access

Z80 CPU Peripherals
User Manual
e A
&

Y 4

= |

62| ziiLoo

Table 10. Events and Actions

Event

Actions Possible When Event
Occurs

End-of-Block

. Release Bus
. Interrupt CPU
. Auto Restart

Byte Match (Compare)

Release Bus

. Interrupt CPU

. Continue

Pulse-control byte matches lower part of
byte counter

1
2
3
1.
2
3
1

. Generate Pulse

instruction from the Z80 CPU)

READY Inactive 1. Release Bus
2. Suspend (continuous mode
only)

READY Active 1. Request Bus
2. Interrupt CPU

RETI Instruction (return from interrupt 1. Request Bus

PIN DESCRIPTION

The following pin descriptions detail the function of the Z80 DMA external
pins as illustrated in Figure 25 through Figure 28.

A15-A0

System Address Bus (output, tristate). Addresses generated by the DMA are
sent to both source and destination ports, either of which may be main

memory or I/O peripherals.

UM008101-0601

Direct Memory Access

280 CPU Peripherals
User Manual
e A

BAI

Bus Acknowledge In (input, active Low). Signals that the system buses
have been released for DMA control.

BAO

Bus Acknowledge Out (output, active Low). In multiple-DMA configura-
tions, this pin signals that the CPU has relinquished control of the bus. BAI
and BAO form a daisy-chain for multiple DMA priority resolution over bus
control. Unlike the interrupt daisy-chain formed with the IEI and IEO lines,
this chain does not allow preemption of control by a high-priority DMA
when a lower-priority DMA is already bus master. The DMA that has the
bus is always allowed to finish, regardless of its priority in the chain.

BUSREQ

Bus Request (bidirectional, active Low, open-drain). As an output, this pin
sends requests for control of the system address bus, data bus, and control
bus to the CPU. As an input when multiple DMAs are strung together in a
priority daisy-chain through BAI and BAO, this pin senses when another
DMA has requested the buses and causes this DMA to delay its bus request
until the first DMA is finished. Because this bidirectional pin allows simul-
taneous bidirectional signals with no means of control, no buffers come
between this DMA and other DMAs. There can, however, be buffers
between it and the CPU because it is unidirectional into the CPU. A 1.8
Kohms pull-up resistor is typically connected to this pin.

CE/WAIT

Chip Enable and Wait (input, active Low). Normally, this functions only as
a CE line, but it can also be programmed to serve as a WAIT function. As a
CE line from the CPU, this pin becomes active when IORQ is active and
the I/O port address (up to 16 bits) on the system address bus is the DMA’s
address, thereby allowing control bytes to be written from the CPU to the
DMA. As a WAIT line from memory or I/O devices, after the DMA has
received a bus acknowledge (BUSACK) from the CPU, this pin causes wait

UMO008101-0601 Direct Memory Access

64

Z80 CPU Peripherals

User Manual
e A
&
&
ZiLO O

states to be inserted in the DMA’s operation cycles, thereby slowing the
DMA to a speed that matches the memory or I/O device. The Applications
chapter contains a description of how the CE and WAIT inputs can be
multiplexed by the CPU’s BUSACK line.

CLK

System Clock (input). This pin is standard Z80 single-phase clock at 2.8
MHz (280 DMA) or 4.0 MHz (Z80A DMA). For slower system clocks, a
TTL gate with a pull-up resistor may be adequate to meet the timing and
voltage level specifications. For higher speed systems, use a clock driver
with an active pull-up to meet the VIH specification and rise time require-
ments. There should always be a resistive pull-up to the power supply (10
Kohms maximum), ensuring correct power at DMA reset.

D7-D0O

System Data Bus (bidirectional, tristate). These pins transfer control bytes
from the CPU, status byes from the DMA, and data from memory or I/O
peripherals. Data transfers or searches by the DMA occur only when the
DMA controls both this bus and the address bus. When the CPU controls
these buses, it can write or read DMA control or status bytes.

IEI

Interrupt Enable In (input, active High). This line, combined with the IEO,
form a priority daisy-chain when there is more than one interrupting device.
A High on this line indicates that no other device of higher priority is inter-
rupting, thereby allowing this DMA to interrupt.

IEO

Interrupt Enable Out (output, active High). IEO is High only when IEI is
High and this DMA is not requesting an interrupt. Therefore, this signal
blocks lower priority devices from interrupting while a higher priority
device is being serviced by its CPU interrupt service routine. Unlike
devices in a bus-request daisy-chain, devices in an interrupt daisy-chain can

UM008101-0601 Direct Memory Access

280 CPU Peripherals
User Manual
e A

be preempted by higher priority devices before the lower priority device
has been fully serviced.

INT/PULSE

Interrupt Request (output, active Low, open-drain). This requests a CPU
interrupt when brought Low while the DMA is not the bus master. The
CPU acknowledges the interrupt by pulling its IORQ output Low during an
M1 cycle. The DMA INT pin is typically connected to the INT pin of the
CPU with a pull-up resistor and tied to all other INT pins in the system.
This pin can also be used to generate periodic pulses to an external device.
It can be used this way only when the DMA is bus master, for example, the
CPU’s BUSREQ and BUSACK lines are both Low and the CPU cannot
sense interrupts.

IORQ

Input/Output Request (bidirectional, active Low, tristate). Used as an input,
this pin indicates that the lower half of the address bus contains a valid I/O
port address for transfer of control or status bytes from or to the CPU. This
DMA is the addressed port if its CE pin, IORQ pin, and or RD pin are
simultaneously active. As an output, after the DMA has taken control of the
system buses, this pin indicates that the address bus contains a valid 8-bit or
16-bit port address for another I/O device involved in a DMA transfer of
data. When IORQ and M1 are both active inputs to the DMA, an interrupt
acknowledge by the CPU is indicated.

M1

Machine Cycle One (input, active Low). This pin indicates that the current
CPU machine cycle is an instruction fetch. This pin has two purposes in the
DMA’s interrupt structure. First, it is used by the DMA to detect return-
from-interrupt instructions (RETI, or ED4DH) fetched over the data bus by
the CPU at the end of interrupt service routines. Second, an interrupt
acknowledge is indicated when both M1 and IORQ are active inputs to the

DMA. During 2-byte instruction fetches, M1 is active as each Op Code
byte is fetched. In the CMOS DMA, the M1 signal has a different function:

UMO008101-0601 Direct Memory Access

66

Z80 CPU Peripherals

User Manual
e A
&
&
ZiLO O

when M1 occurs without an active RD or IORQ for at least two clock
cycles, the internal reset is activated at the falling clock after M1 returns to
the inactive state. This internal reset lasts for three clock cycles.

MREQ

Memory Request (output, active Low, tristate). This line indicates that the
address bus contains a valid address for a memory read or write operation.
After the DMA has taken control of the system buses, it indicates a DMA
transfer request from or to memory.

RD

Read (bidirectional, active Low, tristate). As an input, this signal indicates
that the CPU is ready to read status bytes from the DM As read registers. As
an output, after the DMA has taken control of the system buses, it indicates
a DMA-controlled read from memory or I/O port address.

RDY

Ready (input, programmable active Low or High). This pin is monitored by
the DMA to determine when a peripheral device associated with a DMA
port is ready for a read or write operation. When the DMA is enabled to
operate, the RDY line indirectly controls DMA activity; the manner in
which DMA activity is controlled by RDY depends on what operating
mode is selected (Byte, Burst, or Continuous). An active RDY line can be
simulated by programming a Force Ready condition. This is useful in
memory-to-memory operations. It is preferable to have the RDY signal
synchronized to the CLK signal, for example, RDY should become active
on the rising edge of CLK. This is particularly important in the Continuous
mode of operation.

WR
Write (bidirectional, active Low, tristate). As an input, this indicates that the

CPU is requesting to write control bytes to the DMA write registers when
the DMA is selected. As an output, after the DMA has taken control of the

UM008101-0601 Direct Memory Access

280 CPU Peripherals
User Manual

ZiLOO 67

system buses, it indicates a DMA-controlled write to a memory or
I/O port address.

RESET

Reset (input, active Low) is available in the CMOS PLCC version only. A
Low in this signal resets the DMA.

[<3| DO A0 |—I
-€»| D1 Al 3
-€»| D2 A2
System< -€»| D3 A3 3
Data - »| D4
Bus A4 —P
-€»| D5 A5
-€»| D6 26 3
-€»| D7 >
~ A7 — System
Address
A8 > Bus
- A9 P
-»| BUSREQ
BUS = AL0 |3
Control —>» All — 3
-«—| BAO 3
Z80 DMA Al2
AL3 3
o AL |
—»| M1 Al5 |3)
Svst -€>»| IORQ
ystem > RDY | -f— DMA
CO;SOSI MREQ C5/WAIT } Control
<€»|RD S —
o INT/PULSE —3» Interrupt
.... I WR IEl |-— Control
. —»| RESET, IEC —3»

C-MOS DMA
PLCC Package Only

+5V GND CLK

Figure 25. Pin Functions (CMOS PLCC Package Only)

UMO008101-0601 Direct Memory Access

Z80 CPU Peripherals
User Manual

- &

BAC [}
BAT [}
BUSREQ [
CS/WAIT [
A15 [
A14 [
A13 [
A12 [

Z80 DMA
(DIP)

146
1 A7
] E
[INT/PULSE
1 IEO
1 Do
] D1
] D2
D3
D4
1 GND
1 D5
] D6
D7
] ™7
[RDY
1 A8
1 A9
1 A10
1 A1

Figure 26. 40-Pin DIP Pin Assignments

UM008101-0601

Direct Memory Access

INT/PULSE

280 CPU Peripherals

User Manual

- &

A0
CLK[]
WR[]

RD[]

TorRQ [
N/c [
vee[]

MREQ[_|
BAO []
BAI[]

BUSREQ[]

10
11
12
13
14
15
16
17

61 GND
s[] A1
41 A2
3[JA3
2[4
11 A5
441 A6
431 a7
42 [IEl
41[]

40[] €O

/8410

39
38
37
36
35
34
33
32
31
30
29

] Do
] D1
D2
D3
] D4
[1GND
D6
[1D5
—1D7
™7
Ve

Figure 27.

UM008101-0601

'8
5[]19
a[]20
3[]21
222
1[]28
o]24
925
A8[|26

RDY [|27
N/C[]28

44-Pin PLCC Pin Assignments (Z8410 NMOS)

Direct Memory Access

Z80 CPU Peripherals

User Manual
- &
£
&
...-'
70 Z Lcii:
(NE)
@]
—1
:
) o
Z — _ = O
5:12%38¢30kES
O W < M N — < MO N — O
‘<r < S <«
A7 39 []Do
CcLk[]s 38 [] D1
WR[]9 37[1D2
RD[_] 10 36 [1D3
IORQ[] 11 35 [1D4
NCc[]12 Z84C1O 34 [] GND
vee[]13 33[JDe6
MREQ[] 14 32[]Ds
BAO[] 15 31 [JDb7
BAI[] 16 30 ™71
BUSREQ[] 17 29 [IN/C

18
5[_]19
a[]20
321
2[]22
1[]28
o[]24
9[]25
A8[|26

RDY [|27
N/C[]28

Figure 28. 44-Pin PLCC Pin Assignments (Z84C10 NMOS)

UM008101-0601 Direct Memory Access

Z80 CPU Peripherals
User Manual

" s

INTERNAL STRUCTURE

General Organization

The internal structure of the Z80 DMA includes driver and receiver
circuitry used to interface with an 8-bit data bus, a 16-bit address bus, and
system control lines. In a Z80 CPU environment, the DMA can be
connected directly to the corresponding pins on the CPU with no additional
buffering, except for the CE/WAIT line, when operation is limited to
sequential transfers and searches. “The actual number of bytes transferred is
one more than specified by the block length. * These entries are
necessary only in the case of a fixed destination address.” on page 129
provides a description of this.

Figure 29 illustrates how the DMA’s internal data bus interfaces with the
system data bus and how the DMA services all internal logic and registers.
Addresses generated for Ports A and B of the DMA’s single transfer
channel are multiplexed onto the system address bus.

Specialized logic circuits in the DMA are dedicated to the various functions
of the external bus interfacing, the internal bus control, byte matching, byte
counting, periodic pulse generation, CPU interrupts, bus requests, and
address generation.

Interrupt
— and Bus Pulse BYTE
—/ Priority Logic Counter Port A
Logic Address
System {} {} System
Data Data
Bus Internal Bus MUX
8-Bit) Bus
(} & {} (16-Bit)
Port B

Control
N Bus BYTE
Control <; Control S?Qt?]s Match Address ||

Registers

Figure29. Z80DMA Block Diagram

UMO008101-0601 Direct Memory Access

72

280 CPU Peripherals

User Manual
. ra
&
&
._.-'

iLDo@o

Control And Status Registers

A set of 21 writable control registers and 7 readable status registers allow
the CPU to govern and monitor the activities of logic circuits. All registers
are 8 bits wide (the width of the data bus), and double-byte information is
stored in adjacent registers.

The 21 control registers writable through the data bus are organized into
seven base register groups, WR6 through WRO0, most of which have
multiple registers. The base registers in each group contain both control
bits and pointer bits that can be set to address other registers within the
group. Writing to a register within a group involves first writing to the
base register for that group, with the appropriate pointer bits set, then
writing to one or more of the other registers that have been pointed to
within the group. The chapter on “Programming” contains a full
discussion of this technique. The names of the write registers shown in
Figure 30 do not indicate the full extent of the DMA’s programmability
because many modes and functions are set with single bits in the base
register bytes of each group.

Figure 30 left, illustrates the write registers. These are the registers for
which inputs from the data bus are shown in the figure. Compare this figure
with Figure 30 right, which identifies the read registers.

The two 16-bit starting address registers in groups WR4 and WRO, and the
16-bit block-length register in group WRO, have 16-bit counters associated
with them. The counters, unlike their associated registers, cannot be written
to. The two address counters generate the addresses that are placed onto the
address bus. The address counters can also be read by the CPU through the
data bus, as can the byte counter. All three writable registers serve as
buffers for the readable counters. The contents of the registers can be
changed during a block transfer without disturbing the contents of the
counters. This feature is useful, for example, during Byte-mode transfers, in
which control bytes can be written to the DMA while the CPU has the bus
between byte transfers. This allows the next block, which can be an Auto
Restart block, to begin quickly at a new location. Notice that the block

UMO008101-0601 Direct Memory Access

280 CPU Peripherals
User Manual
e A

which control bytes can be written to the DM A while the CPU has the bus
between byte transfers. This allows the next block, which can be an Auto
Restart block, to begin quickly at a new location. Notice that the block
length counter stops (or Auto Restarts) as a result of a comparison to the
block length register. In changing the register, the block length also changes
with what may be unpredictable results.

The pulse-control byte illustrated in Figure 30 (in the WR4 group) also has
a relationship to the byte counter in WR0. The pulse-control byte can be
loaded with an offset value between 0 and 255 and this value is continu-
ously compared with the lower byte of the byte counter. The NT line
generates a pulse each time a match occurs, which happens on every 256
bytes of transfer or search after the initial offset. Because the pulse signals
generated on the NT line only occur when the DMA has control of the
system bus, for example, when the BUSREQ and BUSACK lines are
simultaneously active, the CPU cannot detect theme and they can be
directed exclusively to an external gate, counter, or other device.

Figure 30 illustrates the seven status registers readable through the data bus.
Unlike the write registers, the status registers include no second-level
registers or groups. These registers are accessed sequentially according to
the read mask written to the WR6 group, except that the status byte can be
read separately from the other read registers.

UMO008101-0601 Direct Memory Access

Z80 CPU Peripherals

User Manual

- &
/
7
o
ZiLoao
Data Data
'WRQ """"""" 7 0 BUS 0 BUS
! |Base Register Byte |<— |
: 15 \] 87 0
I Port A Starting Address Register | !
. Port A Address Counter (see right illustration) Port A Address Counter >
. } t
. ¥ RR4 RR3
' Block Length Register]
. Byte Counter (see right jllustration) Byte Counter | 2
. Y RR2 ' RR1
WR1 |Base Register Byte |<— | |
: | Port A Variable Timing |<— | |
'WR2 |Base Register Byte |<— | |
! | Port B Variable Timing |<— | |
'WR3 |Base Register Byte |<- | |
! |Mask Byte |<— | |
' |Match Byte |<— | |
WR4 |Base Register Byte |<— | |
: 15 \ 8,7 0 .
\ Port B Starting Address Register |-)
! Port B Address Counter, (see right illustration) Port B Address Counter
. T T
. RR6 RR5
X |Interrupt Control Byte |<— | |
' |Pulse Control Byte H | |
' | Interrupt Vector |<— | |
WR5 |Base Register Byte |<“ | |
.WR6 |Base Register Byte |<— | |
: |Read Mask |<— | |
|Status Byte (see right) |<— | Status Byte |—>

RRO

Figure 30. Write Register Organization (left) and Read Register Organization (right)

UM008101-0601

Direct Memory Access

280 CPU Peripherals
User Manual

Address and Byte Counting

Addresses for either port may be fixed at their programmed starting
address, or they may be incremented or decremented from the programmed
starting address by the address counters. The block length programmed into
the DMA is compared with the byte counter, which starts at zero and incre-
ments at the completion of each byte operation (Figure 20).

The DMA uses a high-speed buffering or pipelining scheme for reading
data. When transferring data and stopping on an end-of-block, the effect of
this pipelining is that one more transfer is completed than is programmed
into the block-length register; the only exception to this rule occurs in
simultaneous transfers that use two-cycle variable timing, in which case
two extra bytes are transferred if the Ready line remains active.

Table 11 describes the contents of the counters in the various classes and
the modes of transfer involving stopping or interrupting at an end-of-block
(interrupts imply prior stopping).

Search and transfer/search operations that are programmed to stop on byte
match function s